镁合金专业文献2

合集下载

镁合金论文

镁合金论文

AZ91粉末状镁合金的氢化处理及组织演变摘要镁合金是目前最轻的金属结构材料具有比强度高、比刚度高、耐腐蚀、切削加工性能好、易于回收利用等一系列的优点,因而有着极其重要的应用价值与广阔的应用前景。

但是,现有镁合金常温下的塑性变形能力和塑性加工性能仍然较低,限制了其应用。

因此,提高各类镁合金的强度,改善其塑性,是拓展镁合金应用领域推动镁合金发展的关键。

通过细化晶粒制备纳米晶镁合金,能够提高现有各类镁合金材料的强度和塑性,是发展镁合金的有效途径。

当镁合金粉末经氢化—歧化—脱氢—重组工艺处理后,粉末的微观组织被大幅度细化到纳米级。

进一步研究发现,当粉末经脱氢重组后,其晶粒虽有所长大,但仍可保持在纳米级,这一过程被称为HDDR处理。

本文主要研究粉末状镁合金的氢化过程及温度、氢压对氢化过程的影响。

本研究选择应用广泛的AZ91镁合金。

采用“镁合金氩气中磨制成粉末→氢化处理→真空脱氢→组织性能分析测试”的工艺路线,来研究粉末状镁合金的氢化脱氢过程,对其微观结构,相组成的变化进行研究。

利用X 射线衍射(XRD)和扫描电子显微镜(SEM)对镁中MgH2的体积分数和表面形貌的变化进行分析。

由于实验仪器出了故障,本次试验需先将仪器修理完善。

关键词:AZ91镁合金,HDDR处理,氢化反应,晶粒细化,纳米晶材料HYDROGEN PROCESSING AND MICROSTRUCTURE EVOLUTION OF AZ91 MAGNESIUM ALLOYABSTRACTMagnesium alloys is the lightest metallic structural material. Due to the unique properties, such as high specific strength and rigidity, easy to recycle and so on, they have great potential for structural applications. However, because of the plastic deformability of magnesium alloys is quite poor at room-temperature, which is an intrinsic drawback to limit their applications. So, enhancing the strength and deformability of magnesium alloy is the key to expand their applications and promote the development of magnesium alloy industry. Grain refinement is the effectual way to enhancing the strength and deformability of Mg alloy.When the magnesium alloy material was treated by hydrogenation- disproportionation-dehydrogenation-restructuring process, the microstructure of the material has been substantially refined to the nanoscale. Further studies shows that the material has been treated by dehydrogenation and restructuring process, its grains would grow up, but still remained at the nanoscale, which is called HDDR processing. The paper mainly studies how the surface of block magnesium alloy is hydrogenated and how the temperature and hydrogenpressure effect to the hydrogenation.In this study, AZ91 has been used, which is currently the most popular magnesium alloy. We study the hydrogenation and dehydrogenation process of the block magnesium alloys, its microstructure, phase composition and surface morphology by “magnes ium alloy ingotslices polishing–hydrogenated–vacuum dehydrogenation–organizations perf ormance analysis test” process. The volume fraction of MgH2 in Mg and changes of the surface topography were analyzed using X-ray diffraction and scanning electronmicroscopy analysis, respectively.KEY WORDS: AZ91 magnesium alloy, HDDR processing, hydrogenation, grain refinement, nanocrystalline materials目录第一章绪论 (1)1.1 引言 (1)1.2 镁及镁合金的概述 (1)1.2.1 镁合金的优异性能 (3)1.3 镁合金的发展及应用 (4)1.3.1 镁合金的发展 (4)1.3.2 镁合金在国防、航空航天工业及汽车中的应用 (5)1.4 镁合金材料的分类及研究状况 (6)1.4.1 细晶镁合金的制备工艺及发展现状 (7)1.4.2 强应变塑性变形晶粒细化技术 (8)1.4.3 快速凝固粉末冶金细晶工艺技术 (9)1.4.4 氢化处理细晶强化镁合金工艺技术 (10)1.5 本课题的目的及意义 (11)1.6 本文的研究内容 (12)第二章实验材料、设备及方法 (13)2.1 实验材料 (13)2.2 实验主要设备 (14)2.3 试样的制备 (15)2.4 组织结构分析 (15)2.4.1 射线衍射分析 (16)2.4.2 金相显微镜分析 (16)2.4.3 扫描电镜分析 (17)2.5 实验工艺方法与过程 (17)2.5.1 试验工艺方法的确定 (17)2.5.2 试验操作流程 (18)第三章氢化处理粉末状镁合金的氢化反应机理 (20)3.1 引言 (20)3.2 镁合金的氢化反应机理 (20)3.2.1 氢分子在镁合金表面的解离吸附 (20)3.2.2 氢离子在镁合金内的扩散与反应 (21)3.3 镁合金氢化过程的影响因素 (21)3.3.1 镁合金自身因素对氢化反应的影响 (21)3.3.2 外界因素对氢化反应的影响 (23)3.3.3 AZ91镁合金氢化处理后的组织演变及分析 (23)3.3.4 镁合金氢化处理前后的组织结构 (24)第四章结论 (27)参考文献 (28)致谢 (30)附录一外文文献原文 (32)附录二外文文献翻译 (36)第一章绪论1.1 引言镁是地壳中分布最广的元素之一,占地壳重量的2.77%,为第四个最丰富的金属元素(位于Al、Fe、Ca)之后。

AZ91D镁合金的处理方式文献

AZ91D镁合金的处理方式文献

AZ91D镁合金镁合金具有密度小,良好的切削加工性、尺寸稳定性、铸造成型性及表面装饰性等诸多优点而受到广泛关注。

但镁合金变形困难,耐热和耐蚀性差,再加上系统研究镁合金的历史还比较短,因此基础研究明显滞后于应用。

AZ91D镁合金是开发最早、应用最为广泛的镁合金之一。

为不断扩大该合金的产业化应用,国内外从多个方面开展了大量工作.但总体来说缺乏系统性。

国内外有关AZ91D镁合金组织与合金相、力学性能、表面处理技术和加工工艺方面的最新研究进展,以期抛砖引玉,推动AZ91D镁合金的深入发展。

1、组织与合金相1.1 铸态组织及合金相一般认为铸态AZ91D镁合金主要由α-Mg、离异β-Mg17Al12相和共晶组织(α-Mg+β-Mg17Al12)组成,共晶组织(α+β)主要分布在晶界,呈薄片状或层状。

而离异β相则主要分布在晶体内部。

有研究表明,在Mg-AI合金中Al存在明显的偏析。

从晶粒内部至晶界逐渐增加.但未见详细分析。

晶界区域的富铝区实际为共晶组织(α+β)中的仅相。

其铝含量略低于β相的铝含量而不足以进一步形成β相,最终以共晶相形式长大。

可以推断其铝含量必然高于初生仅的铝含量。

已有研究者在AM50镁合金中观察到了类似的组织。

离异β相的形成与非平衡凝固有关,在晶体内部的某些区域。

在快速凝固过程中铝元素来不及扩散至晶界附近。

首先形成了β相,而此时的共晶仅相与初生仅相混合在一起,呈现出离异共晶的形态。

可以推测。

如果冷却速度进一步加快。

共晶组织和离异组织都会被抑制。

徐春杰等通过对比常规凝固和快速凝固薄带AZ91D镁合金的差热分析曲线证实了这一推断。

研究发现,前者在450℃左右有明显的DTA峰(β相的熔化峰),而后者组织为单相过饱和a固溶体.无明显的DTA峰。

Mn在AZ91合金中主要以固溶和形成金属间化合物两种形态存在。

据报道Mg-Al系镁合金中的Al-Mn金属间化合物主要有Al6Mn、Al4Mn、AlMn及Al8Mn5四种,形状主要有针状、十字状、花朵状及颗粒状;大小为0.1-30um。

镁合金文献

镁合金文献

MAGNESIUMBy Robert E (Bob) BrownMagnesium Monthly ReviewWorld magnesium production in 2004 increased slightly compared with2003. There were further announcements of new, modified, and expanded primary magnesium production plans. Some were old and some quite new. There were also expansions and new secondary (recycling) plants announced.Chinese magnesium producers increased their production and share of the world market for the 11th consecutive year, but ran into some difficulties that increased the price of magnesium in 2004. The price of energy increased, thereby increasing the costs of FeSi, the main reducing agent.Europe is increasing the use of magnesium faster than the US, which continues as the biggest magnesium consumer. Demand in Asia is growing quite rapidly as many neighbouring countries take advantage of Chinese produced magnesium. China has a rapidly growing domestic consumption.Further demand growth will require the use of more Chinese magnesium until the planned electrolytic projects can be built and become operational.Magnesium productionWorld production of primary magnesium metal increased slightly over the previous year. The major portion of the increase again came from China, which produced a record 438,000 t, up 19% from 2003.Table 1. World magnesium productionCOUNTRY 1995 199619971998 1999 2002001200220032004UnitedStates(1)142 143 140 117 85 74 43 35 43 43 Brazil (1) 10 11 9 9 7 9 9 7 6 11 Canada (2) 42 52 54 57 54 55 65 86 50 55 PR ofChina(100e)60 56 92 120 157 195 195 232 354 438 France 10 11 161517 17 7 0 0 0 Israel (1) -- -- 725 25 2 30 34 30 33 Kazakhstan (1) 12(r) 12(r 15(r) 15(r) 15 10 10 10 14 14e Norway 35 38 52 49 52 50 35 10 0 0 Russia (2) 51r 51r 51r 53 r 56 40 50 52 45 45 Ukraine 8r13 r 7 r 6 r 6e 2 2 0 0 0 Serbia (1) 1 2 3 3 1e 2 2 2 2 4e India 1 1 1 1.5 1 0.5 0.5 0 0 0 Total 372 390 447 470.5 476 479.448.468 544 6435 5Source: USGS, IMA, CMA, Author estimatese = estimate, r = revision, ( ) = number of operating plants in the countryUnited StatesPrimary magnesium production in the US was estimated as 43,000 t. The only remaining US magnesium producer continues to be US Magnesium Llc(formerly MagCorp).US Magnesium operated its plant at the Great Salt Lake, near Salt Lake City, Utah, with the same management and workforce. The 30 new electrolytic cells and plant modifications are nearly four years old. Cell-life estimates for the new cells have been nearly doubled.US Magnesium Llc announced in September 2004 that it would initiate a further expansion of its magnesium production capabilities. The nameplate capacity of the facility will be increased to 51,000 t/y, utilising the highly efficient electrolytic technology developed by US Magnesium that has proven to reduce energy and labor unit costs significantly. New metal production will be available in July 2005. The expansion will also increase the amount of by-product chemicals such as chlorine, that the company will have available to market. Further expansion to 59,000 t/y and eventually to 73,000 t/y is being studied.It was also noted in a Salt Lake newspaper that “word of US Magnesium increasing production once would have caused an outcry among environmentalists. But this project has not incited objections, largely because the new electrolytic technology has drastically reduced chlorine emissions released while extracting magnesium from the Great Salt Lake's brackish waters”. The new cell technology also cuts energy demand by 25%.Advanced Magnesium Alloy Corp (Amacor), the company that bought the former Xstrata Magnesium recycling plant in Anderson, Indiana, continued to operate its specially designed 25,000 t/y magnesium scrap melting operation through 2004. The plant was hit with a fire on January 14, 2005, and the scrap receiving warehouse area was severely damaged. The special magnesium recycling equipment also suffered some damage. The plant will be rebuilt, repaired and put back into operation.In Alabama, Remag’s idled recycling plant was hit by Hurricane Ivan in September 2004 and was completely destroyed. MagReTech, the newer plant developed by Garfield Alloys, continued to recycle Class 1 magnesium die-casting scrap. Halaco, the recycling plant in California, which had declared bankruptcy, was closed and was due to be liquidated at the end of the year.A new secondary magnesium plant is being installed in a vacant foundry in Camden, Tennessee. MagPro, a Tennessee-chartered company, will be the owner and operator. The foundry was previously owned by Citation Corp., which produced castings and assembled components for the automobile industry. MagPro is owned by John Haack and family. The Haack family, which previouslyran Halaco, has been in the secondary magnesium business for many years, and has developed an innovative magnesium recovery technology that can efficiently and safely recycle magnesium dross, skimming, and Class 1 scrap.Nuclear Regulatory Commission staff held a public meeting in July 2004, in Bay City, Michigan, to discuss the NRC’s clean-up and decommissioning requirements for two nearby sites that have low levels of thorium, a naturally-occurring radioactive material. The sites, located at Kawkawlin, contain thorium contamination resulting from the production of a magnesium-thorium metal alloy by a company that has gone out of business.Thorium-contaminated waste material at the two sites is encapsulated, with a clay cover and walls to prevent the movement of groundwater through the wastes. Other hazardous chemical wastes are also present at the sites but there are no immediate radiological hazards. (Magnesium-thorium alloys were used in castings and in rolled sheet during the 1950-60s and much of the rolled sheet that was used in rocket construction was magnesium-thorium. It was melted and cast as just another alloy in magnesium sand foundries. Those employees who worked with the melting and casting wore film badges to check the amount of exposure. The radiation was quite small.)Bioconvergence, Inc.continues to operate a magnesium alloy turnings recycling plant in Niagara Falls, NY, and is continuing to look at melting the scrap and pouring magnesium ingots.CanadaGossan Resources Ltd has entered into an agreement with Hatch Engineering of Montreal for the first in a series of studies that, collectively, would embody a preliminary feasibility study for its Inwood magnesium project. Currently, an initial economic assessment utilizing Mintek of South Africa's new atmospheric silicothermic magnesium extraction process is under way. The Manitoba Government's Trade and Investment office is providing some assistance to the project.Mintek is developing an advanced thermal magnesium extraction process based on silicothermic reduction of calcined dolomite. The technology is potentially superior to both the Pidgeon and the Magnetherm conventional vacuum processes as it operates at atmospheric pressure and at slightly higher temperatures for better recoveries and throughputs. This new continuous process technology will likely provide for substantially larger production units than the Magnetherm process, with expected improvements to capital and operating costs. Manitoba Hydro's low-cost industrial electricity rates could also provide this energy-intensive project with a significant cost advantage.Timminco Ltd decided to delay the announced four-month closure of its magnesium furnaces at Haley, Ontario. This decision was made because of anunanticipated increase in customer demand for its ultra high-purity magnesium. The closure, originally planned for August through November 2004, is still being deferred.Timminco was exempted from antidumping duties during the original findings of the US Commerce Department many years ago. Timminco produces magnesium using the Pidgeon silicothermic reduction process (small batch type of horizontal retorts.) This is the same process predominantly used in China. Its Haley plant has great historic significance in that it was the site of the first silicothermic magnesium production plant built under the direction of Dr Lloyd M Pidgeon, the man who developed the commercial silicothermic process.Leader Mining International Inc’s management has reported continuing progress on the Cogburn magnesium project in southwestern British Columbia. Activities are now being conducted under North Pacific Alloys Ltd, a BC-registered corporation and a wholly owned subsidiary of Leader Mining. The company continues to work to develop a US$1.24 billion integrated magnesium quarry and smelter operation. Plant size in the original feasibility study by Hatch Engineering was 131,000 t/y of magnesium and magnesium alloys.Nichromet Extraction Inc signed an agreement with LAB Chrysotile concerning the construction of an industrial pilot plant that will extract nickel and magnesium compounds from chrysotile tailings located in Thetford Mines, Quebec. The past production of chrysotile in Quebec has resulted in producing tailings containing approximately 0.25% Ni and 37-40% MgO. The tailings project is a JV between Nichromet and LAB, and there are an estimated 750 Mt containing nickel worth US$10 billion at current prices.Nichromet is a private Montreal-based company and has been testing hydrometallurgical processes over the past five years. These are targeted towards the extraction of mineral that is refractory to conventional processes. Nichromet has developed technology that is patent pending in Canada and many other countries. This technology allows for the simultaneous extraction of nickel and various magnesium compounds (chloride oxide). According to the agreement between LAB and Nichromet, Nichromet will be responsible for financing the cost of the pilot plant to be located within the LAB premises in Thetford Mines. Nichromet will also be responsible for financing a full feasibility study on the project to be concluded within the next 24 months. The Nichromet technology is a hydrometallurgical process based on chloridation. The operation is conducted at a low temperature with the recycling of water. The solid rejects are inert and insoluble. In these conditions the process respects government norms with regards to the environment.Norsk Hydro is the largest primary magnesium metal producer in Canada, using magnesite imported from China and Australia to produce approximately 43,000 t/y of primary magnesium by a special electrolytic process at Becancour,Quebec. The plant also operates a 10,000 t/y recycling facility. Hydro plans to upgrade the magnesium plant. Production will increase by 7,000 t/y to 58,000 t/y of cast primary metal.Work to expand the plant will start in early 2005 and will take 1½ years to complete. The programme will consist principally of improvements in the dehydration section of the plant and the addition of four electrolytic cells. The plant had been incrementally upgraded from its original 43,000 t/y capacity by debottlenecking and other process improvements.Noranda has no plans to restart its idled Magnola primary magnesium plant in Quebec, despite higher magnesium prices and the US Commerce Dept revoking the antidumping duty order on pure magnesium from Canada, retroactive to August 1, 2000, the effective date of the original full sunset review. The rate had applied to Magnola since it started production in 1999. Magnola ceased production in 2003 after reaching only 60% of its 58,000 t/y capacity because of weak market conditions. Noranda said the revocation is a secondary consideration. The plant was shut down temporarily two years ago and will remain shut down. Noranda's primary focus is on market conditions, such as supply and demand and the Canadian dollar versus the US dollar. Recent currency appreciation hurt as revenues are in US dollars. Noranda had discussions near the end of 2004 with Minmetals Group from China, which is interested in purchasing the total corporation. No specific reference was made at that time to the magnesium operations.Magnesium Alloy Corp of Halifax, Nova Scotia. announced that MagEnergy Inc, a wholly owned energy subsidiary, has signed a preliminary agreement with Soc Nationale d'Electricite (SNEL), the owner and manager of the Inga hydroelectric facility in the Democratic Republic of the Congo. MagEnergy's principal endeavour is to allocate part of the electricity generated by the dam to MagAlloy's Kouilou magnesium project located 200 km west of Inga at the deepwater port city of Pointe-Noire in the Republic of the Congo. SNEL’s management committee and board of directors have approved the agreement. MagEnergy -- together with Rusal, SNC-Lavalin, Eskom, IDC and others – is negotiating with SNEL and the Minister of Mines and Energy, and hopes shortly to conclude this comprehensive agreement for the rehabilitation of all the turbines currently installed at Inga 1 and 2. Besides supplying electricity to MagAlloy's Kouilou plant, electricity sales are also being considered to supply demand in Cabinda (Angola), the Republic of Congo and other neighbouring countries.The Inga hydroelectric site currently consists of the Inga 1 station, which consists of six turbines totalling 351 MW, and the Inga 2 station that consists of eight turbines totalling 1,402 MW. The Inga stations have been highlyunderused since their construction more than 20 years ago. The Inga site, located on the Congo River, represents one of the largest hydroelectric sites in the world that can be expanded at a low cost and without any significant environmental impact.MagEnergy entered into an agreement whereby a consortium called the CTEI (Consortium pour le Transport d'Energy d'Inga) was established. The CTEI targets the construction of a new electrical transmission line to connect Inga with MagAlloy's Kouilou magnesium plant site at Pointe-Noire.Spectra Premium Industries Inc (SPI) has signed an agreement in principle to proceed with the acquisition of 90% of Trimag, a limited partnership headquartered in Boisbriand, Quebec. Investissement Quebec will own the other 10% in Trimag, which is one of the most important North American manufacturers of high-pressure die-cast magnesium alloy parts used in the automotive industry. Created in 1995, Trimag was acquired in 2001 by Soc de Developpement du Magnesium, a limited partnership held by three institutional investors, namely Soc Generale de Financement, Sofinov, a subsidiary of Caisse de Depot et Placement du Quebec, and Solidarity Fund QFL.Trimag has two plants, one in Boisbriand, which began operations in 2002, and the other in Haley, Ontario. At present, nearly all of Trimag's revenues are generated as a Tier 2 supplier in reference to vehicles manufactured by General Motors.The new Boisbriand plant is equipped with two 3,500-t presses, which makes Trimag one of the few companies in North America having the infrastructure to produce large magnesium parts, such as instrument panel beams. The plant will operate at full capacity as of the summer of 2005, as a new supply contract for instrument panel beams for a General Motors plant located in China will have entered into production. Trimag anticipates investing between C$10-million to C$15 million for the expansion and for the acquisition of new equipment.United KingdomMagnesium Elektron, a division of Luxfer, has continued to produce secondary magnesium at its plant in the Manchester area.Birmingham-based Advanced Powder Technology won the Queen's Award for Enterprise for its new, high-yield process for manufacturing atomised magnesium powder. Over the past three years, APT's turnover has more than doubled to £800,000. The company produces powder used in countermeasures against heat-seeking missiles. Using an innovative process to produce the powder has significantly improved the previously expensive and low-yield system.BrazilBrasmag has continued to run its special process silicothermic plant at Bocaiuva. The plant is estimated to have produced 11,000 t in 2004. The plant uses a special modified silicothermic (Bolzano) process developed by Ravelli. The company has been investigating other technologies but by the end of 2004 no decisions had been made.NorwayNorsk Hydro continues to run the magnesium casting operations at the plant in Porsgrunn, rated at 20,000 t/y. The plant remelts scrap and some imported pure magnesium. Norsk Hydro has expanded its recycling plant at Bottrop in Germany to 15,000 t/y from 7,500 t/y.The NetherlandsAntheus Magnesium has formed a JV with Remag of Austria to build and operate a 10,000 t/y magnesium recycling plant in northern Holland. Scrap is obtained from the various magnesium-casting operations in Europe. The plant is owned 40% by the Northern Netherlands Development Agency (NOM), 40% by Remag Recycling Gmbh and 20% by a private owner. It was reported to be struggling at the end of 2004.IcelandMagnesium production continued to remain on hold. Australian Magnesium Investments holds a 40% stake in the Icelandic Magnesium project.SerbiaBella Sterna operates a Magnetherm process plant and is estimated to have produced 4000 t in 2004.GermanyIMCO Recycling Inc’s German subsidiary VAW-IMCO Guss und Recycling Gmbh started operations at a new 15,000 t/y facility that will melt, refine and cast magnesium ingots from scrap. About 90% of the output of the plant, which is located next to the IMCO Toeging facility, will be provided to the European auto industry. The plant will start at a rate of 5,000 t/y.Norway's Hydro Magnesium has doubled magnesium recycling at Bottrop to 15,000 t/y after opening two new reprocessing lines. The company expanded Bottrop in order to meet growing demand from the domestic and regional automobile sector. The new lines, together with Hydro's Porsgrunn plant in Norway, have made the company the largest recycler of remelt magnesium in Europe, with a total production of 35,000 t/y.IsraelDead Sea Magnesium(DSM), the 65% Israeli-owned company continued to produce magnesium in 2004 and the output was 33,000 t of which half was alloy.Volkswagen of Germany continues to own 35% of DSM. Higher magnesium prices in 2004 enabled the plant to operate at a profit for the first time since starting operation.Czech RepublicMagnesium Elektron Ltd (MEL) is operating a 10,000 t/y magnesium recycling plant northwest of Prague. The plant is toll-melting magnesium scrap for customers across Europe.RussiaSolikamsk Magnesium Works(SMZ) is a large magnesium producer with a 20,000 t/y plant. Solikamsk is Russia's second-biggest magnesium producer and exports almost all of its rare-earth metal products and about 60% of its magnesium and alloys. Silvinit, which owns 56.7% of SMZ, will put close to US$10 million into the construction of two fluidised bed furnaces, with a capacity of 300 t/d of dehydrated carnallite at the SMZ plant. Construction of the furnaces will begin in 2005 and be completed in 2006. SMZ currently takes in 260,000 t/y of enriched carnallite from Silvinit and tolls 10,000 t/y of dehydrated carnallite from Avisma (in the Perm region). The modifications will boost output of magnesium and its alloys from 15,000 to 32,000 t/y to keep up with growing market demand. The new dehydrating furnaces will make it possible to cover SMZ's magnesium electrolysis capacity and produce an additional 40,000-45,000 t/y of dehydrated carnallite.The general designer on the project will be the Galurgia Institute in Perm. The two furnaces are expected to yield benefits of about Rb130 million, according to the feasibility study.Construction of the Asbest magnesium plant, which will produce magnesium from asbestos tailings, is planned to begin at the end of 2005 in the Sverdlovsk region town of Asbest. Representatives of Switzerland's Minmet Financing, one of the founders of the plant, announced the plan at a meeting in Yekaterinburg with Sverdlovsk’s Regional Governor Eduard Rossel on September 30 2004. The main investor in the project is Minmet Financing Co, which holds a controlling interest in the plant, which was set up in April 2004. Anatoly Shchelkonogov, a prominent specialist in magnesium mining and processing who has been named general director of the venture, said that the plant would require about US$300 million of investment to achieve design capacity of 60,000 t/y of magnesium. Mr Shchelkonogov said construction would be split into three stages, with the first producing 20,000 t/y.Avisma’s magnesium operations continued in 2004. The company produced over 30,000 t of magnesium, of which more than 50% was recycled magnesium that is re-used to produce titanium sponge. Avisma is located at Berezniki in the Perm region. It is Russia’s largest producer of magnesium and the world’s largest producer of titanium sponge, with about 30% of the global output.Rusal, Russia’s biggest aluminum producer, will build a plant capable of producing 40,000 t/y of metallic magnesium in the Volgograd region. The company will carry out further exploration at a bischofite field this year and will complete a feasibility study for the magnesium plant. Rusal-Bishofit won a public tender in December 2004 for the right to develop the estimated 50 Mt field in the Gorodnishchensky district of Volgograd region. Rusal will use the magnesium to produce aluminum alloys. Rusal is planning to increase the amount of alloy that it produces by up to 50%. Output of cast-house alloys rose 33.5% to 740,000 t in 2003 and accounted for 27.8% of total aluminium output. Rusal produces more than 80 aluminium alloys.UkraineThe Ukraine has two magnesium plants, Zaporoshe and Kalush. The former has a rated capacity of 40,000 t/y and the latter 10,000 t/y. Both plants were shut down during 2004. However, restoration work was proceeding at the magnesium reduction plant at Kalush, with plans to produce 500 t/mth in early 2005.ONVI is a small company producing magnesium granules from scrap magnesium.KazakhstanThe Ust Kamenogorsk magnesium plant produced an estimated 14,000 t in 2004. The plant in eastern Kazakhstan, produces high-quality titanium sponge and magnesium. Belgium's Specialty Metals owns 66% and ZAO Central Securities Depository 7.3%.South AfricaMintek and its consortium partners, Anglo American plc, power utility Eskom Holdings, and South Africa’s Department of Science and Technology, has been working on the Mintek Thermal Magnesium Project for three years. The objective is to develop a continuous thermal process so as to minimise the number of operators required and to achieve efficiency gains.AustraliaMagnesium International Ltd (MIL) of Australia has confirmed Egypt as the location for a 88,000 t/y magnesium smelter. It will be owned and operated by a special purpose company, Egyptian Magnesium Co (Emag) that is currently being established by MIL and Amiral Investments (MIL’s partner in Egypt, under Egyptian investment laws). The specific site will be inside the new port at Ain Sokhna on the Gulf of Suez Sokhna is a relatively new port but is already the most efficient port in Egypt, with high operating standards. The port operator is Sokhna Port Development Co (SPDC), an affiliate of Amiral. As a port, Sokhna has the ability to handle and rapidly unload large bulk carriers (up to 150,000 dwt) for delivery of magnesite ore, and to ship magnesium in containers worldwide.LaTrobe Magnesium(formerly Rambora Technologies Ltd.) continues to work on a process to produce magnesium metal from ash produced at the LaTrobe Valley power generation plants in Victoria. Latrobe Magnesium decided to ‘change technology ships’, and will abandon plans to use magnesium smelting processes owned by Alcan and replace them with methods developed in Russia. The switch would lower the cost of a bankable feasibility study from US$32 million to US$15.5 million and reduce the time taken for the study from 29 months to 23 months. The process is in use at four magnesium production facilities around the world and eliminates the requirement to construct an expensive pilot-plant facility in Australia. La Trobe would use an existing pilot plant in Russia rather than building one.Sydney-based Quay Magnesium Ltd is building a new 30,000 t/y magnesium alloy plant in China. The plant is being built on the premise that the majority of Chinese primary metal requires further refining and beneficiation to meet high quality European alloy specifications for use in automotive and aeronautical applications. The alloying plant will be built in Nanjing and will produce high quality magnesium alloys. Quay plans to source primary magnesium metal from a number of local Chinese producers, thereby reducing capital costs and technical risks, whilst satisfying a higher end value die-casting market.Quay's plant is relatively simple and features a molten salt refining furnace, rather than the more typical steel crucible furnace, providing for a purer alloy. There is no chemical change involved with the alloying metals and the only physical changes are those associated with the heating and cooling of magnesium metal and its alloys. Quay's primary business will be as a manufacturer and marketer of magnesium alloys, a rapidly growing market. The company plans to produce high-quality European specification alloys that are keenly sought by die-casting companies targeting the automobile and aeronautical industries. .Hella Australia, has designed the Hella HydroLUX FF 1000 Submersible Driving Lamp System to meet the needs of mining, military and emergency services vehicles, as well as rugged off-road sport-utilities and pickup trucks. The new HydroLUX is the only light of its kind on the market to use Hella's Free Form reflector technology, which features a magnesium reflector, the same material used in Formula 1 racing cars and aerospace applications. The durable and fully submersible driving light is built to withstand the most extreme conditions.JapanJapan produced no magnesium in 2004, but had a number of industries producing fabricated parts from magnesium alloys. Kasatani Co has begun mass producing electronic equipment parts using magnesium alloys and recently began shipping parts for personal digital assistants. The new business will make use of existing facilities in Osaka.. It is initially making 10,000 components per month for portable digital assistants, with plans to raise output to 100,000 unitsper month by the end of 2005 to meet anticipated demand for mobile phone and personal computer components. The company targets magnesium alloy parts sales of 300 million yen in the first year. It aims to raise sales in the business to ¥1.2 billion yen in the year ending March 2007.Asahi Tec Corp has begun mass-producing magnesium steering members for supply to Nissan Motor Co. The steering member is part of the instrument panel, which in turn is part of the cockpit module fitted in the car. Steering members made from magnesium are around 40% lighter than those made from iron. Asahi Tec is mass-producing these parts at its Yokochi plant. The plant is making the steering members at a rate of around 5,000 units/mth and shipping them to Calsonic Kansei Corp. where they are used in the assembly of cockpit modules for Nissan's new luxury Fuga.ChinaChina must be given a more definitive treatment since it now produces 68% of the world’s magnesium. The Chinese Magnesium Association (CMA) has developed a reporting system that enables us better to understand the operation of the magnesium industry in China.China's magnesium production reached about 438,000 t in 2004, up 23% from the 354,000 t reported the previous year. China's magnesium exports were also on the rise last year, owing to the increase in output. Output growth in China has been strong. China exported about 383,748 t of magnesium in 2004, up from about 280,000 t reported in 2003. Most exports were to Europe, with a total of about 120,000 t, followed by Asian countries, including Japan and Korea, which accounted for around 65,000 t. Exports to the US from China were down to about 30,000 t in 2004, compared with 42,000 t in 2003. This decrease was due to the large preliminary antidumping duties placed on Chinese magnesium imports. China's domestic consumption reached about 80,000 t in 2004.Table 2: China’s magnesium capacity and production in 20003-04(’000 tonnes)2003 2004 Change% (Y-O-Y) Capacity 600 750 25182 248 36Primary Magnesium IngotoutputMagnesium Alloy 98.8 107 8.3Magnesium Granule (Powder) 68.5 78 13.9Others 4.7 5 6.3Total magnesium output 354 438 23.7Source: Antaike CMA。

材料专业关于镁合金的论文

材料专业关于镁合金的论文

压铸镁合金压铸镁合金材料的发展历史:1808 年面世, 1886 年始用于工业生产。

镁合金压铸技术[1]从1916 年成功地将镁合金用于压铸件算起,至今也经历了八十余年的发展。

人类在认识和驾驭镁合金及其制品的生产技术方面,经历了漫长的探索历程。

从1927年推出高强度 MgAl9Zn1 开始,镁合金的工业应用获得了实质性的进展。

1936年德国大众汽车公司开始用压铸镁合金生产“甲壳虫”汽车的发动机传动系统零件,1946 年单车使用镁合金量达 18kg 左右。

美国在 1948~1962 年间用热室压铸机生产的汽车用镁合金压铸件达数百万件。

尽管如此,过去镁合金作为结构材料主要用于航空领域,在其它领域,世界上镁的主要用途是生产铝合金,其次用于钢的脱硫和球墨铸铁生产。

近年来, 由于人们对产品轻量化的要求日益迫切,镁合金性能的不断改善及压铸技术的显著进步,压铸镁合金的用量显著增长。

特别是人类对汽车提出了进一步减轻重量、降低燃耗和排放、提高驾驶安全性和舒适性的要求, 镁合金压铸技术正飞速发展。

此外,镁合金压铸件已逐步扩大到其他领域,如手提电脑外壳,手提电锯机壳,鱼钩自动收线匣,录像机壳,移动电话机壳,航空器上的通信设备和雷达机壳,以及一些家用电器具等。

常用的压铸镁合金大多是美国牌号[2]AZ91,AM60,AM50,AM20,AS41 和AE42,分别属于Mg-Al-Zn,Mg-Al-Mn,Mg-Al-Si 和Mg-Al-RE 四大系列。

对压铸镁合金的研究:镁合金的密度小于 2g/cm3,是目前最轻的金属结构材料,其比强度高于铝合金和钢,略低于比强度最高的纤维增强塑料;其比刚度与铝合金和钢相当,远高于纤维增强塑料;其耐腐蚀性比低碳钢好得多,已超过压铸铝合金A380;其减振性、磁屏蔽性远优于铝合金;鉴于镁合金的动力学粘度低,相同流体状态(雷诺指数相等)下的充型速度远大于铝合金,加之镁合金熔点、比热容和相变潜热均比铝合金低,故其熔化耗能少,凝固速度快,镁合金实际压铸周期可比铝合金短50%。

镁锂合金的研究化学毕业论文

镁锂合金的研究化学毕业论文

第1章绪论1.1引言镁锂合金又称为超轻合金,该合金具有密度小、比强度高、比刚度高,对震动、噪声缓冲能力强,且切削加工和抛光性能好等优异性能[1],已广泛应用于汽车制造、航空航天等领域,20世纪90年代后其应用扩展到通讯、计算机和声像(简称3C产品)等领域。

但是,锂的加入在降低密度、提高塑性的同时,却使合金的抗腐蚀性能显著降低,使其应用受到了很大的限制,需要进行有效的防护处理来发挥镁锂合金的优良性能。

Al的化合物尤其是氧化铝稳定性较好,铝的薄膜相比于镁和锂的氧化膜有着极强的耐蚀性能。

因此本论文将研究在Mg-Li合金表面合成耐蚀性能良好的Al膜,并利用扫描电镜(SEM)、X射线衍射(XRD)仪研究了镁锂合金表面铝膜的形貌、结构和组成。

1.2镁铝合金的概述Mg中以Li为主要添加元素,即构成了Mg-Li合金。

Mg-Li合金密度只有1.30-1.65g/cm3,仅为铝合金的1/2,是传统镁合金的3/4,是迄今最轻的金属结构材料。

Mg-Li合金可以降低宇宙射线对电子仪器设备的干扰,能满足航空、航天工业对轻质材料的需求,例如:1960 1967年,洛克希德马丁与IBM合作,开发了航天飞机“Stern-V”用的Mg-Li合金部件[2]。

总之,随着3C 产业迅速发展,人们对便携性、轻量化、环保型产品需求的增长,Mg-Li合金的应用也将会越来越广泛。

1.3镁锂合金的研究历史及现状1.3.1 镁锂合金的研究历史1910年,德国Masing[3,4]在研究Li、Na、K与Mg相互作用时,意外地1发现Mg和Li发生有趣的结构转变,并认为该结构是超结构。

1934-1936年,德、美、英三国研究者相继研究了镁锂合金的结构转变,并测定了二元合金相图,证实了镁含量达5.7%时出现bcc-fcc结构转变。

1942年,美国冶金学家提议向镁基合金中添加金属锂,使镁基合金的晶体结构由密排六方变成体心立方,以期改善合金的加工性能,并同时降低合金的比重。

镁合金资料文献

镁合金资料文献

镁合金资料文献镁合金是实际应用中最轻的金属结构材料,它具有比重轻,比强度和比刚度高,阻尼性,导热性、切削加工型、铸造性能好,电磁屏蔽能力强,尺寸稳定,资源丰富,容易回收等一系列优点,所以,镁合金广泛应用也汽车工业,通讯电子业和航空航天业等领域,近年来镁合金产量在全球的年增长率高达20%,有极大的应用前景。

由于镁合金有极大的应用前景,所以在国内外掀起了一股研究镁合金的热潮。

在我国,镁资源及其丰富,我国是原镁生产大国,约占全球总产量的67%,而且是镁金属最大的出口国。

近年来,我国镁合金的研究和应用取得了举世瞩目的成绩,在高性能镁合金研究、加工装备开发以及镁合金深加工产品的开发应用方面都取得了很大的进展。

从镁产业的角度来讲,已经形成了从原材料到深加工一直到应用的完整产业链;从没研究开发的角度来讲,已经初步形成了从基础研究到应用研究一直到产品开发的完整科研开发体系,正从镁生产大国向镁研发和应用强国迈进。

但是,我国的镁工业仍然存在着很多问题:1)原镁生产技术落后,质量不稳定,镁中夹杂着大量有害元素,不满足很多生产工艺的技术要求;2)出口产品绝大多数是廉价的纯镁锭,利润低;3)原创性的研究成果太少。

镁合金产品加工中的关键技术和装备大部分靠国外引进。

2003年3月,科技部启动了“镁合金开发应用及产业化的前期战略研究,联合了4个研究院所,7所高校,20多家企业直接参与,建立了具有国际竞争力的镁合金高新技术产业群,将镁资源优势转化为经济优势!在863计划中,开展了包括耐热压铸镁合金及其应用技术,高强高韧镁合金及其技术开发,高性能变形镁合金及其应用技术,镁合金先进焊接技术,镁合金冲锻成型技术,镁合金锻造轮毂技术等研究。

而且,镁合金现在广泛应用于汽车行业。

国外的发展状态:北美、欧洲和日本等发达国家相继加大对镁合金开发和应用研究的投入。

德国1997年由联邦政府政府出资2500万马克的MADICA(Magnesium Die Casting)镁合金研究开发计划,主要研究压铸镁合金工艺、快速原型化与工具制造技术、切削加工技术,连接技术和半固态成形工艺。

镁合金文献综述

镁合金文献综述

金属镁及其镁合金的制备与应用摘要:本文评述了金属镁的制备,镁合金的种类,以及镁及其镁合金的应用。

关键词镁镁合金制备应用镁是最轻的金属元素,其比重只有1.74,仅相当于铝的2/3,铁的1/4。

而且镁资源特别丰富,占地壳总重量的2.1%,海水中的o.13%,可谓取之不尽,用之不竭。

金属镁及其合金具有密度小、比强度和比刚度高、导电导热性能较好、阻尼减震和电磁屏蔽性能良好、易于加工成型、废料容易回收等优点[1],广泛应用于航天航空、交通运输、电子技术、光学器材、精密机械、日用商品等领域。

由此镁及镁合金获得“21世纪的绿色工程材料”的美誉[2]。

1.金属镁的制备金属镁的制备方法可分为两大类:电解法和热还原法。

1.1电解法炼镁[3-5]电解法的原理是电解熔融的无水氯化镁,使之分解成金属镁和氯气。

依据所用原料及处理原料的方法不同,可细分为以下具体的方法:道乌法、氧化镁氯化法、诺斯克法和光卤石法等[6]。

以下主要介绍氧化镁氯化法和光卤石法。

1.1.1 氧化镁氯化法利用天然菱镁矿,在700~800℃下煅烧,80%得到活性较好的轻烧氧化镁。

氧化镁的粒度要小于0.144mm ,然后与碳素混合制团,团块炉料在竖式电炉中氯化,制得无水氯化镁,直接投入电解槽,最后电解得金属镁。

制备MgCL2的程式为:2MgO+2CL2+C=2Mgcl2+CO2。

1.1.2 光卤石法将光卤石(Mgcl2·kcl ·6H2O )脱水后,直接电解制取金属镁。

光卤石脱水时水解反应不像Mgcl2那样严重,但也有一定的水解,因而在无水化的处理过程中,也需要氯化过程,由于加入了,需要经常清理电解槽。

1.1.3 电解法制镁存在的问题制备无水Mgcl2困难:在氯化镁的脱水过程中,由一水氯化镁脱水制取结晶氯化镁的过程极易水解,产生碱式氯化镁[Mg (OH )CL ]和氧化镁,生产工艺较难控制;在HCL 气氛下,水氯镁石脱水需要较高的温度(一般约为450℃),能耗大,设备腐蚀严重。

镁合金表面浸锌技术文献综述

镁合金表面浸锌技术文献综述

镁合金表面浸锌技术现状和发展趋势1镁及镁合金的特性镁属于元素周期表上的IIA族碱土金属元素。

其结构为密排六方晶格,无同素异构转变;熔点648.8℃,沸点1107℃,密度1.74g/cm3。

镁是继氧、硅、铝、铁、钙之后地壳中第六位富有的元素,约占地壳重量的2.3%,镁的含量相当丰富[1]。

镁及镁合金具有银白色光泽,略有延展性。

并且镁及镁合金具有密度小、比强度和比刚度高、阻尼减震性和电磁屏蔽性好、易机械加工和再回收利用[2]。

与铝、锌、锆和稀土等构成的合金及热处理后强度大大提高。

其减震、降噪性能好,比强度高于铝合金和某些高强度钢。

其中,AZ31B更是以其抗冲击、减震性能好,可铸造性强,尺寸稳定性好,以及较好的机械性能和良好的电磁屏蔽性等优点脱颖而出[3]。

2镁合金的应用现状镁基材料被誉为世纪最富于开发和应用潜力的“绿色材料”被广泛应用于航空航天、军事、交通及3C产品等领域中[4]。

交通工具轻量化成为当今发展趋势,镁合金是实际应用中最轻的金属结构材料。

非常适用于交通运输领域,是生产重量轻、油耗低、环保的新一代交通工具的最佳材料[5]。

目前,镁合金应用主要有以下三个方面:(1)汽车、摩托车等交通类产品用镁合金世界各大汽车公司已经将镁合金制造零件作为重要发展方向。

在欧美国家中,各国的汽车厂商正极力争取采用镁合金零件的多少来作为自身车辆领先的标志,大众、奥迪、菲亚特汽车公司纷纷使用镁合金[6]。

美、欧、日等发达国家投入大量人力和物力,实施多项大型联合研究发展计划,研究用镁合金制造汽车零部件。

这些研究开发计划促进了镁合金在汽车上应用的发展。

目前,镁合金压铸汽车零部件至少已超过90种,例如,已经使用要快速推广的零部件有轮毂、仪表盘、座椅框架、变速箱壳体、转向系统、汽缸盖、大的车体外部件、支撑柱、发动机箱体、油底盘。

其中,安装安全气囊的汽车都开始改用镁合金方向盘,这既可减重,又可降低震动,在发生意外撞击时,镁合金可吸收更多的能量,有利于保证驾驶员的安全。

镁合金的腐蚀研究-文献综述

镁合金的腐蚀研究-文献综述

医用镁合金腐蚀性能研究黄亚文摘要:镁合金具有良好的生物相容性、可在人体降解、合适的物理力学性能等优点,在医学上拥有良好的应用前景,镁合金的研究得到了广泛重视。

但镁化学性质活泼,镁合金降解速度快。

本文综述了提高镁合金耐蚀性能的方法,主要有:钝化镁合金、合金化、热处理及成形加工、表面处理四种方法,并概述了各种方法的研究进展。

关键词:镁合金;腐蚀机理;耐蚀性能;钝化;合金化;热处理;表面处理1、概述生物医用材料是指医疗上能够植入生物体或能够与生物组织相结合的材料,用来治疗或替换生物机体中原有的组织和器官,修正和提高其功能。

目前,生物医用金属材料是临床中广泛应用的一类外科植入材料,具有高的强度、良好的韧性、抗弯曲疲劳强度以及良好的加工成型性能,具有其它类型医用材料不可替代的优良性能。

目前,应用于临床的生物金属材料主要包括不锈钢、钴铬合金及钛合金,它们具有很好的耐蚀性能。

而镁合金作为医用植入材料,与现有已经进入临床使用的医用金属材料相比,具有以下的优势:(1)镁与人体有良好的生物相容性;(2)镁可以在人体降解;(3) 镁是骨生长的必需元素;(4)镁合金具有合适的物理力学性能;(5)镁合金成型性好,资源丰富,价格低[1]。

但是在苛刻的侵蚀性人体生理环境下,镁腐蚀降解速度过快,往往在组织完全愈合之前镁制品的力学性能就遭到破坏,同时降解产生的氢气在植入体周围积累致使皮下气肿,延缓了组织的愈合。

因此镁作为医用生物材料使用, 首先必须合理控制其在体内环境中的降解速率, 使其能在特定时间段内保持机械完整性。

2、镁及镁合金腐蚀机理及影响因素2.1、腐蚀机理镁的标准电极电位为-2.37V(SCE),化学性质极为活泼, 在酸性、中性和弱碱性介质中皆易遭受侵蚀破坏。

镁合金的生物降解行为受到体液中无机物、有机物以及植入部位血液流速、氢扩散系数等因素的影响, 与动物不同组织接触, 其降解速度也不相同,且体内、体外实验结果相差较大。

镁合金论文

镁合金论文

问题:为什么镁合金的耐蚀性差?如何提高镁合金的耐蚀性能?答:1、镁合金定义:镁合金以镁为基加入其他元素组成的合金。

其特点是:密度小,比强度高,弹性模量大,消震性好,承受冲击载荷能力比铝合金大,耐有机物和碱的腐蚀性能差。

主要合金元素有铝、锌、锰、铈、钍以及少量锆或镉等。

2、镁合金耐蚀性差的原因:镁的化学活性很活泼,平衡电极电位很低,导致镁及镁合金的耐蚀性很差。

在潮湿大气、淡水、海水及大多数酸和盐溶液中易受腐蚀。

镁在空气中形成的氧化膜疏松多孔,所以保护性很差。

耐蚀性差是阻碍镁合金广泛应用的主要原因之一。

目前使用最广的是镁铝合金,其次是镁锰合金和镁锌锆合金。

主要用于航空、航天、运输、化工、火箭等工业部门。

按成型方法分为变形镁合金和铸造镁合金两类。

3、如何提高镁合金的耐蚀性:提高镁合金的耐蚀性,可以从控制合金杂质的含量、开发新的耐蚀合金、表面改性及表面涂层等方法入手,而对于大规模工业生产,采用耐蚀保护膜和涂装防护处理,是最为经济易行的方法。

目前,制备镁合金耐蚀保护膜常采用铬酸盐处理,如著名的DOW7工艺采用铬酸钠和氟化镁,制备了具有一定耐蚀性的防护膜。

但是这种工艺生成的六价铬毒性大,严重危险环境和人类的健康。

而在无铬磷化工中,存在的主要问题有:磷化处理技术中含有大量的镍、铅、亚硝酸盐、氟等重金属及致癌物质,已经不符合国家对涂装行业的环保要求;磷化配方中成分较多(4种以上),影响因素复杂,与铬酸盐处理相比,膜层的耐蚀性较差,不含氟化物的耐蚀性更差。

公开号为CN101096761A的中国专利提到了镁合金表面磷化溶液配方,含有锰、锌、氟等物质,用的是高锰酸钾和磷酸二氢锌,但是含氟化物耐蚀性也不高;公开号为CN1598055A的中国专利提到了镁合金磷化溶液配方,其中含有腐蚀抑制剂氟化钠,氟化物的存在容易产生有害物质污染环境。

文献“AZ31镁合金磷化工艺研究”(高焕方等,表面技术,2008,37(4):37-39)在镁合金AZ31表面制备了耐蚀膜层,但磷化配方中除了含有镍、氟、亚硝酸盐物质外,成分较多(9种成分),而且膜层的耐蚀性较铬酸盐处理差。

论文 镁合金

论文 镁合金

镁合金化其他表面处理一、前言镁合金的密度很小,是钢的四分之一、铝的三分之二,但镁合金的比强度却大于钢和铝,是最轻的金属结构材料。

因此,镁合金在电子产品、汽车、航空航天等需要高比强度金属材料的领域具备广阔的发展前景。

但是镁合金的化学活性高,在有机酸、无机酸和含盐的溶液中均会被腐蚀,且腐蚀速率较高,使得镁合金的应用受到了很大的限制。

表面处理技术在保持镁合金原有优良特性的同时能够有效地提高其耐蚀性能,且大部分表面处理技术工艺成熟、成本低廉,是改善镁合金耐蚀性能的有效手段。

常用的镁合金表面处理技术有电镀、化学镀、化学氧化、等离子电解氧化等。

二、镁合金表面处理技术2.1电镀和化学镀技术镁合金表面镀镍技术分为电镀和化学镀2种。

由于镁合金化学活性高,在酸性溶液中易被腐蚀,因此镁合金电沉积技术与铝合金电沉积技术有着显著的差异。

目前,镁合金电镀工艺技术有2种工艺 ( 如图1所示) :浸锌--电镀工艺和直接化学镀镍工艺。

为了防止镁合金基体在酸性溶液中被过度腐蚀,需要在前处理溶液中添加F( F与电离生成的Mg2 + 形成MgF2沉淀,吸附在镁合金基体表面可以防止基体过度腐蚀)。

V镁合金表面化学镀Ni-P合金是一种很成熟的工艺。

通常化学镀方法制备的Ni-P合金层是非晶态的,这层致密的非晶态Ni-P合金层可以有效地防止镁合金基体被腐蚀。

结合使用化学镀镍技术和滚镀技术可以在AZ91D镁合金基体上形成一层晶态的Ni-P合金层。

测试表明,该晶态Ni-P合金层中晶体颗粒细小,镀层致密,耐蚀性能也优于传统的非晶态Ni-P合金层。

2.2等离子微弧氧化技术微弧氧化技术是近年来在铝合金阳极氧化处理技术基础上发展起来的一项新型表面处理技术。

一般认为微弧氧化过程分为4个阶段:一是表面生成氧化膜;二是氧化膜被击穿,并发生等离子微弧放电现象;三是氧化进一步向深层次渗透;四是氧化、熔融、熔固平稳阶段。

在微弧氧化过程中,当电压增大到某一值时,镁合金表面微孔中产生火花放电,使表面温度达2000℃以上,利用这种微弧区瞬间高温的烧结作用直接在镁、铝、钛等金属表面原位生成陶瓷膜,这种膜的显微硬度可高达2500~3000HV。

镁合金综述

镁合金综述

镁合金的研究进展与发展前景摘要:简要介绍了镁及镁合金的优越性能,概述了镁合金的成型工艺性能及各种成型方法,并涉及当前的新型镁合金。

阐述了镁合金的防腐与净化技术。

探讨了镁合金材料的应用状况和发展前景。

关键词:镁合金成型工艺相图研究发展前景前言:镁合金的力学性能与一般铝合金基本相当,而其密度仅为铝合金的2/3,故其比强度、比刚度均优于铝合金;同时镁合金还具有弹性模量较低,能吸收较大的冲击功,滞振性较好等特点。

在便携产品风行和节能已成为世界性主题的今天,镁合金越来越受到人们的重视。

随着电子产业及汽车工业的突飞猛进,人类的生存与资源和环境之间的矛盾日益突出,因此降低产品的自重以减少能源消耗和受污染程度,成为至关重要的问题,镁合金被公认为是当今世界最有前途的轻质材料之一,被誉为2l世纪的绿色功能材料。

正文:1、镁合金的优势与缺点镁合金的优越性主要表现在:密度小,只及钢铁的1/4,铝合金的2/3,是最轻的结构合金,能有效降低部件重量,节省能源。

比强度很大,略低于比强度最高的纤维增强材料。

比刚度与铝合金、钢铁基本持平,远高于工程塑料。

阻尼性能好,吸收能量能力强,具有极佳的减震性,可用于震动剧烈的场合,用在汽车上可增强汽车的安全性和舒适性。

导热性好,稍逊色于一般铝合金,是工程塑料的300倍,且温度依赖性低,可用于制造要求散热性能好的电子产品。

镁合金是非磁性材料,电磁屏蔽性能好,抗电磁波干扰能力强,可用于手机等通讯产品。

镁合金加工成型性好,外观质感好,可制作笔记本电脑、照相机等外壳。

镁合金线收缩率很小,尺寸稳定,不易因环境改变而改变(相对于工程材料)。

镁合金可全部回收利用,是有利于环保的一种绿色金属。

尽管镁具有其独特的优势,但与传统金属(钢铁、铝等)相比,到现在对镁基材料的研究还远远不够,没有形成很丰富的合金系,在结构材料方面的应用很有限;在功能材料方面的研究与应用也处于起步阶段。

这是由于镁合金也存在着自身的缺点。

镁合金在建筑模板上的应用

镁合金在建筑模板上的应用

镁合金在建筑模板上的应用1. 引言镁合金是一种轻质高强度的金属材料,具有良好的耐腐蚀性和可塑性。

近年来,随着人们对环境保护和可持续发展的关注,镁合金作为一种绿色材料,在建筑行业中得到了广泛应用。

本文将介绍镁合金在建筑模板上的应用。

2. 镁合金的特点2.1 轻质高强度镁合金相对于传统材料如钢铁和铝合金来说更加轻盈,但却具有较高的强度。

这使得使用镁合金制作建筑模板可以减轻施工负担,并提高施工效率。

2.2 耐腐蚀性镁合金具有良好的耐腐蚀性,能够在潮湿环境下长时间使用而不损坏。

这使得镁合金建筑模板可以在室外使用,并且不需要经常更换。

2.3 可塑性镁合金易于加工成各种形状和尺寸,能够满足不同建筑项目的需求。

此外,镁合金具有良好的可塑性,可以通过加热和冷却来改变其形状和硬度。

3. 镁合金建筑模板的优势3.1 轻便易携相对于传统的木质或钢铁模板,镁合金建筑模板更加轻便,便于搬运和安装。

这减少了施工人员的劳动强度,并提高了施工效率。

3.2 高强度耐用镁合金具有较高的强度和耐腐蚀性,使得建筑模板能够承受较大的荷载并经受住长时间使用。

这降低了维护成本,并延长了模板的使用寿命。

3.3 环保可持续镁合金是一种绿色材料,其生产过程不会产生大量废气和废水。

同时,镁合金可以回收再利用,减少资源浪费,并符合可持续发展的要求。

4. 镁合金建筑模板的应用案例4.1 楼板模板镁合金楼板模板由多个镁合金片拼接而成,具有轻质高强度的特点。

相对于传统的木质和钢铁模板,镁合金楼板模板更加轻便易携,能够减少工人的劳动强度,并提高施工效率。

同时,镁合金楼板模板具有良好的耐腐蚀性和耐用性,可以经受住长时间使用。

4.2 墙体模板镁合金墙体模板由多个镁合金片拼接而成,具有较高的强度和耐腐蚀性。

相对于传统的木质和钢铁模板,镁合金墙体模板更加轻便易搬运,并且不会受到潮湿环境的影响。

此外,镁合金墙体模板可以根据建筑设计要求进行定制,满足不同项目的需求。

4.3 柱子模板镁合金柱子模板由多个镁合金片拼接而成,具有较高的强度和可塑性。

镁合金的研究与应用

镁合金的研究与应用

镁合金的研究与应用镁合金是一种轻质高强度金属材料,在航空、汽车、电子、医疗等领域有着广泛的应用。

它具有质轻、强度高、导热性好、电导率好等优点,是替代传统材料的理想选择。

本文将就镁合金的研究与应用进行探讨。

一、镁合金的研究镁合金的研究始于20世纪初,但由于其在铸造、加工、耐蚀性等方面存在问题,一直无法得到广泛应用。

随着材料科学发展和制造技术的不断进步,镁合金的性能不断提升,已经成为一种应用十分广泛的金属材料。

镁合金的研究主要包括材料合成、组织结构、加工成形、耐蚀性等方面。

其中,材料合成是最为重要的一环。

目前,主要的合成方法有熔化法、粉末冶金法、激光熔化沉积等。

这些方法各有优缺点,根据具体的应用需求选择合适的方法。

另外,组织结构的研究也非常重要。

镁合金由于其晶格结构的特点,容易产生晶粒细化、多相结构、组织异质性等问题。

这些问题不仅会影响材料的强度、韧性等性能,还会影响加工工艺和成型质量。

因此,研究镁合金的组织结构及其对性能的影响,是材料学家们一直努力的方向。

二、镁合金的应用镁合金具有质轻、强度高等特点,被广泛应用于航空、汽车、电子、医疗等领域。

下面将分别介绍镁合金在各个领域的应用情况。

1.航空领域航空领域对材料的轻量化要求非常高,而镁合金的密度只有铝合金的2/3,因此在航空领域有广泛应用。

镁合金被用于制造飞机外壳、发动机、航天器等部件。

其中,AZ91D是最常用的镁合金材料之一,具有强度高、热膨胀系数小、成本低等优点。

2.汽车领域随着汽车工业的不断发展,轻量化已经成为汽车工业发展的主要方向。

镁合金具有质轻、强度高、吸能性好等优点,被广泛应用于汽车制造领域。

镁合金材料可以用于制造车身、引擎、底盘等部件。

3.电子领域由于其导热、电导率好的特点,镁合金在电子领域有着广泛的应用。

例如,用于制造电子器件、电池壳体等。

此外,镁合金还可以用于制造风扇、散热器、机箱等电脑配件。

4.医疗领域镁合金在医疗领域的应用主要是用于制造人造肢体、手术器械等。

镁合金材料的开发与应用

镁合金材料的开发与应用

镁合金材料的开发与应用第一章:镁合金材料的概述镁是一种轻质金属元素,密度只有铝的2/3,钢铁的1/4。

因此,合金化后的镁合金具有低密度、高比强度、高吸能性、易加工塑性好、可细长锻制、抗电磁干扰性和良好的耐腐蚀性等优点,在航空航天、汽车、电子、医疗等领域得到了广泛的应用。

目前,镁合金研究热度非常高,有着广阔的应用前景。

第二章:镁合金材料的开发开发高品质镁合金制品的关键是精细选材和科学的复合工艺。

通常,镁铝系、镁锌系、镁锰系和镁稀土系是常见的镁合金系列,通过不同的合金化处理、热处理工艺等方法,能够制备出不同性质的镁合金制品。

在合金的选择上,首先需要确定材料的使用目的,再结合材料的机械性能需求进行选择,选用合适的合金配方,并考虑成本等因素。

在制备工艺上,通常采用熔铸、挤压、轧制、拉伸以及锻造等多种方法。

第三章:镁合金材料的应用1. 航空航天航空领域对于重量的要求非常高,镁合金解决了航空器重量问题。

目前,航空领域上的许多部件都采用镁合金材料制造,如发动机外壳、地面处理设备、铰链以及飞机座椅等。

2. 汽车汽车领域对于材料的要求除了吸能需求外,对于强度、刚性、承载量等也是非常高的。

镁合金具有高强度、低密度以及良好的吸能性,已经用于汽车制造中的轮毂、车门、车架等部件。

3. 电子电子领域对材料的要求非常苛刻,如强度、密度、导电性等,镁合金因其高的导电性,低电阻等特点被广泛应用于这个领域中。

如笔记本电脑、手机、平板电脑等高端小型设备。

4. 医疗医疗领域中,镁的生物活性能够加速骨骼的愈合。

因此,镁合金作为一种有良好生物相容性的金属材料,近年来得到了更多的医疗设为使用,如支架、植入物等。

第四章:镁合金材料的发展趋势目前,镁合金材料在上述领域中广泛应用,但仍存在着提高强度、耐腐蚀性以及延展性和热稳定性等方面的需要。

因此,未来的研究应当对镁合金材料进行改进和优化,探索更多的制备方法,延伸其应用范围,如增加其应用于高温环境中等。

镁合金及其性能研究

镁合金及其性能研究

b b。 ・ o
t — — ・
L —
。 谚

_ 尸 j 乙 4 - l 【 j 乱 — — 。 . o 州 L L 羹 . ■ 矗 ; 。 l j Jl

。 ・

【 . . ・ L
。 4 _ J

b b 0L ( : ! i 卜 ・ 【 j


哆.
・ ,
0 ^ j 一 . . 山 『 j 0
——
一 ・ I

匕 。 ; L 【 - o L
。 秘 。
, . _
匕 5 卜 ^ J —
J . 搴 。 芝 . 二 : L 一



L _ . — 二 L _ . ‘ — —


J ^ j L — _ - — — 二

l 皿

。 疗 净 . J — J .
。 ・
乙 — L 二 .

L 【 - .


0 L 立 L J - —
L 北 0 L 。 止
L - f . L - . - 0 — J L i L — 二 —
‘ l 山 。 u L

— 。
Jt L ; . 】 . ) U L 【 . o 哆. k 乱 ・ 乩 L ! 。 u 苴 ^ J j L 立 虬 .
. .
童 —— : , ^ J —
J 0 。 J _ . J 0

^ 五 J上 J ^ 上 L 多 b L i l 卜 ^ 苴 J 3 c哆《 卜
上山
: I

镁合金综述

镁合金综述

镁合金的研究进展与发展前景摘要:简要介绍了镁及镁合金的优越性能,概述了镁合金的成型工艺性能及各种成型方法,并涉及当前的新型镁合金。

阐述了镁合金的防腐与净化技术。

探讨了镁合金材料的应用状况和发展前景。

关键词:镁合金成型工艺相图研究发展前景前言:镁合金的力学性能与一般铝合金基本相当,而其密度仅为铝合金的2/3,故其比强度、比刚度均优于铝合金;同时镁合金还具有弹性模量较低,能吸收较大的冲击功,滞振性较好等特点。

在便携产品风行和节能已成为世界性主题的今天,镁合金越来越受到人们的重视。

随着电子产业及汽车工业的突飞猛进,人类的生存与资源和环境之间的矛盾日益突出,因此降低产品的自重以减少能源消耗和受污染程度,成为至关重要的问题,镁合金被公认为是当今世界最有前途的轻质材料之一,被誉为2l世纪的绿色功能材料。

正文:1、镁合金的优势与缺点镁合金的优越性主要表现在:密度小,只及钢铁的1/4,铝合金的2/3,是最轻的结构合金,能有效降低部件重量,节省能源。

比强度很大,略低于比强度最高的纤维增强材料。

比刚度与铝合金、钢铁基本持平,远高于工程塑料。

阻尼性能好,吸收能量能力强,具有极佳的减震性,可用于震动剧烈的场合,用在汽车上可增强汽车的安全性和舒适性。

导热性好,稍逊色于一般铝合金,是工程塑料的300倍,且温度依赖性低,可用于制造要求散热性能好的电子产品。

镁合金是非磁性材料,电磁屏蔽性能好,抗电磁波干扰能力强,可用于手机等通讯产品。

镁合金加工成型性好,外观质感好,可制作笔记本电脑、照相机等外壳。

镁合金线收缩率很小,尺寸稳定,不易因环境改变而改变(相对于工程材料)。

镁合金可全部回收利用,是有利于环保的一种绿色金属。

尽管镁具有其独特的优势,但与传统金属(钢铁、铝等)相比,到现在对镁基材料的研究还远远不够,没有形成很丰富的合金系,在结构材料方面的应用很有限;在功能材料方面的研究与应用也处于起步阶段。

这是由于镁合金也存在着自身的缺点。

镁合金焊接接头的毕业设计论文

镁合金焊接接头的毕业设计论文

摘要我国镁资源极为丰富,镁的储量、产量以及出口量均居世界第一。

镁合金由于具有质轻、耐用、减震、可回收性强等众多优点,被公认为最有前途的轻量化材料及二十一世纪的绿色金属材料,将成为继铝合金后又一具有巨大市场的轻金属材料产业,在资源、环保成为经济发展瓶颈的今天,其应用前景十分广阔。

特别是Mg-Al系列合金在汽车上有广阔的应用前景,是汽车上最具有减重潜力的部件。

但是现有对镁合金材料性能的研究,几乎都是针对镁合金的准静态载荷,缺少高速冲击载荷下的镁合金动态性能数据,这无疑使得将镁合金作为防弹及汽车结构材料的设计缺少了依据。

因此,研究镁合金在高速冲击载荷下的力学性能、断裂规律及失效形式可以为提高镁合金安全性设计方面提供理论依据。

本文综合应用了金相分析、断口形貌分析等手段研究了高应变速率下镁合金焊接接头的力学行为及微观组织演变。

探索高速压缩载荷作用下的镁合金焊接接头变形与失效机制,以便最终提高材料的性能。

实验结果表明:在不同应变速率下变形时,两种焊接方法下(TIG焊和摩擦搅拌焊),AZ31 镁合金板材的焊接接头的应力—应变曲线几乎重合,说明AZ31 镁合金板材的焊接接头的应力对应变速率不敏感。

动态压缩断裂方式均为准解理断裂.冲击试样横截面金相组织均有孪晶,镁合金打击后晶粒大小不均匀。

关键词:镁合金焊接接头;动态力学性能;摩擦搅拌焊;微观组织IAbstractMagnesium resources is very rich in China . Magnesium reserves, production and export volume ranked first in the world. Magnesium alloys have been recognized as the most promising lightweight materials and green metallic materials in the twenty-first century because of its light weight, durability, shock absorption, recyclable, and many other advantages. It will has a huge market after Aluminum Alloy. And its application has a bright future, in the present when resources, environmental protection has become the bottleneck of economic development. Magnesium alloys, especially Mg-A1 system, have been widely used as structural materials for automobiles to reduce weight. however, the dynamic mechanical properties of magnesium alloy have been studied rarely. It is a practical problem that researchers have not connected the dynamic mechanical properties of magnesium alloy with high-speed collision of the car. Therefore, the study of dynamic mechanical properties, fracture and failure mechanism of magnesium alloy can provide theoretical basis for safety design of magnesium alloy.The OM and SEM were used to analysis the microstructure evolution of Magnesium alloy welded joints after the high strain rate, the SHPB were used to study the dynamic deformation behavior of Magnesium alloy welded joints.The results shows that under different rain rate deformation,under two welding methods(TIG welding and friction stir welding) AZ31 welded joints of magnesium alloy sheet stress - strain curves almost coincide, it shows that stress of AZ31 magnesium alloy is not sensitive to strain rate. The cross-sectional microstructure of sample are twins and the grain size of magnesium alloy combat uniform after impact.Keywords:Magnesium alloy welded joints;dynamic properties;Friction Stir Welding;microstructureII目录摘要 (I)Ab stract (II)第1章前言 (1)1.1镁及镁合金简介 (1)1.1.1镁的性质及用途 (1)1.1.2镁合金的性能特点 (2)1.2镁合金的焊接及其应用 (3)1.2.1镁合金的焊接特点 (3)1.2.2镁合金的焊接方法 (4)1.3.镁合金动态力学行为研究现状 (6)1.3.1 高应变速率形变试验简介 (6)1.3.2 高应变率下材料的应力-应变行为及其应变率效应的研究 (6)1.3.3高应变率下材料的微观组织结构变化的研究 (7)1.4 本课题的意义及拟采用的方法 (8)1.4.1 课题的意义 (8)第2章实验材料及实验方法 (9)2.1 实验材料及设备 (9)2.1.1 实验材料 (9)2.2实验方法 (10)2.2.1实验主要设备SHPB简介 (10)2.2.2 SHPB压缩实验基本原理 (11)2.2.3 SHPB实验原理简介 (12)2.3金相试样制备及组织观察 (15)2.3.1 加工试样 (15)2.3.2 试样的磨制 (15)III2.3.3 试样的抛光 (15)2.3.4 试样的腐蚀 (16)2.3.5 金相组织观察 (16)2.3.6 断口形貌观察 (16)第3章实验结果及分析 (17)3.1 镁合金焊接接头动态压缩力学性能 (17)3.1.1TIG焊时镁合金焊接接头动态压缩力学性能 (17)3.1.2摩擦搅拌焊时镁合金焊接接头动态压缩力学性能 (18)3.1.3应变速率为 =2300s-1左右时两种焊接接头数据的比较 (19)3.2冲击断口分析 (20)3.2.1 解理裂纹介绍 (20)3.2.2 TIG焊时冲击断口分析 (21)3.2.3 摩擦搅拌焊冲击断口分析 (22)3.3 AZ31镁合金板材焊接金相组织分析 (23)3.3.1 TIG焊时AZ31镁合金焊缝及熔合区金相组织 (23)3.3.2 摩擦搅拌焊时AZ31镁合金焊缝及熔合区金相组织 (24)第4章实验结论 (26)参考文献 (27)致谢 (29)IV第1章前言1.1镁及镁合金简介1.1.1镁的性质及用途镁是常用金属材料中最轻的一种,密度约为铝的三分之二,而且在地壳中含量丰富[1-3]。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1. Introduction In recent years, magnesium alloys have been receiving a great deal of attention in the fields of microelectronics, automobile and aerospace industries [1–3] because of their low density, high specific strength and good stiffness [4]. However, the application of magnesium alloys in modern industry is still limited due to the restrained mechanical properties [5], especially the poor creep, corrosion and ignition resistance at high temperature [6]. Therefore, much work has been focused on improving the properties of the alloys. It has been found that alloying by addition of rare earth elements is an effective method to improve the microstructure and mechanical properties of magnesium alloys [6,7]. Furthermore, many experimental results revealed that the addition of Zn and Sc plays a very important role in optimizing the microstructure and mechanical properties of magnesium alloys [8,9]. Up to now, several alloy systems have been studied such as the Mg–Zn and Mg–RE binary systems on one hand, and ternary Mg–Zn–RE system on the other hand. All of these alloy systems exhibit age-hardening response, especially the Mg–Zn system alloys belong to the stronger
a r t i c l e
i n f o
a b s t r a c t
The structural, electronic and elastic properties of typical hexagonal-close-packed MgZn2 and ScZn2 phases in Mg–Sc–Zn alloy were investigated by means of first-principles calculations within the framework of density functional theory (DFT). The calculated lattice constants were in good agreement with the experimental values. The obtained cohesive energy and formation enthalpy of both phases are negative, showing their structural stability from energetic point of view. The five independent elastic constants were calculated, and then the bulk modulus B, shear modulus G, Young’s modulus E and Poisson’s ratio of polycrystalline aggregates were derived. The ductility and plasticity of the MgZn2 and ScZn2 phases were further discussed. The elastic anisotropy of the two phases was also analyzed. Finally, the electronic density of states (DOS) and charge density distribution were also calculated to reveal the underlying mechanism of structural stability and mechanical properties. © 2010 Elsevier B.V. All rights reserved.
precipitation-hardenable Mg alloys. As the equilibrium solid solubility of zinc in magnesium decreases substantially with temperature decreasing, a controlled decomposition of the supersaturated solid solution of zinc in magnesium can produce a remarkable age-hardening effect [10,11]. Based on the binary Mg–Zn phase diagram [12], there are five intermetallic phases in the Mg–Zn system, namely Mg7 Zn3 , MgZn, Mg2 Zn3 , MgZn2 and Mg2 Zn11 , of which MgZn2 is the most important strengthening phase [13,14]. Therefore, the study on MgZn2 phase is of great importance and has led to a renewed interest in the research and development of Mg-based alloys. Sc is another important alloying rare earth element in magnesium alloys, and the addition of Sc to Mg–Zn-based alloys has been found to be effective in improving the mechanical properties of the alloy at both room and high temperature [15]. ScZn2 is a typical and important phase in Mg–Zn-based alloys. When Zn and Sc are added to Mg simultaneously, long period stacking ordered (LPSO) phases are very likely to come out instead of ordered intermetallic precipitates. Especially when Zn is added in dilute quantity, which is done in practice, the formation of LPSO phases is frequently observed in typical Mg97 Y2 Zn1 alloy under rapid solidification processing [16,17]. However, when Zn content is relatively high, ScZn2 and MgZn2 phases in Mg-based alloy are also always formed by traditional method. The strengthening phase MgZn2 could be formed in the temperature range of 346–316 ◦ C during solidification of the Mg–8Zn–1.5MM (misch metal) alloy [11], and the strengthening phase ScZn2 is also obtained in the temperature range of
Journal of Alloys and Compounds 506 (2010) 412–417
Contents lists available at ScienceDirect
Journal of Alloys and Compounds
journal homepage: /locate/jallcom
∗ Corresponding author at: School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China. Tel.: +86 731 58292195; fax: +86 731 58292468. E-mail addresses: tangbiyu@, tangbiyu@ (B.-Y. Tang). 0925-8388/$ – see front matter © 2010 Elsevier B.V. All rights reserved. doi:10.1016/j.jallcom.2010.07.018
相关文档
最新文档