丰富的图形世界(七年级上数学提优练习与答案)
北师大版七年级上册数学第一章 丰富的图形世界含答案
北师大版七年级上册数学第一章丰富的图形世界含答案一、单选题(共15题,共计45分)1、如图所示的几何体是由4个大小相同的小立方体组成,其俯视图是()A. B. C. D.2、如图,该几何体的俯视图是()A. B. C. D.3、如图所示的几何体中,俯视图形状相同的是()A.①④B.②④C.①②④D.②③④4、将如图所示放置的一个直角三角形ABC,(∠C=90°),绕斜边AB旋转一周,所得到的几何体的正视图是下面四个图中的( )A. B. C. D.5、如图是由几个相同的小正方体搭成的几何体的主视图和俯视图,组成这个几何体的小正方体的个数是( )A.5个或6个B.6个或7个C.7个或8个D.8个或9个6、若一个三角形的任意两条边都不相等, 则称之为“不规则三角形”. 那么顶点在一个正方体的顶点上的所有三角形中, 这样的“不规则三角形”的个数为 ( )A.30个B.24个C.18个D.12个7、如图,一个正方体的平面展开图,若在其中的三个正方形a,b,c内分别填入适当的数,使得它们折成正方体后相对的面上的数互为相反数,填入正方形a,b,c内的三个数依次为( )A.-1,-2,3B.-2,-1,3C.-1,-2,-3D.-3.-2,-18、一张坐凳的形状如图所示,以箭头所指的方向为主视方向,则它的左视图可以是( )A. B. C. D.9、下列各几何体中,直棱柱的个数是()A.2B.3C.4D.510、如图是下面哪个图形的俯视图()A. B. C. D.11、如图,是几个相同的小正方体搭成的几何体的三种视图,则搭成这个几何体的小正方体的个数是()个.A.4个B.5个C.6个D.7个12、如图,是由四个相同的小正方体组成的立体图形,它的主视图是()A. B. C. D.13、如左图所示的正三棱柱,其主视图正确的为()A. B. C. D.14、如图,由几个小正方体组成的立体图形的俯视图是()A. B. C. D.15、某几何体的三视图如图所示,则该几何体是()A.正方体B.长方体C.三棱柱D.三棱锥二、填空题(共10题,共计30分)16、圆锥由________面组成的,圆锥的侧面展开图是________ ;17、一个正方体的表面积是24㎡,那么这个正方体的所有棱长之和是________.18、如图,下面两个正方体的六个面都按相同规律涂有红、黄、蓝、白、黑、绿六种颜色,那么黄色的对面是________.19、一个长方体的三视图如图所示,若其俯视图为正方形,则这个长方体的体积为________.20、若相切两圆的半径分别是方程的两根,则两圆圆心距d的值是________ 。
第1章丰富的图形世界 同步能力提升训练 2021-2022学年北师大版七年级数学上册(含答案)
2021-2022学年北师大版七年级数学上册《第1章丰富的图形世界》同步能力提升训练(附答案)一、选择题1.如图所示的平面图形绕轴旋转一周,可得到的立体图形是()A.B.C.D.2.如图所示的图形经过折叠可以得到一个正方体,则与“体”字一面相对的面上的字是()A.我B.育C.运D.动3.如图是一个由5个相同的小正方体组成的立体图形,从正面看,能得到的平面图形是()A.B.C.D.4.如图所示的正方体,如果把它展开,可以是下列图形中的()A.B.C.D.5.如图,是由棱长都相等的四个小正方体组成的几何体.该几何体的俯视图是()A.B.C.D.6.下列几何体中,属于棱柱的有()A.3个B.4个C.5个D.6个7.下列图形中,是正方体的展开图是()A.①②B.③④C.③D.④8.用一平面截一个正方体,不能得到的截面形状是()A.等边三角形B.长方形C.六边形D.七边形9.用一个平面去截一个几何体,得到的截面是七边形,这个几何体可能是()A.四棱柱B.五棱柱C.正方体D.圆柱体10.某几何体的三视图如图所示,则该几何体的名称是()A.正方体B.圆柱C.圆锥D.球11.一个几何体由若干个大小相同的小正方体搭成,如图是从三个不同方向看到的形状图,则搭成这个几何体所用的小正方体的个数是()A.4B.5C.6D.7二、填空题12.已知一个几何体的三视图如图所示,则该几何体的体积为cm3.13.如图是由一些完全相同的小正方体组成的几何体的主视图、俯视图和左视图,则组成这个几何体的小正方体的个数是个.14.在一个棱柱中,一共有5个面,则这个棱柱有条棱,有个顶点.15.如图所示,小王用几个棱长2cm的正方体积木塔了一个几何体(没有视线看不见的正方体),则这个几何体的体积是cm3,表面积是cm2.三、解答题16.如图是一个几何体从三个方向看所得到的形状图.(1)写出这个几何体的名称;(2)画出它的一种表面展开图;(3)若从正面看的高为3cm,从上面看三角形的边长都为2cm,求这个几何体的侧面积.17.一个几何体是由若干个棱长为1的小正方体堆积而成的,从不同方向看到的几何体的形状图如下.(1)在从上面看得到的形状图中标出相应位置小正方体的个数;(2)这个几何体的表面积是.18.如图,是一个小正方体所搭几何体从上面看得到的平面图形,正方形中的数字表示在该位置小正方体的个数,请你画出它从正面和从左面看得到的平面图形.19.如图所示的是某个几何体从三种不同方向所看到的图形.(1)说出这个立体图形的名称;(2)根据图中的有关数据,求这个几何体的表面积和体积.20.如图,已知一个由小正方体组成的几何体的左视图和俯视图.(1)该几何体最少需要几块小正方体?(2)最多可以有几块小正方体?参考答案1.解:直角三角形绕其一条直角边旋转一周所得图形是一个圆锥.故选:B.2.解:正方体的表面展开图,相对的面之间一定相隔一个正方形,与“体”字一面相对的面上的字是运.故选:C.3.解:从正面看易得第一层有3个正方形,第二层最中间有一个正方形.故选:A.4.解:由“相间Z端是对面”可知A、D不符合题意,而C折叠后,圆形在前面,正方形在上面,则三角形的面在右面,与原图不符,只有B折叠后符合,故选:B.5.解:从上面看,是一行3个小正方形,故选:A.6.解:第一、第三、第六个几何体是棱柱,共有3个.故选:A.7.解:①中间4个正方形是“田字形”,不是正方体展开图;②折叠后有两个正方形重合,不是正方体展开图;③不符合正方体展开图;④符合正方体展开图;故,是正方体展开图的是④.故选:D.8.解:∵用平面去截正方体时最多与六个面相交得六边形,最少与三个面相交得三角形,∴最多可以截出六边形,∴不可能截得七边形.故选:D.9.解:∵圆柱体有三个曲面,四棱柱和正方体有6个面,五棱柱有7个面,∴只有五棱柱可能得到一个七边形截面.故选:B.10.解:主视图和左视图都是等腰三角形,那么此几何体为锥体,由俯视图为圆,可得此几何体为圆锥.故选:C.11.解:几何体分布情况如下图所示:则小正方体的个数为2+1+1+1=5,故选:B.12.解:根据图中三视图可得出其体积=上下两个长方体的体积和=4×1×5+4×5×5=120cm3.13.解:在俯视图上标出该位置摆放的小立方体的个数,如图所示:因此,组成这个几何体的小正方体的个数是4个.故答案为:4.14.解:一个棱柱中,一共有5个面,则有2个底面,3个侧面,因此此立体图形是三棱柱,则这个棱柱棱的条数有9条,有6个顶点.故答案为:9;6.15.解:搭建这个几何体共用9个棱长为2cm的小正方体,因此体积为:2×2×2×9=72 cm3,搭建这个几何体的三视图如图所示,因此表面积为:(2×2)[(5+5+6)×2]=128 cm2,故答案为:72,128.16.解:(1)几何体的名称是三棱柱;(2)表面展开图为:(3)3×6=18cm2,∴这个几何体的侧面积为18cm217.解:(1)如图所示:(2)这个几何体的表面积为2×(6+4+5)=30,故答案为:3018.解:19.解:(1)根据三视图可得:这个立体图形是三棱柱;(2)表面积为:×3×4×2+15×3+15×4+15×5=192;体积是:×3×4×15=90;20.解:俯视图中有4个正方形,那么组合几何体的最底层有4个正方体,(1)由左视图第二层有1个正方形可得组合几何体的第二层最少有1个正方体,所以该几何体最少需要4+1=5块小正方体;(2)如图,俯视图从上边数第一行的第二层最多可有3个正方体,所以该几何体最多需要4+3=7块小正方体.。
七年级数学上册丰富的图形世界配套练习及答案
第五章走进图形世界5.1丰富的图形世界(一)一、基础训练1.面与面相交成_____,线与线相交得到_______,点动成______,线动成_________,面动成_______.2.在棱柱中,任何相邻的两个面的交线都叫做______,相邻的两个侧面的交线叫做_______.3.如图,将下列图形与对应的图形名称用线连结起来:二、典型例题例1 如图是一个五棱柱,填空:(1)这个棱柱的上下底面是___________边形,有__________个侧面;(2)这个棱柱有_________条侧棱,共有__________条棱;(3)这个棱柱共有________个顶点.例2 用一个平面去截正方体,截面的形状可能是__________.(填序号)①三边形;②长方形;③六边形;④七边形.分析:用一个平面去截正方体,这平面与正方体的一个面相交的线就是截面的一条边,则正方体六个面,最多有六条交线,因此最多是六边形.三、提升拓展由平的面围成的立体图形又叫做多面体,有几个面,就叫做几面体.三棱锥有四个面,所以三棱锥又叫四面体;正方体又叫做______面体,有五条侧棱的棱柱又叫做______面体.(1)探索:如果把一个多面体的顶点数记为V,棱数记为E,面数记为F,填表:多面体V F E V+F-E四面体长方体五棱柱……………四、课后作业1.图形是由________、_________、_________构成的.2.薄薄的硬币在桌面上转动时,看上去像一个球,这说明了______________________.3.正方形是一个立体图形,它是由________个面,_______条棱,________个顶点组成的.4.如果一个六棱柱的侧棱长为5cm,那么所有的侧棱长之和为________________.5.下列图形中为圆柱的是__________,为棱柱的是__________,为棱锥的是__________.6.一只蚂蚁从如图所示的正方体的一顶点A沿着棱爬向B,只能经过三条棱,共有多少种走法?B7.如图,是工厂烟囱,由圆锥和圆柱组成,举出由圆柱和棱柱,圆柱和球,棱柱和球组成的几何体.你还能举出其他图形的组合吗?第五章走进图形世界5.1丰富的图形世界(一)一、基础训练1.线,点,线,面,体2.棱,侧棱3.略二、典型例题例1 (1)五;5(2)5,15;(3)10例2 ①②③三、提升拓展(1)六,七多面体V F E V+F–E 四面体 4 4 6 2长方体8 6 12 2五棱柱10 7 15 2……………四、课后作业1.点、线、面2.面动成体3.6,12,84.305.(4);(2);(5)6.六种7.略5.1丰富的图形世界(二)一、基础训练1.(1)下面这些基本图形和你很熟悉,试一试在括号里写出它们的名称.( ) ( ) ( ) ( ) ( ) (2)将这些几何体分类,并写出分类的理由_______________________________________. 2.圆柱,圆锥,球的共同点是_____________________________. 二、典型例题例1 关于棱柱下列说法正确的有___________.(填写序号) ①棱柱侧面的形状可能是一个三角形;②棱柱的每条棱长都相等; ③棱柱的上、下底面的形状相同;④棱柱的棱数等于侧面数的2倍. 例2 推理猜测题:(1)三棱锥有_______条棱,四棱锥有_______条棱,十棱锥有_________条棱; (2)__________棱锥有30条棱; (3)__________棱柱有60条棱;(4)一个多面体的棱数是8,则这个多面体的面数是_________.分析:棱锥的棱数=侧棱+底面的边数,棱柱的棱数=侧棱+上、下底面的边数.三、提升拓展(1)请找出与图②具有相同特征的图形; (2)找出具有相同特征的图形,并说明相同特征.四、课后作业1.篮球、排球、足球、乒乓球都是球形的,不是球形的球是__________. 2.用平行于圆柱的底面的平面去截圆柱,则得到的截面是________形. 3.圆锥是由________个面围成,其中________个平面,_________个曲面. 4.下列说法中,正确的个数有________个.①柱体的两个底面一样大;②圆柱、圆锥的底面都是圆;③棱柱的底面是四边形;④长方体一定是柱体;⑤棱柱的侧面一定是长方形. ①②③④⑤ ⑥⑦⑧5.如图,指出以下各物体是由哪些几何体组成的.6.一个棱柱的底面是五边形,它有几条侧棱,几个顶点?共有几条棱,几个面?底面为n边形的棱柱呢?7.圆柱、圆锥、正方体、长方体、各类棱柱和球,这些几何体中.(1)表面都是平的有______________;(2)表面没有平的有______________;(3)表面只有一个面的有____________;(4)表面有两个面的有______________;(5)表面有三个面的有______________;(6)表面有五个面的有______________;(7)表面有六个面的有______________;(8)表面有七个面的有______________.5.1丰富的图形世界(二)一、基础训练1.(1)球;圆柱;圆锥;长方体;三棱柱(2)①②③都是带曲面的几何体④⑤都是由平面图形围成的几何体或②④⑤都是柱体;③都是锥体;①是球体2.都是带曲面的几何体二、典型例题例1③例2(1)6,8,20;(2)15;(3)20;(4)5三、提升拓展解答:(1)⑧与②都是棱锥;①、④和②都是六面体;⑦⑧②都是锥体;①④⑤⑧②都是平面围成的几何体(2)ⅰ.按柱体、锥体、球体分:①③④⑤是柱体;②⑦⑧为锥体;⑥是球体;ⅱ.按几何体表面有无曲面分:①②④⑤⑧都是平面围成的几何体;③⑥⑦都是带曲面的几何体;ⅲ.按有没顶点分:①②④⑤⑦⑧都是有顶点的几何体;③⑥是无顶点的几何体四、课后作业1.羽毛球等2.圆3.2,1,14.35.(1)圆锥、圆柱、正方体;(2)三棱柱、四棱柱、圆柱;(3)球、五棱柱6.5,10,15,7;n,2n,3n,n+27.(1)正方体、长方体、各类棱柱;(2)球;(3)球;(4)圆锥;(5)圆柱;(6)三棱柱;(7)四棱柱、正方体、长方体;(8)五棱柱。
2019年七年级数学上册第一章《丰富的图形世界》练习题(含答案)
港云连的丽美2019年七年级数学上册第一章《丰富的图形世界》练习题(本检测题满分:100分,时间:90分钟)一、选择题(每小题3分,共30分)1.如图,下面三个正方体的六个面都按相同规律涂有红、黄、蓝、白、黑、绿六种颜色,那么涂黄色、白色、红色的对面分别是( )A.蓝色、绿色、黑色B.绿色、蓝色、黑色C.绿色、黑色、蓝色D.蓝色、黑色、绿色 2.下列平面图形不能够围成正方体的是( )3. 下列图形中,属于立体图形的是( ) A .B .C .D .4. 如图是一个正方体的平面展开图,把展开图折叠成正方体后,“美”字一面相对面的字是( )A .丽B .连C .云D .港 5.下列图形中可以作为一个三棱柱的展开图的是( )A B 第4题图C D6.圆柱是由长方形绕着它的一边所在直线旋转一周所得到的,那么下列左图是以下四个图中的哪一个绕着直线旋转一周得到的( )A B D C7.如图是一个立体图形从三个不同方向看到的形状图,这个立体图形是由一些相同的小正方体构成,这些相同的小正方体的个数是()A.4B.5C.6D.78.如图所示的几何体中,从上面看到的图形相同的是()第8题图A.①②B.①③C.②③D.②④9.如图,一个放置在水平桌面上的圆柱,从正面看到的图形是( )第9题图10.在棱柱中()A.只有两个面平行B.所有的棱都平行C.所有的面都是平行四边形D.两底面平行,且各侧棱也互相平行二、填空题(每小题3分,共24分)11.下列表面展开图的立体图形的名称分别是:______、______、______、______.第11题图12.将如图所示的图形剪去一个小正方形,使余下的部分恰好能折成一个正方体,应剪去____(填序号).13.如果一个几何体从三个方向看到的图形之一是三角形,这个几何体可能是(写出3个即可).14.若几何体从正面看是圆,从左面和上面看都是长方形,则该几何体是.15.在桌上摆有一些大小相同的正方体木块,其从正面和从左面看到的形状图如图所示,则摆出这样的图形至少需要块正方体木块,至多需要块正方体木块.第15题图16.如图所示的立体图形是由几个小正方体组成的一个几何体,这个几何体从上面看到的形状图是_____________.(填A或B或C或D)第16题图17.如图,在一次数学活动课上,张明用17个棱长为1的小正方体搭成了一个几何体,然后他请王亮用其他同样的小正方体在旁边再搭一个几何体,使王亮所搭几何体恰好可以和张明所搭的几何体拼成一个无缝隙的大长方体(不改变张明所搭几何体的形状),那么王亮至少还需要个小正方体,王亮所搭几何体的表面积为___.第17题图18.下列第二行的哪种几何体的表面能展开成第一行的平面图形?请对应填空.①:_____________;②:_____________;③:_____________;④:_____________;⑤:_____________.第18题图三、解答题(共46分)19.(6分)如图是一个正方体骰子的表面展开图,请根据要求回答问题:(1)如果1点在上面,3点在左面,几点在前面?(2)如果5点在下面,几点在上面?第19题图第20题图20.(6分)画出如图所示的正三棱锥从正面、上面看到的形状图.21.(6分)如图是一个由若干个小正方体搭成的几何体从上面看到的形状图,其中小正方形内的数字是该位置小正方体的个数,请你画出它从正面和从左面看到的形状图.第21题图第22题图22.(7分)画出下列几何体从正面、左面看到的形状图.23.(7分)如图,某同学在制作正方体模型的时候,在方格纸上画出几个小正方形(图中阴影部分),但是由于疏忽少画了一个,请你给他补上一个,使之可以组合成正方体,你有几种画法,在图上用阴影注明.第23题图24.(7分)如图是一个正方体的平面展开图,若要使得图中平面展开图折叠成正方体后,相对面上的两个数之和均为5,求的值.第24题图25.(7分)一只蜘蛛在一个正方体的顶点A处,一只蚊子在正方体的顶点B处,如图所示,现在蜘蛛想尽快地捉到这只蚊子,那么它所走的最短路线是怎样的,在图上画出来,这样的最短路线有几条?第25题图参考答案一、选择题1.B 解析:分析可知黄色的对面是绿色,白色的对面是蓝色,红色的对面是黑色.2.B 解析:利用自己的空间想象能力或者自己动手实践一下,可知答案选B.3.C 解析:A中,角是平面图形,故A错误;B中,圆是平面图形,故B错误;C中,圆锥是立体图形,故C正确;D中,三角形是平面图形,故D错误.4. D 解析:根据正方体的表面展开图可知,丽与连相对;美与港相对;的与云相对.5.A 解析:依据平面展开图想象围成的多面体的形状,借助想象力,通过比较与综合可知只有选项A中的展开图才能围成三棱柱.6.A 解析:A可以通过旋转得到两个圆柱,故本选项正确;B可以通过旋转得到一个圆柱,一个圆筒,故本选项错误;C可以通过旋转得到一个圆柱,两个圆筒,故本选项错误;D可以通过旋转得到三个圆柱,故本选项错误.7.D8.C 解析:①从上面看到的图形是一个没圆心的圆,②③从上面看到的图形是一个带圆心的圆,④从上面看到的图形是两个不带圆心的同心圆,故答案选C.9.C 解析:对于放置在水平桌面上的圆柱体,从它的正面看到的图形是长方形,所以选C.10.D 解析:对于A,如果是长方体,不止有两个面平行,故错误;二、填空题11.圆柱圆锥四棱锥三棱柱12.1或2或6 解析:根据有“田”字格的展开图都不是正方体的表面展开图可知,应剪去1或2或6,答案不唯一.13.圆锥,三棱柱,三棱锥等14.圆柱解析:几何体从正面看是圆,从左面和上面看都是长方形,符合这个条件的几何体只有圆柱.15.6 16 解析:易得第一层最少有4块正方体,最多有12块正方体;第二层最少有2块正方体,最多有4块正方体,故总共至少有6块正方体,至多有16块正方体.16.C 解析:该几何体从上面看是三个正方形排成一行,所以从上面看到的形状图是C.17.19,48 解析:两人所搭成的几何体拼成一个大长方体,该长方体的长、宽、高至少为3,3,4,所以它的体积为36,故它是由36个棱长为1的小正方体搭成的,那么王亮至少还需要36-17=19(个)小正方体.王亮所搭几何体上面面积为8,右侧面积为7,左侧面积为7,后面面积为9,前面面积为9,底面面积为8,故表面积为48.18.D,E,A,B,C三、解答题19.解:(1)如果1点在上面,3点在左面,那么2点在前面.(2)如果5点在下面,那么2点在上面.20.解:几何体从正面、上面看到的形状图如图所示.第20题图21.解:从正面和从左面看到的形状图如图所示:第21题图22.解:从正面、左面看到的形状图如图所示:第22题图23.解:画图如图所示,共有四种画法.第23题图24.解:由于正方体的平面展开图共有六个面,其中面“”与面“3”相对,面“”与面“-2”相对,面“”与面“10”相对,则,,,解得,,.故.25.分析:欲求从点A到点B的最短路线,在立体图形中难以解决,可以考虑把正方体展开成平面图形来考虑.如图(1)所示,我们都有这样的实际经验,在两点之间,走直线路程最短,因而沿着从点A到点B的虚线走,路程最短,然后把展开图折叠起来.第25题图(1)解:所走的最短路线是正方体平面展开图中从点A到点B的连线(如图(1)).在正方体上,像这样的最短路线一共有6条,但通过地面的有2条,这2条不符合实际意义,故符合题意的只有4条,如图(2)所示.第25题图(2)。
苏科版数学七年级上5.1丰富的图形世界同步练习含答案
5.1 丰富的图形世界一.选择题1.下列图形中,属于立体图形的是()A.B.C.D.2.一个棱柱有12条棱,那么它的底面一定是()A.十八边形B.六边形C.四边形D.八边形3.下列图形属于棱柱的有()A.2个B.3个C.4个D.5个4.如图魔方共由多少个小正方体组成()A.18 B.19 C.26 D.275.将四个棱长为1的正方体如图摆放,则这个几何体的表面积是()A.3 B.9 C.12 D.186.有一正角锥的底面为正三角形.若此正角锥其中两个面的周长分别为27、15,则此正角锥所有边的长度和为多少?()A.36 B.42 C.45 D.487.如图,某数学小组在课外实践活动中,用电钻将四个质地均匀、质量相等的木质小正方体,分别从不同方向钻一个直径一样的直圆孔,再用天平分别称得下列小正方体的质量,下列说法中正确的是()A.①和④更重B.③最轻C.质量仍然一样D.②和③更重8.下面的长方体是由A,B,C,D四个选项中所示的四个几何体拼接而成的,而且这四个几何体都是由4个同样大小的正方体组成的,那么长方体中,第四部分所对应的几何体应是()A.B.C.D.9.(教材变式题)下面几种图形:①三角形;②长方形;③正方体;④圆;⑤圆锥;⑥圆柱.其中属于立体图形的是()A.③⑤⑥ B.①②③ C.③⑥D.④⑤10.如图,有一个棱长是4cm的正方体,从它的一个顶点处挖去一个棱长是1cm的正方体后,剩下物体的表面积和原来的表面积相比较()A.变大了B.变小了C.没变 D.无法确定变化11.如图是三个直立于水平面上的形状完全相同的几何体(下底面为圆面,单位:cm).将它们拼成如图的新几何体,则该新几何体的体积为()cm3.A.48πB.50πC.58πD.60π12.下列第一行所示的四个图形,每个图形均是由四种简单的图形a、b、c、d(圆、直线、三角形、长方形)中的两种组成.例如由a、b组成的图形记作a⊙b,那么由此可知,下列第二行的图中可以记作a⊙d的是()A.B.C.D.二.填空题13.如图,在长方体ABCD﹣EFGH中,平面ABFE与平面DCGH的位置关系是.14.下列几何体属于柱体的有个.15.六棱柱有个顶点,个面,条棱.16.如图,在长方体ABCD﹣EFGH中,与面ABFE平行的面是.17.一个多边形有8条边,从其中的一个顶点出发,连接这个点和其他顶点,可以得到个三角形.18.图1是棱长为a的小正方体,图2、图3出这样相同的小正方体摆放而成,按照这样的方法继续摆放,由上而下分别叫第一层、第二层、…,第n层,第n层的小正方体的个数为s.(提示:第一层时,s=1;第二层时,s=3)则第n层时,s=(用含h的式子表示)三.解答题19.将下列几何体与它的名称连接起来.20.将一个正方体木块涂成红色,然后如图把它的棱三等分,再沿等分线把正方体切开,可以得到27个小正方体.观察并回答下列问题:(1)其中三面涂色的小正方体有个,两面涂色的小正方体有个,各面都没有涂色的小正方体有个;(2)如果将这个正方体的棱n等分,所得的小正方体中三面涂色的有个,各面都没有涂色的有个;(3)如果要得到各面都没有涂色的小正方体100个,那么至少应该将此正方体的棱等分.21.如图,如图几何体是由若干棱长为1的小立方体按一定规律在地面上摆成的,若将露出的表面都涂上颜色(底面不涂色),观察该图,探究其中的规律.(1)第1个几何体中只有2个面涂色的小立方体共有个.第3个几何体中只有2个面涂色的小立方体共有个.(2)求出第100个几何体中只有2个面涂色的小立方体的块数.(3)求出前100个几何体中只有2个面涂色的小立方体的块数的和.22.如图,是一个几何体从正面、左面、上面看得到的平面图形,判断下面说法的正误(正确的在括号内划△,错误的在括号内划▲)(1)这是一个棱锥.(2)这个几何体有4个面.(3)这个几何体有5个顶点.(4)这个几何体有8条棱.(5)请你再说出一个正确的结论.23.如图,一个正五棱柱的底面边长为2cm,高为4cm.(1)这个棱柱共有多少个面?计算它的侧面积;(2)这个棱柱共有多少个顶点?有多少条棱?(3)试用含有n的代数式表示n棱柱的顶点数、面数与棱的条数.24.在研究几何图形的过程中,经常需要运用一些方法加深对它们的认识.方法一:通过分别明确区别比如,要明确平面内两条不重合直线的位置的区别,课本上根据公共点个数的情况,将不重合的两条直线的位置关系分成两种﹣﹣﹣﹣﹣﹣相交(有一个公共点),平行(没有公共点).(1)小亮认为,根据公共点个数的情况,也可将平面内的一条直线和一个角的位置关系进行分类,请你按照他的想法完成分类,(要求画出每一种位置关系的示意图)方法二:通过画图揭示联系比如,要揭示几何体中的柱体、圆柱,含有曲面的几何体,三棱柱之间的联系,小明画出了如下结构图•(1)请你继续采用小明的方式揭示下面几个有关两个角的关系之间的联系:①“两个角互补“;②”两条互相垂直的直线所成的四个角中没有公共边的两个角”;③“两个角是对顶角”④“两个角中一个是锐角,另一个是钝角”,它们有一条公共边,且另一边互为反向延长线“.(请将上述各种关系的序号填进图②中的横线上,每条横线上只能填一个序号.25.值得探究的“叠放”!问题提出:把八个一样大小的正方体(棱长为1)叠放在一起,形成一个长方体(或正方体),这样的长方体(或正方体)表面积最小是多少?方法探究:第一步,取两个正方体叠放成一个长方体(如图①),由此可知,新长方体的长、宽、高分别为1,1,2.第二步,将新长方体看成一个整体,六个面中面积最大的是2,取相同的长方体,紧挨最大面积的面进行“叠放”,可形成一个较大的长方体(如图②),该长方体的长、宽、高分别为2,1,2.第三步,将较大的长方体看成一个整体,六个面中面积最大的是4,取相同的长方体,紧挨最大面积的面进行“叠放”,可形成一个大的正方体(如图③),该正方体的长、宽、高分别为2,2,2.这样,八个大小一样的正方体所叠放成的大正方体的最小表面积为6×2×2=24.仔细阅读上述文字,利用其中思想方法解决下列问题:(1)如图④,长方体的长、宽、高分别为2,3,1,请计算这个长方体的表面积.提示:长方体的表面积=2×(长×宽+宽×高+长×高)(2)取如图④的长方体四个进行叠放,形成一个新的长方体,那么,新的长方体的表面积最小是多少?(3)取四个长、宽、高分别为2,3,c的长方体进行叠放如图⑤,此时,形成一个新的长方体表面积最小,求c的取值范围.26.如图①、②、③、④四个图形都是平面图形,观察图②和表中对应数值,探究计数的方法并解答下面的问题.(1)数一数每个图各有多少顶点、多少条边、这些边围成多少区域,将结果填入下表:(2)根据表中的数值,写出平面图的顶点数、边数、区域数之间的关系;(3)如果一个平面图形有20个顶点和11个区域,求这个平面图形的边数.参考答案与解析一.选择题1.(•丽水)下列图形中,属于立体图形的是()A.B.C.D.【分析】根据平面图形所表示的各个部分都在同一平面内,立体图形是各部分不在同一平面内的几何,由一个或多个面围成的可以存在于现实生活中的三维图形,可得答案.【解答】解:A、角是平面图形,故A错误;B、圆是平面图形,故B错误;C、圆锥是立体图形,故C正确;D、三角形是平面图形,故D错误.故选:C.【点评】本题考查了认识立体图形,立体图形是各部分不在同一平面内的几何,由一个或多个面围成的可以存在于现实生活中的三维图形.2.(•高台县校级期中)一个棱柱有12条棱,那么它的底面一定是()A.十八边形 B.六边形C.四边形D.八边形【分析】依据n棱柱有3n条棱进行求解即可.【解答】解:设该棱柱为n棱柱.根据题意得:3n=12.解得:n=4.所以该棱柱为4棱柱.故选:C.【点评】本题主要考查的是认识立体图形,掌握棱柱的棱的条数和棱柱的底面的边数之间的关系是解题的关键.3.下列图形属于棱柱的有()A.2个B.3个C.4个D.5个【分析】根据棱柱的概念、结合图形解得即可.【解答】解:第一、二、四个几何体是棱柱,故选:B.【点评】本题考查的是立体图形的认识,认识常见的立体图形,如:长方体、正方体、圆柱、圆锥、球、棱柱、棱锥是解题的关键.4.如图魔方共由多少个小正方体组成()A.18 B.19 C.26 D.27【分析】首先根据图形可得每一层小正方体的个数,再乘以层数即可.【解答】解:每一层小正方体有9个,共3层,小正方体的总数为:3×9=27,故选:D.【点评】此题主要考查了认识立体图形,关键是掌握魔方的形状.5.将四个棱长为1的正方体如图摆放,则这个几何体的表面积是()A.3 B.9 C.12 D.18【分析】观察几何体,得到这个几何体向前、向后、向上、向下、向左、向右分别有3个正方形,则它的表面积=6×3×1.【解答】解:这个几何体的表面积=6×3×1=18.故选:D.【点评】本题考查了几何体的表面积:正方体表面积为6a2 (a为正方体棱长).6.(•台湾)有一正角锥的底面为正三角形.若此正角锥其中两个面的周长分别为27、15,则此正角锥所有边的长度和为多少?()A.36 B.42 C.45 D.48【分析】根据题意画出图形,得出2y+x=27,3x=15,求出x和y,即可得出结果.【解答】解:如图所示:根据题意得:2y+x=27,3x=15,其他都不符合三角形条件,解得:x=5,y=11,∴正角锥所有边的长度和=3x+3y=15+33=48;故选:D.【点评】本题考查了立体图形;根据题意画出图形,得出关系式是解决问题的关键.7.如图,某数学小组在课外实践活动中,用电钻将四个质地均匀、质量相等的木质小正方体,分别从不同方向钻一个直径一样的直圆孔,再用天平分别称得下列小正方体的质量,下列说法中正确的是()A.①和④更重B.③最轻C.质量仍然一样 D.②和③更重【分析】根据4个直圆柱的底面积和高可判断其质量的关系.【解答】解:由题意可知四个圆柱为直径相同的直圆柱,且它们都在正方体内,所以它们的底面积相等,高相等.所以质量一样.故选C.【点评】本题考查认识立体图形,解题的关键是明确题意,利用数形结合的思想解答问题.8.下面的长方体是由A,B,C,D四个选项中所示的四个几何体拼接而成的,而且这四个几何体都是由4个同样大小的正方体组成的,那么长方体中,第四部分所对应的几何体应是()A.B.C.D.【分析】根据题意和看到的部分可以推测出第四部分对应的几何体,本题得以解决.【解答】解:由几何体的图形可知,第四部分,看到的一个,后面三个,故选A.【点评】本题考查认识立体图形,解题的关键是明确题意,利用数形结合的思想解答.9.下面几种图形:①三角形;②长方形;③正方体;④圆;⑤圆锥;⑥圆柱.其中属于立体图形的是()A.③⑤⑥ B.①②③ C.③⑥D.④⑤【分析】根据立体图形的概念和定义,立体图形是空间图形.【解答】解:根据以上分析:属于立体图形的是③正方体;⑤圆锥;⑥圆柱.故选A.【点评】解决本题的关键是明白立体图形有:柱体,锥体,球体.10.如图,有一个棱长是4cm的正方体,从它的一个顶点处挖去一个棱长是1cm的正方体后,剩下物体的表面积和原来的表面积相比较()A.变大了B.变小了C.没变 D.无法确定变化【分析】观察图发现:挖去小正方体后,减少了三个面,又增加了三个面,剩下物体的表面积和原来的表面积相等.【解答】解:挖去小正方体后,剩下物体的表面积与原来的表面积相比较没变化,故选C.【点评】本题考查了几何体的表面积,挖正方体的相对面的面积是相等的.11.如图是三个直立于水平面上的形状完全相同的几何体(下底面为圆面,单位:cm).将它们拼成如图的新几何体,则该新几何体的体积为()cm3.A.48πB.50πC.58πD.60π【分析】根据组合体的形状,可得一个底面直径是4高是14的圆柱,底面直径是4,高是2圆柱的一半,根据圆柱的体积公式,可得答案.【解答】解:底面直径是4高是14的圆柱的体积是π()2×14=56π,底面直径是4,高是2圆柱的一半的体积是π()2×4×=4π,该新几何体的体积为56π+4π=60π,故选:D.【点评】本题考查了认识立体图形,确定几何体的形状是解题关键.12.下列第一行所示的四个图形,每个图形均是由四种简单的图形a、b、c、d(圆、直线、三角形、长方形)中的两种组成.例如由a、b组成的图形记作a⊙b,那么由此可知,下列第二行的图中可以记作a⊙d的是()A.B.C.D.【分析】结合已知图形,先判断a,b,c,d所代表的图形,再判断记作a⊙d的图形即可.【解答】解:根据题意,知a代表长方形,d代表直线,所以记作a⊙d的图形是长方形和直线的组合,故选A.【点评】读懂题意,结合图形组合的特点,判断出a,b,c,d所代表的图形,是解决问题的关键.二.填空题13.如图,在长方体ABCD﹣EFGH中,平面ABFE与平面DCGH的位置关系是平行.【分析】在长方体中,面与面之间的关系有平行和垂直两种.【解答】解:平面ABFE与平面DCGH,故答案为:平行.【点评】此题主要考查了认识立体图形,在立体图形中,两个平行的面中的每条棱也互相平行.14.下列几何体属于柱体的有5个.【分析】根据柱体与锥体的定义区分即可.【解答】解:属于柱体的有:①正方体,②长方体,③圆柱,⑥三棱柱,⑧五棱柱,故答案为:5.【点评】本题主要考查认识立体图形的能力,掌握柱体、锥体定义是关键.15.六棱柱有12个顶点,8个面,18条棱.【分析】根据六棱柱的概念和定义即解.【解答】解:六棱柱上下两个底面是6边形,侧面是6个长方形.所以共有12个顶点;8个面;18条棱.故答案为12,8,18.【点评】此题主要考查了认识立体图形,解决本题的关键是掌握六棱柱的构造特点.16.如图,在长方体ABCD﹣EFGH中,与面ABFE平行的面是DCGH.【分析】在立方体中,面与面之间的关系有平行和垂直两种.【解答】解:观察图形,与面ABFE平行的面即与它相对的面就是面DCGH.故答案为面DCGH.【点评】在立体图形中,两个平行的面中的每条棱也互相平行.17.一个多边形有8条边,从其中的一个顶点出发,连接这个点和其他顶点,可以得到6个三角形.【分析】从n边形的一个顶点出发,连接这个点与其余各顶点,可以把一个多边形分割成(n ﹣2)个三角形.【解答】解:如图所示:8﹣2=6,故答案为:6.【点评】本题主要考查多边形的性质,从n边形的一个顶点出发,分别连接这个点与其余各顶点,形成的三角形个数为n﹣2.18.图1是棱长为a的小正方体,图2、图3出这样相同的小正方体摆放而成,按照这样的方法继续摆放,由上而下分别叫第一层、第二层、…,第n层,第n层的小正方体的个数为s.(提示:第一层时,s=1;第二层时,s=3)则第n层时,s=n(n+1)(用含h的式子表示)【分析】第1个图有1层,共1个小正方体,第2个图有2层,第2层正方体的个数为1+2,根据相应规律可得第3层,第n层正方体的个数.【解答】解:∵第1个图有1层,共1个小正方体,第2个图有2层,第2层正方体的个数为1+2,第3个图有3层,第3层正方体的个数为1+2+3,∴第n层时,s=1+2+3+…+n=n(n+1).故答案为:n(n+1).【点评】本题考查图形规律性的变化;得到第n层正方体的个数的规律是解决本题的关键.三.解答题19.将下列几何体与它的名称连接起来.【分析】根据常见立体图形的特征直接连线即可.注意正确区分各个几何体的特征.【解答】解:如图所示:【点评】考查了认识立体图形,熟记常见立体图形的特征是解决此类问题的关键.此题属于简单题型.20.将一个正方体木块涂成红色,然后如图把它的棱三等分,再沿等分线把正方体切开,可以得到27个小正方体.观察并回答下列问题:(1)其中三面涂色的小正方体有8个,两面涂色的小正方体有12个,各面都没有涂色的小正方体有1个;(2)如果将这个正方体的棱n等分,所得的小正方体中三面涂色的有8个,各面都没有涂色的有(n﹣2)3个;(3)如果要得到各面都没有涂色的小正方体100个,那么至少应该将此正方体的棱7等分.【分析】(1)三面涂色的为8个角上的正方体,两面涂色的为八条棱上除去三面涂色的正方体的个数,没有涂色的用正方体总数减去三面、两面及一面涂色的正方体;(2)根据已知图形中没有涂色的小正方形个数得出变化规律进而得出答案;(3)由(2)得将这个正方体的棱n等分,有(n﹣2)3个是各个面都没有涂色的,列方程即可得到结论.【解答】(1)如图②,把正方体的棱三等分,然后沿等分线把正方体切开,得到27个小正方体.观察其中三面被涂色的有8个,两面涂色的有12个;各面都没有涂色的有1个,故答案为:8,12,1;(2)根据正方体的棱三等分时三面被涂色的有8个,有1个是各个面都没有涂色的,正方体的棱四等分时三面被涂色的有8个,有8个是各个面都没有涂色的,∴正方体的棱n等分时三面被涂色的有8个,有(n﹣2)3个是各个面都没有涂色的,故答案为:8,(n﹣2)3;(3)由(2)得将这个正方体的棱n等分,有(n﹣2)3个是各个面都没有涂色的,∴(n﹣2)3=100,∵43<100<53,∴4<n﹣2<5,∴6<n<7,∴至少应该将此正方体的棱7等分,故答案为:7.【点评】主要考查了图形的变化类问题及立体图形的认识和用特殊归纳一般规律的方法.关键是通过正方体的特点来得到有关涂色情况的规律.21.如图,如图几何体是由若干棱长为1的小立方体按一定规律在地面上摆成的,若将露出的表面都涂上颜色(底面不涂色),观察该图,探究其中的规律.(1)第1个几何体中只有2个面涂色的小立方体共有4个.第3个几何体中只有2个面涂色的小立方体共有20个.(2)求出第100个几何体中只有2个面涂色的小立方体的块数.(3)求出前100个几何体中只有2个面涂色的小立方体的块数的和.【分析】(1)第1个几何体中最底层的4个角的小立方体只有2个面涂色;第3个几何体中只有2个面涂色的小立方体共有5×4=20个;(2)根据所给图形中只有2个面涂色的小立方体的块数得到第n个几何体中只有2个面涂色的小立方体的块数与4的倍数的关系即可;(3)根据(2)得到的规律,进行计算即可.【解答】解:(1)观察图形可得第1个几何体中最底层的4个角的小立方体只有2个面涂色;第3个几何体中只有2个面涂色的小立方体共有5×4=20个.故答案为:4,20;(2)观察图形可知:图①中,只有2个面涂色的小立方体共有4个;图②中,只有2个面涂色的小立方体共有12个;图③中,只有2个面涂色的小立方体共有20个.4,12,20都是4的倍数,可分别写成4×1,4×3,4×5的形式,因此,第n个图中两面涂色的小立方体共有4(2n﹣1)=8n﹣4,则第100个几何体中只有2个面涂色的小立方体共有8×100﹣4=796;(3)(8×1﹣4)+(8×2﹣4)+(8×3﹣4)+(8×4﹣4)+(8×5﹣4)+…+(8×100﹣4)=8(1+2+3+4+…+100)﹣100×4=40000故前100个图形的点数和为40000.【点评】本题考查了认识立体图形,图形的变化规律;得到所求块数与4的倍数的关系是解决本题的关键.22.如图,是一个几何体从正面、左面、上面看得到的平面图形,判断下面说法的正误(正确的在括号内划△,错误的在括号内划▲)(1)这是一个棱锥△.(2)这个几何体有4个面▲.(3)这个几何体有5个顶点△.(4)这个几何体有8条棱△.(5)请你再说出一个正确的结论底面是正方形.【分析】观察几何体从正面、左面、上面看得到的平面图形,确定出所求结果即可.【解答】解:(1)这是一个棱锥△;(2)这个几何体有4个面▲;(3)这个几何体有5个顶点△;(4)这个几何体有8条棱△;(5)请你再说出一个正确的结论:底面是正方形,故答案为:(1)△;(2);(3)△;(4)△;(5)底面是正方形.【点评】此题考查了认识立体图形,根据三视图确定出几何体形状是解本题的关键.23.如图,一个正五棱柱的底面边长为2cm,高为4cm.(1)这个棱柱共有多少个面?计算它的侧面积;(2)这个棱柱共有多少个顶点?有多少条棱?(3)试用含有n的代数式表示n棱柱的顶点数、面数与棱的条数.【分析】(1)根据图形可得侧面的个数,再加上上下底面即可;(2)顶点共有10个,棱有5×3条;(3)根据五棱柱顶点数、面数与棱的条数进行总结即可.【解答】解:(1)侧面有5个,底面有2个,共有5+2=7个面;侧面积:2×5×4=40(cm2).(2)顶点共10个,棱共有15条;(3)n棱柱的顶点数2n;面数n+2;棱的条数3n.【点评】此题主要考查了认识立体图形,关键是掌握常见的立体图形的形状.24.在研究几何图形的过程中,经常需要运用一些方法加深对它们的认识.方法一:通过分别明确区别比如,要明确平面内两条不重合直线的位置的区别,课本上根据公共点个数的情况,将不重合的两条直线的位置关系分成两种﹣﹣﹣﹣﹣﹣相交(有一个公共点),平行(没有公共点).(1)小亮认为,根据公共点个数的情况,也可将平面内的一条直线和一个角的位置关系进行分类,请你按照他的想法完成分类,(要求画出每一种位置关系的示意图)方法二:通过画图揭示联系比如,要揭示几何体中的柱体、圆柱,含有曲面的几何体,三棱柱之间的联系,小明画出了如下结构图•(1)请你继续采用小明的方式揭示下面几个有关两个角的关系之间的联系:①“两个角互补“;②”两条互相垂直的直线所成的四个角中没有公共边的两个角”;③“两个角是对顶角”④“两个角中一个是锐角,另一个是钝角”,它们有一条公共边,且另一边互为反向延长线“.(请将上述各种关系的序号填进图②中的横线上,每条横线上只能填一个序号.【分析】根据对顶角:有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角,互为对顶角.邻补角:只有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为邻补角可得答案.【解答】解:如图所示:【点评】此题主要考查了邻补角和对顶角,关键是掌握邻补角和对顶角的定义.25.值得探究的“叠放”!问题提出:把八个一样大小的正方体(棱长为1)叠放在一起,形成一个长方体(或正方体),这样的长方体(或正方体)表面积最小是多少?方法探究:第一步,取两个正方体叠放成一个长方体(如图①),由此可知,新长方体的长、宽、高分别为1,1,2.第二步,将新长方体看成一个整体,六个面中面积最大的是2,取相同的长方体,紧挨最大面积的面进行“叠放”,可形成一个较大的长方体(如图②),该长方体的长、宽、高分别为2,1,2.第三步,将较大的长方体看成一个整体,六个面中面积最大的是4,取相同的长方体,紧挨最大面积的面进行“叠放”,可形成一个大的正方体(如图③),该正方体的长、宽、高分别为2,2,2.这样,八个大小一样的正方体所叠放成的大正方体的最小表面积为6×2×2=24.仔细阅读上述文字,利用其中思想方法解决下列问题:(1)如图④,长方体的长、宽、高分别为2,3,1,请计算这个长方体的表面积.提示:长方体的表面积=2×(长×宽+宽×高+长×高)(2)取如图④的长方体四个进行叠放,形成一个新的长方体,那么,新的长方体的表面积最小是多少?(3)取四个长、宽、高分别为2,3,c的长方体进行叠放如图⑤,此时,形成一个新的长方体表面积最小,求c的取值范围.【分析】(1)由长方体的表面积=2×(长×宽+宽×高+长×高)求解即可.(2)确定新的长方体的表面积最小长是4,宽是3,高是2,再由长方体的表面积公式求解即可.(3)叠放在一块的是面积最大的图形,由此求解即可.【解答】解:(1)由长方体的表面积=2×(长×宽+宽×高+长×高),得长方体的表面积=2×(2×3+2×1+1×3)=22.(2)新的长方体的表面积最小长是4,宽是3,高是2,由长方体的表面积=2×(长×宽+宽×高+长×高),得长方体的表面积=2×(4×3+3×2+4×2)=52.(3)由叠放可知1≤c≤3.【点评】本题主要考查了几何体的表面积,解题的关键是叠放的图形是面积最大的图形.26.如图①、②、③、④四个图形都是平面图形,观察图②和表中对应数值,探究计数的方法并解答下面的问题.(1)数一数每个图各有多少顶点、多少条边、这些边围成多少区域,将结果填入下表:(2)根据表中的数值,写出平面图的顶点数、边数、区域数之间的关系;(3)如果一个平面图形有20个顶点和11个区域,求这个平面图形的边数.【分析】根据图中的四个平面图形数出其顶点数、边数、区域数得题(1)的结果,再根据表(1)数据总结出归律得题(2)的结果,根据题(2)的公式把20个顶点和11个区域代入即可得平面图形的边数.【解答】解:(1)结和图形我们可以得出:图①有4个顶点、6条边、这些边围成3个区域;图②有7个顶点、9条边、这些边围成3个区域;图③有8个顶点、12条边、这些边围成5个区域;图④有10个顶点、15条边、这些边围成6区域.。
七年级数学(上)第一章《丰富的图形世界》单元测试题(有答案)
1七年级数学(上)第一章《丰富的图形世界》单元练习题一、选择题:( )1.下列说法中,正确的个数是。
①柱体的两个底面一样大;②圆柱、圆锥的底面都是圆;③棱柱的底面是四边形;④长方体一定是柱体;⑤棱柱的侧面一定是长方形。
(A )2个 (B )3个 (C)4个 (D )5个( )2。
下面几何体截面一定是圆的是(A )圆柱 (B ) 圆锥 (C ) 球 (D ) 圆台( )3。
如图绕虚线旋转得到的几何体是. ( )4. 某物体的三视图是如图所示的三个图形,那么该物体的形状是 (A )长方体 ( B )圆锥体(C )立方体 (D )圆柱体( )5.如图,其主视图是( )6.如图,是一个几何体的主视图、左视图和俯视图,则这个几何体是( )7。
下列各个平面图形中,属于圆锥的表面展开图的是(A ) (B) (C ) (D)(D ) (B ) (C ) (A )2 第10题图 ( ).8.如图是由一些相同的小正方体构成的立体图形的三种视图: 构成这个立体图形的小正方体的个数是 A .5 B . 6 C .7 D .8( )9.下面每个图形都是由6个全等的正方形组成的,其中是正方体的展开图的是A B C D( )10.如图,是一个正方体纸盒展开图,按虚线折成正方体后,若使相对面上的两数互为相反数,则A 、B 、C 表示的数依次是(A )235、、π-- (B)235、、π- (C)π、、235- (D)235-、、π 二、填空题12.点动成_____,线动成_____,_____动成体.比如:(1)圆规在纸上划过会留下一个封闭的痕迹,这种现象说明_________。
(2)冬天环卫工人使用下部是长方 形的木锨推雪时,木锨过处,雪就没了,这种现象说明________.(3)一个人手里拿着一个绑在一根棍上的半圆面,当这个人把这个半圆面绕着这根棍飞快地旋转起来时就会看到一个球, 这种现象说明_________ _____.14. 桌面上放两件物体,它们的三视图如下图示,则这两个物体分别是________.主视图 俯视图 左视图15。
《丰富的图形世界》试题及答案
北师大七年级上数学丰富的图形世界能力提高题班级_______姓名________学号________分数__________一、填空题(本大题共8小题,每小题3分,共24分)1、下图所示的三个几何体的截面分别是:(1)_________;(2)__________;(3)___________.2、图中按左侧三个图形阴影部分的特点,将右侧的图形补充完整.3、面与面相交成___,线与线相交得到___,点动成____,线动成_____,面动成____4、下面是两种立体图形的展开图.请分别写出这两个立体图形的名称:________,___________5、已知三棱柱有5个面、6个顶点、9条棱,四棱柱有6个面、8个顶点、12条棱,五棱柱有7个面、10个顶点、15条棱,……,由此可以推测n棱柱有_____个面,____个顶点,_____条棱。
6、当下面这个图案被折起来组成一个正方体,数字_______会在与数字2所在的平面相对的平面上7、从一个多边形的某个顶点出发,分别连接这个点和其余各顶点,可以把这个多边形分割成10个三角形,则这个多边形的边数为_____。
8、已知一不透明的正方体的六个面上分别写着1至6六个数字,如图是我们能看到的三种情况,那么1和5的对面数字分别是____和_____.二、选择题(本大题共8小题,每小题3分,共24分)9、下面几何体的截面图不可能是圆的是( )A、圆柱B、圆锥C、球D、棱柱10、将左边的正方体展开能得到的图形是 ( )11、将半圆绕它的直径旋转一周形成的几何体是( )A、圆柱B、圆锥C、球D、正方体12、用一个平面去截一个正方体,截面可能是()A、七边形B、圆C、长方形D、圆锥13、一个直立在水平面上的圆柱体的主视图、俯视图、左视图分别是()A长方形、圆、长方形 B、长方形、长方形、圆C、圆、长方形、长方形D、长方形、长主形、圆14、下面图形经过折叠不能围成棱柱的是 ( )15、说法中,不正确的是( )A 、棱柱的侧面可以是三角形;B 棱柱的侧面展开图是一个长方形;C 、若一个棱柱的底面为5边形、则可知该棱柱侧面是由5个长方形组成的;D 、棱柱的上底面与下底面的形状与大小是完全一样的。
北师大版七年级上册数学第一章丰富的图形世界练习题(含答案)
北师大版七年级上册数学第一章丰富的图形世界练习题(含答案)一、单选题1.下列立体图形的面都是平面的是()A.球B.圆锥C.圆柱D.棱柱2.如图,含有曲面的几何体编号是()A.①②③B.②③④C.①④⑤D.②③3.下列几何体中,面的个数最多的是()A.B.C.D.4.2022年2月7日,中国女足不屈不挠、力闯难关,以骄人战绩时隔16年再次夺得亚洲杯冠军.如图所示,小楠将“中国女足夺冠”这句话写在了一个正方体的表面展开图上,那么在原正方体中,与“冠”所在面相对的面上的汉字是()A.中B.国C.女D.足5.下列图形中,不是正方体的表面展开图的是()A.B.C.D.6.如图,将长方体表面展开,下列选项中错误的是()A.B.C.D.7.用一个平面去截下列四个几何体,可以得到三角形截面的几何体有()A.1个B.2个C.3个D.4个8.用一个平面去截一个正方体,截面形状不能为()A.B.C.D.9.如图,是由四个相同的正方体组合而成的两个几何体,则下列表述正确的是()A.图甲的主视图与图乙的左视图形状相同B.图甲的左视图与图乙的俯视图形状相同C.图甲的俯视图与图乙的俯视图形状相同D.图甲的主视图与图乙的主视图形状相同10.几个大小相同的小正方体搭成几何体的俯视图如图所示,图中小正方形中数字表示对应位置小正方体的个数,该几何体的主视图是()A.B.C.D.二、填空题11.用8个棱长3厘米的立方体拼成一个长方体,其中表面积最小的长方体的面积为平方厘米.12.底面积为50 cm2的长方体的体积为25 lcm3,则l表示的实际意义是. 13.如图是某几何体的展开图,该几何体是.14.用一个平面分别去截长方体,圆锥,三棱柱,圆柱,能得到截面是三角形的几何体有个.15.如图是由五个大小相同的正方体搭成的几何体,从面看所得到的性状图的面积最小.三、解答题16.如图,一个正五棱柱的底面边长为2cm,高为4cm.(1)这个棱柱共有多少个面?计算它的侧面积;(2)这个棱柱共有多少个顶点?有多少条棱?(3)试用含有n的代数式表示n棱柱的顶点数、面数与棱的条数.17.把19个边长为2cm的正方体重叠起来,作成如图那样的立体图形,求这个立体图形的表面积.18.请你举出利用圆柱体、长方体的表面能展开成平面图形的原理,在生产和生活中做圆柱形和长方体用品的实例.19.正方体是由六个平面图形围成的立体图形.设想沿着正方体的一些棱将它剪开,就可以把正方体剪成一个平面图形.但同一个正方体,按不同的方式展开所得的平面展开图悬不一样的,下面的图形是由6个大小一样的正方彤,拼接而成的,请问这些图形中哪些可以折成正方体?20.如图所示,说出下列几何体截面(阴影部分)的形状.21.如图是三个三棱柱,用一刀切下去.(1)把图①中的三棱柱分割成两个完全相同的三棱柱;(2)把图②中的三棱柱分割成一个四棱锥与一个三棱锥;(3)把图③中的三棱柱分割成一个四棱柱与一个三棱柱.22.一个几何体的三个视图如图所示(单位:cm).(1)写出这个几何体的名称;(2)若其俯视图为正方形,根据图中数据计算这个几何体的表面积.23.某一空间图形的三视图如图,其中主视图:半径为1的半圆以及高为1的矩形;左视图:半径为1的圆以及高为1的矩形;俯视图:半径为1的圆.求此图形的体积.答案1.D 2.D 3.C 4.B 5.D 6.C 7.B 8.A 9.B 10.D 11.216 12.长方体高的2倍 13.三棱柱 14.3 15.左16.解:(1)侧面有5个,底面有2个,共有5+2=7个面;侧面积:2×5×4=40(cm 2).(2)顶点共10个,棱共有15条;(3)n 棱柱的顶点数2n ;面数n+2;棱的条数3n .17.解:这个立体图形的表面积是4×2×(9+8+10)=216(平方厘米),答:这个立体图形的表面积是216平方厘米.18.圆柱体的展开图是由两个相同的圆和一个长方形组成。
2022-2023学年七年级上学期数学:丰富的图形世界(附答案解析)
2022-2023学年七年级上学期数学:丰富的图形世界
参考答案与试题解析
一.选择题(共5小题)
1.将如图所示的长方形绕它的对角线所在直线旋转一周,形成的几何体是( )
A.5条B.4条C.3条D.2条
【分析】从图形上找出与棱AB异面的棱即可得到与AB异面的棱的条数.
【解答】解:如图,与棱AB异面的棱有:A1D1,B1C1,DD1,CC1,共4条.
故选:B.
【点评】本题主要考查认识立体图形,根据异面直线的概念,能够判断空间两直线是否异面.
3.下列图形都是由六个相同的正方形组成的,经过折叠不能围成正方体的是( )
(1)小明总共剪开了条棱.
(2)现在小明想将剪断的②重新粘贴到①上去,而且经过折叠以后,仍然可以还原成一个长方体纸盒,你认为他应该将剪断的纸条粘贴到①中的什么位置?请你帮助小明在①上补全.
(3)小明说:他所剪的所有棱中,最长的一条棱是最短的一条棱的5倍.现在已知这个长方体纸盒的底面是一个正方形,并且这个长方体纸盒所有棱长的和是880cm,求这个长方体纸盒的体积.
8.如图,在长方体ABCD﹣EFGH中,既与平面ADHE垂直,又与棱AD异面的棱是.
9.已知一个长方体的长、宽、高的比是3:2:1,它的所有棱长和是24厘米,那么这个长方体的表面积是平方厘米.
10.如图是一个没有完全剪开的正方体,若再剪开一条棱,则得到的平面展开图不可能是下列图中的.(填序号)
三.解答题(共5小题)
8.如图,在长方体ABCD﹣EFGH中,既与平面ADHE垂直,又与棱AD异面的棱是EF和HG.
初一数学第一章丰富的图形世界测试及答案
初一数学第一章丰富的图形世界测试及答案学习是一个不断积累的过程,也是一个不断创新的过程。
下面小编为大家整理了初一数学第一章丰富的图形世界测试及答案,欢迎大家参考!一、选择题(每小题3分,共30分)1.如图所示的几何体可以由()旋转得到.2.如图所示的立方体,如果把它展开,可以得到()3.下图中几何体截面的形状是()4.下面图形经过折叠不能围成一个三棱柱的是()5.将一个圆形纸片对折后再对折,得到下图,然后再沿着图中的虚线剪开,得到两部分,其中一部分展开后的平面图形是()6.在下面的四个几何体中,左视图与主视图不相同的几何体是()7.如图是由六个小正方体组合而成的一个立体图形,它的主视图是()8.如图所示的几何体的左视图是()9.如图所示,是一个正方体纸盒的展开图,若在其中的三个正方形A,B,C内分别填入适当的数,使得它们折成正方体后相对面上的两个数互为相反数,则填入正方形A,B,C的三个数依次为()A.1,-2,0B.-2,1,0C.-2,0,1D.0,-2,110.如图所示的几何体是由右边哪个图形绕虚线旋转一周得到的()二、填空题(每小题4分,共36分)11.“齐天大圣”孙悟空有一个宝贝——金箍棒,当他快速旋转金箍棒时,展现在我们眼前的是一个圆的形象,这说明____________.12.有10个面的是________棱柱.13.若圆柱的底面半径是2,高为3,将该圆柱的侧面展开后,得到长方形,该长方形的面积为________.14.在下图的网格中选择一个涂上阴影,使全部阴影图形经折叠后能够形成一个正方体,一共有________种不同的涂法.15.爸爸给儿子阳阳买了一个生日蛋糕(圆柱形),阳阳想把蛋糕切成至少七块分给七位小朋友,若沿竖直方向切分,则至少需切________刀.16.如图,这个几何体的名称是________;它由________个面组成,有________条棱,它有________个顶点.17.如图所示,截去正方体一角变成一个新的多面体,这个多面体有________个面,有________条棱,有______个顶点;截去的几何体有________个面,图中虚线表示的截面形状是________三角形.第14题图第16题图第17题图18.如图是由若干个大小相同的小正方体堆砌而成的几何体,那么其三种视图中面积最小的是________.19.圆锥的侧面展开图是一个半圆(如图所示),它的底面圆的直径为4 cm,母线长为4 cm,则该圆锥的表面积为________cm2.第18题图第19题图第20题图三、解答题(共84分)20.(14分)如图,第一行的图形绕虚线旋转一周便能得到第二行中的某个立体图形,用线连一连.21.(14分)观察下列多面体,并把下表补充完整.名称图形顶点数a 棱数b 面数c三棱柱6 9 5四棱柱12五棱柱10六棱柱12 822.(14分)如图所示是一个物体从正面、左面、上面看到的形状图,试回答下列问题:(1)该物体有几层高?(2)该物体最长处为多少?(3)该物体最高部分位于哪里?23.(14分)画出如图所示立体图的三视图.24.(14分)下图是由两个长方体组合而成的一个立体图形的三视图,根据图中所标尺寸(单位:mm),计算出这个立体图形的表面积.25.(14分)如图所示,有一块长方形的硬纸板,它可以分成如图的15个小正方形,现在请你设计一下,将它分成三份,每一份都能做成一个无盖的小正方体盒子,比一比看谁设计的巧.第一章评估测试卷一、选择题1.B 考查几何体的旋转.2.D 考查几何体的展开图.3.C 截面的形状是三角形.4.C 考查三棱柱的展开图.5.C 中间的孔是一个小正方形.6.B 长方体的左视图是与主视图形状不相同.7.B 考查几何体的主视图.8.C 考查几何体的左视图.9.B 考查正方体的展开图.10.C 考查几何体的旋转.二、填空题11.线动成面 12.813.12π 14.4 15.316.六棱柱 8 18 1217.7 12 7 4 等边18.左视图19.12π S=12π×42+π×(42)2=12π(cm2).三、解答题20.解:连线如下:21.8 6 15 7 1822.解:(1)2层高;(2)3个单位长(一块长方体的长为1单位);(3)左边靠近观察者的两块长方体部分位置最高23.解:如图所示24.解:由题意可知,上面长方体长、宽、高分别为4,4,2下面长方体的长宽高分别为6,8,2,则表面积为[6×2+6×8+8×2]×2+[4×2+4×2+4×4]×2-4×2×2=200 (mm2),这个立体图形的表面积200 mm2.25.以上就是为大家整理的初一数学第一章丰富的图形世界测试及答案,大家还满意吗?希望对大家的学习有所帮助,同时也祝大家学习进步,考试顺利!。
北师大版七年级上册数学第一章 丰富的图形世界 含答案
北师大版七年级上册数学第一章丰富的图形世界含答案一、单选题(共15题,共计45分)1、左下图是由四个相同的小立方块搭成的几何体,这个几何体的左视图是()A. B. C. D.2、下面的平面图形可以折成一个正方体的盒子,折好后,与1相对的数是()A.3B.4C.5D.63、如图是由几个大小相同的小正方体搭成的几何体的俯视图,小正方形中数字表示该位置小正方体的个数,则该几何体的左视图是()A. B. C. D.4、如图所示的某零件左视图是()A. B. C. D.5、一个几何体的三视图如图,那么这个几何体是()A. B. C. D.6、右图是某个几何体的三视图,该几何体是()A.圆锥B.三棱锥C.圆柱D.三棱柱7、如图几何体的俯视图是()A. B. C. D.8、如图是由若干个正方体组成的几何体的俯视图,数字表示该位置上小正方体的个数,则该几何体左视图可能是( )A. B. C. D.9、如图所示的是由几个相同的小正方体搭成的一个几何体,从左面看到的图为( )A. B. C. D.10、如图把一个圆绕虚线旋转一周,得到的几何体是()A. B. C. D.11、一个立体图形的三视图如图所示,则这个立体图形是()A. B. C. D.12、如图,图1是一个底面为正方形的直棱柱;现将图1切割成图2的几何体,则图2的俯视图是()A. B. C. D.13、如图所示几何体的左视图是()A. B. C. D.14、下列结论,其中正确的为()①圆柱由3个面围成,这3个面都是平面②圆锥由2个面围成,这2个面中,1个是平的,1个不是平的③球仅由1个面围成,这1个面是平的④正方体由6个面围成,这6个面都是平的A.①②B.②③C.②④D.③④15、一个正方体锯掉一个角后,顶点的个数是()A.7个B.8个C.9个D.7个或8个或9个或10个二、填空题(共10题,共计30分)16、由一些完全相同的小正方形搭成的几何体的左视图和俯视图如图所示,则组成这个几何体的小正方体的个数可能是________ .17、一个正方体的每个面都有一个汉字,其平面展开图如图所示,那么在该正方体中与“价”字相对的字是________.18、如图,已知圆柱底面的周长为24cm,高为5cm,在圆柱的侧面上,过点A 和点C嵌有一圈金属丝,则这圈金属丝的长度至少长________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
丰富的图形世界
1.如图5-1-1所示,组成“陀螺”的几何体有
( )
A.长方体和圆锥 B.长方形和三角形
C.圆和三角形 D.圆柱和圆锥
2.(2020独家原创试题)如图5—1—2所示的几何体中,属于柱体的有 ( )
A.1个 B.2个 C.3个 D.4个
3.在几何图形“线段、圆、圆锥、正方体、角、棱锥”中.属于
立体图形的共有个.
4.(2020独家原创试题)下列的立体图形中,有4个面的是 ( )
A.三棱锥 8.三棱柱 C.四棱锥 D.四棱柱
5.如果一个多面体的一个面是多边形,其余各面是有一
个公共顶点的三角形,那么这个多面体叫做棱锥.图5-1-3是一个四棱柱和一个六棱锥,它们各有12条棱.下列棱柱中和九棱锥的棱数相等的是 ( ) A.五棱柱 B.六棱柱
C.七棱柱 D.八棱柱
6.如果一个六棱柱的所有侧棱长之和是48 cm,则它的侧棱长为________cm.7.围成圆柱的面有 ( )
A.1个 B.2个 C.3个D.4个
8.推导猜测:
(1)三棱锥有条棱,四棱锥有条棱,五棱锥有条棱:
(2) 棱锥有30条棱;
(3)一个棱锥的棱数是l00,则这个棱锥是棱锥.
9.如图5一l一4,下列几何体是由几个面围成的?并指出对应的面是曲的还是平的.
10.用边长为1的正方形纸板.制成一副七巧板(如图5一1-5①),将它拼成“小天鹅”图案(如图5—1-5②),其中阴影部分的面积为 ( )
11.已知七巧板的结构如图5-1-6所示.请运用七巧板拼出1~9这九个数中的任意2个数字.说明:七巧板中的七块板可以不用完.拼好后将对应的编号写在拼出的图形中.
12.(2020江苏南京高淳期末,2,★☆☆)如图5一l一7,含有曲面的几何体的编号是 ( )
A.①② B.①③ C.②③ D.②④
13.(2018江苏连云港东海月考,5,★★☆)一个六棱柱模型如图5—1—8所示,底面边长都是5 cm.侧棱长为4cm,这个六棱柱的侧面积是 ( )
A.20 cm2 B.60 cm2
C.120 cm2 D.240 cm2
14.(2020江苏无锡宜兴一模,10,★☆☆)若一个棱柱有7个面.则它是棱柱.
15.(2019上海南洋模范中学月考,1’,★☆☆)用一个平面去截下列几何体:①正方体;②圆柱;③圆锥;④正三棱柱,得到的截面形状可能为三角形的有___________________(写出所有正确结果的序号).
16.(2019江苏淮安金湖期末.21,★☆☆)如果一个正棱柱一共有l2个顶点,底面边长是侧棱长的一半,并且所有的棱长的和是120 cm,求每条侧棱的长.
17.(2019甘肃白银中考,1,★☆☆)下列四个几何体中,是三棱柱的为 ( )
18.(2017江苏南京中考,3,★☆☆)不透明的袋子中装有一个几何体模型.两位同学摸该模型并描述它的特征.
甲同学:“它有4个面是三角形.”乙同学:“它有8条棱.”该模型的形状对应的立体图形可能是 ( )
A.三棱柱 B.四棱柱 C.三棱锥 D.四棱锥
19.(2017江苏扬州l中考,5,★-k☆☆)经过圆锥顶点的截面的形状可能是( )
20.(2017浙江湖州中考,9.★☆☆)七巧板是我国祖先的一项卓越创造.下列四幅图中有三幅是小明用如图5一1-9所示的七巧板拼成的,则不是小明拼成的那幅图是 ( )
21.对于棱柱而言,不同的棱柱由不同的面构成:三棱柱由2个底面,3个侧面,共5个面构成;四棱柱由2个底面,4个侧面,共6个面构成;五棱柱由2个底面。
5个侧面,共7个面构成;六棱柱由2个底面,6个侧面。
共8个面构成...….. (1)根据以上规律判断,十二棱柱共有多少个面:
(2)若某个棱柱由24个面构成,这个棱柱是几棱柱?
(3)底面多边形的边数为n的棱柱,其侧面的个数为多少?共有多少个面?
(4)底面多边形的边数为n的棱柱,其顶点个数为多少?共有多少条棱?
22.将一个正方体的表面全涂上颜色.
(1)如果把正方体的棱2等分,然后沿等分线把正方体切开,能够得到8个小正方体(如图5-1—10①),设其中3面被涂上颜色的有a个,则a= :
(2)如果把正方体的棱三等分,然后沿等分线把正方体切开,能够得到27个小正方体(如图5—1—10②).设这些小正方体中有3个面被涂上颜色的有a 个.各个面都没有被涂色的有b个,则a+b= :
(3)如果把正方体的棱4等分,然后沿等分线把正方体切开,能够得到64个小正方体(如图5—1—10③).设这些小正方体中有2个面被涂上颜色的有c个,各个面都没有被涂色的有b个,则c+b= ;
(4)如果把正方体的棱n等分,然后沿等分线把正方体切开.能够得到个小正方体.设这些小正方体中有2个面被涂上颜色的有c个,各个面都没有被涂色的有b个,求c+b的值.。