11-12学年高中数学 1.1.1 变化率问题同步练习 新人教A版选修2-2
11-12学年高中数学 2.1.1.2 类比推理同步练习 新人教A版选修2-2
类比推理一、选择题1.下列说法正确的是( )A .由合情推理得出的结论一定是正确的B .合情推理必须有前提有结论C .合情推理不能猜想D .合情推理得出的结论无法判定正误 [答案] B[解析] 由合情推理得出的结论不一定正确,A 不正确;B 正确;合情推理的结论本身就是一个猜想,C 不正确;合情推理结论可以通过证明来判定正误,D 也不正确,故应选B.2.下面几种推理是合情推理的是( ) ①由圆的性质类比出球的有关性质②由直角三角形、等腰三角形、等边三角形的内角和是180°,归纳出所有三角形的内角和都是180° ③教室内有一把椅子坏了,则该教室内的所有椅子都坏了④三角形内角和是180°,四边形内角和是360°,五边形内角和是540°,由此得出凸多边形的内角和是(n -2)·180°A .①②B .①③④C .①②④D .②④ [答案] C[解析] ①是类比推理;②④都是归纳推理,都是合情推理.3.三角形的面积为S =12(a +b +c )·r ,a 、b 、c 为三角形的边长,r 为三角形内切圆的半径,利用类比推理,可以得到四面体的体积为( )A .V =13abcB .V =13ShC .V =13(S 1+S 2+S 3+S 4)r ,(S 1、S 2、S 3、S 4分别为四面体四个面的面积,r 为四面体内切球的半径)D .V =13(ab +bc +ac )h (h 为四面体的高)[答案] C[解析] 边长对应表面积,内切圆半径应对应内切球半径.故应选C.4.类比平面内正三角形的“三边相等,三内角相等”的性质,可推知正四面体的下列哪些性质,你认为比较恰当的是( )①各棱长相等,同一顶点上的任两条棱的夹角都相等②各个面都是全等的正三角形,相邻两个面所成的二面角都相等 ③各个面都是全等的正三角形,同一顶点上的任两条棱的夹角都相等 A .① B .①② C .①②③ D .③ [答案] C[解析] 正四面体的面(或棱)可与正三角形的边类比,正四面体的相邻两面成的二面角(或共顶点的两棱的夹角)可与正三角形相邻两边的夹角类比,故①②③都对.5.类比三角形中的性质: (1)两边之和大于第三边 (2)中位线长等于底边的一半 (3)三内角平分线交于一点 可得四面体的对应性质:(1)任意三个面的面积之和大于第四个面的面积(2)过四面体的交于同一顶点的三条棱的中点的平面面积等于第四个面面积的14(3)四面体的六个二面角的平分面交于一点 其中类比推理方法正确的有( ) A .(1) B .(1)(2) C .(1)(2)(3) D .都不对 [答案] C[解析] 以上类比推理方法都正确,需注意的是类比推理得到的结论是否正确与类比推理方法是否正确并不等价,方法正确结论也不一定正确.6.由代数式的乘法法则类比推导向量的数量积的运算法则: ①“mn =nm ”类比得到“a ·b =b ·a ”;②“(m +n )t =mt +nt ”类比得到“(a +b )·c =a ·c +b ·c ”; ③“(m ·n )t =m (n ·t )”类比得到“(a ·b )·c =a ·(b ·c )”; ④“t ≠0,mt =xt ⇒m =x ”类比得到“p ≠0,a ·p =x ·p ⇒a =x ”; ⑤“|m ·n |=|m |·|n |”类比得到“|a ·b |=|a |·|b |”;⑥“ac bc =a b ”类比得到“a ·cb ·c =ab”. 以上式子中,类比得到的结论正确的个数是( ) A .1 B .2 C .3 D .4 [答案] B[解析] 由向量的有关运算法则知①②正确,③④⑤⑥都不正确,故应选B. 7.(2010·浙江温州)如图所示,椭圆中心在坐标原点,F 为左焦点,当FB →⊥AB →时,其离心率为5-12,此类椭圆被称为“黄金椭圆”.类比“黄金椭圆”,可推算出“黄金双曲线”的离心率e 等于( )A.5+12 B.5-12C.5-1D.5+1 [答案] A[解析] 如图所示,设双曲线方程为x 2a 2-y 2b2=1(a >0,b >0),则F (-c,0),B (0,b ),A (a,0) ∴FB →=(c ,b ),AB →=(-a ,b ) 又∵FB →⊥AB →,∴FB →·AB →=b 2-ac =0 ∴c 2-a 2-ac =0 ∴e 2-e -1=0∴e =1+52或e =1-52(舍去),故应选A.8.六个面都是平行四边形的四棱柱称为平行六面体.如图甲,在平行四边形ABD 中,有AC 2+BD 2=2(AB 2+AD 2),那么在图乙中所示的平行六面体ABCD -A 1B 1C 1D 1中,AC 21+BD 21+CA 21+DB 21等于( )A .2(AB 2+AD 2+AA 21) B .3(AB 2+AD 2+AA 21) C .4(AB 2+AD 2+AA 21) D .4(AB 2+AD 2) [答案] C[解析] AC 21+BD 21+CA 21+DB 21 =(AC 21+CA 21)+(BD 21+DB 21) =2(AA 21+AC 2)+2(BB 21+BD 2) =4AA 21+2(AC 2+BD 2)=4AA 21+4AB 2+4AD 2,故应选C. 9.下列说法正确的是( )A .类比推理一定是从一般到一般的推理B .类比推理一定是从个别到个别的推理C .类比推理是从个别到个别或一般到一般的推理D .类比推理是从个别到一般的推理 [答案] C[解析] 由类比推理的定义可知:类比推理是从个别到个别或一般到一般的推理,故应选C. 10.下面类比推理中恰当的是( )A .若“a ·3=b ·3,则a =b ”类比推出“若a ·0=b ·0,则a =b ”B .“(a +b )c =ac +bc ”类比推出“(a ·b )c =ac ·bc ”C .“(a +b )c =ac +bc ”类比推出“a +bc =a c +bc(c ≠0)” D .“(ab )n=a n b n”类比推出“(a +b )n=a n+b n” [答案] C[解析] 结合实数的运算知C 是正确的. 二、填空题11.设f (x )=12x +2,利用课本中推导等差数列前n 项和公式的方法,可求得f (-5)+f (-4)+…+f (0)+…+f (5)+f (6)的值为________.[答案] 3 2[解析] 本题是“方法类比”.因等比数列前n 项和公式的推导方法是倒序相加,亦即首尾相加,那么经类比不难想到f (-5)+f (-4)+…+f (0)+…+f (5)+f (6)=[f (-5)+f (6)]+[f (-4)+f (5)]+…+[f (0)+f (1)],而当x 1+x 2=1时,有f (x 1)+f (x 2)==12=22,故所求答案为6×22=3 2.12.(2010·广州高二检测)若数列{a n }是等差数列,对于b n =1n(a 1+a 2+…+a n ),则数列{b n }也是等差数列.类比上述性质,若数列{c n }是各项都为正数的等比数列,对于d n >0,则d n =________时,数列{d n }也是等比数列.[答案]nc 1·c 2·…·c n13.在以原点为圆心,半径为r 的圆上有一点P (x 0,y 0),则过此点的圆的切线方程为x 0x +y 0y =r 2,而在椭圆x 2a 2+y 2b 2=1(a >b >0)中,当离心率e 趋近于0时,短半轴b 就趋近于长半轴a ,此时椭圆就趋近于圆.类比圆的面积公式,在椭圆中,S 椭=________.类比过圆上一点P (x 0,y 0)的圆的切线方程,则过椭圆x 2a 2+y 2b2=1(a >b >0)上一点P (x 1,y 1)的椭圆的切线方程为________.[答案] π·a ·b ;x 1a 2·x +y 1b2·y =1[解析] 当椭圆的离心率e 趋近于0时,椭圆趋近于圆,此时a ,b 都趋近于圆的半径r ,故由圆的面积S =πr 2=π·r ·r ,猜想椭圆面积S 椭=π·a ·b ,其严格证明可用定积分处理.而由切线方程x 0·x +y 0·y =r 2变形得x 0r 2·x +y 0r 2·y =1,则过椭圆上一点P (x 1,y 1)的椭圆的切线方程为x 1a 2·x +y 1b2·y =1,其严格证明可用导数求切线处理.14.在等差数列{a n }中,若a 10=0,则有等式a 1+a 2+…+a n =a 1+a 2+…+a 19-n (n <19,n ∈N *)成立,类比上述性质,相应地:在等比数列{b n }中,若b 9=1,则有等式__________成立.[答案] b 1b 2…b n =b 1b 2…b 17-n (n <17,n ∈N *)[解析] 解法1:从分析所提供的性质入手:由a 10=0,可得a k +a 20-k =0,因而当n <19-n 时,有a 1+a 2+…+a 19-n =a 1+a 2+…+a n +a n +1+a n +2+…+a 19-n ,而a n +1+a n +2+…+a 19-n =(19-2n )(a n +1+a 19-n )2=0,∴等式成立.同理可得n >19-n 时的情形.由此可知:等差数列{a n }之所以有等式成立的性质,关键在于在等差数列中有性质:a n +1+a 19-n =2a 10=0,类似地,在等比数列{b n }中,也有性质:b n +1·b 17-n =b 29=1,因而得到答案:b 1b 2…b n =b 1b 2…b 17-n (n <17,n ∈N *).解法2:因为在等差数列中有“和”的性质a 1+a 2+…+a n =a 1+a 2+…+a 19-n (n <19,n ∈N *)成立,故在等比数列{b n }中,由b 9=1,可知应有“积”的性质b 1b 2…b n =b 1b 2…b 17-n (n <17,n ∈N *)成立. (1)证明如下:当n <8时,等式(1)为b 1b 2…b n =b 1b 2…b n b n +1…b 17-n 即:b n +1·b n +2…b 17-n =1.(2) ∵b 9=1,∴b k +1·b 17-k =b 29=1. ∴b n +1b n +2…b 17-n =b 17-2n9=1.∴(2)式成立,即(1)式成立;当n =8时,(1)式即:b 9=1显然成立; 当8<n <17时,(1)式即:b 1b 2…b 17-n ·b 18-n ·…b n =b 1b 2…b 17-n即:b 18-n ·b 19-n …b n =1(3) ∵b 9=1,∴b 18-k ·b k =b 29=1 ∴b 18-n b 19-n ·…·b n =b 2n -179=1∴(3)式成立,即(1)式成立.综上可知,当等比数列{b n }满足b 9=1时,有:b 1b 2…b n =b 1b 2…b 17-n (n <17,n ∈N *)成立.三、解答题15.已知:等差数列{a n }的公差为d ,前n 项和为S n ,有如下的性质: (1)a n =a m +(n -m )·d .(2)若m +n =p +q ,其中,m 、n 、p 、q ∈N *,则a m +a n =a p +a q . (3)若m +n =2p ,m ,n ,p ∈N *,则a m +a n =2a p . (4)S n ,S 2n -S n ,S 3n -S 2n 构成等差数列. 类比上述性质,在等比数列{b n }中, 写出相类似的性质.[解析] 等比数列{b n }中,公比q ,前n 项和S n . (1)通项a n =a m ·qn -m.(2)若m +n =p +q ,其中m ,n ,p ,q ∈N *, 则a m ·a n =a p ·a q .(3)若m +n =2p ,其中,m ,n ,p ∈N *,则a 2p =a m ·a n .(4)S n ,S 2n -S n ,S 3n -S 2n 构成等比数列. 16.先解答(1),再根据结构类比解答(2).(1)已知a ,b 为实数,且|a |<1,|b |<1,求证:ab +1>a +b .(2)已知a ,b ,c 均为实数,且|a |<1,|b |<1,|c |<1,求证:abc +2>a +b +c . [解析] (1)ab +1-(a +b )=(a -1)(b -1)>0.(2)∵|a |<1,|b |<1,|c |<1,据(1)得(ab )·c +1>ab +c , ∴abc +2=[(ab )·c +1]+1>(ab +c )+1=(ab +1)+c >a +b +c . 你能再用归纳推理方法猜想出更一般地结论吗?[点评] (1)与(2)的条件与结论有着相同的结构,通过分析(1)的推证过程及结论的构成进行类比推广得出:(ab )·c +1>ab +c 是关键.用归纳推理可推出更一般的结论:a i 为实数,|a i |<1,i =1、2、…、n ,则有:a 1a 2…a n +(n -1)>a 1+a 2+…+a n .17.点P ⎝⎛⎭⎪⎫22,22在圆C :x 2+y 2=1上,经过点P 的圆的切线方程为22x +22y =1,又点Q (2,1)在圆C 外部,容易证明直线2x +y =1与圆相交,点R ⎝ ⎛⎭⎪⎫12,12在圆C 的内部.直线12x +12y =1与圆相离.类比上述结论,你能给出关于一点P (a ,b )与圆x 2+y 2=r 2的位置关系与相应直线与圆的位置关系的结论吗?[解析] 点P (a ,b )在⊙C :x 2+y 2=r 2上时,直线ax +by =r 2与⊙C 相切;点P 在⊙C 内时,直线ax +by =r 2与⊙C 相离;点P 在⊙C 外部时,直线ax +by =r 2与⊙C 相交.容易证明此结论是正确的.18.我们知道:12= 1, 22=(1+1)2=12+2×1+1, 32=(2+1)2=22+2×2+1, 42=(3+1)2=32+2×3+1, ……n 2=(n -1)2+2(n -1)+1,左右两边分别相加,得n 2=2×[1+2+3+…+(n -1)]+n∴1+2+3+…+n =n (n +1)2.类比上述推理方法写出求12+22+32+…+n 2的表达式的过程. [解析] 我们记S 1(n )=1+2+3+…+n ,S 2(n )=12+22+32+…+n 2,…S k (n )=1k +2k +3k +…+n k (k ∈N *).已知13= 1,23=(1+1)3=13+3×12+3×1+1, 33=(2+1)3=23+3×22+3×2+1, 43=(3+1)3=33+3×32+3×3+1, ……n 3=(n -1)3+3(n -1)2+3(n -1)+1.将左右两边分别相加,得S 3(n )=[S 3(n )-n 3]+3[S 2(n )-n 2]+3[S 1(n )-n ]+n .由此知S 2(n )=n 3+3n 2+2n -3S 1(n )3=2n 3+3n 2+n6=n (n +1)(2n +1)6.。
高中数学人教A版选修2-2(课时训练)1.1 变化率与导数1.1.3 Word版含答案
.导数的几何意义
[学习目标]
.了解导函数的概念;了解导数与割线斜率之间的关系.
.理解曲线的切线的概念;理解导数的几何意义.
.会求曲线上某点处的切线方程,初步体会以直代曲的意义.
[知识链接]
如果一个函数是路程关于时间的函数,那么函数在某点处的导数就是瞬时速度,这是函数的实际意义,那么从函数的图象上来考查函数在某点处的导数,它具有怎样的几何意义呢?
答
设函数=()的图象如图所示,是过点(,())与点(+Δ,(+Δ))的一条割线,此割线的斜率是=.当点
沿曲线趋近于点时,割线绕点转动,它的极限位置为直线,这条直线叫做此曲线在点处的切线.于是,当Δ→时,割线的斜率无限趋近于过点的切线的斜率,即=′()=.
[预习导引]
.导数的几何意义
函数=()在点=处的导数的几何意义是曲线=()在点(,())处的切线的斜率.也就是说,曲线=()在点(,())处的切线的斜率是′().相应地,切线方程为-()=′()(-).
.函数的导函数
当=时,′()是一个确定的数,则当变化时,′()是的一个函数,称′()是()的导函数(简称导数).′()也记作′,即′()=′=.
要点一过曲线上一点的切线方程
例若曲线=+在某点处的切线方程为=+,求的值.
解∵=+.
∴′=
=
=[+Δ+(Δ)+]=+.
设曲线与直线相切的切点为(,),
结合已知条件,得
解得
∴=-.
规律方法一般地,设曲线是函数=()的图象,(,)是曲线上的定点,由导数的几何意义知==,继而由点与斜率可得点斜式方程,化简得切线方程.
跟踪演练求曲线=在点处的切线方程.。
人教版高中数学选修2-2第一章1.1变化率与导数习题
2014年新田一中选修2-2课后作业(一)班级___________姓名___________学号___________1.已知函数f(x)=2x2-4的图象上一点(1,-2)及邻近一点(1+Δx,-2+Δy),则ΔyΔx等于( ).A.4B.4x C.4+2Δx D.4+2(Δx)22.如果质点M按规律s=3+t2运动,则在一小段时间[2,2.1]中相应的平均速度是( ).A.4B.4.1C.0.41D.33.如果某物体的运动方程为s=2(1-t2)(s的单位为m,t的单位为s),那么其在1.2s末的瞬时速度为( ).A.-4.8m/s B.-0.88m/sC.0.88m/s D.4.8m/s4.已知函数y=f(x)=x2+1,则在x=2,Δx=0.1时,Δy的值为( ).A.0.40B.0.41C.0.43D.0.445.设函数f(x)可导,则limΔx→0f(1+Δx)-f(1)3Δx等于( ).A.f′(1)B.3f′(1)C.13f′(1)D.f′(3)6.已知函数y=2+1x,当x由1变到2时,函数的增量Δy=________.7.一做直线运动的物体,其位移s与时间t的关系是s=3t-t2,则物体的初速度是________.8.某物体作匀速运动,其运动方程是s=vt,则该物体在运动过程中其平均速度与任何时刻的瞬时速度的关系是________.9.子弹在枪筒中的运动可以看作是匀变速运动,如果它的加速度是a=5×105m/s2,子弹从枪口射出时所用的时间为t0=1.6×10-3s,求子弹射出枪口时的瞬时速度.10.已知f(x)=x2,g(x)=x3,求满足f′(x)+2=g′(x)的x的值.1.已知函数f(x)=2x2-4的图象上一点(1,-2)及邻近一点(1+Δx,-2+Δy),则ΔyΔx等于( ).A.4 B.4xC.4+2Δx D.4+2(Δx)2解析ΔyΔx=f(1+Δx)-f(1)Δx=2(1+Δx)2-2Δx=4+2Δx.答案 C2.如果质点M按规律s=3+t2运动,则在一小段时间[2,2.1]中相应的平均速度是( ).A .4B .4.1C .0.41D .3解析 v =(3+2.12)-(3+22)0.1=4.1.答案 B3.如果某物体的运动方程为s =2(1-t 2)(s 的单位为m ,t 的单位为s),那么其在1.2s 末的瞬时速度为( ).A .-4.8m/sB .-0.88m/sC .0.88m/sD .4.8m/s解析 物体运动在1.2s 末的瞬时速度即为s 在1.2处的导数,利用导数的定义即可求得. 答案 A4.已知函数y =2+1x,当x 由1变到2时,函数的增量Δy =________.解析 Δy =⎝ ⎛⎭⎪⎫2+12-(2+1)=-12.答案 -125.已知函数y =2x,当x 由2变到1.5时,函数的增量Δy =________.解析 Δy =f (1.5)-f (2)=21.5-22=43-1=13. 答案136.利用导数的定义,求函数y =1x2+2在点x =1处的导数.解 ∵Δy =⎣⎢⎡⎦⎥⎤1(x +Δx )2+2-⎝ ⎛⎭⎪⎫1x 2+2=-2x Δx -(Δx )2(x +Δx )2·x 2, ∴Δy Δx =-2x -Δx(x +Δx )2·x 2, ∴y ′=limΔx →0Δy Δx =lim Δx →0-2x -Δx (x +Δx )2·x 2=-2x3,∴y′|x=1=-2.综合提高(限时25分钟)7.已知函数y=f(x)=x2+1,则在x=2,Δx=0.1时,Δy的值为( ).A.0.40B.0.41C.0.43D.0.44解析Δy=(2+0.1)2-22=0.41.答案 B8.设函数f(x)可导,则limΔx→0f(1+Δx)-f(1)3Δx等于( ).A.f′(1) B.3f′(1)C.13f′(1) D.f′(3)解析根据导数的定义:limΔx→0f(1+Δx)-f(1)Δx=f′(1),lim Δx→0f(1+Δx)-f(1)3Δx=13f′(1).答案 C9.一做直线运动的物体,其位移s与时间t的关系是s=3t-t2,则物体的初速度是________.解析v初=s′|t=0=limΔt→0s(0+Δt)-s(0)Δt=limΔt→0(3-Δt)=3.答案 310.某物体作匀速运动,其运动方程是s=vt,则该物体在运动过程中其平均速度与任何时刻的瞬时速度的关系是________.解析v0=limΔt→0ΔsΔt=limΔt→0s(t+Δt)-s(t0)Δt=limΔt→0v(t+Δt)-vt0Δt=limΔt→0v·ΔtΔt=v.答案相等11.子弹在枪筒中的运动可以看作是匀变速运动,如果它的加速度是a=5×105m/s2,子弹从枪口射出时所用的时间为t0=1.6×10-3s,求子弹射出枪口时的瞬时速度.解运动方程为s=12at2.∵Δs=12a(t+Δt)2-12at2=at0Δt+12a(Δt)2,∴ΔsΔt=at0+12aΔt,∴limΔt→0ΔsΔt=at0.由题意知a=5×105,t0=1.6×10-3,故at0=8×102=800(m/s).即子弹射出枪口时的瞬时速度为800m/s.12.(创新拓展)已知f(x)=x2,g(x)=x3,求满足f′(x)+2=g′(x)的x的值.解由导数的定义知,f′(x)=limΔx→0(x+Δx)2-x2Δx=2x,g′(x)=limΔx→0(x+Δx)3-x3Δx=3x2.∵f′(x)+2=g′(x),∴2x+2=3x2.即3x2-2x-2=0,解得x=1-73或x=1+73.。
高中数学人教A版选修2-2(课时训练):1.1 变化率与导数1.1.1-1.1.2 Word版含答案
1.1变化率与导数1.1.1变化率问题1.1.2导数的概念[学习目标]1.了解导数概念的实际背景.2.会求函数在某一点附近的平均变化率.3.会利用导数的定义求函数在某点处的导数.[知识链接]很多人都吹过气球,回忆一下吹气球的过程,可以发现,随着气球内空气容量的增加,气球的半径增加得越来越慢.从数学的角度,如何描述这种现象呢?答气球的半径r(单位:dm)与体积V(单位:L)之间的函数关系是r(V)=33V4π,(1)当V从0增加到1 L时,气球半径增加了r(1)-r(0)≈0.62 (dm),气球的平均膨胀率为r(1)-r(0)1-0≈0.62(dm/L).(2)当V从1 L增加到2 L时,气球半径增加了r(2)-r(1)≈0.16 (dm),气球的平均膨胀率为r(2)-r(1)2-1≈0.16(dm/L).可以看出,随着气球体积逐渐变大,它的平均膨胀率逐渐变小了.[预习导引] 1.函数的变化率函数y=f(x)在x=x0处的瞬时变化率limΔx→0ΔyΔx=limΔx→0f(x0+Δx)-f(x0)Δx称为函数y=f(x)在x=x0处的导数,记作f′(x0)或y′|x=x0,即f′(x0)=limΔx→0ΔyΔx=limΔx→0f(x0+Δx)-f(x0)Δx.要点一求平均变化率例1已知函数h(x)=-4.9x2+6.5x+10.(1)计算从x=1到x=1+Δx的平均变化率,其中Δx的值为①2;②1;③0.1;④0.01.(2)根据(1)中的计算,当|Δx|越来越小时,函数h(x)在区间[1,1+Δx]上的平均变化率有怎样的变化趋势?解(1)∵Δy=h(1+Δx)-h (1)=-4.9 (Δx)2-3.3Δx,∴ΔyΔx=-4.9Δx-3.3.①当Δx=2时,ΔyΔx=-4.9Δx-3.3=-13.1;②当Δx =1时,ΔyΔx =-4.9Δx -3.3=-8.2; ③当Δx =0.1时,ΔyΔx =-4.9Δx -3.3=-3.79; ④当Δx =0.01时,ΔyΔx =-4.9Δx -3.3=-3.349.(2)当|Δx |越来越小时,函数f (x )在区间[1,1+Δx ]上的平均变化率逐渐变大,并接近于-3.3.规律方法 求平均变化率的主要步骤: (1)先计算函数值的改变量Δy =f (x 2)-f (x 1). (2)再计算自变量的改变量Δx =x 2-x 1. (3)得平均变化率Δy Δx =f (x 2)-f (x 1)x 2-x 1.跟踪演练1 求函数y =f (x )=3x 2+2在区间[x 0,x 0+Δx ]上的平均变化率,并求当x 0=2,Δx =0.1时平均变化率的值.解 函数y =f (x )=3x 2+2在区间[x 0,x 0+Δx ]上的平均变化率为 f (x 0+Δx )-f (x 0)(x 0+Δx )-x 0=[3(x 0+Δx )2+2]-(3x 20+2)Δx=6x 0·Δx +3(Δx )2Δx=6x 0+3Δx .当x 0=2,Δx =0.1时,函数y =3x 2+2在区间[2,2.1]上的平均变化率为6×2+3×0.1=12.3.要点二 物体运动的瞬时速度例2 高台跳水运动中,运动员相对于水面的高度h (单位:m)与起跳后的时间t (单位:s)之间的关系式为h (t )=-4.9t 2+6.5t +10,求运动员在t =6598 s 时的瞬时速度,并解释此时的运动状况. 解令t 0=6598,Δt为增量.则h (t 0+Δt )-h (t 0)Δt=-4.9×⎝ ⎛⎭⎪⎫6598+Δt 2+6.5×⎝ ⎛⎭⎪⎫6598+Δt +10Δt+4.9×⎝ ⎛⎭⎪⎫65982-6.5×6598-10Δt=-4.9Δt ⎝ ⎛⎭⎪⎫6549+Δt +6.5ΔtΔt =-4.9⎝ ⎛⎭⎪⎫6549+Δt +6.5, ∴lim Δt →0 h (t 0+Δt )-h (t 0)Δt =lim Δt →0 ⎣⎢⎡⎦⎥⎤-4.9⎝ ⎛⎭⎪⎫6549+Δt +6.5=0, 即运动员在t 0=6598 s 时的瞬时速度为0 m/s.说明此时运动员处于跳水运动中离水面最高的点处.规律方法 求瞬时速度是利用平均速度“逐渐逼近”的方法得到的,其求解步骤如下:(1)由物体运动的位移s 与时间t 的函数关系式求出位移增量Δs =s (t 0+Δt )-s (t 0); (2)求时间t 0到t 0+Δt 之间的平均速度v =Δs Δt ; (3)求lim Δt →0 ΔsΔt的值,即得t =t 0时的瞬时速度. 跟踪演练2 一质点按规律s (t )=at 2+1作直线运动(位移单位:m ,时间单位:s),若该质点在t =2 s 时的瞬时速度为8 m/s ,求常数a 的值. 解 ∵Δs =s (2+Δt )-s (2) =a (2+Δt )2+1-a ·22-1 =4a Δt +a (Δt )2, ∴ΔsΔt =4a +a Δt .在t =2 s 时,瞬时速度为lim Δx →0 ΔsΔt =4a ,即4a =8,∴a =2. 要点三 函数在某点处的导数例3 求函数f (x )=3x 2-2x 在x =1处的导数.解 Δy =3(1+Δx )2-2(1+Δx )-(3×12-2×1)=3(Δx )2+4Δx ,∵Δy Δx =3(Δx )2+4Δx Δx=3Δx +4,∴y ′|x =1=lim Δx →0 ΔyΔx =lim Δx →0(3Δx +4)=4. 规律方法 求一个函数y =f (x )在x =x 0处的导数的步骤如下:(1)求函数值的变化量Δy=f(x0+Δx)-f(x0);(2)求平均变化率ΔyΔx=f(x0+Δx)-f(x0)Δx;(3)取极限,得导数f′(x0)=limΔx→0Δy Δx.跟踪演练3利用导数的定义求函数f(x)=-x2+3x在x=2处的导数.解由导数的定义知,函数在x=2处的导数f′(2)=limΔx→0f(2+Δx)-f(2)Δx,而f(2+Δx)-f(2)=-(2+Δx)2+3(2+Δx)-(-22+3×2) =-(Δx)2-Δx,于是f′(2)=limΔx→0-(Δx)2-ΔxΔx=limΔx→0(-Δx-1)=-1.1.如果质点M按规律s=3+t2运动,则在一小段时间[2,2.1]中相应的平均速度是()A.4 B.4.1C.0.41 D.3答案 B解析v=(3+2.12)-(3+22)0.1=4.1.2.函数f(x)在x0处可导,则limΔx→0f(x0+h)-f(x0)h()A.与x0、h都有关B.仅与x0有关,而与h无关C.仅与h有关,而与x0无关D.与x0、h均无关答案 B3.已知函数f(x)=2x2-1的图象上一点(1,1)及邻近一点(1+Δx,1+Δy),则Δy Δx等于()A .4B .4xC .4+2ΔxD .4+2(Δx )2答案 C解析 Δy =f (1+Δx )-f (1)=2(1+Δx )2-1-1=2(Δx )2+4Δx ,∴ΔyΔx =2Δx +4. 4.已知函数f (x )=1x,则f ′(1)=________. 答案 -12解析 f ′(1)=lim Δx →0 f (1+Δx )-f (1)Δx =lim Δx →0 11+Δx-1Δx=lim Δx →0-11+Δx (1+1+Δx )=-12.利用导数定义求导数三步曲:(1)作差求函数的增量Δy =f (x 0+Δx )-f (x 0); (2)作比求平均变化率Δy Δx =f (x 0+Δx )-f (x 0)Δx ;(3)取极限得导数f ′(x 0)=lim Δx →0 ΔyΔx , 简记为一差,二比,三极限.一、基础达标1.函数y =f (x )在x 0到x 0+Δx 之间的平均变化率f (x 0+Δx )-f (x 0)Δx 中,Δx 不可能是( ) A .大于0B.小于0 C .等于0 D .大于0或小于0答案 C 2.如图,函数y =f (x )在A ,B 两点间的平均变化率是( ) A .1 B .-1 C .2 D .-2答案 B解析 Δy Δx =f (3)-f (1)3-1=1-32=-1.3.如果某物体的运动方程为s =2(1-t 2) (s 的单位为m ,t 的单位为s),那么其在1.2 s 末的瞬时速度为( ) A .-4.8 m/s B .-0.88 m/s C .0.88 m/s D .4.8 m/s 答案 A解析 物体运动在1.2 s 末的瞬时速度即为s 在1.2处的导数,利用导数的定义即可求得.4.设函数f (x )可导,则lim Δx →0 f (1+3Δx )-f (1)3Δx 等于( ) A .f ′(1) B .3f ′(1) C .13f ′(1) D .f ′(3) 答案 A 解析 lim Δx →0f (1+3Δx )-f (1)3Δx=f ′(1).5.已知函数y =2x +3,当x 由2变到1.5时,函数的增量Δy =________. 答案 13解析 Δy =f (1.5)-f (2)=⎝ ⎛⎭⎪⎫21.5+3-⎝ ⎛⎭⎪⎫22+3=43-1=13.6.一做直线运动的物体,其位移s 与时间t 的关系是s =3t -t 2,则物体的初速度是________.答案 3解析 v 初=s ′|t =0=lim Δx →0s (0+Δt )-s (0)Δt=lim Δx →0 (3-Δt )=3. 7.利用定义求函数y =-2x 2+5在x =2处的瞬时变化率.解 因为在x =2附近,Δy =-2(2+Δx )2+5-(-2×22+5)=-8Δx -2(Δx )2,所以函数在区间[2,2+Δx ]内的平均变化率为Δy Δx =-8Δx -2(Δx )2Δx =-8-2Δx .故函数y =-2x 2+5在x =2处的瞬时变化率为lim Δx →0 (-8-2Δx )=-8. 二、能力提升 8.甲、乙两厂污水的排放量W 与时间t 的关系如图所示,治污效果较好的是( ) A .甲 B .乙 C .相同 D .不确定答案 B解析 在t 0处,虽然W 1(t 0)=W 2(t 0), 但是,在t 0-Δt 处,W 1(t 0-Δt )<W 2(t 0-Δt ),即⎪⎪⎪⎪⎪⎪W 1(t 0)-W 1(t 0-Δt )Δt <⎪⎪⎪⎪⎪⎪W 2(t 0)-W 2(t 0-Δt )Δt ,所以,在相同时间Δt 内,甲厂比乙厂的平均治污率小.所以乙厂治污效果较好.9.过曲线y =f (x )=x 2+1上两点P (1,2)和Q (1+Δx,2+Δy )作曲线的割线,当Δx =0.1时,割线的斜率k =________,当Δx =0.001时,割线的斜率k =________. 答案 2.1 2.001解析 ∵Δy =(1+Δx )2+1-(12+1)=2Δx +(Δx )2, ∴ΔyΔx =2+Δx ,∴割线斜率为2+Δx ,当Δx =0.1时,割线PQ 的斜率k =2+0.1=2.1. 当Δx =0.001时,割线PQ 的斜率k =2+0.001=2.001.10.已知二次函数f (x )=ax 2+bx +c (a ≠0)的导数为f ′(x ),f ′(0)>0,对于任意实数x ,有f (x )≥0,则f (1)f ′(0)的最小值为________. 答案 2解析 由导数的定义, 得f ′(0)=lim Δx →0f (Δx )-f (0)Δx=lim Δx →0 a (Δx )2+b (Δx )+c -cΔx =lim Δx →0[a ·(Δx )+b ]=b >0. 又⎩⎨⎧Δ=b 2-4ac ≤0a >0,∴ac ≥b 24,∴c >0. ∴f (1)f ′(0)=a +b +c b ≥b +2ac b ≥2b b =2.11.求函数y =f (x )=2x 2+4x 在x =3处的导数. 解 Δy =2(3+Δx )2+4(3+Δx )-(2×32+4×3) =12Δx +2(Δx )2+4Δx =2(Δx )2+16Δx ,∴Δy Δx =2(Δx )2+16Δx Δx=2Δx +16.∴y ′|x =3=lim Δx →0 ΔyΔx =lim Δx →0(2Δx +16)=16. 12.若函数f (x )=ax 2+c ,且f ′(1)=2,求a 的值. 解 ∵f (1+Δx )-f (1)=a (1+Δx )2+c -a -c =a (Δx )2+2a Δx .∴f ′(1)=lim Δx →0 f (1+Δx )-f (1)Δx =lim Δx →0 a (Δx )2+2a Δx Δx =lim Δx →0 (a Δx +2a )=2a ,即2a =2,∴a =1. 三、探究与创新13.已知f (x )=x 2,g (x )=x 3,求满足f ′(x )+2=g ′(x )的x 的值. 解 由导数的定义知, f ′(x )=lim Δx →0 (x +Δx )2-x 2Δx =2x , g ′(x )=lim Δx →0 (x +Δx )3-x 3Δx=3x 2.∵f′(x)+2=g′(x),∴2x+2=3x2.即3x2-2x-2=0,解得x=1-73或x=1+73.。
人教a版数学高二选修2-2习题_第一章_导数及其应用_1.1.1变化率问题 有答案
人教a 版数学高二选修2-2习题_第一章_导数及其应用_1.1.1变化率问题 有答案1.1 变化率与导数 1.1.1 变化率问题A 级 基础巩固一、选择题1.已知函数y =x 2+1,则在x =2,Δx =0.1时,Δy 的值为( ) A .0.40 B .0.41 C .0.43 D .0.44 解析:Δy =(2+0.1)2+1-(22+1)=0.41. 答案:B2.物体的运动规律是s =s (t ),物体在t 至t +Δt 这段时间内的平均速度是( )A.v -=s (t )tB.v -=s (Δt )ΔtC.v -=Δs ΔtD.v -=s (t +Δt )Δt解析:v -=s (t +Δt )-s (t )Δt =Δs Δt .答案:C3.一运动物体的运动路程s (t )与时间x 的函数关系为s (t )=-t 2+2t ,则s (t )从2到2+Δt 的平均速度为( )A .2-ΔtB .-2-ΔtC .2+ΔtD .(Δt )2-2Δt解析:因为s (2)=-22+2×2=0,所以s (2+Δt )=-(2+Δt )2+2(2+Δt )=-2Δt -(Δt )2, 所以s (2+Δt )-s (2)2+Δt -2=-2-Δt .答案:B4.将半径为R 的球加热,若球的半径增加ΔR ,则球的表面积的增加量ΔS 等于( )A .8πR ΔRB .8πR ΔR +4π(ΔR )2C .4πR ΔR +4π(ΔR )2D .4π(ΔR )2解析:ΔS =4π(R +ΔR )2-4πR 2=8πR ΔR +4π(ΔR )2. 答案:B5.已知函数f (x )=2x 2-1的图象上一点(1,1)及邻近一点(1+Δx ,f (1+Δx )),则ΔyΔx =( ) A .4 B .4+2(Δx )2 C .4+2ΔxD .4x解析:Δy =f (1+Δx )-f (1)=2(1+Δx )2-1-2+1=2×(Δx )2+4×Δx ,所以ΔyΔx=2Δx +4. 答案:C 二、填空题6.在x =2附近,Δx =14时,函数y =1x 的平均变化率为________.解析:Δy Δx =12+Δx -12Δx =-14+2Δx =-29.答案:-297.已知曲线y =1x -1上两点A ⎝ ⎛⎭⎪⎫2,-12,B ⎝ ⎛⎭⎪⎫2+Δx ,-12+Δy ,当Δx =1时,割线AB 的斜率为________.解析:因为Δx =1,所以2+Δx =3,Δy =⎝ ⎛⎭⎪⎫13-1-⎝ ⎛⎭⎪⎫12-1=-16.所以k AB =ΔyΔx =-16. 答案:-168.函数y=1x2在x0到x0+Δx之间的平均变化率为________.解析:因为Δy=1(x0+Δx)2-1x20,所以y=1x2在x0到x0+Δx之间的平均变化率0为Δy Δx =1(x0+Δx)2-1x20Δx=-2x0+Δx(x0+Δx)2x20.答案:-2x0+Δx (x0+Δx)2x20三、解答题9.比较函数f(x)=2x与g(x)=3x,当x∈时,平均增长率的大小.解:设f(x)=2x在x∈时的平均增长率为k1,则k1=f(2)-f(1)2-1=2.设g(x)=3x在x∈时的平均增长率为k2,则k2=g(2)-g(1)2-1=6.因为k1<k2,故当x∈时,g(x)的平均增长率大于f(x)的平均增长率.10.若函数f(x)=-x2+x在(Δx>0)上的平均变化率不大于-1,求Δx的范围.解:因为函数f(x)在上的平均变化率为:Δy Δx =f(2+Δx)-f(2)Δx=-(2+Δx)2+(2+Δx)-(-4+2)Δx=-4Δx+Δx-(Δx)2Δx=-3-Δx,所以由-3-Δx≤-1,得Δx≥-2.又因为Δx>0,所以Δx的取值范围是(0,+∞).B级能力提升1.在x =1附近,取Δx =0.3,在四个函数①y =x 、②y =x 2、③y =x 3、④y =1x中,平均变化率最大的是( )A .④B .③C .②D .①解析:Δx =0.3时,①y =x 在x =1附近的平均变化率k 1=1;②y =x 2在x =1附近的平均变化率k 2=2+Δx =2.3;③y =x 3在x =1附近的平均变化率k 3=3+3Δx +(Δx )2=3.99;④y =1x 在x =1附近的平均变化率k 4=-11+Δx =-1013.所以k 3>k 2>k 1>k 4.答案:B2.设C 是成本,q 是产量,且C (q )=3q 2+10,若q =q 0,则产量增加量为10时,成本增加量为________.解析:ΔC =C (q 0+10)-C (q 0)=3(q 0+10)2+10-(3q 20+10)=3(q 20+20q 0+100)-3q 20=60q 0+300.答案:60q 0+3003.路灯距地面8 m ,一个身高为1.6 m 的人以84 m/min 的速度在地面上从路灯在地面上的射影点C 处沿直线匀速离开路灯.(1)求身影的长度y 与人距路灯的距离x 之间的关系式; (2)求人离开路灯10 s 内身影的平均变化率.解:(1)如图所示,设人从C 点运动到B 处的路程为x m ,AB 为身影长度,AB 的长度为y m ,由于CD //BE ,则AB AC =BE CD,即yy +x =1.68,所以y =f (x )=14x .(2)84 m/min =1.4 m/s ,在内自变量的增量为x2-x1=1.4×10-1.4×0=14,f(x2)-f(x1)=14×14-14×0=72.所以f(x2)-f(x1)x2-x1=7214=14.即人离开路灯10 s内身影的平均变化率为14 .。
高中数学人教A版选修2-2同步辅导与检测1.1.1变化率问题
D)
B.f(x0)+Δx D.f(x0+Δx)-f(x0)
7.一个做直线运动的物体,其位移s与时间t的关系 是s=3t-t2,则此物体在区间[0,0.001]内的平均变化率接近( B ) A.0 C.-2 B.3 D.3-2t
函数值的改变量Δy=________ ,平均变化率 Δx=________. 2 6
Δy
为
2.函数f(x)=2x在区间[1,4]上的自变量的增量Δx =____ 3 ,
Δy 3.设函数y=f(x)=-2x,f(1)=____ , f (1 + Δ x ) = -2 Δx ____________ -2Δx ,平均变化率 -2-2Δx ,Δy=f(1+Δx)-f(1)=________
=________. -2
自测自评 1.在求平均变化率时,自变量的增量Δx满足( D ) A.Δx>0 B.Δx<0
C.Δx=0
D.Δx≠0
2.函数f(x)=3x在区间[2,2+Δx]的函数值的改变量Δy= ________. 3Δx
3.一物体的运动方程是s=3+t2,则在一小段时间 [2,2.1] 内相应的平均速度为( D )
1 v =g 10+2×0.1
=10.05g(m/s).
1. 一物体的运动方程是s=2t2,则从2 s到3 s这段时间内路
程的增量为( C ) A.18 C.10 为( B ) A.6 B.18 B.8 D.12
2.如果质点M按规律s=3t2运动,则在t=3时的瞬时速度
C.54
D.81
A.0.41 C.4 B.3 D.4.1
求平均变化率或函数的增量 求函数y=-2x2+5在区间[2,2+Δx]内的平均变化 率. 解析:因为Δy=-2(2+Δx)2+5-(-2×22+5)=
11-12学年高中数学 第一章 导数及其应用 综合检测 新人教A版选修2-2
导数及其应用综合检测时间120分钟,满分150分。
一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2010·全国Ⅱ文,7)若曲线y=x2+ax+b在点(0,b)处的切线方程是x-y+1=0,则( ) A.a=1,b=1B.a=-1,b=1C.a=1,b=-1D.a=-1,b=-1[答案] A[解析] y′=2x+a,∴y′|x=0=(2x+a)|x=0=a=1,将(0,b)代入切线方程得b=1.2.一物体的运动方程为s=2t sin t+t,则它的速度方程为( )A.v=2sin t+2t cos t+1B.v=2sin t+2t cos tC.v=2sin tD.v=2sin t+2cos t+1[答案] A[解析] 因为变速运动在t0的瞬时速度就是路程函数y=s(t)在t0的导数,S′=2sin t+2t cos t+1,故选A.3.曲线y=x2+3x在点A(2,10)处的切线的斜率是( )A.4B.5C.6D.7[答案] D[解析] 由导数的几何意义知,曲线y=x2+3x在点A(2,10)处的切线的斜率就是函数y=x2+3x在x =2时的导数,y′|x=2=7,故选D.4.函数y=x|x(x-3)|+1( )A.极大值为f(2)=5,极小值为f(0)=1B.极大值为f(2)=5,极小值为f(3)=1C.极大值为f(2)=5,极小值为f(0)=f(3)=1D.极大值为f(2)=5,极小值为f(3)=1,f(-1)=-3[答案] B[解析] y =x |x (x -3)|+1=⎩⎪⎨⎪⎧x 3-3x 2+1 (x <0或x >3)-x 3+3x 2+1 (0≤x ≤3)∴y ′=⎩⎪⎨⎪⎧3x 2-6x (x <0或x >3)-3x 2+6x (0≤x ≤3)x 变化时,f ′(x ),f (x )变化情况如下表:x (-∞,0)0 (0,2) 2 (2,3) 3 (3,+∞)f ′(x ) ++-+f (x )无极值极大值5极小值1f x 极大f f x 极小f 故应选B.5.(2009·安徽理,9)已知函数f (x )在R 上满足f (x )=2f (2-x )-x 2+8x -8,则曲线y =f (x )在点(1,f (1))处的切线方程是( )A .y =2x -1B .y =xC .y =3x -2D .y =-2x +3 [答案] A[解析] 本题考查函数解析式的求法、导数的几何意义及直线方程的点斜式. ∵f (x )=2f (2-x )-x 2+8x -8, ∴f (2-x )=2f (x )-x 2-4x +4, ∴f (x )=x 2,∴f ′(x )=2x ,∴曲线y =f (x )在点(1,f (1))处的切线斜率为2,切线方程为y -1=2(x -1),∴y =2x -1. 6.函数f (x )=x 3+ax 2+3x -9,已知f (x )在x =-3时取得极值,则a 等于( ) A .2 B .3 C .4 D .5 [答案] D[解析] f ′(x )=3x 2+2ax +3, ∵f (x )在x =-3时取得极值, ∴x =-3是方程3x 2+2ax +3=0的根, ∴a =5,故选D.7.设f(x),g(x)分别是定义在R上的奇函数和偶函数.当x<0时,f′(x)g(x)+f(x)g′(x)>0,且g(-3)=0,则不等式f(x)g(x)<0的解集是( )A.(-3,0)∪(3,+∞)B.(-3,0)∪(0,3)C.(-∞,-3)∪(3,+∞)D.(-∞,-3)∪(0,3)[答案] D[解析] 令F(x)=f(x)·g(x),易知F(x)为奇函数,又当x<0时,f′(x)g(x)+f(x)g′(x)>0,即F′(x)>0,知F(x)在(-∞,0)内单调递增,又F(x)为奇函数,所以F(x)在(0,+∞)内也单调递增,且由奇函数知f(0)=0,∴F(0)=0.又由g(-3)=0,知g(3)=0∴F(-3)=0,进而F(3)=0于是F(x)=f(x)g(x)的大致图象如图所示∴F(x)=f(x)·g(x)<0的解集为(-∞,-3)∪(0,3),故应选D.8.下面四图都是同一坐标系中某三次函数及其导函数的图象,其中一定不正确的序号是( )A.①②B.③④C.①③D.①④[答案] B[解析] ③不正确;导函数过原点,但三次函数在x =0不存在极值;④不正确;三次函数先增后减再增,而导函数先负后正再负.故应选B.9.(2010·湖南理,5)⎠⎛241xd x 等于( )A .-2ln2B .2ln2C .-ln2D .ln2 [答案] D[解析] 因为(ln x )′=1x,所以 ⎠⎛241xdx =ln x |42=ln4-ln2=ln2.10.已知三次函数f (x )=13x 3-(4m -1)x 2+(15m 2-2m -7)x +2在x ∈(-∞,+∞)是增函数,则m 的取值范围是( )A .m <2或m >4B .-4<m <-2C .2<m <4D .以上皆不正确 [答案] D[解析] f ′(x )=x 2-2(4m -1)x +15m 2-2m -7,由题意得x 2-2(4m -1)x +15m 2-2m -7≥0恒成立,∴Δ=4(4m -1)2-4(15m 2-2m -7) =64m 2-32m +4-60m 2+8m +28 =4(m 2-6m +8)≤0, ∴2≤m ≤4,故选D.11.已知f (x )=x 3+bx 2+cx +d 在区间[-1,2]上是减函数,那么b +c ( ) A .有最大值152B .有最大值-152C .有最小值152D .有最小值-152[答案] B[解析] 由题意f ′(x )=3x 2+2bx +c 在[-1,2]上,f ′(x )≤0恒成立.所以⎩⎪⎨⎪⎧f ′(-1)≤0f ′(2)≤0即⎩⎪⎨⎪⎧2b -c -3≥04b +c +12≤0令b +c =z ,b =-c +z ,如图 过A ⎝⎛⎭⎪⎫-6,-32得z 最大, 最大值为b +c =-6-32=-152.故应选B.12.设f (x )、g (x )是定义域为R 的恒大于0的可导函数,且f ′(x )g (x )-f (x )g ′(x )<0,则当a <x <b 时有( )A .f (x )g (x )>f (b )g (b )B .f (x )g (a )>f (a )g (x )C .f (x )g (b )>f (b )g (x )D .f (x )g (x )>f (a )g (x ) [答案] C [解析] 令F (x )=f (x )g (x )则F ′(x )=f ′(x )g (x )-f (x )g ′(x )g 2(x )<0f (x )、g (x )是定义域为R 恒大于零的实数∴F (x )在R 上为递减函数, 当x ∈(a ,b )时,f (x )g (x )>f (b )g (b )∴f (x )g (b )>f (b )g (x ).故应选C.二、填空题(本大题共4个小题,每小题4分,共16分.将正确答案填在题中横线上) 13.⎠⎛-2-1d x(11+5x )3=________.[答案]772[解析] 取F (x )=-110(5x +11)2,从而F ′(x )=1(11+5x )3则⎠⎛-2-1d x(11+5x )3=F (-1)-F (-2)=-110×62+110×12=110-1360=772. 14.若函数f (x )=ax 2-1x的单调增区间为(0,+∞),则实数a 的取值范围是________.[答案] a ≥0[解析] f ′(x )=⎝ ⎛⎭⎪⎫ax -1x ′=a +1x2,由题意得,a +1x2≥0,对x ∈(0,+∞)恒成立,∴a ≥-1x2,x ∈(0,+∞)恒成立,∴a ≥0.15.(2009·陕西理,16)设曲线y =xn +1(n ∈N *)在点(1,1)处的切线与x 轴的交点的横坐标为x n ,令a n=lg x n ,则a 1+a 2+…+a 99的值为________.[答案] -2[解析] 本小题主要考查导数的几何意义和对数函数的有关性质.k =y ′|x =1=n +1,∴切线l :y -1=(n +1)(x -1), 令y =0,x =n n +1,∴a n =lg nn +1, ∴原式=lg 12+lg 23+…+lg 99100=lg 12×23×…×99100=lg 1100=-2.16.如图阴影部分是由曲线y =1x,y 2=x 与直线x =2,y =0围成,则其面积为________.[答案] 23+ln2[解析] 由⎩⎪⎨⎪⎧y 2=x ,y =1x ,得交点A (1,1)由⎩⎪⎨⎪⎧x =2y =1x得交点B ⎝ ⎛⎭⎪⎫2,12.故所求面积S =⎠⎛01x d x +⎠⎛121xd x=23x 32| 10+ln x | 21=23+ln2. 三、解答题(本大题共6个小题,共74分.解答应写出文字说明、证明过程或演算步骤) 17.(本题满分12分)(2010·江西理,19)设函数f (x )=ln x +ln(2-x )+ax (a >0). (1)当a =1时,求f (x )的单调区间;(2)若f (x )在(0,1]上 的最大值为12,求a 的值.[解析] 函数f (x )的定义域为(0,2),f ′(x )=1x -12-x+a ,(1)当a =1时,f ′(x )=-x 2+2x (2-x ),所以f (x )的单调递增区间为(0,2),单调递减区间为(2,2);(2)当x ∈(0,1]时,f ′(x )=2-2xx (2-x )+a >0,即f (x )在(0,1]上单调递增,故f (x )在(0,1]上的最大值为f (1)=a ,因此a =12.18.(本题满分12分)求曲线y =2x -x 2,y =2x 2-4x 所围成图形的面积.[解析] 由⎩⎪⎨⎪⎧y =2x -x 2,y =2x 2-4x 得x 1=0,x 2=2.由图可知,所求图形的面积为S =⎠⎛02(2x -x 2)d x +|⎠⎛02(2x 2-4x )d x |=⎠⎛02(2x -x 2)d x -⎠⎛02(2x 2-4x )d x .因为⎝⎛⎭⎪⎫x 2-13x 3′=2x -x 2,⎝ ⎛⎭⎪⎫23x 3-2x 2′=2x 2-4x ,所以S =⎝⎛⎭⎪⎫x 2-13x 3⎪⎪⎪20-⎝ ⎛⎭⎪⎫23x 3-2x 2⎪⎪⎪2=4.19.(本题满分12分)设函数f (x )=x 3-3ax +b (a ≠0).(1)若曲线y =f (x )在点(2,f (2))处与直线y =8相切,求a ,b 的值; (2)求函数f (x )的单调区间与极值点.[分析] 考查利用导数研究函数的单调性,极值点的性质,以及分类讨论思想. [解析] (1)f ′(x )=3x 2-3a .因为曲线y =f (x )在点(2,f (2))处与直线y =8相切,所以⎩⎪⎨⎪⎧f ′(2)=0,f (2)=8.即⎩⎪⎨⎪⎧3(4-a )=0,8-6a +b =8.解得a =4,b =24.(2)f ′(x )=3(x 2-a )(a ≠0).当a <0时,f ′(x )>0,函数f (x )在(-∞,+∞)上单调递增,此时函数f (x )没有极值点. 当a >0时,由f ′(x )=0得x =±a .当x ∈(-∞,-a )时,f ′(x )>0,函数f (x )单调递增; 当x ∈(-a ,a )时,f ′(x )<0,函数f (x )单调递减; 当x ∈(a ,+∞)时,f ′(x )>0,函数f (x )单调递增. 此时x =-a 是f (x )的极大值点,x =a 是f (x )的极小值点. 20.(本题满分12分)已知函数f (x )=12x 2+ln x .(1)求函数f (x )的单调区间; (2)求证:当x >1时,12x 2+ln x <23x 3.[解析] (1)依题意知函数的定义域为{x |x >0}, ∵f ′(x )=x +1x,故f ′(x )>0,∴f (x )的单调增区间为(0,+∞). (2)设g (x )=23x 3-12x 2-ln x ,∴g ′(x )=2x 2-x -1x,∵当x >1时,g ′(x )=(x -1)(2x 2+x +1)x>0,∴g (x )在(1,+∞)上为增函数, ∴g (x )>g (1)=16>0,∴当x >1时,12x 2+ln x <23x 3.21.(本题满分12分)设函数f (x )=x 3-92x 2+6x -a .(1)对于任意实数x, f ′(x )≥m 恒成立,求m 的最大值; (2)若方程f (x )=0有且仅有一个实根,求a 的取值范围.[分析] 本题主要考查导数的应用及转化思想,以及求参数的范围问题. [解析] (1)f ′(x )=3x 2-9x +6=3(x -1)(x -2).因为x ∈(-∞,+∞).f ′(x )≥m ,即3x 2-9x +(6-m )≥0恒成立. 所以Δ=81-12(6-m )≤0,得m ≤-34,即m 的最大值为-34.(2)因为当x <1时,f ′(x )>0;当1<x <2时,f ′(x )<0;当x >2时f ′(x )>0. 所以当x =1时,f (x )取极大值f (1)=52-a ,当x =2时,f (x )取极小值f (2)=2-a .故当f (2)>0或f (1)<0时,方程f (x )=0仅有一个实根,解得a <2或a >52.22.(本题满分14分)已知函数f (x )=-x 3+ax 2+1(a ∈R ).(1)若函数y =f (x )在区间⎝ ⎛⎭⎪⎫0,23上递增,在区间⎣⎢⎡⎭⎪⎫23,+∞上递减,求a 的值; (2)当x ∈[0,1]时,设函数y =f (x )图象上任意一点处的切线的倾斜角为θ,若给定常数a ∈⎝ ⎛⎭⎪⎫32,+∞,求θ的取值范围;(3)在(1)的条件下,是否存在实数m ,使得函数g (x )=x 4-5x 3+(2-m )x 2+1(m ∈R )的图象与函数y =f (x )的图象恰有三个交点.若存在,请求出实数m 的值;若不存在,试说明理由.[解析] (1)依题意f ′⎝ ⎛⎭⎪⎫23=0,由f ′(x )=-3x 2+2ax ,得-3⎝ ⎛⎭⎪⎫232+2a ·23=0,即a =1.(2)当x ∈[0,1]时,tan θ=f ′(x )=-3x 2+2ax =-3⎝ ⎛⎭⎪⎫x -a 32+a23.由a ∈⎝ ⎛⎭⎪⎫32,+∞,得a 3∈⎝ ⎛⎭⎪⎫12,+∞. ①当a 3∈⎝ ⎛⎦⎥⎤12,1,即a ∈⎝ ⎛⎦⎥⎤32,3时,f ′(x )max =a 23,f (x )min =f ′(0)=0.此时0≤ta n θ≤a 23.②当a3∈(1,+∞),即a ∈(3,+∞)时,f ′(x )max =f ′(1)=2a -3,f ′(x )min =f ′(0)=0,此时,0≤tan θ≤2a -3.又∵θ∈[0,π),∴当32<a ≤3时,θ∈⎣⎢⎡⎦⎥⎤0,arctan a 23, 当a >3时,θ∈[0,arctan(2a -3)].(3)函数y =f (x )与g (x )=x 4-5x 3+(2-m )x 2+1(m ∈R )的图象恰有3个交点,等价于方程-x 3+x 2+1=x 4-5x 3+(2-m )x 2+1恰有3个不等实根,∴x 4-4x 3+(1-m )x 2=0,显然x =0是其中一个根(二重根),方程x 2-4x +(1-m )=0有两个非零不等实根,则⎩⎪⎨⎪⎧Δ=16-4(1-m )>01-m ≠0∴m >-3且m ≠1故当m >-3且m ≠1时,函数y =f (x )与y =g (x )的图象恰有3个交点.。
11-12学年高中数学 2.1.1.1 归纳推理同步练习 新人教A版选修2-2
归纳推理一、选择题1.关于归纳推理,下列说法正确的是( ) A .归纳推理是一般到一般的推理 B .归纳推理是一般到个别的推理 C .归纳推理的结论一定是正确的 D .归纳推理的结论是或然性的 [答案] D[解析] 归纳推理是由特殊到一般的推理,其结论的正确性不一定.故应选D. 2.下列推理是归纳推理的是( )A .A ,B 为定点,动点P 满足|PA |+|PB |=2a >|AB |,得P 的轨迹为椭圆 B .由a 1=1,a n =3n -1,求出S 1,S 2,S 3,猜想出数列的前n 项和S n 的表达式C .由圆x 2+y 2=r 2的面积πr 2,猜出椭圆x 2a 2+y 2b2=1的面积S =πabD .科学家利用鱼的沉浮原理制造潜艇 [答案] B[解析] 由归纳推理的定义知B 是归纳推理,故应选B. 3.数列{a n }:2,5,11,20,x,47,…中的x 等于( ) A .28 B .32 C .33 D .27 [答案] B[解析] 因为5-2=3×1,11-5=6=3×2,20-11=9=3×3,猜测x -20=3×4,47-x =3×5,推知x =32.故应选B.4.在数列{a n }中,a 1=0,a n +1=2a n +2,则猜想a n 是( ) A .2n -2-12 B .2n -2C .2n -1+1 D .2n +1-4[答案] B[解析] ∵a 1=0=21-2, ∴a 2=2a 1+2=2=22-2,a 3=2a 2+2=4+2=6=23-2,a 4=2a 3+2=12+2=14=24-2,……猜想a n =2n-2. 故应选B.5.某人为了观看2012年奥运会,从2005年起,每年5月10日到银行存入a 元定期储蓄,若年利率为p 且保持不变,并约定每年到期存款均自动转为新的一年定期,到2012年将所有的存款及利息全部取回,则可取回的钱的总数(元)为( )A .a (1+p )7B .a (1+p )8C.a p [(1+p )7-(1+p )] D.a p[(1+p )8-(1+p )] [答案] D[解析] 到2006年5月10日存款及利息为a (1+p ). 到2007年5月10日存款及利息为a (1+p )(1+p )+a (1+p )=a [(1+p )2+(1+p )]到2008年5月10日存款及利息为a [(1+p )2+(1+p )](1+p )+a (1+p )=a [(1+p )3+(1+p )2+(1+p )] ……所以到2012年5月10日存款及利息为a [(1+p )7+(1+p )6+…+(1+p )]=a (1+p )[1-(1+p )7]1-(1+p )=a p[(1+p )8-(1+p )]. 故应选D.6.已知数列{a n }的前n 项和S n =n 2a n (n ≥2),而a 1=1,通过计算a 2,a 3,a 4,猜想a n 等于( ) A.2(n +1)2 B.2n (n +1)C.22n-1 D.22n -1[答案] B[解析] 因为S n =n 2a n ,a 1=1, 所以S 2=4a 2=a 1+a 2⇒a 2=13=23×2,S 3=9a 3=a 1+a 2+a 3⇒a 3=a 1+a 28=16=24×3,S 4=16a 4=a 1+a 2+a 3+a 4⇒a 4=a 1+a 2+a 315=110=25×4. 所以猜想a n =2n (n +1),故应选B.7.n 个连续自然数按规律排列下表:根据规律,从2010到2012箭头的方向依次为( ) A .↓→ B .→↑ C .↑→ D .→↓ [答案] C[解析] 观察特例的规律知:位置相同的数字都是以4为公差的等差数列,由234可知从2010到2012为↑→,故应选C.8.(2010·山东文,10)观察(x 2)′=2x ,(x 4)′=4x 3,(cos x )′=-sin x ,由归纳推理可得:若定义在R 上的函数f (x )满足f (-x )=f (x ),记g (x )为f (x )的导函数,则g (-x )=( )A .f (x )B .-f (x )C .g (x )D .-g (x ) [答案] D[解析] 本题考查了推理证明及函数的奇偶性内容,由例子可看出偶函数求导后都变成了奇函数, ∴g (-x )=-g (x ),选D ,体现了对学生观察能力,概括归纳推理的能力的考查. 9.根据给出的数塔猜测123456×9+7等于( )1×9+2=11 12×9+3=111 123×9+4=1111 1234×9+5=11111 12345×9+6=111111…A .1111110B .1111111C .1111112D .1111113 [答案] B[解析] 根据规律应为7个1,故应选B.10.把1、3、6、10、15、21、…这些数叫做三角形数,这是因为这些数目的点子可以排成一个正三角形(如下图),试求第七个三角形数是( ) A .27 B .28 C .29 D .30 [答案] B[解析] 观察归纳可知第n 个三角形数共有点数:1+2+3+4+…+n =n (n +1)2个,∴第七个三角形数为7×(7+1)2=28.二、填空题11.观察下列由火柴杆拼成的一列图形中,第n 个图形由n 个正方形组成:通过观察可以发现:第4个图形中,火柴杆有________根;第n个图形中,火柴杆有________根.[答案] 13,3n+1[解析] 第一个图形有4根,第2个图形有7根,第3个图形有10根,第4个图形有13根……猜想第n个图形有3n+1根.12.从1=12,2+3+4=32,3+4+5+6+7=52中,可得一般规律是__________________.[答案] n+(n+1)+(n+2)+…+(3n-2)=(2n-1)2[解析] 第1式有1个数,第2式有3个数相加,第3式有5个数相加,故猜想第n个式子有2n-1个数相加,且第n个式子的第一个加数为n,每数增加1,共有2n-1个数相加,故第n个式子为:n+(n+1)+(n+2)+…+{n+[(2n-1)-1]}=(2n-1)2,即n+(n+1)+(n+2)+…+(3n-2)=(2n-1)2.13.观察下图中各正方形图案,每条边上有n(n≥2)个圆圈,每个图案中圆圈的总数是S,按此规律推出S与n的关系式为________.[答案] S=4(n-1)(n≥2)[解析] 每条边上有2个圆圈时共有S=4个;每条边上有3个圆圈时,共有S=8个;每条边上有4个圆圈时,共有S=12个.可见每条边上增加一个点,则S增加4,∴S与n的关系为S=4(n-1)(n≥2).14.(2009·浙江理,15)观察下列等式:C15+C55=23-2,C19+C59+C99=27+23,C113+C513+C913+C1313=211-25,C117+C517+C917+C1317+C1717=215+27,……由以上等式推测到一个一般的结论:=__________________.对于n∈N*,C14n+1+C54n+1+C94n+1+…+C4n+14n+1[答案] 24n-1+(-1)n22n-1[解析] 本小题主要考查归纳推理的能力等式右端第一项指数3,7,11,15,…构成的数列通项公式为a n =4n -1,第二项指数1,3,5,7,…的通项公式b n =2n -1,两项中间等号正、负相间出现,∴右端=24n -1+(-1)n 22n -1.三、解答题15.在△ABC 中,不等式1A +1B +1C ≥9π成立,在四边形ABCD 中,不等式1A +1B +1C +1D ≥162π成立,在五边形ABCDE 中,不等式1A +1B +1C +1D +1E ≥253π成立,猜想在n 边形A 1A 2…A n 中,有怎样的不等式成立?[解析] 根据已知特殊的数值:9π、162π、253π,…,总结归纳出一般性的规律:n2(n -2)π(n ≥3).∴在n 边形A 1A 2…A n 中:1A 1+1A 2+…+1A n ≥n 2(n -2)π(n ≥3).16.下图中(1)、(2)、(3)、(4)为四个平面图.数一数每个平面图各有多少个顶点?多少条边?它们围成了多少个区域?并将结果填入下表中.平面区域 顶点数 边数 区域数 (1) (2) (3) (4)(1)(2)现已知某个平面图有999个顶点,且围成了999个区域,试根据以上关系确定这个平面图有多少条边?[解析] 各平面图形的顶点数、边数、区域数如下表:平面区域 顶点数 边数 区域数 关系 (1) 3 3 2 3+2-3=2 (2) 8 12 6 8+6-12=2 (3) 6 9 5 6+5-9=2 (4) 1015710+7-15=2结论 VE FV +F -E =2 推广999E999E =999+999-2其顶点数故可猜想此平面图可能有1996条边.17.在一容器内装有浓度为r %的溶液a 升,注入浓度为p %的溶液14a 升,搅匀后再倒出溶液14a 升,这叫一次操作,设第n 次操作后容器内溶液的浓度为b n (每次注入的溶液浓度都是p %),计算b 1、b 2、b 3,并归纳出b n 的计算公式.[解析] b 1=a ·r 100+a 4·p100a +a 4=1100⎝ ⎛⎭⎪⎫45r +15p , b 2=ab 1+a 4·p 100a +a 4=1100⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫452r +15p +452p .b 3=a ·b 2+a 4·p100a +a 4=1100⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫453r +15p +452p +4253P ,∴归纳得b n =1100⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫45n r +15p +452p +…+4n -15n P . 18.设f (n )=n 2+n +41,n ∈N +,计算f (1),f (2),f (3),…,f (10)的值,同时作出归纳推理,并用n =40验证猜想是否正确.[解析] f (1)=12+1+41=43,f (2)=22+2+41=47,f (3)=32+3+41=53,f (4)=42+4+41=61, f (5)=52+5+41=71,f (6)=62+6+41=83, f (7)=72+7+41=97,f (8)=82+8+41=113, f (9)=92+9+41=131,f (10)=102+10+41=151.由于43、47、53、61、71、83、97、113、131、151都为质数. 即:当n 取任何非负整数时f (n )=n 2+n +41的值为质数. 但是当n =40时,f (40)=402+40+41=1681为合数. 所以,上面由归纳推理得到的猜想不正确.。
11-12学年高中数学 1.1.3 导数的几何意义同步练习 新人教A版选修2-2
导数的几何意义一、选择题1.如果曲线y =f (x )在点(x 0,f (x 0))处的切线方程为x +2y -3=0,那么( )A .f ′(x 0)>0B .f ′(x 0)<0C .f ′(x 0)=0D .f ′(x 0)不存在 [答案] B[解析] 切线x +2y -3=0的斜率k =-12,即f ′(x 0)=-12<0.故应选B. 2.曲线y =12x 2-2在点⎝⎛⎭⎪⎫1,-32处切线的倾斜角为( ) A .1B.π4C.54π D .-π4 [答案] B[解析] ∵y ′=li m Δx →0 [12(x +Δx )2-2]-(12x 2-2)Δx=li m Δx →0 (x +12Δx )=x ∴切线的斜率k =y ′|x =1=1.∴切线的倾斜角为π4,故应选B. 3.在曲线y =x 2上切线的倾斜角为π4的点是( ) A .(0,0)B .(2,4) C.⎝ ⎛⎭⎪⎫14,116 D.⎝ ⎛⎭⎪⎫12,14 [答案] D [解析] 易求y ′=2x ,设在点P (x 0,x 20)处切线的倾斜角为π4,则2x 0=1,∴x 0=12,∴P ⎝ ⎛⎭⎪⎫12,14. 4.曲线y =x 3-3x 2+1在点(1,-1)处的切线方程为( )A .y =3x -4B .y =-3x +2C .y =-4x +3D .y =4x -5[答案] B[解析] y ′=3x 2-6x ,∴y ′|x =1=-3.由点斜式有y +1=-3(x -1).即y =-3x +2.5.设f (x )为可导函数,且满足lim x →0 f (1)-f (1-2x )2x=-1,则过曲线y =f (x )上点(1,f (1))处的切线斜率为( )A .2B .-1C .1D .-2[答案] B[解析] lim x →0 f (1)-f (1-2x )2x =lim x →0 f (1-2x )-f(1)-2x=-1,即y ′|x =1=-1,则y =f (x )在点(1,f (1))处的切线斜率为-1,故选B.6.设f ′(x 0)=0,则曲线y =f (x )在点(x 0,f (x 0))处的切线( )A .不存在B .与x 轴平行或重合C .与x 轴垂直D .与x 轴斜交[答案] B[解析] 由导数的几何意义知B 正确,故应选B.7.已知曲线y =f (x )在x =5处的切线方程是y =-x +8,则f (5)及f ′(5)分别为( )A .3,3B .3,-1C .-1,3D .-1,-1[答案] B[解析] 由题意易得:f (5)=-5+8=3,f ′(5)=-1,故应选B.8.曲线f (x )=x 3+x -2在P 点处的切线平行于直线y =4x -1,则P 点的坐标为( )A .(1,0)或(-1,-4)B .(0,1)C .(-1,0)D .(1,4)[答案] A[解析] ∵f (x )=x 3+x -2,设x P =x 0,∴Δy =3x 20·Δx +3x 0·(Δx )2+(Δx )3+Δx ,∴ΔyΔx =3x 20+1+3x 0(Δx )+(Δx )2,∴f ′(x 0)=3x 20+1,又k =4,∴3x 20+1=4,x 20=1.∴x 0=±1,故P (1,0)或(-1,-4),故应选A.9.设点P 是曲线y =x 3-3x +23上的任意一点,P 点处的切线倾斜角为α,则α的取值范围为() A.⎣⎢⎡⎭⎪⎫0,π2∪⎣⎢⎡⎭⎪⎫23π,π B.⎣⎢⎡⎭⎪⎫0,π2∪⎣⎢⎡⎭⎪⎫56π,πC.⎣⎢⎡⎭⎪⎫23π,πD.⎝ ⎛⎦⎥⎤π2,56π[答案] A[解析] 设P (x 0,y 0),∵f ′(x )=li m Δx →0 (x +Δx )3-3(x +Δx )+23-x 3+3x -23Δx=3x 2-3,∴切线的斜率k =3x 20-3,∴tan α=3x 20-3≥- 3. ∴α∈⎣⎢⎡⎭⎪⎫0,π2∪⎣⎢⎡⎭⎪⎫23π,π.故应选A. 10.(2010·福州高二期末)设P 为曲线C :y =x 2+2x +3上的点,且曲线C 在点P 处切线倾斜角的取值范围为[0,π4],则点P 横坐标的取值范围为( ) A .[-1,-12] B .[-1,0] C .[0,1]D .[12,1] [答案] A[解析] 考查导数的几何意义.∵y ′=2x +2,且切线倾斜角θ∈[0,π4], ∴切线的斜率k 满足0≤k ≤1,即0≤2x +2≤1,∴-1≤x ≤-12. 二、填空题11.已知函数f (x )=x 2+3,则f (x )在(2,f (2))处的切线方程为________.[答案] 4x -y -1=0[解析] ∵f (x )=x 2+3,x 0=2∴f (2)=7,Δy =f (2+Δx )-f (2)=4·Δx +(Δx )2∴Δy Δx =4+Δx .∴li m Δx →0 Δy Δx =4.即f ′(2)=4. 又切线过(2,7)点,所以f (x )在(2,f (2))处的切线方程为y -7=4(x -2)即4x -y -1=0.12.若函数f (x )=x -1x,则它与x 轴交点处的切线的方程为________. [答案] y =2(x -1)或y =2(x +1)[解析] 由f (x )=x -1x=0得x =±1,即与x 轴交点坐标为(1,0)或(-1,0).∵f ′(x )=li m Δx →0 (x +Δx )-1x +Δx -x +1x Δx =li m Δx →0 ⎣⎢⎡⎦⎥⎤1+1x (x +Δx )=1+1x 2. ∴切线的斜率k =1+11=2. ∴切线的方程为y =2(x -1)或y =2(x +1). 13.曲线C 在点P (x 0,y 0)处有切线l ,则直线l 与曲线C 的公共点有________个.[答案] 至少一[解析] 由切线的定义,直线l 与曲线在P (x 0,y 0)处相切,但也可能与曲线其他部分有公共点,故虽然相切,但直线与曲线公共点至少一个.14.曲线y =x 3+3x 2+6x -10的切线中,斜率最小的切线方程为________.[答案] 3x -y -11=0[解析] 设切点P (x 0,y 0),则过P (x 0,y 0)的切线斜率为,它是x 0的函数,求出其最小值. 设切点为P (x 0,y 0),过点P 的切线斜率k ==3x 20+6x 0+6=3(x 0+1)2+3.当x 0=-1时k 有最小值3,此时P 的坐标为(-1,-14),其切线方程为3x -y -11=0.三、解答题 15.求曲线y =1x -x 上一点P ⎝⎛⎭⎪⎫4,-74处的切线方程. [解析] ∴y ′=lim Δx →0 ⎝ ⎛⎭⎪⎫1x +Δx -1x -(x +Δx -x )Δx=lim Δx →0 -Δx x (x +Δx )-Δx x +Δx +x Δx=lim Δx →0 ⎝ ⎛⎭⎪⎫-1x (x +Δx )-1x +Δx +x =-1x 2-12x . ∴y ′|x =4=-116-14=-516, ∴曲线在点P ⎝⎛⎭⎪⎫4,-74处的切线方程为: y +74=-516(x -4).即5x +16y +8=0.16.已知函数f (x )=x 3-3x 及y =f (x )上一点P (1,-2),过点P 作直线l .(1)求使直线l 和y =f (x )相切且以P 为切点的直线方程;(2)求使直线l 和y =f (x )相切且切点异于点P 的直线方程y =g (x ).[解析] (1)y ′=li m Δx →0 (x +Δx )3-3(x +Δx )-3x 3+3x Δx=3x 2-3. 则过点P 且以P (1,-2)为切点的直线的斜率 k 1=f ′(1)=0,∴所求直线方程为y =-2.(2)设切点坐标为(x 0,x 30-3x 0),则直线l 的斜率k 2=f ′(x 0)=3x 20-3,∴直线l 的方程为y -(x 30-3x 0)=(3x 20-3)(x -x 0)又直线l 过点P (1,-2),∴-2-(x 30-3x 0)=(3x 20-3)(1-x 0),∴x 30-3x 0+2=(3x 20-3)(x 0-1),解得x 0=1(舍去)或x 0=-12. 故所求直线斜率k =3x 20-3=-94, 于是:y -(-2)=-94(x -1),即y =-94x +14. 17.求证:函数y =x +1x图象上的各点处的切线斜率小于1. [解析] y ′=li m Δx →0 f (x +Δx )-f (x )Δx=li m Δx →0⎝ ⎛⎭⎪⎫x +Δx +1x +Δx -⎝ ⎛⎭⎪⎫x +1x Δx =li m Δx →0x ·Δx (x +Δx )-Δx (x +Δx )·x ·Δx =li m Δx →0 (x +Δx )x -1(x +Δx )x=x 2-1x 2=1-1x 2<1, ∴y =x +1x图象上的各点处的切线斜率小于1. 18.已知直线l 1为曲线y =x 2+x -2在点(1,0)处的切线,l 2为该曲线的另一条切线,且l 1⊥l 2.(1)求直线l 2的方程;(2)求由直线l 1、l 2和x 轴所围成的三角形的面积.[解析] (1)y ′|x =1=li m Δx →0 (1+Δx )2+(1+Δx )-2-(12+1-2)Δx=3, 所以l 1的方程为:y =3(x -1),即y =3x -3.设l 2过曲线y =x 2+x -2上的点B (b ,b 2+b -2),y ′|x =b =li m Δx →0 (b +Δx )2+(b +Δx )-2-(b 2+b -2)Δx=2b +1,所以l 2的方程为:y -(b 2+b -2)=(2b +1)·(x -b ),即y =(2b +1)x -b 2-2.因为l 1⊥l 2,所以3×(2b +1)=-1,所以b =-23,所以l 2的方程为:y =-13x -229. (2)由⎩⎪⎨⎪⎧ y =3x -3,y =-13x -229,得⎩⎪⎨⎪⎧ x =16,y =-52,即l 1与l 2的交点坐标为⎝ ⎛⎭⎪⎫16,-52. 又l 1,l 2与x 轴交点坐标分别为(1,0),⎝ ⎛⎭⎪⎫-223,0. 所以所求三角形面积S =12×⎪⎪⎪⎪⎪⎪-52×⎪⎪⎪⎪⎪⎪1+223=12512.。
【金版学案】高中数学人教版选修2-2习题:1.11《变化率问题》.docx
1・1变化率与导数 1. 1.1变化率问题1. 理解平均变化率的概念.2. 会求函数在某点附近的平均变化率.基础梳理 平均变化率.⑴定义:对一般的函数y=f (x )来说,当自变量兀从兀1变为兀2时,函数值从/(兀1)变为几匕),它的平均变化率为广"["J ・其 中自变量的变化直二称作自变量的改变量,记作函数值的变 化您①一心丄)称作函数值的改变量,记作A1・这样,函数的平均变 化率就可以表示为函数值的改变量与自变量的改变量之比,即学=Axf (兀2〉—f (兀1〉(2)作用:亥!1画函数在区间[“兀2]上变化的快慢. 想一想:函数介兀)=2X 2-X 在区间[1, 3]上的自变量的增量△兀读教材代新知_____ ,函数值的改变量为△『= _____ ,平均变化率譽= _______ ・ 解析:Ax=3-1=2, A J =2X32-3-(2X12-1) = 14, ^=y =7答案:2 14 71. 在求平均变化率时,自变量的增量△兀满足(D)A. △兀 >0B. △兀 V0 C ・△*=()D ・ A XT ^O2. 函数y=2在[1, a ]上的平均变化率为一£,则a=(B)—1 1= =—T ,所以a=2・故选B ・ Cl L3. 将半径为的球加热,若球的半径增加△/?,则球的表面积的增加量AS 等于(B)A. 8 兀 RARB ・ 8n/?A/?+4 n(A/?)2C ・ 4JT/?A/f+4Ji(A/?)2D ・ 4 n (A /?)2解析:A S=4 n (/?+ A R)2-4 n R 2=8 TI RA R+4 n (A R)29 故选 B.C ・3D ・4解析:Ax=a —11 1 —AxAj=l+Ax _I =l+Ax J所以 Ax 1+ Ax课时剎條—}基础巩固的增量为(C)A. 18B ・ 8C ・ 10D ・ 122. 物体的运动规律是s=s(t)9物体在f 至(+△(这段时间内的平均速度是(C)—s (/) _$(△() A. V =_:- Be V = --- -- —s (/+ △ t) D・e= XT~3・某质点A 沿直线运动的方程为J =-2X 2+1,则该质点从t =1到t=2时的平均速度为(C)4. y=+在斯到兀o+"之间的平均变化率为 _____________ ・1 1解析:因为△尸(应+△刃2—怎,所以y = *在 兀°到兀o + △兀 之间的平均变化率为£三=1. 一物体的运动方程是s=20, 则从2 s 到3 s 这段时间内路程解析:r ⑺年•故选c. ArA. -4B. -8 C- —6 D. 6解析:3 lx*) - C-2Xf +1)△兀 2-1=—6.(兀o+△兀》 2 兀: 2兀o+ NxAx (x 0+ A 兀》2Xo -5. 一个做直线运动的物体,其位移s 与时间t 的关系是s=3/—#, 则此物体在区间[0, 0.001]内的平均变化率接近(B)6・下表为某大型超市一个月的销售收入情况表,则本月销售收 入的平均增长率为(B)日期 5 1() 15 2() 25 3()销售收 入/万元204090 160 275 437. 5A 7.已知曲线y=^-1上两点*2, —彳2+5 —£+△巧 当△兀=1时,割线AB 的斜率为 _______解析:VAx=l, A2+Ax=3, Aj= T —1△y__l Ax 6*答案:-*8.设C 是成本,g 是产量,且C(g)=3『+10,若q=q“则产 量增加量为10时,成本增加量为答案:- 2兀()+ △兀A. 0C ・一2D ・ 3一2/C. 越来越小D.无法确定解析:△C=CSo+lO) — C(g ())=3(go+lO)2+lO —(3応+10) = 3(応 +20他 +100)-3^0=60他+300.答案:60他+3009.比较函数f(x)=2x与g(Q=3”,当xe[l, 2]时,平均增长率 的大小.解析:设f(x)=2x在兀丘[1, 2]时的平均增长率为仏,则设g(x)=3x 在 y 2]时的平均增长率为处,则•:k'g 故当xe [i, 2]时,gCr)的平均增长率大于/(兀)的平均增 长率.10.若函数f(x)=-x 2-\-x 在[2, 2+Ax ](Ax>0)上的平均变化 率不大于一 1,求A 兀的范围.解析:因为函数/U)在[2, 2+Ax ]上的平均变化率为:△ y f (2+△兀〉—f (2〉 Ax △兀—(2+ Ax) 24- (24- Ax) — (—4+2) = Tx所以由一3— △兀W —1,得△兀鼻一2.又因为△ x>0,所以△兀的取值范围是(0, +8).2-1=2,—4 Ax+ Ax —=A J~。
人教版高中数学选修2-2学案:1.1.1变化率问题
1.1.1 变化率问题【学习目标】1.经过对实例的剖析,理解均匀变化率;2.会求函数在指定区间上的均匀变化率.【新知自学】知识回首:1.球的体积公式为____________________.2.已知直线l经过两点A(x 1,y1),B(x 2,y2),则直线l的斜率为 ________________.新知梳理:1.经过气球膨胀率和高台跳水问题可知,函数y f (x) 从x1到x2的变化过程中,我们用x 表示相关于x1的一个“增量” ,即x =____________,则 x2= x1x ;近似地,y =____________.则把yf ( x) 从x1到x2的均匀变化率.___________叫做函数yx注意:(1)x 是一个整体符号,而不是与 x 的乘积;(2)x是自变量 x 在x0处的增量,能够是正当,也能够是负值.2.函数均匀变化率的观点是什么?感悟:函数y=f(x)在x从 x1→ x2的均匀变化率的几何意义是过函数y=f(x)的图象上两点(x1,f(x 1))、 (x2,f(x 2 ))的直线的斜率.对点练习:1.在求均匀变化率中,自变量的增量x 知足()A.x C.x 0B.xD.x2.设函数y f ( x) ,当自变量x 由x0改变到x0x 时,函数值的改变量y=()A. f ( x0x)B. f ( x0)xC. f ( x0x) f ( x0 )D. f (x0)x3.一物体运动时的位移方程是s 2t 2,则从2到2+t 这段时间内位移的增量s =()A. 8B.82tC .8 t2( t) 2 D.4t2(t ) 24.已知函数 f ( x)x 2x 的图象上一点(-1 , -2 )及周边一点( 1x, 2y) ,则y.=x【合作研究】典例精析:例 1.求函数y=x2+1在区间[2,2+x] 上的均匀变化率.议论展现联合函数y x2 图象,商讨当x 取定值后,随x 取值不一样,该函数在x x0周边的的......0均匀变化率能否同样.变式练习:求函数 f (x) 3x 2 2 在区间x0 , x0x 上的均匀变化率,并求当 x02, x0.1 时均匀变化率的值.例 2.高台跳水运动中,运动员相关于水面的高度h(单位:m)与起跳后的时间t(单位:s)之间的关系式为h(t)=-4.9t 2+6.5t+10 ,求运动员在t 65 s 时的刹时速度,并解说此时的运动98状态 .议论展现65计算运动员在0 t这段时间里的均匀速度,并思虑以下问题:49⑴运动员在这段时间内是静止的吗?⑵你以为用均匀速度描绘运动员的运动状态有什么问题吗?变式练习:放在下节试用一质点按规律 s(t)=at2+1 作直线运动(位移单位:m,时间单位: s),若质点在 t=2s 时的刹时速度为 8m/s,求常数 a 的值 .规律总结:求函数均匀变化率的主要步骤:【讲堂小结】【当堂达标】已知函数2则在x0 2, x 0.1时,y 的值为()1.f(x)=x +1,2.假如质点M 按规律s 3 t 2运动,则在时间段2,2.1 中相应的均匀速度等于()A.3B.43.已知函数 f (x)2x21 的图象上一点( 1, 1)及周边一点 (1x,1 y), 则y=( )xA . 4 B. 4xC. 4 2 xD. 42( x) 24.函数f ( x) 53x 2 在区间 1,2 上的均匀变化率是.【课时作业】1.将半径为 R 的铁球加热,若铁球的半径增添R ,则铁球的表面积增添()A.8 RRB.8R R4 ( R) 2C.4R R 4 ( R)2D.4 ( R)22.已知曲线 y1x 2和这条曲线上的一点 P(1, 1) ,Q 是曲线上点 P 周边的一点, 则点 Q 的坐44标为()A. (1 x, 1( x) 2 )x, 1 ( 4 B. ( x) 2)4C. (1x, 1( x 1) 2 )x, 1 ( 4 D. ( x 1)2)43.甲、乙两人的运动行程与时间的函数关系分别为 s=s 1(t),s=s 2(t) ,图象如图 .则在时间段内甲的均匀速度 __________ 乙的均匀速度(填大于、等于、小于) .ss1(t)s2(t)O t0t4.已知函数f (x)1在 1,1x 上的均匀变化率为.x5.求函数 y=sinx 在 0到之间和到之间的均匀变化率,并比较它们的大小.6326.求函数y x 在x0到x0+x 之间的均匀变化率.。
人教版新课标A版高中选修2-2数学1.1变化率与导数同步练习A卷
人教版新课标A版选修2-2数学1.1变化率与导数同步练习A卷姓名:________ 班级:________ 成绩:________一、选择题 (共15题;共30分)1. (2分)过曲线上一点及邻近一点作割线,则当时割线的斜率为()A .B .C . 1D .2. (2分)已知函数的图象过原点,且在原点处的切线斜率是-3,则不等式组所确定的平面区域在内的面积为()A .B .C .D .3. (2分) (2015高二下·广安期中) 已知直线y=kx是y=lnx的切线,则k的值是()A . eB . ﹣eC .D . ﹣4. (2分)已知曲线的一条切线斜率是3,则切点的横坐标为()A . -2B . -1C . 1D . 25. (2分)已知函数的图象与x轴的一个交点为A,函数图象在点A处的切线与两条坐标轴围成的面积为()A . 1B . 2C . 3D . 46. (2分)直线与曲线相切于点,则k的值为()A . 5B . 6C . 4D . 97. (2分)曲线y=x2-x+4上一点P处的切线的斜率为5,则点P处的切线方程为()A . 5x-y-5=0B . 5x-y+5=0C . 5x-y-53=0D . 5x-y+53=08. (2分)已知函数(m为常数)图象上A处的切线与平行,则点A的横坐标是()A .B . 1C . 或D . 或9. (2分)一个物体的运动方程是s=1﹣t+t2 ,其中s的单位是米,t的单位是秒,那么物体在2秒末的瞬时速度是()A . 3米/秒B . 4米/秒C . 5米/秒D . 2米/秒10. (2分)函数f(x)=excosx的图像在点(0,f(0))处的切线的倾斜角为()A .B .C . 1D .11. (2分)(2013·重庆理) 若函数f(x)的导数为f'(x)=-sinx,则函数图像在点(4,f(4))处的切线的倾斜角为A . 90°B . 0°C . 锐角D . 钝角12. (2分) (2018高二下·佛山期中) 已知函数的图象是下列四个图象之一,且其导函数的图象如图所示,则该函数的图象可能是()A .B .C .D .13. (2分)已知点B(1,0),P是函数图象上不同于A(0,1)的一点.有如下结论:①存在点P使得是等腰三角形;②存在点P使得是锐角三角形;③存在点P使得是直角三角形.其中,正确的结论的个数为()A . 0B . 1C . 2D . 314. (2分)(2018·绵阳模拟) 若曲线的一条切线是,则的最小值是()A . 2B .C . 4D .15. (2分) (2018高二下·河南月考) 已知,若对任意两个不等的正实数,都有恒成立,则实数的取值范围是()A .B .C .D .二、填空题 (共5题;共5分)16. (1分)(2018·陕西模拟) 已知函数和直线,若点是函数图象上的一点,则点到直线的距离的最小值为________17. (1分) (2015高二下·宁德期中) 一质点的运动方程为s(t)= ,则它在t=3时的速度为________.18. (1分)一物体的运动方程为s=3t2﹣2,则其在t= ________ 时的瞬时速度为1.19. (1分) (2017高二下·西城期末) 曲线y= 在x=2处的切线的斜率为________.20. (1分)函数y= 在x=x0≠0附近的平均变化率为________.三、解答题 (共1题;共10分)21. (10分)已知函数f(x)=lnx﹣,曲线y=f(x)在点(,f())处的切线平行于直线y=10x+1.(1)求函数f(x)的单调区间;(2)设直线l为函数y=lnx图象上任意一点A(x0,y0)处的切线,在区间(1,+∞)上是否存在x0,使得直线l与曲线y=ex也相切?若存在,满足条件的x0有几个?参考答案一、选择题 (共15题;共30分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、二、填空题 (共5题;共5分) 16-1、17-1、18-1、19-1、20-1、三、解答题 (共1题;共10分) 21-1、21-2、。
高中数学(人教A版选修2-2)练习:1.1.11.1.2 变化率问题、导数的概念
课时提升作业(一)变化率问题导数的概念一、选择题(每小题3分,共18分)1.(2014·烟台高二检测)已知函数y=f(x)=x2+1,则在x=2,Δx=0.1时,Δy的值为( )A.0.40B.0.41C.0.43D.0.44【解析】选B.由函数值的增量公式Δy=f(x0+Δx)-f(x0),得Δy=f(2+0.1)-f(2)=(2+0.1)2+1-(22+1)=0.41.2.一质点运动的方程为s=5-3t2,则在一段时间内相应的平均速度是( ) A.3Δt+6 B.-3Δt+6C.3Δt-6D.-3Δt-6【解析】选D.平均速度===-3Δt-6,故选D.3.一直线运动的物体,从时间t到t+Δt时,物体的位移为Δs,那么为( )A.从时间t到t+Δt时,物体的平均速度B.时间t时该物体的瞬时速度C.当时间为Δt时该物体的速度D.从时间t到t+Δt时位移的平均变化率【解析】选B.根据导数的意义解答.=s′,即为时间t时该物体的瞬时速度.4.已知函数f=2x2-4的图象上一点及附近一点,则等于( )A.4B.4xC.4+2ΔxD.4+2【解析】选C.Δy=2(1+Δx)2-4-2×12+4=4Δx+2(Δx)2,所以==4+2Δx.5.函数f(x)=x2在x0到x0+Δx之间的平均变化率为k1,在x0-Δx到x0之间的平均变化率为k2,则k1,k2的大小关系是( )A.k1<k2B.k1>k2C.k1=k2D.无法确定【解析】选D.因为k1==2x0+Δx,k2==2x0-Δx,又Δx可正可负且不为零,所以k1,k2的大小关系不确定.【误区警示】本题易因对平均变化率的定义式理解不透而导致错选C.6.设函数f(x)在点x0附近有定义,且有f(x0+Δx)-f(x0)=aΔx+b(Δx)2(a,b为常数),则( )A.f′(x)=aB.f′(x)=bC.f′(x0)=aD.f′(x0)=b【解析】选 C.因为f(x0+Δx)-f(x0)=aΔx+b(Δx)2(a,b为常数),所以=a+bΔx.所以f′(x0)==(a+bΔx)=a.二、填空题(每小题4分,共12分)7. (2014·太原高二检测)若f′(x0)=1,则=________.【解题指南】根据导数的定义式,把原式进行一系列变形,凑定义式的结构形式. 【解析】=-=-f′(x0)=-×1=-.答案:-【变式训练】(2014·揭阳高二检测)f′(x0)=,f(3)=2,f′(3)=-2,则=__________.【解析】===-3+=-3f′(3)+=-3f′(3)+2=8.答案:88.函数y=3x2在x=1处的导数为________.【解析】方法一:Δy=f(1+Δx)-f(1)=6Δx+3(Δx)2,所以=6+3Δx,故=6.方法二:利用极限求解,y′|x=1===3(x+1)=6.答案:69.(2014·西宁高二检测)一物体位移s和时间t的关系是s=2t-3t2,则物体的初速度是________.【解析】平均速度==2-3t,当t趋向0时,平均速度趋向2,即初速度为2.答案:2【变式训练】已知一物体的运动方程是s=6t2-5t+7,则其在t=________时刻的速度为7.【解析】=(6Δt+12t-5)=12t-5=7,t=1.答案:1三、解答题(每小题10分,共20分)10.若函数f(x)=-x2+x在[2,2+Δx](Δx>0)上的平均变化率不大于-1,求Δx的范围.【解析】因为函数f(x)在[2,2+Δx]上的平均变化率为:====-3-Δx,所以由-3-Δx≤-1,得Δx≥-2.又因为Δx>0,即Δx的取值范围是(0,+≦).11.(2014·聊城高二检测)求函数y=x2+ax+b(a,b为常数)的导数.【解析】因为Δy=[(x+Δx)2+a(x+Δx)+b]-(x2+ax+b)=2x·Δx+(Δx)2+a·Δx=(2x+a)·Δx+(Δx)2,故==(2x+a)+Δx,=(2x+a+Δx)=2x+a,所以y′=2x+a.一、选择题(每小题4分,共16分)1.(2014·西安高二检测)物体的运动方程是s=-4t2+16t,在某一时刻的速度为零,则相应时刻为( )A.t=1B.t=2C.t=3D.t=4【解题指南】先求瞬时变化率,然后令瞬时变化率为零,即得相应时刻.【解析】选B.=(-4Δt-8t+16)=-8t+16,令-8t+16=0,得t=2.2.将边长为8的正方形的边长增加Δa,则面积的增量ΔS为( )A.16(Δa)2B.64C.(Δa)2+8D.16Δa+(Δa)2【解析】选D.ΔS=S(8+Δa)-S(8)=(8+Δa)2-82=16Δa+(Δa)2.故选D.3.(2014·福州高二检测)一物体运动的方程是s=2t2,则从2s到(2+d)s这段时间内位移的增量为( )A.8B.8+2dC.8d+2d2D.4d+2d2【解析】选C.Δs=2(2+d)2-2×22=8d+2d2.4.在x=1附近取Δx=0.3,在四个函数①y=x;②y=x2;③y=x3;④y=中平均变化率最大的是( )A.①B.②C.③D.④【解析】选C.根据定义判断,也可根据函数的增长趋势的快慢来判断.二、填空题(每小题5分,共10分)5.(2014·天水高二检测)水经过吸管从容器甲中流向容器乙,ts后容器甲中水的体积V(t)=5×2-0.1t(单位:cm3),则第一个10s内V的平均变化率为________cm3/s. 【解析】第一个10s内V的平均变化率==-0.25(cm3/s).答案:-0.256.(2014·上饶高二检测)当球半径r变化时,体积V关于r的瞬时变化率是________.【解题指南】先求,再求瞬时变化率.【解析】==4πr2+4πrΔr+π(Δr)2,当Δr趋于0时,瞬时变化率为4πr2.答案:4πr2三、解答题(每小题12分,共24分)7.求函数y=x2在x=1,2,3附近的平均变化率,取Δx都为,哪一点附近的平均变化率最大?【解析】在x=1附近的平均变化率为k1==2+Δx;在x=2附近的平均变化率为k2==4+Δx;在x=3附近的平均变化率为k3==6+Δx.若Δx=,则k1=2+=,k2=4+=;k3=6+=,由于k1<k2<k3,所以在x=3附近的平均变化率最大.【举一反三】已知函数f(x)=x3+x,证明函数f(x)在任意区间[x,x+Δx]上的平均变化率都是正数.【证明】===3x2+1+3xΔx+(Δx)2=3x2+3Δx·x+(Δx)2+1由于,方程3x2+3Δx·x+(Δx)2+1=0的判别式为(3Δx)2-4×3[(Δx)2+1]=-3(Δx)2-12<0,则3x2+3Δx·x+(Δx)2+1>0对一切x∈R恒成立,所以>0,故f(x)在任意区间 [x,x+Δx]上的平均变化率都是正数.【拓展延伸】1.比较平均变化率的方法步骤(1)求出两不同点处的平均变化率.(2)作差(作商),并对差式(商式)作合理变形,以便探讨差的符号(商与1的大小).(3)下结论.2.比较平均变化率的意义平均变化率的大小可说明函数图象的陡峭程度.8.(2014·南充高二检测)某一运动物体,在x(s)时离出发点的距离(单位:m)是f(x)=x3+x2+2x.(1)求在第1s内的平均速度.(2)求在1s末的瞬时速度.(3)经过多少时间该物体的运动速度达到14m/s?【解析】(1)物体在第1s内的平均变化率(即平均速度)为=m/s. (2)===6+3Δx+(Δx)2.当Δx→0时,→6,所以物体在1s末的瞬时速度为6m/s.(3)===2x2+2x+2+(Δx)2+2x·Δx+Δx.当Δx→0时,→2x2+2x+2,令2x2+2x+2=14,解得x=2s,即经过2s该物体的运动速度达到14m/s.关闭Word文档返回原板块。
11-12学年高中数学 1.1.1 变化率问题同步练习 新人教A版选修2-2
选修2-2 1.1 第1课时变化率问题一、选择题1.在平均变化率的定义中,自变量x在x0处的增量Δx( )A.大于零B.小于零C.等于零D.不等于零[答案] D[解析] Δx可正,可负,但不为0,故应选D.2.设函数y=f(x),当自变量x由x0变化到x0+Δx时,函数的改变量Δy 为( )A.f(x0+Δx) B.f(x0)+ΔxC.f(x0)·Δx D.f(x0+Δx)-f(x0)[答案] D[解析] 由定义,函数值的改变量Δy=f(x0+Δx)-f(x0),故应选D.3.已知函数f(x)=-x2+x,则f(x)从-1到-0.9的平均变化率为( ) A.3 B.0.29C.2.09 D.2.9[答案] D[解析] f(-1)=-(-1)2+(-1)=-2.f(-0.9)=-(-0.9)2+(-0.9)=-1.71.∴平均变化率为f(-0.9)-f(-1)-0.9-(-1)=-1.71-(-2)0.1=2.9,故应选D.4.已知函数f(x)=x2+4上两点A,B,x A=1,x B=1.3,则直线AB的斜率为( )A.2 B.2.3C.2.09 D.2.1[答案] B[解析] f(1)=5,f(1.3)=5.69.∴k AB=f(1.3)-f(1)1.3-1=5.69-50.3=2.3,故应选B.5.已知函数f(x)=-x2+2x,函数f(x)从2到2+Δx的平均变化率为( ) A.2-Δx B.-2-ΔxC.2+Δx D.(Δx)2-2·Δx[答案] B[解析] ∵f(2)=-22+2×2=0,∴f(2+Δx)=-(2+Δx)2+2(2+Δx)=-2Δx-(Δx)2,∴f(2+Δx)-f(2)2+Δx-2=-2-Δx,故应选B.6.已知函数y =x 2+1的图象上一点(1,2)及邻近一点(1+Δx,2+Δy ),则ΔyΔx 等于( )A .2B .2xC .2+ΔxD .2+(Δx )2[答案] C[解析]Δy Δx =f (1+Δx )-f (1)Δx=[(1+Δx )2+1]-2Δx=2+Δx .故应选C.7.质点运动规律S (t )=t 2+3,则从3到3.3内,质点运动的平均速度为( ) A .6.3 B .36.3 C .3.3D .9.3[答案] A[解析] S (3)=12,S (3.3)=13.89,∴平均速度v =S (3.3)-S (3)3.3-3=1.890.3=6.3,故应选A.8.在x =1附近,取Δx =0.3,在四个函数①y =x 、②y =x 2、③y =x 3、④y =1x中,平均变化率最大的是( )A .④B .③C .②D .①[答案] B[解析] Δx =0.3时,①y =x 在x =1附近的平均变化率k 1=1;②y =x 2在x =1附近的平均变化率k 2=2+Δx =2.3;③y =x 3在x =1附近的平均变化率k 3=3+3Δx +(Δx )2=3.99;④y =1x在x =1附近的平均变化率k 4=-11+Δx=-1013.∴k 3>k 2>k 1>k 4,故应选B. 9.物体做直线运动所经过的路程s 可以表示为时间t 的函数s =s (t ),则物体在时间间隔[t 0,t 0+Δt ]内的平均速度是( )A .v 0 B.Δts (t 0+Δt )-s (t 0)C.s (t 0+Δt )-s (t 0)ΔtD.s (t )t[答案] C[解析] 由平均变化率的概念知C 正确,故应选C.10.已知曲线y =14x 2和这条曲线上的一点P ⎝ ⎛⎭⎪⎫1,14,Q 是曲线上点P 附近的一点,则点Q 的坐标为( )A.⎝ ⎛⎭⎪⎫1+Δx ,14(Δx )2B.⎝ ⎛⎭⎪⎫Δx ,14(Δx )2C.⎝ ⎛⎭⎪⎫1+Δx ,14(Δx +1)2D.⎝ ⎛⎭⎪⎫Δx ,14(1+Δx )2[答案] C[解析] 点Q的横坐标应为1+Δx,所以其纵坐标为f(1+Δx)=14(Δx+1)2,故应选C.二、填空题11.已知函数y=x3-2,当x=2时,ΔyΔx=________.[答案] (Δx)2+6Δx+12[解析] ΔyΔx=(2+Δx)3-2-(23-2)Δx=(Δx)3+6(Δx)2+12ΔxΔx=(Δx)2+6Δx+12.12.在x=2附近,Δx=14时,函数y=1x的平均变化率为________.[答案] -29[解析] ΔyΔx=12+Δx-12Δx=-14+2Δx=-29.13.函数y=x在x=1附近,当Δx=12时的平均变化率为________.[答案] 6-214.已知曲线y=x2-1上两点A(2,3),B(2+Δx,3+Δy),当Δx=1时,割线AB的斜率是________;当Δx=0.1时,割线AB的斜率是________.[答案] 5 4.1[解析] 当Δx=1时,割线AB的斜率k1=ΔyΔx=(2+Δx)2-1-22+1Δx=(2+1)2-221=5.当Δx=0.1时,割线AB的斜率k2=ΔyΔx=(2+0.1)2-1-22+10.1=4.1.三、解答题15.已知函数f(x)=2x+1,g(x)=-2x,分别计算在区间[-3,-1],[0,5]上函数f(x)及g(x)的平均变化率.[解析] 函数f(x)在[-3,-1]上的平均变化率为f(-1)-f(-3)-1-(-3)=[2×(-1)+1]-[2×(-3)+1]2=2.函数f(x)在[0,5]上的平均变化率为f(5)-f(0)5-0=2.函数g(x)在[-3,-1]上的平均变化率为g (-1)-g (-3)-1-(-3)=-2.函数g (x )在[0,5]上的平均变化率为g (5)-g (0)5-0=-2.16.过曲线f (x )=2x2的图象上两点A (1,2),B (1+Δx,2+Δy )作曲线的割线AB ,求出当Δx =14时割线的斜率.[解析] 割线AB 的斜率k =(2+Δy )-2(1+Δx )-1=ΔyΔx=2(1+Δx )2-2Δx =-2(Δx +2)(1+Δx )2=-7225. 17.求函数y =x 2在x =1、2、3附近的平均变化率,判断哪一点附近平均变化率最大?[解析] 在x =2附近的平均变化率为k 1=f (1+Δx )-f (1)Δx =(1+Δx )2-1Δx =2+Δx ;在x =2附近的平均变化率为k 2=f (2+Δx )-f (2)Δx =(2+Δx )2-22Δx =4+Δx ;在x =3附近的平均变化率为k3=f(3+Δx)-f(3)Δx=(3+Δx)2-32Δx=6+Δx.对任意Δx有,k1<k2<k3,∴在x=3附近的平均变化率最大.18.(2010·杭州高二检测)路灯距地面8m,一个身高为1.6m的人以84m/min 的速度在地面上从路灯在地面上的射影点C处沿直线离开路灯.(1)求身影的长度y与人距路灯的距离x之间的关系式;(2)求人离开路灯的第一个10s内身影的平均变化率.[解析] (1)如图所示,设人从C点运动到B处的路程为x m,AB为身影长度,AB的长度为y m,由于CD∥BE,则ABAC=BECD,即yy+x =1.68,所以y=f(x)=14x.(2)84m/min=1.4m/s,在[0,10]内自变量的增量为x2-x1=1.4×10-1.4×0=14,f(x2)-f(x1)=14×14-14×0=72.所以f(x2)-f(x1)x2-x1=7214=14.1 4.即人离开路灯的第一个10s内身影的平均变化率为。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.1 第1课时 变化率问题
1.在平均变化率的定义中,自变量x 在x 0处的增量Δx ( )
A .大于零
B .小于零
C .等于零
D .不等于零
2.设函数y =f (x ),当自变量x 由x 0变化到x 0+Δx 时,函数的改变量Δy 为( )
A .f (x 0+Δx )
B .f (x 0)+Δx
C .f (x 0)·Δx
D .f (x 0+Δx )-f (x 0) 3.已知函数f (x )=-x 2+x ,则f (x )从-1到-0.9的平均变化率为( )
A .3
B .0.29
C .2.09
D .2.9 4.已知函数f (x )=x 2+4上两点A ,B ,x A =1,x B =1.3,则直线AB 的斜率为( )
A .2
B .2.3
C .2.09
D .2.1 5.已知函数f (x )=-x 2+2x ,函数f (x )从2到2+Δx 的平均变化率为( )
A .2-Δx
B .-2-Δx
C .2+Δx
D .(Δx )2
-2·Δx 6.已知函数y =x 2+1的图象上一点(1,2)及邻近一点(1+Δx,2+Δy ),则Δy Δx
等于( ) A .2 B .2x C .2+Δx
D .2+(Δx )2 7.质点运动规律S (t )=t 2+3,则从3到3.3内,质点运动的平均速度为( )
A .6.3
B .36.3
C .3.3
D .9.3
8.在x =1附近,取Δx =0.3,在四个函数①y =x 、②y =x 2、③y =x 3、④y =1x
中,平均变化率最大的是( )
A .④
B .③
C .②
D .①
9.物体做直线运动所经过的路程s 可以表示为时间t 的函数s =s (t ),则物体在时间间隔[t 0,t 0+Δt ]内的平均速度是( )
A .v 0 B.Δt s (t 0+Δt )-s (t 0) C.s (t 0+Δt )-s (t 0)Δt D.s (t )t
10.已知曲线y =14x 2和这条曲线上的一点P ⎝ ⎛⎭
⎪⎫1,14,Q 是曲线上点P 附近的一点,则点Q 的坐标为( )
A.⎝ ⎛⎭⎪⎫1+Δx ,14(Δx )2
B.⎝ ⎛⎭
⎪⎫Δx ,14(Δx )2 C.⎝ ⎛⎭⎪⎫1+Δx ,14(Δx +1)2 D.⎝ ⎛⎭
⎪⎫Δx ,14(1+Δx )2 11.已知函数y =x 3-2,当x =2时,Δy Δx
=________. 12.在x =2附近,Δx =14时,函数y =1x
的平均变化率为________.
13.函数y =x 在x =1附近,当Δx =12
时的平均变化率为________. 14.已知曲线y =x 2-1上两点A (2,3),B (2+Δx,3+Δy ),当Δx =1时,割线AB 的斜率是________;当Δx =0.1时,割线AB 的斜率是________.
15.已知函数f (x )=2x +1,g (x )=-2x ,分别计算在区间[-3,-1],[0,5]上函数f (x )及g (x )的平均变化率.
16.过曲线f (x )=2x 2的图象上两点A (1,2),B (1+Δx,2+Δy )作曲线的割线AB ,求出当Δx =14
时割线的斜率.
17.求函数y =x 2
在x =1、2、3附近的平均变化率,判断哪一点附近平均变化率最大?
18.(2010·杭州高二检测)路灯距地面8m ,一个身高为1.6m 的人以84m/min 的速度在地
面上从路灯在地面上的射影点C 处沿直线离开路灯.
(1)求身影的长度y 与人距路灯的距离x 之间的关系式;
(2)求人离开路灯的第一个10s 内身影的平均变化率.。