PID控制的Simulink仿真
simulink仿真pid案例
simulink仿真pid案例摘要:I.引言- 介绍Simulink软件和PID控制器II.PID控制器原理- PID控制器的基本原理和组成部分- PID控制器在工程中的应用III.Simulink仿真PID案例- 建立PID控制器模型- 设定参数并进行仿真- 分析仿真结果IV.结论- 总结Simulink仿真PID案例的重要性和应用价值正文:I.引言Simulink是一款由MathWorks公司开发的用于模拟和仿真的软件,它可以用于各种领域,如控制系统、信号处理、通信等。
PID控制器是控制系统中常用的一种控制器,它具有结构简单、可靠性高等特点,被广泛应用于工业控制中。
本文将通过一个具体的Simulink仿真PID案例,介绍如何使用Simulink进行PID控制器的仿真。
II.PID控制器原理PID控制器是一种比例-积分-微分(Proportional-Integral-Derivative)控制器,它通过计算控制误差的比例、积分和微分值,得到控制器的输出。
PID控制器由比例单元、积分单元和微分单元三部分组成,其中比例单元用于放大控制误差,积分单元用于消除系统的稳态误差,微分单元用于预测控制误差的变化趋势。
PID控制器在工程中有着广泛的应用,如温度控制、流量控制、位置控制等。
通过调整PID控制器的参数,可以实现对系统的稳定性和响应速度的调节。
III.Simulink仿真PID案例为了演示如何使用Simulink进行PID控制器的仿真,我们建立一个简单的PID控制器模型。
首先,打开Simulink软件,从工具栏中选择“新建模型”,创建一个新的模型。
接下来,从Simulink库中添加以下模块:一个输入模块(用于接收控制信号)、一个比例单元模块、一个积分单元模块和一个微分单元模块。
然后,将这四个模块按照PID控制器的结构连接起来,形成一个完整的PID控制器模型。
在建立好PID控制器模型后,我们需要设定一些参数,如比例系数、积分时间和微分时间等。
在Simulink下实现PID控制器的设计与仿真
《机电一体化系统设计》课程实验
二、实验内容
3 PID 控制系统MATLAB/Simulink仿真分析 3.1 在MATLAB 下实现PID 控制器的设计与仿真 根据Ziegler- Nichols法,这里编写一个MATLAB函数ziegler,该函数的功能实现 由Ziegler- Nichols公式设计PID 控制器,在设计过程中可以直接调用。其源程序 如下: function [Gc,Kp,Ti,Td,H]=ziegler(key,vars) Ti=[]; %PID控制器积分时间常数 Td=[]; %PID控制器微分时间常数 H=1; if length(vars)==4, K=vars(1); L=vars(2); T=vars(3); N=vars(4); %接收系统传递函 数Gp=K/(Ts+1)*exp(-L*s)中的系数 a=K*L/T; %令a=K*L/T(表示ziegler-Nichols法中比例环节系数的倒数) if key==1, Kp=1/a; %key=1表示系统P校正 elseif key==2, Kp=0.9/a; Ti=3.33*L; %key=2表示系统PI校正 elseif key==3 | key==4, Kp=1.2/a; Ti=2.2*L; Td=L/2; %key=3,4表示系统PID校正 end
《机电一体化系统设计》课程实验
二、实验内容
1.2 被控对象的建模 在实际的过程控制系统中,有大量的对象模型可以近似地由带有延迟的一阶传 递函数模型来表示,该对象的模型可以表示如下:
如果不能建立起系统的物理模型,可通过试验测取对象模型的阶跃响应, 从而得到模型参数。当然, 我们也可在已知对象模型的情况下, 由 MATLAB 通过 STEP( ) 函数得到对象模型的开环阶跃响应曲线。在被控对象的阶跃响 应输出信号图(如图所示)中, 可获取 K、L 和 T 参数。
基于simulink的模糊PID控制例子
1模糊P1D用命令FUZZy翻开模糊控制工具箱。
AnfiSedit翻开自适应神经模糊控制器,它用给定的输入输出数据建个一个模糊推理系统,并用一个反向传播或者与最小二乘法结合的来完成隶属函数的调节。
SUrfVieW(newfis)可以翻开外表视图窗口8.1模糊PID串联型新建一个SimUIink模型同时拖入一个fuzzy1ogiccontro11er模块,双击输入已经保存的fis模糊控制器的名字。
由于这个控制模块只有一个输入端口,需要用到I I1UX模块。
模糊结合PID,当输出误差较大时,用模糊校正,当较小时,用PID校正。
8.2模糊自适应PID[1)PID参数模糊自整定的原那么PID调节器的控制规律为:u(k)=Kpe(k)+Ki∑e(i)+Kdec(k)其中:KP为比例系数;Ki为积分系数;Kd为微分系数;e(k)、ec(k)分别为偏差和偏差变化率.模糊自整定P1D参数的目的是使参数Kp、Ki、Kd随着e和ec的变化而自行调整,故应首先建立它们间的关系.根据实际经验,参数KP、Ki、Kd在不同的e和ec下的自调整要满足如下调整原那么:(1)当e较大时,为加快系统的响应速度,防止因开始时e的瞬间变大可能会引起的微分溢出,应取较大的Kp和较小的Kd,同时由于积分作用太强会使系统超调加大,因而要对积分作用加以限制,通常取较小的Ki值;(2)当e中等大小时,为减小系统的超调量,保证一定的响应速度,Kp应适当减小;同时Kd 和Ki的取值大小要适中;(3)当e较小时,为了减小稳态误差,Kp与Ki应取得大些,为了防止输出响应在设定值附近振荡,同时考虑系统的抗干扰性能,Kd值的选择根据IeC1值较大时,Kd取较小值,通常Kd为中等大小。
同时按照需要,将输入语言变量E和EC分为7个模糊子集,分别用语言值正大(PB)、正中(PM)、正小(PS)、零(Z)、负小(NS)、负中(NM)、负大(NB)来表示,它们的隶属函数为高斯型(gaussmf),输出语言变量Kp/、Ki,、Ker用语言值小正大(PB)、正中(PM)、正小(PS)、零(Z)、负小(NS)、负中(NM)、负大(NB)来表示隶属函数为三角型(trimf),方法二:图-1模糊自适应Simu1ink模型根据各模糊子集的隶属度赋值表和各参数模糊控制模型,应用模糊合成推理设计分数阶PID参数的模糊矩阵表,算出参数代入下式计算:Kp=KpO+(E,EOpjKi=KiO+(E,EC)I;Kd=KdO+(E,EC)d式中:KpO.KiO.KdO为P1D参数的初始设计值,由传统的PID控制器的参数整定方法设计。
Simulink中系统PID控制调节
动态调节Simulink系统响 应:
9.在窗口Compensator页选项,选择要调 节的项目,在窗口Design Requirements 页,点击Add new design requirement 添加设计要求
10.点击OK会在分析图像上显示出设 计要求区间。点击Start Optimization, 软件会开始自动迭代寻找符合要求的 参数
动态调节Simulink系统响 应:
12.完成后关闭窗口,会提示是否保存测 试数据。注意:调节模型中的PID系数是 11.在窗口树状图选择SISO Design Task, 一个变量,如何直接关闭模型数据就不会 保存下来,一定要保存得到的数据 在Compensator Editor页,点击Update Simulink Block Parameters更新参数
PID控制实现:
1)离散时间域 2)考虑硬件条件 3)控制算法生成代码
3.在PID Controller的Data Types页,可 以对每个PID参数进行定标处理
4.右击PID Controller,C/C++ Code->Buid This Subsystem生成 PID控制算法对应的c代码,或者生 成S-function进行软件在回路测试
3.点击Select Blocks...选择调节的模块, 完成后点击Tune Blocks进行参数调优
动态调节Simulink系统响 应:
4.选择系统动态调节图像
6.点击Finish输出图像
动态调节图可以拖 动图像改变系统特 性,同时改变变量 的值
5.点击Next选择系统分析图像
分析图只能做分析 用
相位裕度简介
主要用来衡量负反馈系统的稳定性,并能用来预测闭 环系统阶跃响应的过冲。 相位裕度可以看作是系统进入不稳定状态之前可以增 加的相位变化,相位裕度越大,系统越稳定,但同时 时间响应速度减慢了,因此必须要有一个比较合适的 相位裕度。经研究发现,相位裕度至少要45°,最好 是60° 。
Simulink中系统PID控制调节解析
PID控制实现
PID控制实现:
简单仿真系统
PID控制实现:
1)离散时间域 2)考虑硬件条件 3)控制算法生成代码
1.打开PID Controller,点击Discretetime切换到离散域,Sample time根据 实际硬件的采样时间更改
2.同样采用Tune..调节离散域下新的最 优PID参数,系统从原来不稳定变成稳 定
Simulink中系统 PID控制调节
天津科技大学:机械工程肖志鹏
主要内容
• • • •
查看系统响应 动态调节系统响应 PID控制参数调优 PID控制实现
查看系统响应
查看Simulink仿真系统响 应:
简单仿真系统
查看Simulink仿真系统响应:
1.在模型分析的节点选择线性 分析点
2.从菜单栏->Analysis->Control Design->Linear Analysis...打开线性分 析窗口
动态调节Simulink系统响 应:
12.完成后关闭窗口,会提示是否保存测 试数据。注意:调节模型中的PID系数是 11.在窗口树状图选择SISO Design Task, 一个变量,如何直接关闭模型数据就不会 保存下来,一定要保存得到的数据 在Compensator Editor页,点击Update Simulink Block Parameters更新参数
谢谢观赏
水平有限如有错误欢迎指正
参考资料:
/products/simulink
积分饱和简介
所谓积分饱和现象是指若系统存在一个方向的偏差, PID控制器的输出由于积分作用的不断累加而加大, 从而导致u(k)达到极限位置。此后若控制器输出继续 增大,u(k)也不会再增大,即系统输出超出正常运行 范围而进入了饱和区。一旦出现反向偏差,u(k)逐渐 从饱和区退出。进入饱和区愈深则退饱和时间愈长。 此段时间内,执行机构仍停留在极限位置而不能随着 偏差反向立即做出相应的改变,这时系统就像失去控 制一样,造成控制性能恶化。这种现象称为积分饱和 现象或积分失控现象。
PID控制的Simulink仿真
内容提要
本章描述PID控制的基本概念,介绍 PID控制算法以及PID参数整定等基 础知识,并通过大量的仿真实例讲 述PID参数整定。
通过本章,读者对PID控制的原理、 算法能有较为全面的认识,并熟练 通过仿真进行PID参数整定。
PID控制的Simulink仿真
5.1 PID控制概述
PID控制的Simulink仿真
5.3.2 临界比例度法
PID控制的Simulink仿真
临界比例度法整定举例
PID控制的Simulink仿真
5.3.3 衰减曲线法
按“先P后I最后D”的操作 程序,将求得的整定参数设 置在调节器上,再观察运行 曲线,若不太理想,还可作 适当调整。
衰减曲线法的注意事项: (1)对于反应较快的控制
3增大微分时间有利于加快系统的响应速度使系统超调量减小稳定性增加但系统对扰动的抑制能力减弱1654本章小结pid控制是最经典应用最广的控制方法是单回路控制系统的主要控制方法可以说pid控制是其他控制思想的基础
第5章 PID控制
5.1 PID控制概述 5.2 PID控制算法 5.3 PID控制器参数整定 5.4 本章小结 习题与思考
(3)增大微分时间有利于加快系统的响应速度, 使系统超调量减小,稳定性增加,但系统对扰 动的抑制能力减弱。
PID控制的Simulink仿真
5.4 本章小结
PID控制是最经典、应用最广的控制方法,是 单回路控制系统的主要控制方法,可以说PID 控制是其他控制思想的基础。
深入理解PID控制规律,熟练掌握PID控制器 参数的整定,是每个学习控制的人所必备的 基础。
PID控制器具有以下优点:
(1)原理简单,使用方便。
基于-Simulink的位置式和增量式PID仿真
基于Simulink的位置式和增量式PID仿真一、实验目的:1、用Matlab的仿真工具Simulink分别做出数字PID控制器的两种算法(位置式和增量式)进行仿真;2、被控对象为一阶惯性环节 D(s) = 1 / (5s+1);3、采样周期 T = 1 s;4、仿真结果:确定PID相关参数,使得系统的输出能够很快的跟随给定值的变化,给出例证,输入输出波形,程序清单及必要的分析。
二、实验学时:4三、实验原理:(1)列出算法表达式:位置式PID控制算法表达式为:(2)列出算法传递函数:(3)建立simulink模型:(4)准备工作:双击step,将sample time设置为1以符合采样周期 T = 1 s 的要求;选定仿真时间为500。
第一步是先获取开环系统的单位阶跃响应,在Simulink中,把反馈连线、微分器、积分器的输出连线都断开,并将’Kp’的值置为1,调试之后获取响应值。
再连上反馈线,再分别接上微分器、积分器,仿真,调试仿真值。
2、增量式PID:(1)列出算法表达式:增量式PID控制算法表达式为:(2)列出算法传递函数:(3)建立simulink模型:(4)准备工作:双击step,将sample time设置为1以符合采样周期 T = 1 s 的要求;选定仿真时间为500。
第一步是先获取开环系统的单位阶跃响应,在Simulink中,把反馈连线、微分器、积分器的输出连线都断开,并将’Kp’的值置为1,调试之后获取响应值。
再连上反馈线,再分别接上微分器、积分器,仿真,调试仿真值。
四、实验内容:1、位置式:(1)P控制整定仿真运行完毕,双击“scope”得到下图将Kp的值置为0.5,并连上反馈连线。
仿真运行完毕,双击“scope”得到下图效果不理想,再将Kp的值置为0.2,并连上反馈连线。
P控制时系统的单位阶跃响应图如下:(2)PI控制整定(比例放大系数仍为Kp=0.2)经多次输入Ki的值,发现Ki=1时,系统的输出最理想,选定仿真时间,仿真运行,运行元毕后. 双击" Scope " 得到以下结果(3)PID控制整定经多次输入调试,Kd的值置为0.5时,系统能最快地趋向稳定。
Simulink仿真之PID控制
5.3 PID控制器参数整定 PID控制器参数整定
PID控制器参数整定的方法很多,概括起来有两大类: (1)理论计算整定法 主要依据系统的数学模型,经过理论计算确定控制器参数。 这种方法所得到的计算数据未必可以直接使用,还必须通 过工程实际进行调整和修改。 (2)工程整定方法 主要有Ziegler-Nichols整定法、临界比例度法、衰减曲线 法。这三种方法各有特点,其共同点都是通过试验,然后 按照工程经验公式对控制器参数进行整定。但无论采用哪 一种方法所得到的控制器参数,都需要在实际运行中进行 最后调整与完善。 工程整定法的基本特点是:不需要事先知道过程的数学模 型,直接在过程控制系统中进行现场整定;方法简单,计 算简便,易于掌握。
t 0
PID控制器具有以下优点: (1)原理简单,使用方便。 (2)适应性强。 (3)鲁棒性强,即其控制 品质对被控制对象特性的变 化不太敏感。
5.2 PID控制算法 PID控制算法
5.2.1 比例(P)控制
纯比例控制的作用和比例调节对系统性能的影响
5.2.2 比例积分(PI)控制 比例积分(PI)控制
第5章 PID控制 PID控制
5.1 PID控制概述 5.2 PID控制算法 5.3 PID控制器参数整定 5.4 本章小结 习题与思考
内容提要
本章描述PID控制的基本概念,介绍 PID控制算法以及PID参数整定等基 础知识,并通过大量的仿真实例讲 述PID参数整定。 通过本章,读者对PID控制的原理、 算法能有较为全面的认识,并熟练 通过仿真进行PID参数整定。
PI控制举例 PI控制举例
ห้องสมุดไป่ตู้
5.2.3 比例微分(PD)控制 比例微分(PD)控制
PD控制作用举例
课程设计专家PID控制系统simulink仿真
课程设计题目:专家PID控制系统仿真专家PID控制系统仿真摘要简单介绍了常规PID控制的优缺点和专家控制的基本原理,介绍了专家PID控制的系统结构,针对传递函数数学模型设计控制器。
基于MATLAB的simulink仿真软件进行应用实现,仿真和应用实现结果均表明,专家PID控制具有比常规PID更好的控制效果,且具有实现简单和专家规则容易获取的优点。
论文主要研究专家PID控制器的设计及应用,完成了以下工作:(1)介绍了专家PID控制和一般PID控制的原理。
(2)针对任务书给出的受控对象传递函数G(s)=523500/(s3+87.35s2+10470s) ,并且运用MATLAB实现了对两种PID控制器的设计及simulink仿真,且对两种PID控制器进行了比较。
(3)结果分析,总结。
仿真结果表明,专家PID控制采用多分段控制,其控制精度更好,且具有优越的抗扰性能。
关键词:专家PID,专家系统,MATLAB,simulink仿真Expert PID control system simulationAbstractThe advantages and disadvantages of conventional PID control and the basic principle of expert control are briefly introduced, and the structure of expert PID control system is introduced. Simulink simulation software based on MATLAB is implemented. The simulation and application results show that the expert PID control has better control effect than the conventional PID, and has the advantages of simple and easy to get.This paper mainly studies the design and application of the expert PID controller:(1) the principle of PID control and PID control is introduced in this paper.(2) the controlled object transfer function G (s) =523500/ (s3+87.35s2+10470s), and the use of MATLAB to achieve the design and Simulink simulation of two kinds of PID controller, and the comparison of two kinds of PID controller.(3) result analysis, summary.The simulation results show that the control accuracy of the expert PID control is better than that of the control.Key words:Expert PID , MA TLAB, expert system, Simulink, simulation目录摘要 (I)Abstract ..................................................................................................................................... I II 第一章引言 . (2)1.1 研究目的和意义 (2)1.2国内外研究现状和发展趋势 (3)第二章PID控制器综述 (3)2.1常规PID控制器概述 (3)2.2专家PID控制器 (4)第三章专家PID控制在MATLAB上的实现 (5)3.1简介 (5)3.2设计专家PID 控制器的实现方法 (5)3.3.专家PID控制器的S函数的M文件实现 (7)3.4专家PID控制器的simulink设计 (8)3.5专家PID控制和传统PID比较 (13)第四章结论 (14)4.1专家PID控制系统的优缺点及解决方案 (14)4.2最终陈述 (14)第一章引言近十几年,国内外对智能控制的理论研究和应用研究十分活跃,智能控制技术发展迅速,如专家控制、自适应控制、模糊控制等,现已成为工业过程控制的重要组成部分。
模糊pidmatlab(simulink)仿真详细步骤
下面用一个简单的例子作介绍:(本例不是特别针对实现什么功能,只是为了介绍方便)第一部分创建一个模糊逻辑(.fis文件)第一步:打开模糊推理系统编辑器步骤:在Commond Window 键入fuzzy回车打开如下窗口,既模糊推理系统编辑器第二步:使用模糊推理系统编辑器本例用到两个输入,两个输出,但默认是一个输人,一个输出步骤:1、添加一个输入添加一个输出得如下图2、选择Input、output(选中为红框),在Name框里修改各输入的名称并将And method 改为prod,将Or method 改为probor提示:在命名时’_’在显示时为下标,可从上图看出。
第三步:使用隶属函数编辑器该编辑器提供一个友好的人机图形交互环境,用来设计和修改模糊推理系中各语言变量对应的隶属度函数的相关参数,如隶属度函数的形状、范围、论域大小等,系统提供的隶属度函数有三角、梯形、高斯形、钟形等,也可用户自行定义。
步骤:1、双击任何一个输入量(In_x、In_y)或输出量打开隶属度函数编辑器。
2、在左下处Range和Display Range处添加取值范围,本例中In_x和In_y的取值范围均为[0 10], Out_x和Out_y的取值范围均为[0 1]3、默认每个输入输出参数中都只有3个隶属度函数,本例中每个输入输出参数都需要用到五个,其余几个需要自己添加:选中其中一个输入输出参数点击Edit菜单,选Add MFS…打开下列对话框将MF type设置为trimf(三角形隶属度函数曲线,当然你也需要选择其他类型) 将Number of MFs设置为2点击OK按钮同样给其他三个加入隶属度函数4、选中任何一个隶属度函数(选中为红色),在Name中键入名称,在Type 中选择形状,在Params中键入范围,然后回车如下图:5、关闭隶属函数编辑器第四步:使用规则编辑器通过隶规则编辑器来设计和修改“IF...THEN”形式的模糊控制规则。
SIMULINK建模仿真PID控制
实验二PID调节器实验内容:SIMULINK建模仿真学生信息:自动化提交日期:2023年5月28日报告内容:PID调节器一、实验目的1.掌握仿真系统参数设置及子系统封装技术;2.分析PID调节器各参数对系统性能的影响。
二、实验设备1.计算机1台2.MATLAB 7.X软件1套。
三、实验原理说明1.建立新的simulink模块编辑界面,画出如图1所示的模块图。
对应的增益参数分别设为P和I,左击选中全部框图,右击菜单选择“creat subsystem”,变为图2。
图1:图2:2.右击图2中间的框图“Subsystem”,在右击的菜单中选择“Mask Subsystem”,出现下图。
先直接输入disp('PI调节器'),给待封装的子系统命名。
3.选择“Parameters”进行参数设置,点击按钮,添加参数,此参数必须与上文设置的参数对应,否则无效,如下图所示。
4.点击OK,完成子系统的封装。
双击PI调节器模块,出现参数设定对话框如下,可以进行参数调节。
四、实验步骤1.从continue模块集中拉出Derivative、Integrator以及从Math Operations模块集中拉出Gain模块,设计PID调节器,对PID调节器进行封装;2.建立Simulink原理图如下:3.双击PID调节器模块,调整调节器的各参数。
五、实验要求分析调节器各参数对系统性能的影响,撰写实验报告:1.P调节将PID调节器的积分增益和微分增益改为0,使其具有比例调节功能,对系统进行纯比例调节。
调整比例增益(P=0.5,2,5),观察响应曲线的变化。
图1 P=0.5时的阶跃信号及其响应图2 P=2时的阶跃信号及其响应图3 P=5时的阶跃信号及其响应P增大,系统在稳定时的静差减少。
2.PD调节调节器的功能改为比例微分调节,调整参数(P=2,D=0.1,0.5,2,5),观测系统的响应曲线。
图4 P=2,D=0.1时的阶跃信号及其响应图5 P=2,D=0.5时的阶跃信号及其响应图6 P=2,D=2时的阶跃信号及其响应图7 P=2,D=5时的阶跃信号及其响应D增大,系统将会快速收敛,同时系统静差会增大。
基于matlabsimulink的pid控制器设计
基于matlabsimulink的pid控制器设计1.引言1.1 概述概述部分:PID控制器是一种常用的控制算法,它通过不断地调整系统的输出来使其尽量接近所期望的目标值。
在工业控制领域,PID控制器被广泛应用于各种工艺过程和自动化系统中。
本文将以MATLAB/Simulink为工具,探讨基于PID控制器的设计方法。
PID控制器以其简单易实现、稳定性好的特点,成为许多控制系统的首选。
在文章的正文部分,我们将对PID控制器的基本原理进行详细介绍,并结合MATLAB/Simulink的应用,展示如何使用这一工具来设计和实现PID控制器。
在控制系统设计中,PID控制器通过测量系统的误差,即期望输出值与实际输出值之间的差异,并根据三个控制参数:比例项(Proportional)、积分项(Integral)和微分项(Derivative)来调整系统的输出。
比例项控制系统的响应速度,积分项消除系统的稳态误差,微分项抑制系统的震荡。
MATLAB/Simulink作为一款功能强大的仿真软件,提供了丰富的控制系统设计工具。
它不仅可以帮助我们直观地理解PID控制器的工作原理,还可以实时地模拟和分析系统的响应。
通过使用MATLAB/Simulink,我们可以轻松地进行PID控制器参数调整、系统性能评估和控制算法的优化。
总之,本文旨在介绍基于MATLAB/Simulink的PID控制器设计方法,通过理论介绍和实例演示,帮助读者深入理解PID控制器的原理和应用,并为读者在实际工程项目中设计和实施PID控制器提供参考。
在结论部分,我们将总结所得结论,并对未来进一步研究的方向进行展望。
文章结构部分的内容可以描述文章的整体架构和各个部分的内容大纲。
以下是对文章1.2部分的内容补充:1.2 文章结构本文主要由以下几个部分构成:第一部分是引言部分,包括概述、文章结构和目的等内容。
在概述中,将简要介绍PID控制器在自动控制领域的重要性和应用背景。
实验四:基于Simulink的控制系统仿真
实验四:基于Simulink 的控制系统仿真实验目的1. 掌握MATLAB 软件的Simulink 平台的基本操作; 2. 能够利用Simulink 平台研究PID 控制器对系统的影响;实验原理PID (比例-积分-微分)控制器是目前在实际工程中应用最为广泛的一种控制策略。
PID 算法简单实用,不要求受控对象的精确数学模型。
1.模拟PID 控制器典型的PID 控制结构如图1所示。
`图1 典型PID 控制结构 连续系统PID 控制器的表达式为()()()()tp I Dde t x t K e t K e d K dt ττ=++⎰ (1)式中,P K ,IK 和DK 分别为比例系数,积分系数和微分系数,分别是这些运算的加权系数。
对式(7-21)进行拉普拉斯变换,整理后得到连续PID 控制器的传递函数为1()(1)I C P D P D I K G s K K s K T s s T s =++=++ (2)显然P K ,IK 和DK 这3个参数一旦确定(注意/,/I P I D D PT K K T K K ==),PID 控制器的性能也就确定下来。
为了避免微分运算,通常采用近似的PID 控制器,气传递函数为1()(1)0.11D C P I D T s G s K T s T s =+++ (3)实验过程PID 控制器的P K ,I K 和D K 这3三个参数的大小决定了PID 控制器的比例,积分和微分控制作用的强弱。
下面请通过一个直流电动机调速系统,利用MA TLAB 软件中的Simulink 平台,使用期望特性法来确定这3个参数的过程。
并且分析这3个参数分别是如何影响控制系统性能的。
【问题】某直流电动机速度控制系统如图2所示,采用PID 控制方案,使用期望特性法来确定P K ,IK 和DK 这3三个参数。
期望系统对应的闭环特征根为:-300,-300,-30+j30和-30-j30。
请建立该系统的Simulink 模型,观察其单位阶跃响应曲线,并且分析这3个参数分别对控制性能的影响。
实验七SIMULINK仿真单回路控制系统及PID控制器参数整定
实验七 SIMULINK 仿真——单回路控制系统及PID 控制器参数整定一、实验目的及要求:1.熟悉SIMULINK 工作环境及特点;2.熟悉控制线性系统仿真常用基本模块的用法;3.掌握SIMULINK 的建模与仿真方法。
二、实验内容:用SIMULINK 建立被控对象的传递函数为11010)(23+++=s s s x G ,系统输入为单位阶跃,采用PID 控制器进行闭环调节。
①练习模块、连线的操作,并将仿真时间定为300 秒,其余用缺省值;②试用稳定边界法(过程控制P5工程整定法之一)设置出合适的PID 参数,得出满意的响应曲线。
③设计M 文件在一个窗口中绘制出系统输入和输出的曲线,并加图解。
三、实验报告要求:①阐述用SIMULINK 进行控制系统仿真的一般过程;②说明用工程整定法——稳定边界法整定PID 参数的过程。
M文件denz=[10];numz=[1 1 10 1];sysz=tf(denz,numz)%传递函数denk=[0 0.539];numk=[0 1];deni=[0 2];numi=[1 0];dend=[0.25 0];numd=[0 1];sysk=tf(denk,numk)%p调节器sysi=tf(deni,numi)%I调节器sysd=tf(dend,numd)%D调节器[denki,numki]=parallel(denk,numk,deni,numi);%P调节器与I调节器相并联[denpid,numpid]=parallel(dend,numd,denki,numki);%PI调节器与D调节器相并联组成PID调节器syspid=tf(denpid,numpid)[denkh,numkh]=series(denpid,numpid,denz,numz);%PID与传递函数串联组成开环控制系统syskh=tf(denkh,numkh)[denbh,numbh]=feedback(denkh,numkh,1,1,-1);%组成单位负反馈闭环系统sysbh=tf(denbh,numbh)t=0:0.1:300;%加入0到300的仿真时间,步进值为0.1subplot(2,1,1)plot(t,1,'b')%显示单位阶跃函数subplot(2,1,2)step(sysbh,t)%显示闭环系统对于单位阶跃函数的响应函数曲线。
simulink仿真pid案例
simulink仿真pid案例(实用版)目录一、Simulink 简介二、PID 控制器原理三、Simulink 中 PID 控制器的搭建四、Simulink 中 PID 控制器的仿真步骤五、总结正文一、Simulink 简介Simulink 是 MATLAB 中的一个仿真环境,可以用来模拟和分析动态系统。
通过 Simulink,用户可以构建、模拟和测试控制系统,以及进行模型验证和优化。
在 Simulink 中,用户可以通过搭建图形化的模块来描述系统,然后进行仿真和分析。
二、PID 控制器原理PID 控制器是一种常用的闭环控制器,用于控制系统的稳定性和精度。
PID 控制器包括三个部分:比例(P)、积分(I)和微分(D)控制器。
比例控制器根据系统误差的大小来调整控制量;积分控制器根据系统误差的积分来调整控制量,以消除稳态误差;微分控制器根据系统误差的变化速率来调整控制量,以改善系统的动态性能。
三、Simulink 中 PID 控制器的搭建在 Simulink 中,用户可以通过搭建模块来实现 PID 控制器。
首先,需要创建一个 PID 控制器模块,这可以通过 Simulink 中的“Continuous”或“Discrete”子库中的“PID”模块来完成。
然后,需要将 PID 控制器模块与其他模块(如输入、输出和被控对象模块)连接起来,以形成一个完整的控制系统模型。
四、Simulink 中 PID 控制器的仿真步骤在 Simulink 中,进行 PID 控制器仿真的步骤如下:1.打开 Simulink,创建一个新的模型。
2.在 Simulink 库中选择“Continuous”或“Discrete”子库,然后将“PID”模块拖拽到仿真界面中。
3.创建被控对象模块,例如使用“Transfer Function”模块来描述一个二阶线性时不变系统。
4.将被控对象模块与 PID 控制器模块相连接,同时设置好各个模块的参数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.1 PID控制概述 5.2 PID控制算法 5.3 PID控制器参数整定 5.4 本章小结 习题与思考
内容提要
本章描述PID控制的基本概念,介绍 PID控制算法以及PID参数整定等基 础知识,并通过大量的仿真实例讲 述PID参数整定。
通过本章,读者对PID控制的原理、 算法能有较为全面的认识,并熟练 通过仿真进行PID参数整定。
5.1 PID控制概述
在线性连续系统中,控制规律 通常由以下三种情况组成: (1)比例控制:控制作用u与 偏差e成比例关系; (2)积分控制:控制作用u为 偏比差例e关对系时;间的积分(0t edt)成 (3)微分控制:控制作用u为 偏例差关e系对;时间的导数(ddet )成比 因此,控制作用u常用的表示 形式为: 式中的Kc是控制器的比例增益, Ti和Td都具有时间量纲,分别 称为积分时间和微分时间。
衰减曲线法整定举例
PID参数整定规律
总结出几条基本的PID参数整定规律: (1)增大比例系数一般将加快系统的响应,在
有静差的情况下有利于减小静差,但是过大的 比例系数会使系统有比较大的超调,并产生振 荡,使稳定性变坏。
(2)增大积分时间有利于减小超调,减小振荡, 使系统的稳定性增加,但是系统静差消除时间 变长。
按“先P后I最后D”的操作 程序,将求得的整定参数设 置在调节器上,再观察运行 曲线,若不太理想,还可作 适当调整。
衰减曲线法的注意事项: (1)对于反应较快的控制
系统,要认定41衰减曲线和 读出Ts比较困难,此时,可 认为记录指针来回摆动两次 就达到稳定是41衰减过程。 (2)在生产过程中,负荷 变化会影响过程特性。当负 荷变化较大时,必须重新整 定调节器参数值。 (3)若认为41衰减太慢, 可采用101衰减过程。对于 101衰减曲线法整定调节器 参数的步骤与上述完全相同, 仅仅所用计算公式有些不同。
系统中增加了一个位于原点的开环极点,同时也增 加了一个位于s左半平面的开环零点。 (2)位于原点的极点可以提高系统的型别,以消除 或减小系统的稳态误差,改善系统的稳态性能。 (3)增加的负实部零点则可减小系统的阻尼程度, 缓和PI控制器极点对系统稳定性及动态过程产生的 不利影响。 (4)在实际工程中,PI控制器通常用来改善系统的 稳态性能。
PID控制器具有以下优点:
(1)原理简单,使用方便。
(2)适应性强。
(3)鲁棒性强,即其控制 品质对被控制对象特性的变 化不太敏感。
5.2 PID控制算法
5.2.1 比例(P)控制
纯比例控制的作用和比例调节对系统性能的影响
5.2.2 比例积分(PI)控制
PI控制的主要特点为: (1)PI控制器在与被控对象串联连接时,相当于在
(3)增大微分时间有利于加快系统的响应速度, 使系统超调量减小,稳定性增加,但系统对扰 动的抑制能力减弱。
5.4 本章小结
PID控制是最经典、应用最广的控制方法,是 单回路控制系统的主要控制方法,可以说PID 控制是其他控制思想的基础。
深入理解PID控制规律,熟练掌握PID控制器 参数的整定,是每个学习控制的人所必备的 基础。
PI控制举例
5.2.3 比例微分(PD)控制
PD控制作用举例
5.2.4 比例积分微分(PID)控制
PID控制的主要特点为: (1)当阶跃输入作用时,P作用是始终起作用的基本分量;
I作用一开始不显著,随着时间逐渐增强;D作用与I作用 相反,在前期作用强些,随着时间逐渐减弱。 (2)PI控制器与被控对象串联连接时,可以使系统的型 别提高一级,而且还提供了两个负实部的零点。 (3)与PI控制器相比,PID控制器除了同样具有提高系统 稳态性能的优点外,还多提供了一个负实部零点,因此在 提高系统动态性能方面具有更大的优越性。 (4)PID控制通过积分作用消除误差,而微分控制可缩小 超越量,加快反应,是综合了PI控制与PD控制长处并去除 其短处的控制。 (5)从频域角度来看,PID控制是通过积分作用于系统的 低频段,以提高系统的稳态性能,而微分作用于系统的中 频段,以改善系统的动态性能。
5.3.1 Ziegler-Nichols整定法
Ziegler-Nichols法根据给定对象的瞬态响应特性来确定PID控制器的 参数。Ziegler-Nichols法首先通过实验,获取控制对象单位阶跃响 应:
Ziegler-Nichols整定举例
5.3.2 临界比例度法
临界比例度法整定举例
5.3.3 衰减曲线法
Байду номын сангаас
5.3 PID控制器参数整定
PID控制器参数整定的方法很多,概括起来有两大类: (1)理论计算整定法 主要依据系统的数学模型,经过理论计算确定控制器参数。
这种方法所得到的计算数据未必可以直接使用,还必须通 过工程实际进行调整和修改。 (2)工程整定方法 主要有Ziegler-Nichols整定法、临界比例度法、衰减曲线 法。这三种方法各有特点,其共同点都是通过试验,然后 按照工程经验公式对控制器参数进行整定。但无论采用哪 一种方法所得到的控制器参数,都需要在实际运行中进行 最后调整与完善。 工程整定法的基本特点是:不需要事先知道过程的数学模 型,直接在过程控制系统中进行现场整定;方法简单,计 算简便,易于掌握。