The-general-coupled-matrix-equations-over-generalized-bisymmetric-matrices_

合集下载

FLUID-STRUCTURE

FLUID-STRUCTURE
IMPLEMENTATION OF A FLUID-STRUCTURE INTERACTION FORMULATION USING MSC/NASTRAN
S. S. Lee, M. C. Kim, and D. R. Williamson1 The Aerospace Corporation El Segundo, California 90245
ABSTRACT
A fluid-structure interaction formulation has been developed previously for incompressible fluids with a free surface. The formulation involves a series of transformations for the coupled fluid-structure equation, which is originally nonsymmetric. The singularity of the fluid inertance matrix is removed by eliminating the rigid body slosh mode in the transformations, and the combined fluid-structure equation is made symmetric. In this paper, a DMAP procedure which implements the formulation is developed using MSC/NASTRAN.
1 Current
address: TRW Space Systems, Redondo Beach, California 90277.

生化反应系统的高维矩阵方程

生化反应系统的高维矩阵方程

生化反应系统的高维矩阵方程周天寿【摘要】化学主方程对生化反应系统提供了一个建模框架,但它的分析与模拟一直是计算系统生物学的一个难题,到目前为止并没有得到解决.这里,通过引进高维矩阵及其运算规则,首先把化学主方程表示为高维矩阵方程,然后给出了其分析解的形式表示,此外还介绍了一种求解高维矩阵方程的高效数值方法.研究表明:高维矩阵方法似乎解决了化学主方程的分析求解和数值求解问题.%Chemical master equation gives a framework for mathematical modeling of biochemical reaction systems,but its analysis and simulation has been being difficult in the field of computational systems biology.Here,by introducing a high-dimensional matrix and its operators,first the chemical master equation is transformed into a high-dimensional matrix equation,and then a formal expression for the analytical solution to this matrix equation is given.In addition,a 2-order cyclic iterative algorithm is introduced to numerically solve the high-dimensional matrix equation.In a word,the high-dimensional matrix method seems to solve the questions of analytical and numerical solutions to the chemical master equation.【期刊名称】《江西师范大学学报(自然科学版)》【年(卷),期】2017(041)001【总页数】5页(P1-5)【关键词】化学主方程;高维矩阵方程;矩阵指数函数;环路算法【作者】周天寿【作者单位】中山大学数学学院,广东广州 510275【正文语种】中文【中图分类】O242;Q332生物分子系统由于反应物种低的拷贝数,故是随机的.这种随机性(或噪声)对生物系统的动力学行为具有重要影响,例如噪声诱导的随机切换[1]、噪声诱导的共振[2-3]、噪声诱导的随机同步[4-5]、噪声诱导的随机聚焦[6]等.因此,当研究生物分子系统的动力学行为时,必须要考虑随机性的效果.化学主方程[7-9]已广泛应用于研究生化反应系统的随机行为,但问题是这种方程的分析和模拟一直是计算系统生物学的难题.著名的gillespie随机模拟算法[10]解决了单条随机轨线的模拟问题,但没有解决反应物种的联合概率分析问题.有限状态映射法[11]只能应用于反应物种数目是很少的情形.至于化学主方程的分析求解,更是一个难题,还没有很好的分析求解方法.矩封闭方法[12-15]已被广泛应用于化学主方程的分析与模拟,但问题是普通的矩(如原点矩和中心矩)当其阶趋于无穷时并不一定会趋于零,甚至有可能是发散的.特别是,普通的矩并不能用于重构反应物种的联合概率分布(除非它是高斯分布).最近,文献[16]提出的收敛矩方法很好地解决了矩的收敛性问题以及联合概率分布的重构问题,但应用起来仍具有局限性.总之,化学主方程的分析与模拟问题并没有得到彻底解决.本文提出化学主方程的高维矩阵表示,由此给出了化学主方程分析解的形式表示,并发展出一种高效的环路迭代算法.据此,化学主方程的分析求解与数值求解问题似乎得到了彻底解决. 1.1 2个矩阵的乘积运算设有3个矩阵:U=(uij)M×N,A=(aij)M×M和B=(dij)N×N,为便于推广,引进2个操作符①和②,其定义分别为,,其中“T”表示矩阵转置.显然,A①U和B②U都是M×N阶矩阵.注意到:操作符①和②分别对应于矩阵U左乘以A和右乘以B的转置BT的运算(下面将总是省略矩阵左乘和右乘的普通算符).根据上述定义,容易验证下列3条性质:(i)IM①U=U,IN②U=U,其中IM和IN都是单位矩阵;(ii)A①B②U=B②A①U=AUBT;(iii)A①B②C①D②U=(AC)①(BD)②U,此条性质可以推广到更一般情形,例如,对任意正整数n,有(A①B)n+1②U≡(A①B)n②(A①B)②U=An+1①Bn+1②U.1.2 一般情形让U=(ui1,…,in)N1×…×Nn是一个高维矩阵.定义高维矩阵的运算为,其中A是Nk×Nk矩阵,1≤k≤n.显然,操作符是矩阵的普通左乘或右乘运算的自然推广.上述定义具有下列性质:(i)(恒同性)IMU=U,∀∈{①,②,…};(ii)(交换律)ABU=BAU,∀,∈{①,②,…};(iii)(结合律)ABABU=A2B2U,∀,∈{①,②,…}.1.3 矩阵指数函数回忆起普通矩阵指数的定义为(tm/m!)Am,以及对于2个可交换的方阵A和B,有(tm/m!)(A+B)m.受这些启示,首先,注意到(A1A2)m,其次,定义(A1ⓘA2+A3A4)mU=ⓘU.其中规定:(A1ⓘA2+A3A4)0=I.注意到:在定义(1)中,可交换性的条件并不需要.这样,自然地定义矩阵指数函数为e(A1A2)tU,e(A1ⓘA2+A3A4)tU=U.上述定义可以推广到其它情形,例如,(A1ⓘA2+A3ⓙA4+A5A6)mU=(A5A6)m-rU,e(A1ⓘA2+A3ⓙA4+A5A6)tU=U等,这里就不一一列举了.首先,考察2个简单但具有代表性的反应系统.对于单个反应物种的生灭过程让ui=ui(t)表示物种X在时刻t有i个分子的概率,则相应的化学主方程可表示为,其中1≤i≤N且假定u0=uN+1=0.记U=(u1,…,uN)T,并引入下列4个方阵:,,,,则方程(2)可改写为①U+B1①U)+(A2①U+B2①U).对于2个反应物种的反应系统让ui,j=ui,j(t)表示物种X1和X2在时刻t分别有i和j个分子的概率,则相应的化学主方程可表示为k1[(i+1)ui+1,j-1-iui,j]+ k2[(j+1)ui-1,j+1-jui,j],,,,,,,则主方程(3)可改写为(A1①B1②①U)+ (A2①B2②②U).其次,考虑一般的生化反应系统.假设此系统包含n个反应物种X1,X2,…,Xn,它们一起参加L个反应;假设X1,X2,…,Xn的最大分子数目分别为N1,N2,…,Nn;假设所有的反应事件都是马氏的(即仅与当前状态有关,而与历史过程无关).现在,引入高维矩阵U(1:N1,1:N2,…,1:Nn)=(ui1,i2,…,in)i1,i2,…,in,它代表反应系统的完整概率密度状态.让和是反应物种Xi在第l个反应式中对应的Nl×Nl矩阵,其中1≤i≤n,1≤l≤L,则整个反应系统的高维矩阵方程可表示为①U+ ①U],方括号中的2项之和对应于一个反应式,换句话说,一个反应式决定n个操作符:①,…,和2n个方阵和,其中1≤i≤n.注意到:1)一个反应式一般仅涉及几个反应物种,因此方程(4)中对于固定的和中有很多都是单位矩阵;2)方程(4)关于U是一个线性微分方程.3.1 分析解为了帮助读者理解分析解的形式,这里先考察下列3个简单但具有代表性的例子. 对于矩阵方程:dU/dt=AU=A①U,容易验证满足初始条件U0=U(0)的解可形式地表示为类似地,容易验证矩阵方程:dU/dt=UBT=B②U满足初始条件U0=U(0)的解可形式地表示为此外,类似地,可直接验证矩阵方程dU/dt=A①U+B②U满足初始条件U0=U(0)的解可形式地表示为U(t)=etA①etB②U0.一般地,对于高维矩阵方程(4),满足初始条件U0=U(0)的解可形式地表示为,定义(单位矩阵);1…nU0)对于任意的m≥1成立.3.2 数值求解方法3.2.1 数值计算格式首先,通过一个例子来介绍所谓的“算子劈裂法”[17].考虑下列简单的矩阵方程:dU/dt=A①U+B②U,其中方程dU/dt=A①U以给定的U0=U(0)为初值、前进半步Δt/2的解可表示为Un+(1/2)=eA(Δt/2)①Un,其中n=0,1,2,…;方程dU/dt=B②U以Un+(1/2)为初值、前进一步Δt的解可表示为Vn=eBΔt②Un+(1/2);方程dU/dt=A①U以Vn作为初值、前进半步Δt/2的解可表示为Un+1=eA(Δt/2)①Vn.这样,获得矩阵方程:dU/dt=A①U+B②U 以U0为初值、前进一步的解为其中n=0,1,2,….容易验证,这些数值解实际上都是精确解.其次,考虑一般情形.为清楚起见,先考虑一个反应式的高维矩阵方程:①②U+①②U,其数值计算步骤如下:第1步对于方程①②,以Um为初值、前进半步的数值格式为Um;第2步对于方程①②,以Um+(1/2)为初值、前进一步的数值格式为Um+(1/2);第3步对于方程①②以Um为初值、前进半步的数值格式为Vm.再考虑一般的高维矩阵方程(4),其数值计算步骤如下:第1步对于l=1,方程①②①②U以Um为初值、前进半步的数值格式为Um;第2步对于l=2,方程①②①②U以Um+(1/2)为初值、前进一步的数值格式为Um+(1/2);第(l+1)步方程①②①②U以为初值、前进一步的数值格式为,其中l=2,3,…,L-1;第(L+1)步对于l=L,方程①②①②U以为初值、前进半步的数值格式为.综合上述步骤,可获得计算高维矩阵方程(4)的下列迭代格式:Um+1=e(Δt/2)f1e(Δt)f2…e(Δt)fLe(Δt/2)f1Um,其中①②①②L.3.2.2 误差估计对于高维矩阵方程(4),为方便起见,令①②①②,其中1≤l≤L.注意到数值迭代格式为…e(Δt)f2…e(Δt)fL…e(Δt/2)f1,而前进一步的精确解为Um(由于线性方程).假如第m步的计算是精确的,即m=Um,则第(m+1)步的误差为Um,其中e(Δt)f2…e(Δt)fLe(Δt/2)f1,注意到Em可以表示为Em+1=ΔUm,其中g0=g1=g2=0,‖gm+3‖(‖‖…‖‖+‖‖…‖‖).因此,).这样,迭代一步的误差(即截断误差)为‖Em+1‖‖Um‖eCΔt,通过引进高维矩阵来表示生化反应系统的整个概率密度状态,即通过引进U,把难以理论分析和数值求解的化学主方程转化为一个高维矩阵方程,即方程(4),由此进一步给出此方程分析解的形式表示,即(5)式.此外,对于高维矩阵方程(4),还介绍了已知一种2-阶环路算法,并给出了此算法的误差估计式,即估计式(6).由此深信:这些结果对于实际问题驱动的生化反应系统的研究将带来极大方便,并提供方法论.对于一般的高维矩阵方程(4),也可以采用著名的Picard逐步逼近法来求解.由于这种逼近法只需要迭代几步就可以达到很高的精度,因此在实际应用中可能是方便的. 最后,无论是2-阶环路算法还是Picard逐步逼近法,都需要通过生物例子加以检验,并和著名的Gillespie随机模拟算法[10]进行比较,这将是下一步的研究.【相关文献】[1]Wang Junwei,Zhang Jiajun,Yuan Zhanjiang,et al.Noise-induced switches in network systems of the genetic toggle switch [J].BMC Syst Biol,2007,(1):50-60.[2] Gammaitoni L,Hänggi P,Jung P,et al.Stochastic resonance [J].Rev Mod Phys,1998,70(1):223-287.[3] Pikovsky A S,Kurths J.Coherent resonance in a noise-driven excitable system [J].Phys Rev Lett,1997,78(5):775-778.[4] Zhou Tianshou,Chen Luonan,Aihara K.Molecular communication through stochastic synchronization induced by extracellular fluctuations [J].Phys Rev Lett,2005,95(17):178103.[5] Teramae J N,Tanaka D.Robustness of the noise-induced phase synchronization in a general class of limit cycle oscillators [J].Phys Rev Lett,2004,93(20):204103.[6] Paulsson J,Berg O G,Ehrenberg M.Stochastic focusing:fluctuation-enhanced sensitivity of intracellular regulation [J].Proc Natl Acad Sci U S A,2000,97(13):7148-7153.[7] Van Kampen N G.Stochastic processes in physics and chemistry [M].Amsterdam:Elsevier,2007.[8] 周天寿.概率主方程的研究综述 [J].江西师范大学学报:自然科学版,2015,39(1):1-6.[9] 周天寿.基因表达系统的研究进展:概率分布 [J].江西师范大学学报:自然科学版,2012,36(3):221-229.[10] Gillespie D T.A general method for numerically simulating the stochastic time evolution of coupled chemical reactions [J].J Comput Phys,1976,22(4):403-434. [11] Munsky B,Khammash M.The finite state projection algorithm for the solution of the chemical master equation [J].J Chem Phys,2006,124(4):044104.[12] Ale A,Kirk P,Stumpf M P.A general moment expansion method for stochastic kinetic models [J].J Chem Phys,2013,138(17):174101.[13] Smadbeck P,Kaznessis Y N.A closure scheme for chemical master equations [J].Proc Natl Acad Sci U S A,2013,110(35):14261-14265.[14] Zechner C,Ruess J,Krenn P,et al.Moment-based inference predicts bimodality in transient gene expression [J].Proc Natl Acad Sci U S A,2012,109(21):8340-8345. [15] Grima R.A study of the accuracy of moment-closure approximations for stochastic chemical kinetics [J].J Chem Phys,2012,136(15):1591-1596.[16] Zhang Jiajun,Nie Qing,Zhou Tianshou.A moment-convergence method for stochastic analysis of biochemical reaction networks [J].J Chem Phys,2016,144(19):194109.[17] Nie Qing,Zhang Yongtao,Zhao Rui.Efficient semi-implicit schemes for stiff systems [J].J Comput Phys,2006,214(2):521-537.。

Recombination of Intersecting D-branes in Tachyon Field Theory

Recombination of Intersecting D-branes in Tachyon Field Theory

E-mail: whhwung@.tw
1
1ቤተ መጻሕፍቲ ባይዱ
Introduction
Branes and their different configurations are known to play important roles in the unified formulation of nonperturbative string/M theory [1-4]. Brane configurations that contain tachyonic model are unstable and will decay. The decay models vary depending on the unstable brane configurations. In a series of papers, Sen had made several conjectures on tachyon condensation [5] which have drawn attention to various non-BPS D-brane configurations in string theory [6-10]. According to the conjectures the potential height of the tachyon potential exactly cancels the tension of the original unstable D-brane and, at the stable true vacuum, the original D-brane disappears and the kink-type tachyon condensed states correspond to lower-dimensional D-branes. One of the interesting D-brane configurations is a pair of D-branes intersecting at an angle [11-14]. Such a scenario of intersecting branes is known to be possible to construct models similar to the standard model [15] and may provide a simple mechanism for inflation in the early universe [16]. In this paper we will investigate the mechanism of recombination of intersection D-branes. Within the framework of the effective tachyon field theory [6-10] we describe how a pair of D-branes intersecting at an angle shall recombine. In the section II we briefly review the effective one-tachyon Lagrangian. In the section III we use the effective two-tachyon Lagrangian [9], in which the tachyon is described as a two-by-two matrix field, to study the diagonal fluctuation in the background of the kink solutions. The kink solutions in here are regarded as tachyon condensations of the non-BPS brane in higher dimension. As the tachyon condensated state represents a lower-dimensional BPS-brane, it is a stable configuration. Therefore the diagonal fluctuation in the background of the kink solutions will have no tachyonic mode. Then, as the main contain of this paper, we study the off-diagonal fluctuation in the background of the kink solutions. in this case as the D-branes (i.e. kinks) intersecting at an angle is unstable the off-diagonal fluctuation will have tachyonic mode. After diagonalizing the tachyonic matrix field we see that the eigenfunction can describe the new recombined branes. In the section IV we extend our method to discuss the general behavior of the recombination of intersection D-branes which possessing arbitrary function forms. We also present the physical reasons behind the mathematical process of diagonalizing the tachyonic matrix field. Note that in a recent paper Hashimoto and Nagaoka [14] had investigated the recombination of intersecting D-branes by using the super Yang-Mills theory which are low energy effective theories of D-branes. The Yang-Mills field therein represents the dynamics field on the branes while the Higgs fields represent the locations of the D-branes. Our investigations are within the framework of tachyon field theory, thus the dynamics field on the branes are

Quantum Deformations of Multi-Instanton Solutions in the Twistor Space

Quantum Deformations of Multi-Instanton Solutions in the Twistor Space

a r X i v :q -a l g/95724v121J u l1995QUANTUM DEFORMATIONS OF MULTI-INSTANTON SOLUTIONS IN THE TWISTOR SPACE B.M.Zupnik Bogoliubov Laboratory of Theoretical Physics ,JINR,Dubna,Moscow Region,141980,E-mail:zupnik@thsun1.jinr.dubna.su To be published in ”Pis’ma v ZhETP”v.62,n.4We consider the quantum-group self-duality equation in the framework of the gauge theory on a deformed twistor space.Quantum deformations of the Atiyah-Drinfel’d-Hitchin-Manin and t’Hooft multi-instanton solutions are constructed.The quantum-group gauge theory was considered in the framework of the algebra of local differential complexes [1]-[3]or as a noncommutative generalization of the fibre bundles over the classical or quantum basic spaces [4,5].We prefer to use local constructions of the noncommutative connection forms or gauge fields as a deformed analogue of the local gauge fields.In particular,the quantum-group self-duality equation (QGSDE)has been considered in the deformed 4-dimensional Euclidean space,and an explicit formula for the corresponding one-instanton solution has been constructed [3].This solution can be treated as q -deformation of the BPST-instanton [6].We shall discuss here quantum deformations of the general multi-instanton solutions [7].The conformal covariant description of the classical ADHM solution was considered in Ref[8].We shall study the quantum deformation of this version of the twistor formalism.It is convenient to discuss firstly the deformations of the complex conformal group GL (4,C ),complex twistors and the complex linear gauge groups.Let R ab cd ,(a,b,c,d...=1...4)be the solution of the 4D Yang-Baxter equation satis-fying also the Hecke relation R R ′R =R ′R R ′(1)R 2=I +(q −q −1)R (2)where q is a complexparameter.Note that the standard notation for these R -matrices isR =ˆR 12,R ′=ˆR 23[9].Consider also the SL q (2,C )R -matrixR αβµν=qδαµδβν+εαβ(q )εµν(q )(3)where ε(q )is the deformed antisymmetric symbol.Noncommutative twistors were considered in Ref[10].We shall use the R -matrix ap-proach to define the differential calculus on the deformed twistor space.Let z αa and dz αa be the components of the q -twistor and their differentialsR αβµνz µa z νb =z αc z βd R dc ba (4)z αa dz βb =R αβµνdz µc z νd R dc ba (5)dz αa dz βb =−R αβµνdz µc dz νd R dc ba (6)1One can define also the algebra of partial derivatives∂aαR abcd ∂cα∂dβ=∂aµ∂bνRνµβα(7)∂aαzβb=δa bδβα+RβµανR da cb zνd∂cµ(8) Consider the4D deformedεq-symbolR bafe εefcdq=−1Let us consider the quantum deformation of the GL(2)t’Hooft solution[8]=q−3dzαa(∂aµΦ)Φ−1εσµ(q)εσβ(q)(18)AαβΦ= i(X i)−1,X i=(y,b i)=εabcd q y ab b i cd(19) where b i cd are the noncommutative isotropic6D vectorsdb i cd=0,(b i,b i)=0(20)[y ab,X i]=[b i cd,X i]=0(21) The central elements X i of the(B,z)-algebra do not commute with dz=q2dzαa X i(22)X i dzαaStress that Aαβsatisfies Eq(16)and its quantum trace is a U(1)-gaugefield with the zerofield-strengthTr q A=−q−3dΦΦ−1,Tr q dA=0(23) The QGSDE for Aαβis equivalent to thefinite-difference Laplace equation for the functionΦon the q-twistor space∆baΦ(X i)= i∆ba1εαβ(q)∂bβ∂aαΦ=(∂ba+11+q2where g(z)is the nondegenerate(k×k)matrix with the central elementsqg AB(z)=This curvature contains the self-dual2-form(14)only.It should be stressed that all R-matrices of our deformation scheme satisfy the Hecke relation with the common parameter q.The other possible parameters of different R-matrices are independent.The case q=1corresponds to the unitary deformations(R2= I)of the twistor space and the gauge groups.It is evident that the trivial deformation of the z-twistors is consistent with the nontrivial unitary deformation of the gauge sector and vice versa.The Euclidean conformal q-twistors are a representation of the U∗(4)×SU q(2)group. The antiinvolution for these twistors has the following form:(zαa)∗=εαβ(q)zβb C b a(47) where C is the charge conjugation matrix for U∗(4).We can use the gauge group U q(N) in the framework of our approach.An analogous construction can be considered for the real twistors and the gauge group GL q(N,R).The author would like to thank A.T.Filippov,E.A.Ivanov,A.P.Isaev and V.I.Ogievet-sky for helpful discussions and interest in this work.I am grateful to administration of JINR and Laboratory of Theoretical Physics for hospitality.This work was supported in part by ISF-grant RUA000,INTAS-grant93-127 and the contract No.40of Uzbek Foundation of Fundamental Research.[1]A.P.Isaev,Z.Popowicz,Phys.Lett.B281,271(1992);Phys.Lett.B307,353(1993)[2]A.P.Isaev,J.Math.Phys.35,6784(1995)[3]B.M.Zupnik,Pis’ma ZhETF,61,434(1995);Preprints JINR E2-94-449,hep-th/9411186;E2-94-487,q-alg/9412010[4]T.Brzezinski,Sh.Majid,Comm.Math.Phys.157,591(1993)[5]M.J.Pflaum,Comm.Math.Phys.166,279(1994)[6]A.A.Belavin,A.M.Polyakov,A.S.Schwartz and Yu.S.Tyupkin,Phys.Lett.B59,85(1975)[7]M.F.Atiyah,V.G.Drinfel’d,N.J.Hitchin and Yu.I.Manin,Phys.Lett.A65,185(1978)[8]W.Siegel,Preprint ITP-SB-94-66,Stony Brook,1994;hep-th/9412011[9]N.Yu.Reshetikhin,L.A.Takhtadjan and L.D.Faddeev,Algeb.Anal.1,178(1989)[10]S.A.Merkulov,Z.Phys.C52,583(1991)5。

非线性动力系统的两类分岔控制与混沌控制研究

非线性动力系统的两类分岔控制与混沌控制研究
湖南大学 硕士学位论文 非线性动力系统的两类分岔控制与混沌控制研究 姓名:欧阳克俭 申请学位级别:硕士 专业:固体力学 指导教师:唐驾时 20070428
硕士学位论文


分岔控制作为非线性科学中的前沿研究课题,极具挑战性。分岔控制的目的 是对给定的非线性动力系统设计一个控制器,用来改变系统的分岔特性,从而去 掉系统中有害的动力学行为,使之产生人们需要的动力学行为。本文在全面分析 和总结非线性动力系统分岔控制研究现状的基础上,基于非线性动力学、非线性 控制理论、分岔理论等非线性科学的现代分析方法,对倍周期分岔、Hopf 分岔等 进行控制,工作具有较大的理论意义和应用价值。研究内容如下: 第一章对非线性控制理论、分岔控制的研究方法、现状和进展进行综述,介 绍本文的研究目的、研究内容和创新点。 第二章介绍动力学研究的一些基本概念,简述发生鞍结分岔、跨临界分岔、 叉形分岔的充分必要条件,以及这三种静态分岔相互转换的条件;介绍分岔控制 器设计及分析的主要方法。 第三章设计了线性和非线性的状态反馈控制器,对 Logistic 模型的倍周期分 岔进行了控制, 得到了系统在控制前和控制后的分岔图 , 通过设计不同的参数控制 器,改变了动力系统的分岔特性。根据实际应用目的,设计了不同的控制器改变 了存在的分岔点的参数值,并且调整了分岔链的形状。通过优化控制器可以使 Logistic 模型的分岔行为满足一定的要求。 第四章设计了状态反馈控制器和 washout filter 控制器对 van der Pol-Duffing 系统的 Hopf 分岔的极限环幅值进行了控制。通过对控制方程的分析,了解了控 制参数和极限环幅值的影响情况,进而提出控制策略,设计了状态反馈控制器对 系统的 Hopf 分岔进行了控制。 第五章设计了线性反馈控制器对 Lorenz 系统的平衡点和周期轨道进行了控 制,首先利用 Routh-Hurwitz 准则对受控系统进行了稳定性分析,严格证明了达 到控制目标反馈系数的选择原则,最后通过数值计算证明了该方法能够有效地控 制混沌系统到稳定的平衡点同时也能使系统控制到 1P 周期轨道,并且得到了控 制到稳定的 1P 周期轨道的控制参数的选取范围。 本文的主要创新点在于将分岔控制理论应用于非线性振动系统的研究,丰富 了非线性控制理论研究的内容,加深了分岔理论研究的深度。具体表现在:对 Logistic 模型的倍周期分岔进行了反馈控制;首次将 washout filter 技术应用于二 维 van der Pol-Duffing 系统的 Hopf 分岔控制;应用线性反馈控制成功实现了对 Lorenz 系统平衡点的混沌控制和 1P 周期轨道控制。 关键词:分岔控制;非线性动力系统;状态反馈控制;多尺度法; Hopf 分岔

P(四章第四讲)狄拉克符号课件

P(四章第四讲)狄拉克符号课件

n
n
n
( na*nbn n )* *
n
P(四章第四讲)狄拉克符号
波函数归一化
(,)2d3r*d3r1
本征矢的正交归一化
x | x
x|x' (x',x)(xx') ' (-')
p |p ') (p ',p )(p ' p ) qq' (q-q')
n | n
mn(um,un)m n lm |l'm ')(Y l'm ',Y lm )ll' m m '
t
P(四章第四讲)狄拉克符号
定义波函数演化算符:
U ˆ(t,t0)(t0)(t) (1 )
作用于 t 0 时刻的态 (t0 ) 得到t时刻的态 (t )
分析:
(1) Uˆ(t0,t0)I
U ˆ(t0,t0)(t0) (t0),
(2)求它的具体形式
i (t) H ˆ(t)
t
i tU ˆ(t,t0 ) (t0 ) H ˆU ˆ(t,t0 ) (t0 ) P(四章第四讲)狄拉克符号
算符的矩阵
设态矢 经算符 F ˆ 的作用后变成态矢 ,即

|1|nn n
F ˆ n n n
mmF ˆnn n
Fmn mFˆ n
bm Fmnan n
b1 F11 F12
b2
F21
F22
P(四章第四讲)狄拉克符号源自a1 a2Schrödinger方程的矩阵形式
P(四章第四讲)狄拉克符号
态矢量在具体表象中的表示 (x) x (p) p
本征态上的展开系数(投影)
n | n

裴攀-翻译中文

裴攀-翻译中文

第6章光源和放大器在光纤系统,光纤光源产生的光束携带的信息。

激光二极管和发光二极管是两种最常见的来源。

他们的微小尺寸与小直径的光纤兼容,其坚固的结构和低功耗要求与现代的固态电子兼容。

在以下几个GHz的工作系统,大部分(或数Gb /秒),信息贴到光束通过调节输入电流源。

外部调制(在第4、10章讨论)被认为是当这些率超标。

我们二极管LED和激光研究,包括操作方法,转移特性和调制。

我们计划以获得其他好的或理念的差异的两个来源,什么情况下调用。

当纤维损失导致信号功率低于要求的水平,光放大器都需要增强信号到有效的水平。

通过他们的使用,光纤链路可以延长。

因为光源和光放大器,如此多的共同点,他们都是在这一章处理。

1.发光二极管一个发光二极管[1,2]是一个PN结的半导体发光时正向偏置。

图6.1显示的连接器件、电路符号,能量块和二极管关联。

能带理论提供了对一个)简单的解释半导体发射器(和探测器)。

允许能带通过的是工作组,其显示的宽度能在图中,相隔一禁止区域(带隙)。

在上层能带称为导带,电子不一定要到移动单个原子都是免费的。

洞中有一个正电荷。

它们存在于原子电子的地点已经从一个中立带走,留下的电荷原子与净正。

自由电子与空穴重新结合可以,返回的中性原子状态。

能量被释放时,发生这种情况。

一个n -型半导体拥有自由电子数,如图图英寸6.1。

p型半导体有孔数自由。

当一种P型和一种N型材料费米能级(WF)的P和N的材料一致,并外加电压上作用时,产生的能垒如显示的数字所示。

重参杂材料,这种情况提供许多电子传到和过程中需要排放的孔。

在图中,电子能量增加垂直向上,能增加洞垂直向下。

因此,在N地区的自由电子没有足够的能量去穿越阻碍而移动到P区。

同样,空穴缺乏足够的能量克服障碍而移动进入n区。

当没有外加电压时,由于两种材料不同的费米能级产生的的能量阻碍,就不能自由移动。

外加电压通过升高的N端势能,降低一侧的P端势能,从而是阻碍减小。

如果供电电压(电子伏特)与能级(工作组)相同,自由电子和自由空穴就有足够的能量移动到交界区,如底部的数字显示,当一个自由电子在交界区遇到了一个空穴,电子可以下降到价带,并与空穴重组。

An-iterative-algorithm-for-the-reflexive-solutions-of-the-generalized-coupled-Sylvestermatrixequatio

An-iterative-algorithm-for-the-reflexive-solutions-of-the-generalized-coupled-Sylvestermatrixequatio

An iterative algorithm for the reflexive solutions of the generalized coupled Sylvester matrix equationsand its optimal approximationMehdi Dehghan *,Masoud HajarianDepartment of Applied Mathematics,Faculty of Mathematics and Computer Science,Amirkabir University of Technology,No.424,Hafez Avenue,Tehran 15914,IranAbstractThe generalized coupled Sylvester matrix equations ðAY ÀZB ;CY ÀZD Þ¼ðE ;F Þwith unknown matrices Y ;Z are encountered in many systems and control applications.Also these matrix equations have several applications relating to the problem of computing stable eigendecompositions of matrix pencils.In this work,we construct an iterative algo-rithm to solve the generalized coupled Sylvester matrix equations over reflexive matrices Y ;Z .And when the matrix equa-tions are consistent,for any initial matrix pair ½Y 0;Z 0 ,a reflexive solution pair can be obtained within finite iteration steps in the absence of roundofferrors,and the least Frobenius norm reflexive solution pair can be obtained by choosing a spe-cial kind of initial matrix pair.Also we obtain the optimal approximation reflexive solution pair to a given matrix pair ½Y ;Z in the reflexive solution pair set of the generalized coupled Sylvester matrix equations ðAY ÀZB ;CY ÀZD Þ¼ðE ;F Þ.Moreover,several numerical examples are given to show the efficiency of the presented iterative algorithm.Ó2008Elsevier Inc.All rights reserved.Keywords:The generalized coupled Sylvester matrix equations;Generalized reflection matrix;Kronecker matrix product;Reflexive matrix;Optimal approximation reflexive solution pair1.IntroductionWe first give some notations which are used in this paper.The notation R m Ân denotes the set of all m Ân real matrices.The unit matrix of order n is denoted by I n .1n denotes the matrix of order n whose all elements are 1.We use A T ,tr ðA Þand R ðA Þto denote the transpose,the trace and the column space of the matrix A ,respectively.For a matrix A 2R m Ân ,the so–called stretching function vec ðA Þis defined by the following:vec ðA Þ¼a T 1a T 2...a T nÀÁT;0096-3003/$-see front matter Ó2008Elsevier Inc.All rights reserved.doi:10.1016/j.amc.2008.02.035*Corresponding author.E-mail addresses:mdehghan@aut.ac.ir (M.Dehghan),mhajarian@aut.ac.ir ,masoudhajarian@ (M.Hajarian).Available online at Applied Mathematics and Computation 202(2008)571–588/locate/amcwhere a k is the k th column of A .A B stands for the Kronecker product of matrices A ¼ða ij Þm Ân and B which is defined asA B ¼a 11B a 12B ÁÁa 1n Ba 21B a 22B ÁÁa 2n B ÁÁÁÁÁÁÁÁÁÁa m 1B a m 2B ÁÁa mn BBB BB BB@1C CC C C C A :In addition,h A ;B i ¼tr B T A ÀÁis defined as the inner product of the two matrices,which generates the Frobe-nius norm,i.e.h A ;A i ¼k A k 2[1,8,15].An n Ân real matrix P is said to be a real generalized reflection matrix if P T ¼P and P 2¼I n .An n Ân real matrix A is said to be a reflexive (anti-reflexive)matrix with respect to the generalized reflection matrix P ifA ¼PAP ðA ¼ÀPAP Þ.R n Ân r ðP ÞðR n Âna ðP ÞÞdenotes the subspace reflexive (anti-reflexive)matrices with respect to the n Ân generalized reflection matrix P .The reflexive and anti-reflexive matrices with respect to a general-ized reflection matrix P have applications in system and control theory,in engineering,in scientific computa-tions and various other fields [3–5].In this paper we consider the reflexive solutions of the linear matrix equationsAY ÀZB ¼E ;CY ÀZD ¼F ;ð1Þwhere A ;B ;C ;D ;E ;F 2R n Ân ,that is,we will find Y 2R n Ân r ðP Þand Z 2R n Ânr ðQ Þwhich satisfy in (1).Also we consider the reflexive solutions of the matrix pair nearness problemmin Y ;Z 2S YZfk Y ÀY k 2þk Z ÀZ k 2g ;ð2Þwhere Y 2R n Ân r ðP Þand Z 2R n Ânr ðQ Þare given reflexive matrices,and S YZ is the reflexive solution pair set of the generalized coupled Sylvester matrix equations (1).A large number of papers have been written for solving matrix equations [17,19,24,27,30–33].Chu [6]stud-ied the linear matrix equationAXB ¼C ;ð3Þwith an unknown symmetric matrix X .Peng and Hu in [26]established the necessary and sufficient conditions for the existence of solution and the expressions for the reflexive and anti-reflexive with respect to a generalized reflection matrix P solutions of the matrix equationAX ¼B :In [7],the existence of a reflexive,with respect to the generalized reflection matrix P ,solution of the matrix equation (3)is presented.By extending the well-known Jacobi and Gauss–Seidel iterations for Ax ¼b ,Ding et al.in [14]derived iterative solutions of matrix equations AXB ¼F and generalized Sylvester matrix equa-tions AXB þCXD ¼F .Navarra et al.[25]studied a representation of the general common solution X to the matrix equationA 1XB 1¼C 1;A 2XB 2¼C 2:ð4ÞPeng et al.[29]presented an algorithm which is constructed to solve the reflexive with respect to the general-ized reflection matrix P solution of the minimum Frobenius norm residual problemA 1XB 1A 2XB 2 ÀC 1C 2 ¼min :In [28]an iterative algorithm is reported to solve the matrix equationAXB þCYD ¼E :572M.Dehghan,M.Hajarian /Applied Mathematics and Computation 202(2008)571–588We know the Sylvester matrix equations have a close relation with many problems in linear control theory of descriptor systems,and the matrix equations have important applications in stability analysis,in observers de-sign,in output regulation with internal stability,and in the eigenvalue assignment,and a large number of papers have presented several methods to solve these matrix equations[2,16,20–23].The generalized coupled Sylvester matrix equations(1)are very active research in the Sylvester matrix equations,and have been widely applied in various areas.In[23]Ka_gstro¨m and Poromaa introduced LAPACK–style error bounds for the generalized cou-pled Sylvester matrix equations,and presented their software that implement algorithms for solving this matrix equation.In[9,10,13,14],to solve(coupled)matrix equations,the iterative methods are given which are based on the hierarchical identification principle[11,12].The gradient-based iterative(GI)algorithms[9,14]and least squares based iterative algorithm[10]for solving(coupled)matrix equations are innovational and computa-tionally efficient numerical algorithms and were presented based on the hierarchical identification principle [11,12]which regards the unknown matrix as the system parameter matrix to be identified.Also Ding and Chen [13],applying the gradient search principle and the hierarchical identification principle,presented the gradient-based iterative algorithms for generalized Sylvester equation and general coupled matrix equations.This paper is organized as follows:In Section2,we propose an iterative algorithm and its properties to obtain the reflexive solutions of the generalized coupled Sylvester matrix equations(1).When the matrix equa-tions(1)are consistent over reflexive matrices,we show using the introduced iterative algorithm,for any(spa-cial)initial matrix pair½Y1;Z1 ,a reflexive solution pair(the minimal Frobenius normal reflexive solution pair) can be obtained withinfinite steps.Also the optimal approximation reflexive solution to a given matrix pair can be derived byfinding the least norm reflexive solution of new matrix equationsðA e YÀe ZB;C e YÀe ZDÞ¼ðe E;e FÞ.Several numerical examples are given in Section3to illustrate the application of the new iterative algorithm.2.Iterative algorithm to solve(1)and(2)In this section,wefirst introduce an iterative algorithm,then we propose some properties of this iterative algorithm which are essential tools forfinding the reflexive solution of matrix equations(1).Algorithm1step1.Input matrices A;B;C;D;E;F2R nÂn;step2.Chosen arbitrary Y12R nÂnr ðPÞ,Z12R nÂnrðQÞwhere P and Q are two nÂn arbitrary generalizedreflection matrices; step3.CalculateR1¼EÀAY1þZ1B00FÀCY1þZ1D;U1¼1A TðEÀAY1þZ1BÞþC TðFÀCY1þZ1DÞþPA TðEÀAY1þZ1BÞPþPC TðFÀCY1þZ1DÞP ÂÃ;V1¼12ÀðEÀAY1þZ1BÞB TÀðFÀCY1þZ1DÞD TÀQðEÀAY1þZ1BÞB T QÀQðFÀCY1þZ1DÞD T Q ÂÃ;k:¼1;step4.If R k¼0,then stop;Else go to step5; step5.CalculateY kþ1¼Y kþk R k k2k U k k2þk V k k2U k;Z kþ1¼Z kþk R k k2k U k kþk V k kV k;R kþ1¼EÀAY kþZ k B00FÀCY kþZ k D;¼R kÀk R k k2k U k k2þk V k k2AU kÀV k B00CU kÀV k D;M.Dehghan,M.Hajarian/Applied Mathematics and Computation202(2008)571–588573U k þ1¼12A TðE ÀAY k þ1þZ k þ1B ÞþC T ðF ÀCY k þ1þZ k þ1D ÞþPA T ðE ÀAY k þ1þZ k þ1B ÞP ÂþPC TðF ÀCY k þ1þZ k þ1D ÞP Ãþk R k þ1k 2k R k kU k ;V k þ1¼12ÀðE ÀAY k þ1þZ k þ1B ÞB T ÀðF ÀCY k þ1þZ k þ1D ÞD TÂÀQ ðE ÀAY k þ1þZ k þ1B ÞB T Q ÀQ ðF ÀCY k þ1þZ k þ1D ÞD TQ Ãþk R k þ1k 2k R k k 2V k ;step 6.If R k þ1¼0,then stop;Else,let k :¼k þ1,go to step 5.Since the above algorithm,we can easily see that Y k ;U k 2R n Ân r ðP Þand Z k ;V k 2R n Ânr ðQ Þ.Now we intro-duce some properties of the above algorithm.Lemma 1.Assume that the sequences R i ,U i and V i (i ¼1;2;...;s ,R i ¼0)are generated by Algorithm 1,then we havetr R T j R i ¼0;and tr U T j U i þtr V Tj V i ¼0;i ;j ¼1;2;...;s ;i ¼j :ð5ÞProof.It is obvious that tr R T j R i ¼tr ðR T i R j Þ,tr U T j U i ¼tr U T i U j ÀÁand tr V Tj V i ¼tr V T iV j ÀÁ,hence we need only to show thattr R Tj R i ¼0;andtr U T j U i þtr V Tj V i ¼0for 16i <j 6s :ð6ÞWe use induction to prove (6),and also we do it in two steps.Step 1.We first showtr R T i þ1R i ÀÁ¼0;and tr U T i þ1U i ÀÁþtr V T i þ1V i ÀÁ¼0;i ¼1;2;...;s :ð7ÞWe also prove (7)by induction.Because all matrices in Algorithm 1are real for i ¼1,we can writetr R T 2R 1ÀÁ¼tr R 1Àk R 1k 2k U 1k þk V 1kAU 1ÀV 1B 00CU 1ÀV 1D "#T R 10@1A ¼k R 1k 2Àk R 1k 2k U 1k 2þk V 1k2tr AU 1ÀV 1B 00CU 1ÀV 1D T ÂE ÀAY 1þZ 1B 00F ÀCY 1þZ 1D¼k R 1k 2Àk R 1k 2k U 1k 2þk V 1k2tr AU 1ÀV 1B ðÞTE ÀAY 1þZ 1B ðÞh i þðCU 1ÀV 1D ÞTðF ÀCY 1þZ 1D Þh i¼k R 1k 2Àk R 1k2k U 1k þk V 1ktr U T 1A TðE ÀAY 1þZ 1B ÞþU T 1C TðF ÀCY 1þZ 1D ÞÀÀB T V T 1ðE ÀAY 1þZ 1B ÞÀD T V T1ðF ÀCY 1þZ 1D ÞÁ¼k R 1k 2Àk R 1k 2k U 1k 2þk V 1k 2tr U T 1A T ðE ÀAY 1þZ 1B ÞþC TðF ÀCY 1þZ 1D Þ2 þA T ðE ÀAY 1þZ 1B ÞþC T ðF ÀCY 1þZ 1D Þ2574M.Dehghan,M.Hajarian /Applied Mathematics and Computation 202(2008)571–588þPA TðEÀAY1þZ1BÞPþPC TðFÀCY1þZ1DÞP2ÀPA TðEÀAY1þZ1BÞPþPC TðFÀCY1þZ1DÞP2!þV T1ÀðEÀAY1þZ1BÞB TÀðFÀCY1þZ1DÞD T2þÀðEÀAY1þZ1BÞB TÀðFÀCY1þZ1DÞD T2þÀQðEÀAY1þZ1BÞB T QÀQðFÀCY1þZ1DÞD T Q2ÀÀQðEÀAY1þZ1BÞB T QÀQðFÀCY1þZ1DÞD T Q!¼k R1k2Àk R1k2k U1kþk V1ktr U T1A TðEÀAY1þZ1BÞþC TðFÀCY1þZ1DÞ2þPA TðEÀAY1þZ1BÞPþPC TðFÀCY1þZ1DÞP2!þV T1ÀðEÀAY1þZ1BÞB TÀðFÀCY1þZ1DÞD T2þÀQðEÀAY1þZ1BÞB T QÀQðFÀCY1þZ1DÞD T Q2!¼k R1k2Àk R1k2k U1kþk V1ktr U T1U1þV T1V1ÀÁ¼0:ð8ÞAlso we havetr U T2U1ÀÁþtr V T2V1ÀÁ¼tr A TðEÀAY2þZ2BÞþC TðFÀCY2þZ2DÞ2þPA TðEÀAY2þZ2BÞPþPC TðFÀCY2þZ2DÞP2þk R2k2k R1k2U1#TU1!þtrÀðEÀAY2þZ2BÞB TÀðFÀCY2þZ2DÞD T2þÀQðEÀAY2þZ2BÞB T QÀQðFÀCY2þZ2DÞD T Q2þk R2k2k R1k2V1#TV11A¼tr A TðEÀAY2þZ2BÞþC TðFÀCY2þZ2DÞ2þA TðEÀAY2þZ2BÞþC TðFÀCY2þZ2DÞ2ÀPA TðEÀAY2þZ2BÞPþPC TðFÀCY2þZ2DÞP2þPA TðEÀAY2þZ2BÞPþPC TðFÀCY2þZ2DÞP2þk R2k2k R1kU1#TU1!þtrÀðEÀAY2þZ2BÞB TÀðFÀCY2þZ2DÞD T2þÀðEÀAY2þZ2BÞB TÀðFÀCY2þZ2DÞD T2ÀÀQðEÀAY2þZ2BÞB T QÀQðFÀCY2þZ2DÞD T Q2þÀQðEÀAY2þZ2BÞB T QÀQðFÀCY2þZ2DÞD T Q2þk R2k2k R1kV1#TV11AM.Dehghan,M.Hajarian/Applied Mathematics and Computation202(2008)571–588575¼tr U T 1A T ðE ÀAY 2þZ 2B ÞþC T ðF ÀCY 2þZ 2D ÞÂÃþV T 1ÀðE ÀAY 2þZ 2B ÞB T ÀðF ÀCY 2þZ 2D ÞD TÂÃÀÁþk R 2k 2k R 1kðk V 1k 2þk U 1k 2Þ¼tr ððE ÀAY 2þZ 2B ÞT AU 1þðF ÀCY 2þZ 2D ÞT CU 1ÀðE ÀAY 2þZ 2B ÞT V 1B ÀðF ÀCY 2þZ 2D ÞT V 1D Þþk R 2k 2k R 1k2ðk V 1k 2þk U 1k 2Þ¼trðE ÀAY 2þZ 2B ÞT0ðF ÀCY 2þZ 2D ÞT!AU 1ÀV 1B0CU 1ÀV 1D! !þk R 2k 2k R 1kðk V 1k 2þk U 1k 2Þ¼k U 1k 2þk V 1k 2k R 1ktr ðR T 2ðR 1ÀR 2ÞÞþk R 2k 2k R 1kðk V 1k 2þk U 1k 2Þ¼0:ð9ÞAssume that (7)holds for i ¼d À1.Now let i ¼d .Similar to the proofs of (8)and (9),we can obtaintr R T d þ1R d ÀÁ¼k R d k 2Àk R d k 2k U d k þk V d ktr AU d ÀV d B 00CU d ÀV d D T ÂE ÀAY d þZ d B00F ÀCY d þZ d D¼k R d k 2Àk R d k 2k U d k 2þk V d k2tr U T d A T ðE ÀAY d þZ d B ÞþU T d C TðF ÀCY d þZ d D ÞÀÀB T V T d ðE ÀAY d þZ d B ÞÀD T V TdðF ÀCY d þZ d D ÞÁ¼k R d k 2Àk R d k 2k U d k 2þk V d k2tr U T d A T ðE ÀAY d þZ d B ÞþC TðF ÀCY d þZ d D Þ2 þPA T ðE ÀAY d þZ d B ÞP þPC T ðF ÀCY d þZ d D ÞP 2!þV T dÀðE ÀAY d þZ d B ÞB T ÀðF ÀCY d þZ d D ÞD T 2þÀQ ðE ÀAY d þZ d B ÞB TQ ÀQ ðF ÀCY d þZ d D ÞD T Q 2! ¼k R d k 2Àk R d k 2k U d k þk V d k tr U T d U d Àk R d k 2k R d À1k U d À1 !þV Td V d Àk R d k 2k R d À1kV d À1! !¼k R d k 2Àk R d k 2k U d k þk V d kk U d k 2þk V d k 2 þk R d k 4k U d k 2þk V d k 2 k R d À1k 2tr U T d U d À1ÀÁþtr V T d V d À1ÀÁ1A ¼0ð10ÞAnd we havetr U T d þ1U d ÀÁþtr V T d þ1V d ÀÁ¼tr U T dA T ðE ÀAY d þ1þZ d þ1B ÞþC TðF ÀCY d þ1þZ d þ1D ÞÂÃÀþV Td ÀðE ÀAY d þ1þZ d þ1B ÞB T ÀðF ÀCY d þ1þZ d þ1D ÞD TÂÃÁþk R d þ1k 2k R d k 2k V d k 2þk U d k 2¼tr E ÀAY d þ1þZ d þ1B ðÞT AU d þðF ÀCY d þ1þZ d þ1D ÞT CU dÀðE ÀAY d þ1þZ d þ1B ÞT V d B ÀðF ÀCY d þ1þZ d þ1D ÞTV d D576M.Dehghan,M.Hajarian /Applied Mathematics and Computation 202(2008)571–588þk R d þ1k2k R d k 2ðk V d k 2þk U d k 2Þ¼tr ðE ÀAY d þ1þZ d þ1B ÞT 0ðF ÀCY d þ1þZ d þ1D ÞT!ÂAU d ÀV d B00CU d ÀV d Dþk R d þ1k 2k R d k2ðk V d k 2þk U d k 2Þ¼k U d k 2þk V d k2k R d ktr ðR T d þ1ðR dÀR d þ1ÞÞþk R d þ1k 2k R d kðk V d k 2þk U d k 2Þ¼0:ð11ÞHence,(7)holds for i ¼d .Then since (8)–(11),(7)holds by principal of induction.Step 2.In this step,we assume tr R T i þt R i ÀÁ¼0,and tr ðU Ti þt U i Þþtr ðV T i þt V i Þ¼0for 16i 6t and 1<t <s .Now we show tr R T i þt þ1R i ÀÁ¼0,and tr U T i þt þ1U i ÀÁþtr ðV Ti þt þ1V i Þ¼0.By using step 1and similar to the proofs of (8)–(11),we can writetr R T i þt þ1R i ÀÁ¼tr R i þt Àk R i þt k 2k U i þt k þk V i þt kAU i þt ÀV i þt B 00CU i þt ÀV i þt D "#T R i 0@1A ¼tr R T i þt R i ÀÁÀk R i þt k 2k U i þt k 2þk V i þt k2tr AU i þt ÀV i þt B 00CU i þt ÀV i þt D T ÂE ÀAY i þZ i B 00F ÀCY i þZ i D¼Àk R i þt k 2k U i þt k þk V i þt ktr U T i þt A T ðE ÀAY i þZ i B ÞþU T i þt C TðF ÀCY i þZ i D ÞÀÀB T V T i þt ðE ÀAY i þZ i B ÞÀD T V Ti þtðF ÀCY i þZ i D ÞÁ¼Àk R i þt k 2k U i þt k 2þk V i þt k 2tr U Ti þt A T ðE ÀAY i þZ i B ÞþC T ðF ÀCY i þZ i D Þ2 þA T ðE ÀAY i þZ iB ÞþC T ðF ÀCY i þZ iD Þ2þPA T ðE ÀAY i þZ i B ÞP þPC T ðF ÀCY i þZ i D ÞP 2ÀPA T ðE ÀAY i þZ i B ÞP þPC T ðF ÀCY i þZ i D ÞP 2!þV Ti þtÀðE ÀAY i þZ i B ÞB T ÀðF ÀCY i þZ i D ÞD T 2þÀðE ÀAY i þZ i B ÞB T ÀðF ÀCY i þZ i D ÞD T 2þÀQ ðE ÀAY i þZ i B ÞB T Q ÀQ ðF ÀCY i þZ i D ÞD T Q 2ÀÀQ ðE ÀAY i þZ i B ÞB T Q ÀQ ðF ÀCY i þZ i D ÞD T Q 2!¼Àk R i þt k 2k U i þt k 2þk V i þt k2tr U Ti þtA T ðE ÀAY i þZ iB ÞþC T ðF ÀCY i þZ iD Þ2 þPA T ðE ÀAY i þZ i B ÞP þPC T ðF ÀCY i þZ i D ÞP !M.Dehghan,M.Hajarian /Applied Mathematics and Computation 202(2008)571–588577þV Tiþt ÀðEÀAY iþZ i BÞB TÀðFÀCY iþZ i DÞD T2þÀQðEÀAY iþZ i BÞB T QÀQðFÀCY iþZ i DÞD T Q2!¼Àk R iþt k2k U iþt kþk V iþt ktr U TiþtU iÀk R i k2k R iÀ1kU iÀ1!þV TiþtV iÀk R i k2k R iÀ1kV iÀ1!!¼Àk R iþt k2k U iþt kþk V iþt ktr U TiþtU iÀÁþtr V TiþtV iÀÁÂÃþk R iþt k2k R i k2ðk U iþt kþk V iþt kÞk R iÀ1kþtr U Tiþt U iÀ1ÀÁþtr V Tiþt V iÀ1ÀÁÂü0:ð12ÞNothing that we have tr R Tiþtþ1R iÀÁ¼0,and tr R Tiþtþ1R iþ1ÀÁ¼0,hence we can obtaintr U Tiþtþ1U iÀÁþtr V Tiþtþ1V iÀÁ¼trA T EÀAY iþtþ1þZ iþtþ1BðÞþC TðFÀCY iþtþ1þZ iþtþ1DÞ2þPA TðEÀAY iþtþ1þZ iþtþ1BÞPþPC TðFÀCY iþtþ1þZ iþtþ1DÞP2þk R iþtþ1k2k R iþt k2U iþt#TU i!þtr ÀðEÀAY iþtþ1þZ iþtþ1BÞB TÀðFÀCY iþtþ1þZ iþtþ1DÞD T2þÀQðEÀAY iþtþ1þZ iþtþ1BÞB T QÀQðFÀCY iþtþ1þZ iþtþ1DÞD T Q2þk R iþtþ1k2k R iþt kV iþt#TV i1A¼tr U TiA T EÀAY iþtþ1þZ iþtþ1BðÞþC TðFÀCY iþtþ1þZ iþtþ1DÞÂÃþV TiÀðEÀAY iþtþ1þZ iþtþ1BÞB TÂÀÀðFÀCY iþtþ1þZ iþtþ1DÞD T ÃÁþk R iþtþ1k2k R iþt k2tr U TiþtU iÀÁþtr V TiþtV iÀÁÀÁ¼trðEÀAY iþtþ1þZ iþtþ1BÞT AU iþðFÀCY iþtþ1þZ iþtþ1DÞT CU iÀðEÀAY iþtþ1þZ iþtþ1BÞT V i BÀðFÀCY iþtþ1þZ iþtþ1DÞT V i Dþk R iþtþ1k2k R iþt k2tr U TiþtU iÀÁþtr V TiþtV iÀÁÀÁ¼tr ðEÀAY iþtþ1þZ iþtþ1BÞT00ðFÀCY iþtþ1þZ iþtþ1DÞT!AU iÀV i B00CU iÀV i D!!þk R iþtþ1k2k R iþt k2tr U TiþtU iÀÁþtr V TiþtV iÀÁÀÁ¼k U i k2þk V i k2k R i k2tr R Tiþtþ1R iÀR iþ1ðÞÀÁþk R iþtþ1k2k R iþt k2tr U TiþtU iÀÁþtr V TiþtV iÀÁÀÁ¼0:ð13ÞBy steps1and2,the conclusion(5)holds by the principal of induction.hLemma2.Suppose that the matrix equations(1)are consistent over reflexive matrices,and½YÃ;Zà is an arbi-trary reflexive solution pair of the matrix equations(1).Then,for any initial reflexive matrix pair½Y1;Z1 trððYÃÀY iÞT U iþðZÃÀZ iÞT V iÞ¼k R i k2ð14Þfor i¼1;2;...,where the sequences f Y i g,f Z i g,f U i g,f V i g and f R i g are generated by Algorithm1.578M.Dehghan,M.Hajarian/Applied Mathematics and Computation202(2008)571–588Proof.We prove the conclusion (14)by induction.If i ¼1,we havetr ðY ÃÀY 1ÞT U 1þðZ ÃÀZ 1ÞTV 1¼tr Y ÃÀY 1ðÞT A T ðE ÀAY 1þZ 1B ÞþC TðF ÀCY 1þZ 1D Þ2þPA T ðE ÀAY 1þZ 1B ÞP þPC T ðF ÀCY 1þZ 1D ÞP 2!þðZ ÃÀZ 1ÞT ÀðE ÀAY 1þZ 1B ÞB T ÀðF ÀCY 1þZ 1D ÞD T 2þÀQ ðE ÀAY 1þZ 1B ÞB T Q ÀQ ðF ÀCY 1þZ 1D ÞD T Q 2!¼tr ðY ÃÀY 1ÞT A T ðE ÀAY 1þZ 1B ÞþC TðF ÀCY 1þZ 1D Þ2þA T ðE ÀAY 1þZ 1B ÞþC T ðF ÀCY 1þZ 1D ÞÀPA T ðE ÀAY 1þZ 1B ÞP þPC T ðF ÀCY 1þZ 1D ÞP þPA T ðE ÀAY 1þZ 1B ÞP þPC TðF ÀCY 1þZ 1D ÞP 2!þðZ ÃÀZ 1ÞT ÀðE ÀAY 1þZ 1B ÞB T ÀðF ÀCY 1þZ 1D ÞD T 2 þÀðE ÀAY 1þZ 1B ÞB T ÀðF ÀCY 1þZ 1D ÞD T 2ÀÀQ ðE ÀAY 1þZ 1B ÞB T Q ÀQ ðF ÀCY 1þZ 1D ÞD T Q2þÀQ ðE ÀAY 1þZ 1B ÞB T Q ÀQ ðF ÀCY 1þZ 1D ÞD T Q2! ¼tr Y ÃÀY 1ðÞT A T ðE ÀAY 1þZ 1B ÞþC T ðF ÀCY 1þZ 1D ÞÂÃþðZ ÃÀZ 1ÞT ÀðE ÀAY 1þZ 1B ÞB TÂÀðF ÀCY 1þZ 1D ÞD TÃÁ¼tr ðE ÀAY 1þZ 1B ÞT A ðY ÃÀY 1ÞþðF ÀCY 1þZ 1D ÞTC ðY ÃÀY 1ÞÀðE ÀAY 1þZ 1B ÞT ðZ ÃÀZ 1ÞB ÀðF ÀCY 1þZ 1D ÞT ðZ ÃÀZ 1ÞD¼tr ðE ÀAY 1þZ 1B ÞT0ðF ÀCY 1þZ 1D ÞT!ÂA ðY ÃÀY 1ÞÀðZ ÃÀZ 1ÞB00C ðY ÃÀY 1ÞÀðZ ÃÀZ 1ÞD0B @1C A 1C A¼trE ÀAY 1þZ 1B 00F ÀCY 1þZ 1D T E ÀAY 1þZ 1B 00F ÀCY 1þZ 1D!¼k R 1k 2:ð15ÞNow suppose the conclusion (14)holds for 16i 6d .Similar to the proof of (15),for i ¼d þ1we can obtaintr ðY ÃÀY d þ1ÞT U d þ1þðZ ÃÀZ d þ1ÞT V d þ1¼tr ðY ÃÀY d þ1ÞT A TðE ÀAY d þ1þZ d þ1B ÞþC T ðF ÀCY d þ1þZ d þ1D Þ2þPA T ðE ÀAY d þ1þZ d þ1B ÞP þPC TðF ÀCY d þ1þZ d þ1D ÞP 2þk R d þ1k2k R d k 2U d#M.Dehghan,M.Hajarian /Applied Mathematics and Computation 202(2008)571–588579。

斯普林格数学研究生教材丛书

斯普林格数学研究生教材丛书

《斯普林格数学研究生教材丛书》(Graduate Texts in Mathematics)GTM001《Introduction to Axiomatic Set Theory》Gaisi Takeuti, Wilson M.Zaring GTM002《Measure and Category》John C.Oxtoby(测度和范畴)(2ed.)GTM003《Topological Vector Spaces》H.H.Schaefer, M.P.Wolff(2ed.)GTM004《A Course in Homological Algebra》P.J.Hilton, U.Stammbach(2ed.)(同调代数教程)GTM005《Categories for the Working Mathematician》Saunders Mac Lane(2ed.)GTM006《Projective Planes》Daniel R.Hughes, Fred C.Piper(投射平面)GTM007《A Course in Arithmetic》Jean-Pierre Serre(数论教程)GTM008《Axiomatic set theory》Gaisi Takeuti, Wilson M.Zaring(2ed.)GTM009《Introduction to Lie Algebras and Representation Theory》James E.Humphreys(李代数和表示论导论)GTM010《A Course in Simple-Homotopy Theory》M.M CohenGTM011《Functions of One Complex VariableⅠ》John B.ConwayGTM012《Advanced Mathematical Analysis》Richard BealsGTM013《Rings and Categories of Modules》Frank W.Anderson, Kent R.Fuller(环和模的范畴)(2ed.)GTM014《Stable Mappings and Their Singularities》Martin Golubitsky, Victor Guillemin (稳定映射及其奇点)GTM015《Lectures in Functional Analysis and Operator Theory》Sterling K.Berberian GTM016《The Structure of Fields》David J.Winter(域结构)GTM017《Random Processes》Murray RosenblattGTM018《Measure Theory》Paul R.Halmos(测度论)GTM019《A Hilbert Space Problem Book》Paul R.Halmos(希尔伯特问题集)GTM020《Fibre Bundles》Dale Husemoller(纤维丛)GTM021《Linear Algebraic Groups》James E.Humphreys(线性代数群)GTM022《An Algebraic Introduction to Mathematical Logic》Donald W.Barnes, John M.MackGTM023《Linear Algebra》Werner H.Greub(线性代数)GTM024《Geometric Functional Analysis and Its Applications》Paul R.HolmesGTM025《Real and Abstract Analysis》Edwin Hewitt, Karl StrombergGTM026《Algebraic Theories》Ernest G.ManesGTM027《General Topology》John L.Kelley(一般拓扑学)GTM028《Commutative Algebra》VolumeⅠOscar Zariski, Pierre Samuel(交换代数)GTM029《Commutative Algebra》VolumeⅡOscar Zariski, Pierre Samuel(交换代数)GTM030《Lectures in Abstract AlgebraⅠ.Basic Concepts》Nathan Jacobson(抽象代数讲义Ⅰ基本概念分册)GTM031《Lectures in Abstract AlgebraⅡ.Linear Algabra》Nathan.Jacobson(抽象代数讲义Ⅱ线性代数分册)GTM032《Lectures in Abstract AlgebraⅢ.Theory of Fields and Galois Theory》Nathan.Jacobson(抽象代数讲义Ⅲ域和伽罗瓦理论)GTM033《Differential Topology》Morris W.Hirsch(微分拓扑)GTM034《Principles of Random Walk》Frank Spitzer(2ed.)(随机游动原理)GTM035《Several Complex Variables and Banach Algebras》Herbert Alexander, John Wermer(多复变和Banach代数)GTM036《Linear Topological Spaces》John L.Kelley, Isaac Namioka(线性拓扑空间)GTM037《Mathematical Logic》J.Donald Monk(数理逻辑)GTM038《Several Complex Variables》H.Grauert, K.FritzsheGTM039《An Invitation to C*-Algebras》William Arveson(C*-代数引论)GTM040《Denumerable Markov Chains》John G.Kemeny, urie Snell, Anthony W.KnappGTM041《Modular Functions and Dirichlet Series in Number Theory》Tom M.Apostol (数论中的模函数和Dirichlet序列)GTM042《Linear Representations of Finite Groups》Jean-Pierre Serre(有限群的线性表示)GTM043《Rings of Continuous Functions》Leonard Gillman, Meyer JerisonGTM044《Elementary Algebraic Geometry》Keith KendigGTM045《Probability TheoryⅠ》M.Loève(概率论Ⅰ)(4ed.)GTM046《Probability TheoryⅡ》M.Loève(概率论Ⅱ)(4ed.)GTM047《Geometric Topology in Dimensions 2 and 3》Edwin E.MoiseGTM048《General Relativity for Mathematicians》Rainer.K.Sachs, H.Wu伍鸿熙(为数学家写的广义相对论)GTM049《Linear Geometry》K.W.Gruenberg, A.J.Weir(2ed.)GTM050《Fermat's Last Theorem》Harold M.EdwardsGTM051《A Course in Differential Geometry》Wilhelm Klingenberg(微分几何教程)GTM052《Algebraic Geometry》Robin Hartshorne(代数几何)GTM053《A Course in Mathematical Logic for Mathematicians》Yu.I.Manin(2ed.)GTM054《Combinatorics with Emphasis on the Theory of Graphs》Jack E.Graver, Mark E.WatkinsGTM055《Introduction to Operator TheoryⅠ》Arlen Brown, Carl PearcyGTM056《Algebraic Topology:An Introduction》W.S.MasseyGTM057《Introduction to Knot Theory》Richard.H.Crowell, Ralph.H.FoxGTM058《p-adic Numbers, p-adic Analysis, and Zeta-Functions》Neal Koblitz(p-adic 数、p-adic分析和Z函数)GTM059《Cyclotomic Fields》Serge LangGTM060《Mathematical Methods of Classical Mechanics》V.I.Arnold(经典力学的数学方法)(2ed.)GTM061《Elements of Homotopy Theory》George W.Whitehead(同论论基础)GTM062《Fundamentals of the Theory of Groups》M.I.Kargapolov, Ju.I.Merzljakov GTM063《Modern Graph Theory》Béla BollobásGTM064《Fourier Series:A Modern Introduction》VolumeⅠ(2ed.)R.E.Edwards(傅里叶级数)GTM065《Differential Analysis on Complex Manifolds》Raymond O.Wells, Jr.(3ed.)GTM066《Introduction to Affine Group Schemes》William C.Waterhouse(仿射群概型引论)GTM067《Local Fields》Jean-Pierre Serre(局部域)GTM069《Cyclotomic FieldsⅠandⅡ》Serge LangGTM070《Singular Homology Theory》William S.MasseyGTM071《Riemann Surfaces》Herschel M.Farkas, Irwin Kra(黎曼曲面)GTM072《Classical Topology and Combinatorial Group Theory》John Stillwell(经典拓扑和组合群论)GTM073《Algebra》Thomas W.Hungerford(代数)GTM074《Multiplicative Number Theory》Harold Davenport(乘法数论)(3ed.)GTM075《Basic Theory of Algebraic Groups and Lie Algebras》G.P.HochschildGTM076《Algebraic Geometry:An Introduction to Birational Geometry of Algebraic Varieties》Shigeru IitakaGTM077《Lectures on the Theory of Algebraic Numbers》Erich HeckeGTM078《A Course in Universal Algebra》Stanley Burris, H.P.Sankappanavar(泛代数教程)GTM079《An Introduction to Ergodic Theory》Peter Walters(遍历性理论引论)GTM080《A Course in_the Theory of Groups》Derek J.S.RobinsonGTM081《Lectures on Riemann Surfaces》Otto ForsterGTM082《Differential Forms in Algebraic Topology》Raoul Bott, Loring W.Tu(代数拓扑中的微分形式)GTM083《Introduction to Cyclotomic Fields》Lawrence C.Washington(割圆域引论)GTM084《A Classical Introduction to Modern Number Theory》Kenneth Ireland, Michael Rosen(现代数论经典引论)GTM085《Fourier Series A Modern Introduction》Volume 1(2ed.)R.E.Edwards GTM086《Introduction to Coding Theory》J.H.van Lint(3ed .)GTM087《Cohomology of Groups》Kenneth S.Brown(上同调群)GTM088《Associative Algebras》Richard S.PierceGTM089《Introduction to Algebraic and Abelian Functions》Serge Lang(代数和交换函数引论)GTM090《An Introduction to Convex Polytopes》Ame BrondstedGTM091《The Geometry of Discrete Groups》Alan F.BeardonGTM092《Sequences and Series in BanachSpaces》Joseph DiestelGTM093《Modern Geometry-Methods and Applications》(PartⅠ.The of geometry Surfaces Transformation Groups and Fields)B.A.Dubrovin, A.T.Fomenko, S.P.Novikov (现代几何学方法和应用)GTM094《Foundations of Differentiable Manifolds and Lie Groups》Frank W.Warner(可微流形和李群基础)GTM095《Probability》A.N.Shiryaev(2ed.)GTM096《A Course in Functional Analysis》John B.Conway(泛函分析教程)GTM097《Introduction to Elliptic Curves and Modular Forms》Neal Koblitz(椭圆曲线和模形式引论)GTM098《Representations of Compact Lie Groups》Theodor Breöcker, Tammo tom DieckGTM099《Finite Reflection Groups》L.C.Grove, C.T.Benson(2ed.)GTM100《Harmonic Analysis on Semigroups》Christensen Berg, Jens Peter Reus Christensen, Paul ResselGTM101《Galois Theory》Harold M.Edwards(伽罗瓦理论)GTM102《Lie Groups, Lie Algebras, and Their Representation》V.S.Varadarajan(李群、李代数及其表示)GTM103《Complex Analysis》Serge LangGTM104《Modern Geometry-Methods and Applications》(PartⅡ.Geometry and Topology of Manifolds)B.A.Dubrovin, A.T.Fomenko, S.P.Novikov(现代几何学方法和应用)GTM105《SL₂ (R)》Serge Lang(SL₂ (R)群)GTM106《The Arithmetic of Elliptic Curves》Joseph H.Silverman(椭圆曲线的算术理论)GTM107《Applications of Lie Groups to Differential Equations》Peter J.Olver(李群在微分方程中的应用)GTM108《Holomorphic Functions and Integral Representations in Several Complex Variables》R.Michael RangeGTM109《Univalent Functions and Teichmueller Spaces》Lehto OlliGTM110《Algebraic Number Theory》Serge Lang(代数数论)GTM111《Elliptic Curves》Dale Husemoeller(椭圆曲线)GTM112《Elliptic Functions》Serge Lang(椭圆函数)GTM113《Brownian Motion and Stochastic Calculus》Ioannis Karatzas, Steven E.Shreve (布朗运动和随机计算)GTM114《A Course in Number Theory and Cryptography》Neal Koblitz(数论和密码学教程)GTM115《Differential Geometry:Manifolds, Curves, and Surfaces》M.Berger, B.Gostiaux GTM116《Measure and Integral》Volume1 John L.Kelley, T.P.SrinivasanGTM117《Algebraic Groups and Class Fields》Jean-Pierre Serre(代数群和类域)GTM118《Analysis Now》Gert K.Pedersen(现代分析)GTM119《An introduction to Algebraic Topology》Jossph J.Rotman(代数拓扑导论)GTM120《Weakly Differentiable Functions》William P.Ziemer(弱可微函数)GTM121《Cyclotomic Fields》Serge LangGTM122《Theory of Complex Functions》Reinhold RemmertGTM123《Numbers》H.-D.Ebbinghaus, H.Hermes, F.Hirzebruch, M.Koecher, K.Mainzer, J.Neukirch, A.Prestel, R.Remmert(2ed.)GTM124《Modern Geometry-Methods and Applications》(PartⅢ.Introduction to Homology Theory)B.A.Dubrovin, A.T.Fomenko, S.P.Novikov(现代几何学方法和应用)GTM125《Complex Variables:An introduction》Garlos A.Berenstein, Roger Gay GTM126《Linear Algebraic Groups》Armand Borel(线性代数群)GTM127《A Basic Course in Algebraic Topology》William S.Massey(代数拓扑基础教程)GTM128《Partial Differential Equations》Jeffrey RauchGTM129《Representation Theory:A First Course》William Fulton, Joe HarrisGTM130《Tensor Geometry》C.T.J.Dodson, T.Poston(张量几何)GTM131《A First Course in Noncommutative Rings》m(非交换环初级教程)GTM132《Iteration of Rational Functions:Complex Analytic Dynamical Systems》AlanF.Beardon(有理函数的迭代:复解析动力系统)GTM133《Algebraic Geometry:A First Course》Joe Harris(代数几何)GTM134《Coding and Information Theory》Steven RomanGTM135《Advanced Linear Algebra》Steven RomanGTM136《Algebra:An Approach via Module Theory》William A.Adkins, Steven H.WeintraubGTM137《Harmonic Function Theory》Sheldon Axler, Paul Bourdon, Wade Ramey(调和函数理论)GTM138《A Course in Computational Algebraic Number Theory》Henri Cohen(计算代数数论教程)GTM139《Topology and Geometry》Glen E.BredonGTM140《Optima and Equilibria:An Introduction to Nonlinear Analysis》Jean-Pierre AubinGTM141《A Computational Approach to Commutative Algebra》Gröbner Bases, Thomas Becker, Volker Weispfenning, Heinz KredelGTM142《Real and Functional Analysis》Serge Lang(3ed.)GTM143《Measure Theory》J.L.DoobGTM144《Noncommutative Algebra》Benson Farb, R.Keith DennisGTM145《Homology Theory:An Introduction to Algebraic Topology》James W.Vick(同调论:代数拓扑简介)GTM146《Computability:A Mathematical Sketchbook》Douglas S.BridgesGTM147《Algebraic K-Theory and Its Applications》Jonathan Rosenberg(代数K理论及其应用)GTM148《An Introduction to the Theory of Groups》Joseph J.Rotman(群论入门)GTM149《Foundations of Hyperbolic Manifolds》John G.Ratcliffe(双曲流形基础)GTM150《Commutative Algebra with a view toward Algebraic Geometry》David EisenbudGTM151《Advanced Topics in the Arithmetic of Elliptic Curves》Joseph H.Silverman(椭圆曲线的算术高级选题)GTM152《Lectures on Polytopes》Günter M.ZieglerGTM153《Algebraic Topology:A First Course》William Fulton(代数拓扑)GTM154《An introduction to Analysis》Arlen Brown, Carl PearcyGTM155《Quantum Groups》Christian Kassel(量子群)GTM156《Classical Descriptive Set Theory》Alexander S.KechrisGTM157《Integration and Probability》Paul MalliavinGTM158《Field theory》Steven Roman(2ed.)GTM159《Functions of One Complex Variable VolⅡ》John B.ConwayGTM160《Differential and Riemannian Manifolds》Serge Lang(微分流形和黎曼流形)GTM161《Polynomials and Polynomial Inequalities》Peter Borwein, Tamás Erdélyi(多项式和多项式不等式)GTM162《Groups and Representations》J.L.Alperin, Rowen B.Bell(群及其表示)GTM163《Permutation Groups》John D.Dixon, Brian Mortime rGTM164《Additive Number Theory:The Classical Bases》Melvyn B.NathansonGTM165《Additive Number Theory:Inverse Problems and the Geometry of Sumsets》Melvyn B.NathansonGTM166《Differential Geometry:Cartan's Generalization of Klein's Erlangen Program》R.W.SharpeGTM167《Field and Galois Theory》Patrick MorandiGTM168《Combinatorial Convexity and Algebraic Geometry》Günter Ewald(组合凸面体和代数几何)GTM169《Matrix Analysis》Rajendra BhatiaGTM170《Sheaf Theory》Glen E.Bredon(2ed.)GTM171《Riemannian Geometry》Peter Petersen(黎曼几何)GTM172《Classical Topics in Complex Function Theory》Reinhold RemmertGTM173《Graph Theory》Reinhard Diestel(图论)(3ed.)GTM174《Foundations of Real and Abstract Analysis》Douglas S.Bridges(实分析和抽象分析基础)GTM175《An Introduction to Knot Theory》W.B.Raymond LickorishGTM176《Riemannian Manifolds:An Introduction to Curvature》John M.LeeGTM177《Analytic Number Theory》Donald J.Newman(解析数论)GTM178《Nonsmooth Analysis and Control Theory》F.H.clarke, Yu.S.Ledyaev, R.J.Stern, P.R.Wolenski(非光滑分析和控制论)GTM179《Banach Algebra Techniques in Operator Theory》Ronald G.Douglas(2ed.)GTM180《A Course on Borel Sets》S.M.Srivastava(Borel 集教程)GTM181《Numerical Analysis》Rainer KressGTM182《Ordinary Differential Equations》Wolfgang WalterGTM183《An introduction to Banach Spaces》Robert E.MegginsonGTM184《Modern Graph Theory》Béla Bollobás(现代图论)GTM185《Using Algebraic Geomety》David A.Cox, John Little, Donal O’Shea(应用代数几何)GTM186《Fourier Analysis on Number Fields》Dinakar Ramakrishnan, Robert J.Valenza GTM187《Moduli of Curves》Joe Harris, Ian Morrison(曲线模)GTM188《Lectures on the Hyperreals:An Introduction to Nonstandard Analysis》Robert GoldblattGTM189《Lectures on Modules and Rings》m(模和环讲义)GTM190《Problems in Algebraic Number Theory》M.Ram Murty, Jody Esmonde(代数数论中的问题)GTM191《Fundamentals of Differential Geometry》Serge Lang(微分几何基础)GTM192《Elements of Functional Analysis》Francis Hirsch, Gilles LacombeGTM193《Advanced Topics in Computational Number Theory》Henri CohenGTM194《One-Parameter Semigroups for Linear Evolution Equations》Klaus-Jochen Engel, Rainer Nagel(线性发展方程的单参数半群)GTM195《Elementary Methods in Number Theory》Melvyn B.Nathanson(数论中的基本方法)GTM196《Basic Homological Algebra》M.Scott OsborneGTM197《The Geometry of Schemes》David Eisenbud, Joe HarrisGTM198《A Course in p-adic Analysis》Alain M.RobertGTM199《Theory of Bergman Spaces》Hakan Hedenmalm, Boris Korenblum, Kehe Zhu(Bergman空间理论)GTM200《An Introduction to Riemann-Finsler Geometry》D.Bao, S.-S.Chern, Z.Shen GTM201《Diophantine Geometry An Introduction》Marc Hindry, Joseph H.Silverman GTM202《Introduction to Topological Manifolds》John M.LeeGTM203《The Symmetric Group》Bruce E.SaganGTM204《Galois Theory》Jean-Pierre EscofierGTM205《Rational Homotopy Theory》Yves Félix, Stephen Halperin, Jean-Claude Thomas(有理同伦论)GTM206《Problems in Analytic Number Theory》M.Ram MurtyGTM207《Algebraic Graph Theory》Chris Godsil, Gordon Royle(代数图论)GTM208《Analysis for Applied Mathematics》Ward CheneyGTM209《A Short Course on Spectral Theory》William Arveson(谱理论简明教程)GTM210《Number Theory in Function Fields》Michael RosenGTM211《Algebra》Serge Lang(代数)GTM212《Lectures on Discrete Geometry》Jiri Matousek(离散几何讲义)GTM213《From Holomorphic Functions to Complex Manifolds》Klaus Fritzsche, Hans Grauert(从正则函数到复流形)GTM214《Partial Differential Equations》Jüergen Jost(偏微分方程)GTM215《Algebraic Functions and Projective Curves》David M.Goldschmidt(代数函数和投影曲线)GTM216《Matrices:Theory and Applications》Denis Serre(矩阵:理论及应用)GTM217《Model Theory An Introduction》David Marker(模型论引论)GTM218《Introduction to Smooth Manifolds》John M.Lee(光滑流形引论)GTM219《The Arithmetic of Hyperbolic 3-Manifolds》Colin Maclachlan, Alan W.Reid GTM220《Smooth Manifolds and Observables》Jet Nestruev(光滑流形和直观)GTM221《Convex Polytopes》Branko GrüenbaumGTM222《Lie Groups, Lie Algebras, and Representations》Brian C.Hall(李群、李代数和表示)GTM223《Fourier Analysis and its Applications》Anders Vretblad(傅立叶分析及其应用)GTM224《Metric Structures in Differential Geometry》Gerard Walschap(微分几何中的度量结构)GTM225《Lie Groups》Daniel Bump(李群)GTM226《Spaces of Holomorphic Functions in the Unit Ball》Kehe Zhu(单位球内的全纯函数空间)GTM227《Combinatorial Commutative Algebra》Ezra Miller, Bernd Sturmfels(组合交换代数)GTM228《A First Course in Modular Forms》Fred Diamond, Jerry Shurman(模形式初级教程)GTM229《The Geometry of Syzygies》David Eisenbud(合冲几何)GTM230《An Introduction to Markov Processes》Daniel W.Stroock(马尔可夫过程引论)GTM231《Combinatorics of Coxeter Groups》Anders Bjröner, Francesco Brenti(Coxeter 群的组合学)GTM232《An Introduction to Number Theory》Graham Everest, Thomas Ward(数论入门)GTM233《Topics in Banach Space Theory》Fenando Albiac, Nigel J.Kalton(Banach空间理论选题)GTM234《Analysis and Probability:Wavelets, Signals, Fractals》Palle E.T.Jorgensen(分析与概率)GTM235《Compact Lie Groups》Mark R.Sepanski(紧致李群)GTM236《Bounded Analytic Functions》John B.Garnett(有界解析函数)GTM237《An Introduction to Operators on the Hardy-Hilbert Space》Rubén A.Martínez-Avendano, Peter Rosenthal(哈代-希尔伯特空间算子引论)GTM238《A Course in Enumeration》Martin Aigner(枚举教程)GTM239《Number Theory:VolumeⅠTools and Diophantine Equations》Henri Cohen GTM240《Number Theory:VolumeⅡAnalytic and Modern Tools》Henri Cohen GTM241《The Arithmetic of Dynamical Systems》Joseph H.SilvermanGTM242《Abstract Algebra》Pierre Antoine Grillet(抽象代数)GTM243《Topological Methods in Group Theory》Ross GeogheganGTM244《Graph Theory》J.A.Bondy, U.S.R.MurtyGTM245《Complex Analysis:In the Spirit of Lipman Bers》Jane P.Gilman, Irwin Kra, Rubi E.RodriguezGTM246《A Course in Commutative Banach Algebras》Eberhard KaniuthGTM247《Braid Groups》Christian Kassel, Vladimir TuraevGTM248《Buildings Theory and Applications》Peter Abramenko, Kenneth S.Brown GTM249《Classical Fourier Analysis》Loukas Grafakos(经典傅里叶分析)GTM250《Modern Fourier Analysis》Loukas Grafakos(现代傅里叶分析)GTM251《The Finite Simple Groups》Robert A.WilsonGTM252《Distributions and Operators》Gerd GrubbGTM253《Elementary Functional Analysis》Barbara D.MacCluerGTM254《Algebraic Function Fields and Codes》Henning StichtenothGTM255《Symmetry Representations and Invariants》Roe Goodman, Nolan R.Wallach GTM256《A Course in Commutative Algebra》Kemper GregorGTM257《Deformation Theory》Robin HartshorneGTM258《Foundation of Optimization》Osman GülerGTM259《Ergodic Theory:with a view towards Number Theory》Manfred Einsiedler, Thomas WardGTM260《Monomial Ideals》Jurgen Herzog, Takayuki HibiGTM261《Probability and Stochastics》Erhan CinlarGTM262《Essentials of Integration Theory for Analysis》Daniel W.StroockGTM263《Analysis on Fock Spaces》Kehe ZhuGTM264《Functional Analysis, Calculus of Variations and Optimal Control》Francis ClarkeGTM265《Unbounded Self-adjoint Operatorson Hilbert Space》Konrad Schmüdgen GTM266《Calculus Without Derivatives》Jean-Paul PenotGTM267《Quantum Theory for Mathematicians》Brian C.HallGTM268《Geometric Analysis of the Bergman Kernel and Metric》Steven G.Krantz GTM269《Locally Convex Spaces》M.Scott Osborne。

Why there is something rather than nothing (out of everything)

Why there is something rather than nothing (out of everything)
of quantum fields and their vacuum (Casimir) energy,
L(a, a′) = −aa′2 − a + H2a3 + B a′2 − a′4 + 1 . (3) a 6a 2a
F (η) is the free energy of their quasi-equilibrium excita-
sical Eucidean action, and the integration runs over pe-
riodic fields on the Euclidean spacetime with a compactified time τ (of S1 × S3 topology).
For free matter fields φ(x) conformally coupled to gravity (which are assumed to be dominating in the sys-
tions with the temperature given by the inverse of the conformal time η = dτ N/a. This is a typical boson or fermion sum F (η) = ± ω ln 1 ∓ e−ωη over field oscillators with energies ω on a unit 3-sphere. We work in units of mP = (3π/4G)1/2, and B is the constant determined by the coefficient of the Gauss-Bonnet term in the overall conformal anomaly of all fields φ(x).

2004_72_Numerical_Simulation_of_Coupled_Heat_and_Mass_Transfer_in_Hygroscopic_Porous_Materials_Consi

2004_72_Numerical_Simulation_of_Coupled_Heat_and_Mass_Transfer_in_Hygroscopic_Porous_Materials_Consi

NUMERICAL SIMULATION OF COUPLED HEAT AND MASS TRANSFER IN HYGROSCOPIC POROUS MATERIALS CONSIDERING THE INFLUENCE OF ATMOSPHERIC PRESSURE Li FengzhiDepartment of Engineering Mechanics,Dalian University of Technology,Dalian,China and Institute of Textiles and Clothing,The Polytechnic University of Hong Kong,Hung Hom,Hong KongLi YiInstitute of Textiles and Clothing,The Polytechnic University of Hong Kong,Hung Hom,Hong KongLiu YingxiDepartment of Engineering Mechanics,Dalian University of Technology,Dalian,ChinaLuo ZhongxuanDepartment of Applied Mathematics,Dalian University of Technology,Dalian,ChinaA model of simultaneous transport in hygroscopic porous materials was developed.Water in fabrics is considered to be present in three forms:liquid water in the void space between fibers,bound water in the fibers,and vapor.It is assumed that the heat and mass transport mechanisms include movement of liquid water due to the capillarity and atmospheric pressure gradient,diffusion of vapor within interfibers due to the partial pressure gradient of vapor and total gas pressure gradient,diffusion of vapor into fiber,evaporation,and condensation of water.The moisture diffusion process into hygroscopic porous materials such as wool fabrics was simulated.At normal atmospheric pressure,the results were compared with experimental data on the temperature and water content changes reported in the literature.The distribution of temperature,moisture concentration,liquid water saturation,and atmospheric pressure in the void space between fibers at different boundary conditions are numerically computed and compared.The conclusion is that atmospheric pressure gradient has significant impact on heat and mass transport processes in hygro-scopic porousmaterials.Received 13March 2003;accepted 16July 2003.We would like to thank The Hong Kong Polytechnic University for funding this research throughprojects T612and A188in the ASD in Fashion,Design and Technology Innovation.Address correspondence to Li Yi,Institute of Textiles and Clothing,The Polytechnic University ofHong Kong,Hung Hom,Hong Kong.E-mail:tcliyi@.hkNumerical Heat Transfer,Part B ,45:249–262,2004Copyright #Taylor &Francis Inc.ISSN:1040-7790print/1521-0626online DOI:10.1080/104077904902688142491.INTRODUCTIONThe clothing system plays a very important role in determining the human body core temperature and other human thermal responses because it determines how much of the heat generated in the human body can be exchanged with the environment.With the development of new technology,it is becoming important to know how the human body will behave thermally under different environmental conditions with various clothing systems.In order to obtain a comfortable micro-climate for human body,it is necessary to understand the thermal and moisture transport behavior of the clothing.The first clothing model that describes the mechanism of transient diffusion of heat and moisture transfer into an assembly of hygroscopic textile materials was introduced and analyzed by Henry [1].He developed a set of two differential coupled governing equations for the mass and heat transfer in a small flat piece of clothingNOMENCLATUREc v volumetric heat capacity of the fabric,J =m 3Kc vf volumetric heat capacity of fiber,J =m 3KC fwater vapor concentration in the fibers of the fabric,kg =m 3div divergenceDdiffusivity of vapor,m 2=sD f ðw c ;t Þdiffusion coefficient of water vapor in the fibers grad gradienth c convection mass transfer coefficient,m =sh l $g mass transfer coefficient,m =sh t convection heat transfer coefficient,J =m 2Kh vap latent heat of evaporation =condensation,J =kgk mix thermal conductivity of the fabric,W =m KK intrinsic permeability,m 2K rg relative permeability of water vapor K rw relative permeability of liquid water L thickness of fabricm a mass flux of dry air under gas pressure gradient driving m v mass flux of vapor under gas pressure gradient drivingm D v diffusion mass flux of water vapor m w diffusion mass flux of liquid water M w mole mass of water vapor,kg =mol p a dry air partial pressure,kg =m s 2p c capillary pressure,kg =m s 2p g pressure of gas phase,kg =m s 2p v water vapor partial pressure,kg =m s 2rradius,mS liquid water volumetric saturation (liquid volume =pore volume)S v specific area of the fabric,l =m T temperature of the fabric,K T 1environmental temperature,KWevaporation or condensation flux of water in interfiber void space of fabric,kg =m 3sw c water content of the fibers in the fabric,kg =kg G boundarye porosity of fabricl heat of sorption or desorption water or vapor by fibers,J =kgm g dynamic viscosity of gas,kg =m s m w dynamic viscosity of water,kg =m s r a density of dry air,kg =m 3r w density of liquid water,kg =m 3r vwater vapor concentration in the air filling the interfiber void space,kg =m 3r vs saturated water vapor concentration,kg =m 3r v ?environmental water vapor concentration,kg =m 3Superscripts n previous time n þ1present time Subscripts 0initial value 1left boundary N right boundary ?environment250L.FENGZHI ET AL.SIMULATION OF COUPLED HEAT AND MASS TRANSFER251 material.The analysis of Henry was based on a simplified analytical solution. Downes and Mackay[2]and Watt[3]found experimentally that the sorption of water vapor by wool is a two-stage process.In order to describe the complicated process of the two-stage adsorption behavior in textile materials,Nordon and David [4]presented a model in terms of experimentally adjustable parameters appropriate for thefirst and second stages of moisture sorption.However,their model did not take into account the physical mechanisms of the process.For this reason,Li and Holcombe[5]introduced a new two-stage absorption model to better describe the coupled heat and moisture transport in fabrics.Li and Luo[6]improved the sorption rate equation by assuming that the moisture sorption by a woolfiber can be generally described as a uniform-diffusion equation for both stages of sorption.Luo et al.[7]presented a dynamic model of heat and moisture transfer with sorption and condensation in porous clothing assemblies.Their model considers the effect of water content in the porousfibrous batting on the effective thermal conductivity as well as radiative heat transfer.However,the above-mentioned models ignore the effect of liquid water movement.Fan and Wen[8]reported a model,in which eva-poration and mobile condensates are considered.Li and Zhu[9]reported a new model that takes into account the condensation=evaporation and liquid diffusion by capillary action,which is a function offiber surface energy,contact angle,and fabric pore size distributions.Furthermore,they investigate the effects of the pore size distribution,fiber diameter[10],thickness and porosity[11]on the coupled heat and moisture transfer in porous textiles.Wang Zhong et al.[12]reported a model con-sidering the radiation and conduction heat transfer coupled with liquid water transfer,moisture sorption,and condensation in porous polymer materials.How-ever,in the above references[1–12],the models were based on the mass diffusion due only to the concentration gradient;the effect of the atmospheric pressure gradient on heat and moisture transfer in porous materials was ignored.For example,when a person runs,the atmospheric pressure between the inside and the outside of clothing is different,which may have significant impact on the thermal comfort and protec-tion of clothing.Although the effects of the atmospheric pressure gradient on mass transfer in porous media were considered by previous researchers[13,16],these models are established for nonhygroscopic materials.In order to investigate the influence of atmospheric pressure gradient on heat and mass transfer within hygroscopic textile materials,and to provide insights into the functional design of clothing for windy conditions and active sportswear outdoors,we report a new model by introducing new equations=terms and integrating them.2.MATHEMATICAL FORMULATIONA schematic diagram of the physical mechanisms within fabric is shown in Figure1.To obtain the governing equation,we have made the following assump-tions.First,the clothing is isotropic,and the gas phase is considered to be an ideal gas composed of dry air and water vapor,which are regarded as two miscible species. Second,local thermal equilibrium exists among all phases.This is reasonable,as the pore dimension in the textile material is small.Third,volume changes of thefibers due to changing moisture content are neglected.Fourth,diffusion within thefiber is considered to be so slow that the moisture content at thefiber surface is always insorptive equilibrium with that of the surrounding air.Fifth,water in fabrics is considered to be present in three forms:free liquid water in the void space of interfibers,bound water in the fibers,and water vapor.The mass transport mechanisms are movement of free liquid water due to the capillarity and atmo-spheric pressure gradient,diffusion of vapor in the space between fibers due to the partial pressure gradient of vapor and total gas pressure gradient,and diffusion of vapor in the fiber due to sorption =desorption.Based on the above assumptions,we can establish the following mathematical equations for the coupled heat and mass transfer in the clothing according to the conservation of masses and heat energy:q E ð1ÀS Þr v ½ ½ q t þq C f 1ÀE ðÞÂÃq t ÀE ð1ÀS ÞS v h l $g r vs ðT ÞÀr v ½ ¼div ðÀm D v Þþdiv ðÀm v Þq ½E S r wq t þE ð1ÀS ÞS v h l $g r vs ðT ÞÀr v ½ ¼div ðÀm w Þq E ð1ÀS Þr a ½ ½ q t ¼div ðm D v Þþdiv ðÀm a ÞC v q T q t Àl ð1ÀE Þq C f q t þh vap E ð1ÀS ÞS v h l $g r vs ðT ÞÀr v ½ ¼div ½k mix ðgrad T Þ :8>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>:ð1ÞHere,E is porosity;S is saturation of free liquid water;S v is the specific area of thefabric;r v is water vapor concentration;r a is the concentration of dry air;r w is the density of liquid water;C f is the water vapor concentration in the fibers;h l $gisFigure 1.Schematic diagram of the physical model.252L.FENGZHI ET AL.the mass transfer coefficient;r vsðTÞis the concentration of saturated water vapor at T;h vap is the latent heat of evaporation=condensation;l is the sorption heat of thefiber;m v is the massflux of vapor under total atmospheric pressure gradient;m Dv isthe diffusion massflux of water vapor;m a is the massflux of dry air under total atmospheric pressure gradient;m w is the diffusion massflux of liquid water;c v is the effective volume heat capacity;and k mix is the effective thermal conductivity of the fabric.Thefirst equation in(1)represents the mass balance of water vapor.Thefirst term on the left side represents vapor storage within the void space of the interfiber; the second term represents water vapor accumulation rate within thefiber,i.e.,the sorption rate offibers;whereas the third term is evaporation or condensationflux of the water in the interfiber void space.The right side of the equation represents water-vapor diffusion.Thefirst term denotes the effect of the vapor diffusion under vapor partial pressure gradient,whereas the second term represents the effect of the vapor diffusion under total gas pressure gradient driving.Similarity,the second equation represents the mass balance of liquid water,and the third equation represents the mass balance of dry air.The fourth equation in(1)represents the energy balance. Thefirst term on the left side of the fourth equation represents energy storage, whereas the second and third terms represent sorption latent heat of water vapor by fibers and the latent heat of liquid water within interfibers,respectively.The right side represents the heat conduction.Sorption and desorption of moisture by thefibers obey the Fickian Law[6]:q C f q t ¼1rqq rrD fðw c;tÞq C fq r!ð2Þwhere D fðw c;tÞis the diffusion coefficient,which has different presentation at dif-ferent stages of moisture sorption;C f is the moisture concentration in thefiber; w c is the bound water content in thefibers.The boundary condition around thefiber is determined by assuming that the moisture concentration at thefiber surface is instantaneously in equilibrium with the surrounding air.Hence,the moisture concentration at thefiber surface is determined by the relative humidity of the surrounding air and temperature,i.e.,[6]C fðR fÞ¼fðRH;TÞð3Þwhere f is the moisture sorption isotherm of thefibers,which can be determined experimentally for differentfibers.The pore sizes infibrous materials are generally small,so that the diffusion of flow is governed by Darcy’s law[1].In the pores formed betweenfibers,we have the massflux of water vapor and dry air under total atmospheric pressure gradient, respectivelym v¼Àr v KK rgm ggradðp gÞÂÃð4Þm a¼Àr a KK rgm ggradðp gÞÂÃð5ÞSIMULATION OF COUPLED HEAT AND MASS TRANSFER253where p g is the atmospheric pressure,K is intrinsic permeability,K rg is relative permeability of water vapor,and m g is the gas-phase dynamic viscosity.For the free liquid water phase,Darcy’s law is expressed as[13]m w¼Àr w KK rwm wgradðp gÀp cÞð6Þwhere K rw is the relative permeability of liquid water,m w is the dynamic viscosity of the liquid water,and p c is the capillary pressure.For the water-vapor phase,diffusion massflux under partial pressure gradient is expressed as[13]m Dv ¼À1:952Â10À7eð1ÀSÞÂT0:8p agradðp vÞð7Þwhere p a is the partial pressure of dry air and p v is the partial pressure of water vapor.In order to generate a solution to the equations mentioned above,we need to specify an initial condition and boundary conditions on the fabric surfaces in terms of concerntration,saturation,temperature,and atmospheric pressure.Initially,a fabric is equilibrated to a given atmospheric pressure,temperature,saturation,and humidity;the temperature,atmosphere,saturation,and concentration are uniform throughout the clothing at known value.T¼T0r v¼r v0S¼S0p g¼p g0C f¼fðRH0;T0Þð8ÞThe boundary conditions arem DvÁ n j GþmÁ n j G1¼h cðr vÀr v1ÞS jG1¼S B;m wÁ n j g12¼qð9ÞK mix grad TÁ n j G¼h tðTÀT1Þp g j G¼p g Gwhere G denotes the boundary,h c is the mass transfer coefficient,h t is the convective heat transfer coefficient,and the subscript1denotes the environment.3.DISCRETIZATION OF THE CONTINUUM EQUATIONTo derive a numerical solution for Eqs.(1),(8),and(9)by using thefinite-volume method,we select a well-distributed control volume with D x,as shown in Figure2.For example,thefirst equation of(1)can be rewritten as follows:A qr vq tþBq Sq tþCþD¼qq xEqr vq xþqq xFq Tq xþqq xGq p gq xð10ÞwhereA¼eð1ÀSÞB¼Àer v C¼e f q C fq tD¼Àeð1ÀSÞh lg S v r vsðTÞÀr v½254L.FENGZHI ET AL.E ¼ð1:952e À7Þe ð1ÀS ÞT 0:8p a RTM wF ¼ð1:952e À7Þe ð1ÀS ÞT 0:8p a R r vM wG ¼r vKK rg m gIf the control volume P is located in the inner of zone,integration of Eq.(10)over the control volume givesZ Or A qr v q t þB q S q t þC þDdx ¼Z Orq q x E qr v q x þq q x F q T q x þq q x G q p gq x !dxð11ÞThenA n p r n þ1vp Àr n v D t D x þB n p S n þ1vp ÀS n vp D t D x þC n pD x þD np D x ¼E qr v q x eÀE qr v w þF q T e ÀF q T w þG q p g e ÀGq p gwð12ÞNow the right-hand side of Eq.(12)can be written asE qr v q x e ÀE qr v q x w þF q T q x e ÀF q T q x w þG q p g q x e ÀGq p g q xw¼E n e r n þ1v E Àr n þ1v pD xÀE n wr n þ1v p Àr n þ1v WD xþF n eT n þ1EÀT n þ1p D xÀF n wT n þ1p ÀT n þ1W D x þG n e p n þ1gE Àp n þ1gp D x ÀG n wp n þ1gpÀp n þ1gW D xð13ÞWith the new symbols,Eq.(12)becomesK w v r n þ1v W þK wt T n þ1W þK wg p n þ1gW ÀK p v r n þ1v P ÀK ps S n þ1P ÀK pt T n þ1P ÀK pg p n þ1gPþK e v r n þ1v EþK et T n þ1EþK eg p n þ1gE¼RRð14ÞFigure 2.Schematic map of control volume.SIMULATION OF COUPLED HEAT AND MASS TRANSFER 255where K wv¼m E n w,K wt¼m F n w,K wg¼m G n w,K pv¼m E n wþm E n eþA n p,K pt¼m F nw þm F n e,K ps¼B n p,K pg¼m G n wþm G n e,K cv¼m E n e,K et¼m F n e,K eg¼m G n e,RR¼ÀA np r nvpÀB n p S n pþC n p D tþD n p D t.If control volume P is located on the left boundary,we consider that the integration area is half of the inner volume andE qr vq xþFq Tq xþGq p gq xP ¼h cl r nþ1vpÀr vp1ð15ÞThen,we can obtainÀK pv r nþ1vP ÀK ps S nþ1PÀK pt T nþ1PÀK pg p nþ1gPþK ev r nþ1vEþK et T nþ1EþK eg p nþ1gE¼RRð16Þwhere m¼D t=D x2,Z¼D t=D x,K pv¼2m E n eþA n pþ2Z h cl,K pt¼2m F n e, K ps¼B n p,K pg¼2m G n e;K ev¼2m E n e,K et¼2m F n e,K eg¼2m G n e,RR¼ÀA n p r n vpÀB n p S n pþC n pD tþD npD tÀ2Z h el r vp1.Similarly,if control volume P is located on the right boundary:K w v r nþ1n W þK wt T nþ1WþK wg p nþ1gWÀK p v r nþ1n PÀK ps S nþ1PÀK pt T nþ1PÀK pg p nþ1gP¼RRð17Þwhere m¼D t=D x2,Z¼D t=D x,K w v¼2m E n w,K wt¼2m F n w,K wg¼2m G n w, K p v¼2m E n wþA n pþ2Z h cN,K pt¼2m F n w,K ps¼B n p,K pg¼2m G n w;RR¼ÀA n p r n n pÀB n p S npþC n p D tþD n p D tÀ2Z h cN r n p1N,where h cN is the mass transfer coefficient in theright boundary,and r n p1N is the concentration of right environment water vapor.Following the same procedure as for the water-vapor mass conservation,we can derive the discretization equations for liquid water,energy,and dry air.By specifying initial conditions we can calculate the coefficient of the discretization and its right term,the values of water-vapor concentration,liquid water saturation, temperature,and atmospheric pressure at next time,can be obtained.The dis-cretization errors of these schemes are O½ðD xÞ2þðD tÞ2 .And the full implicit scheme is stable without any restriction on D t=D x2.In order to obtain grid independence of the solution,we selected grids of different sizes and did computations.The difference in solution betweenfine and coarse grids with increase of size by2is less than2%.4.NUMERICAL SIMULATION AND DISCUSSIONFor computation,the values of the main parameters are listed as Table1.parison between Theoretical Predictions and Experimental MeasurementsAs reported previously by Li Yi et al.[5],a wool fabric sample measuring 3cm615cm62.96mm was suspended in a cell from an electronic balance,which can measure the weight change of fabric during the sorption process.In the cell the temperature was controlled at293.12Æ2K,and the atmospheric pressure was controlled at1atm.The relative humidity was produced by aflow-divider humidity 256L.FENGZHI ET AL.generator,which can change the relative humidity (RH)from 0%to 99%in 1%steps to an accuracy of Æ0.1%of total flow.Fabric was equlibriated in the cell at 0%RH for 90min,then the RH in the cell was rapidly changed from 0%to 99%at time zero,and this RH was maintained for 90min.The surface temperature of the specimen was measured by using a fine thermocouple wire attached to fabric surface.The mean water content of the fabric was calculated on the basis of the weight recorded by a balance.The detailed information on experimental measurements and uncertainty analysis for experimental data was reported previously [5].Table 1.Parameter values for computation ParameterSymbol Unit Value and referenceDensity of a fiber r f kg =m 31,300[14]Volumetric heat C vf kJ =m 3K 373.3þ4661W c þ4.221T [14]capacity of fabric Thermal conductivity of fabricK fab W =m 2K (38.49370.72w c þ0.113w c 270.002w c 3)61073[14]Head of sorption of water vapor by fibers l kJ =kg 1602.5exp(711.72w c )þ2522.0[14]Diffusion coefficientof water vapor in fiberD f ðw c ;t Þm 2=s(1.04þ62.8w c 71342.59w c 2)610714t <540s [14]1:6164f 1Àexp ½À18:16exp ðÀ28:0w c Þ g t !540s [14]Dynamic viscosity of gasm g kg =m s 1.8361075[15]Dynamic viscosity of liquid waterm w kg =m s 1.061073[15]Intrinsic permeability of fabricKm 21.5610713[16]Figure parison of the temperature between theoretical predictions and experimental measurements.SIMULATION OF COUPLED HEAT AND MASS TRANSFER257The new model described in Section2is applied to this experimental condition by specifying corresponding boundary conditions.The comparisons of temperature and bound water content between theoretical prediction and experimental mea-surements[10]are shown in Figures3and4,respectively.Figure3shows tem-perature changes at the surface of the fabric during the dynamic-moisture diffusion process.Since the temperature of surroundings was kept constant at293.15K,in the testing conditions,no external heatflow was provided to the fabric.Hence the temperature rise in the fabric was due purely to the heat released during the moisture-sorption process.The mean error between theoretical prediction and experimental measurements on temperature is0.13%.Figure4shows the mean moisture uptake of the fabric during humidity transient.The mean error on water content of fabric is4.6%.The diameter of thefiber significantly affects its sorption rate.The difference between measured and actual diameter of thefiber and porosity of fabric may be the main sources of paring the predicted temperature and mean moisture uptake with the experimental results,it is obvious that the models are able to predict the moisture sorption of thefibers with satisfactory accuracy.4.2.Influence of Atmospheric Pressure GradientIn order to investigate the effect of the pressure gradient on heat and mass transfer in porous materials,we carried out a series of computational experiments; two cases are selected to show the trends.In the computations,the fabric sample is assumed to be made of woolfiber with thickness L¼3.0mm,and the initial and boundary conditions were specified as follows.The initial conditions wereT0¼298:15K r v0¼0:01kg=m3S0¼0p g0¼1:0135e5PaAt the left (x ¼0)boundary,T 1¼298:15K r v 1¼0:02kg =m 3m w j G ¼0p g G ¼1:0135e 5PaAnd at the right (x ¼L)boundary,T 1¼298:15K ;r v 1¼0:02kg =m 3S ¼0:4p g G ¼2:0135e 5Pa in Case 11:0135e 5Pa in Case 2(The difference between case 1and case 2is the pressure boundary condition at the location x ¼L .Other conditions are the same.The corresponding numerical simu-lations and comparisons are shown in Figures 5–9.Figure 5a shows the atmospheric pressure variation in the fabric with time under the pressure boundary condition of case 1.We can see that the atmospheric pressure is uniform constant initially,then the atmospheric pressure redistributes with the new boundary pressures.The pressure at x ¼L reaches 2atm.Figure 5bFigure 5.Distribution of atmosphericpressure.Figure 6.Distribution of water-vapor concentration.SIMULATION OF COUPLED HEAT AND MASS TRANSFER 259represents the pressure distribution under the condition of case 2.The pressure is uniform because of the same initial and boundary conditions.Figure 6a shows the distribution of the water-vapor concentration in case 1:the water vapor concentration at x ¼0is higher than that at x ¼L .This is because of the effect of atmospheric pressure.The atmospheric pressure gradient,which is the main driving force of water-vapor movement,makes the water vapor diffuse from high pressure (location x ¼L )to low pressure (location x ¼0).Figure 6b shows dis-tribution of the water-vapor concentration in case 2.The water vapor diffuses due to the driving force of water vapor partial pressure gradient only,when the total pressure gradient does not exist.Because of the water-vapor diffusion,the water-vapor concentration in the fabric increases from 0.01to 0.02kg =m 3with time.Then,the concentration of the water vapor reaches equilibrium.Figure 7shows the distribution of water content in fiber.Since the hygro-scopicity of wool is high,water vapor is absorbed.The different water vapor con-centration affects the relative humidity of the water vapor,and then affects the amount of water absorbed by the fiber.From Figures 7a and 7b we can see that the distributions of water content in the fiber agree with the water-vapor concentration in Figures 6a and 6b ,respectively.Figure 7.Water content distribution offiber.Figure8shows the predicted temperature distribution in the wool fabric during the vapor diffusion process.From Figure8,we can see that the temperature rises in the middle layer of the fabric because of the heat released during moisture sorption. At the beginning,the temperature rises quickly,due to the large sorption rate of fiber.Then the temperature decreases gradually,with time reaching equilibrium with the environmental temperature because of much lower sorption rate and heat exchange with environment.At the beginning,the temperature in case1is lower than that in case2.The reason is that the atmosphere pressure gradient affects the dis-tribution of the water-vapor concentration.The different water-vapor concentration affects the amount of water absorbed by thefiber,which leads to different sorption heat.Most of the water content of thefibers in the fabric,except at the boundary x¼L in case1,is lower than that in case2(see Figure7),so the temperature in case1 is lower than that in case2.From Figures8a and8b we also can see the temperature at location x¼L is larger than that at location x¼0in thefirst stage.This is because there is much more liquid water at location x¼L than that at x¼0,and the conductivity of liquid water is greater than that of fabric.Figure9shows the distribution of liquid water saturation during the process of liquid water diffusion into the wool fabric by capillary action.We can see that the liquid water diffuses from side x¼L to x¼0.The reason is that the diffusion potential of the liquid water is liquid water pressure,which equals the difference between atmospheric pressure and capillary pressure.The capillary pressure in the region of high saturation of liquid water(x¼L)is lower than that in the region of low saturation of liquid water(x¼0).In case1,the atmospheric pressure at x¼L is higher than that at x¼0.And in case2,the atmospheric pressure at x¼0is equal to that at x¼L.So the total liquid water driving potential at location x¼L is higher than that at location x¼0in both case1and case2.From Figures9a and9b we can see that the difference in the distributions of liquid water saturation between case1 and case2is not large in this computational condition.5.CONCLUSIONIn this article,we report a new model of heat and moisture transfer inhygroscopic porous textile materials,considering the influence of the atmospheric。

Tikhonov吉洪诺夫正则化

Tikhonov吉洪诺夫正则化

Tikhonov regularizationFrom Wikipedia, the free encyclopediaTikhonov regularization is the most commonly used method of of named for . In , the method is also known as ridge regression . It is related to the for problems.The standard approach to solve an of given as,b Ax =is known as and seeks to minimize the2bAx -where •is the . However, the matrix A may be or yielding a non-unique solution. In order to give preference to a particular solution with desirable properties, the regularization term is included in this minimization:22xb Ax Γ+-for some suitably chosen Tikhonov matrix , Γ. In many cases, this matrix is chosen as the Γ= I , giving preference to solutions with smaller norms. In other cases, operators ., a or a weighted ) may be used to enforce smoothness if the underlying vector is believed to be mostly continuous. This regularizationimproves the conditioning of the problem, thus enabling a numerical solution. An explicit solution, denoted by , is given by:()b A A A xTTT 1ˆ-ΓΓ+=The effect of regularization may be varied via the scale of matrix Γ. For Γ=αI , when α = 0 this reduces to the unregularized least squares solution providedthat (A T A)−1 exists.Contents••••••••Bayesian interpretationAlthough at first the choice of the solution to this regularized problem may look artificial, and indeed the matrix Γseems rather arbitrary, the process can be justified from a . Note that for an ill-posed problem one must necessarily introduce some additional assumptions in order to get a stable solution.Statistically we might assume that we know that x is a random variable with a . For simplicity we take the mean to be zero and assume that each component isindependent with σx. Our data is also subject to errors, and we take the errorsin b to be also with zero mean and standard deviation σb. Under these assumptions the Tikhonov-regularized solution is the solution given the dataand the a priori distribution of x, according to . The Tikhonov matrix is then Γ=αI for Tikhonov factor α = σb/ σx.If the assumption of is replaced by assumptions of and uncorrelatedness of , and still assume zero mean, then the entails that the solution is minimal . Generalized Tikhonov regularizationFor general multivariate normal distributions for x and the data error, one can apply a transformation of the variables to reduce to the case above. Equivalently,one can seek an x to minimize22Q P x x b Ax -+-where we have used 2P x to stand for the weighted norm x T Px (cf. the ). In the Bayesian interpretation P is the inverse of b , x 0 is the of x , and Q is the inverse covariance matrix of x . The Tikhonov matrix is then given as a factorization of the matrix Q = ΓT Γ. the ), and is considered a . This generalized problem can be solved explicitly using the formula()()010Ax b P A QPA A x T T-++-[] Regularization in Hilbert spaceTypically discrete linear ill-conditioned problems result as discretization of , and one can formulate Tikhonov regularization in the original infinite dimensional context. In the above we can interpret A as a on , and x and b as elements in the domain and range of A . The operator ΓΓ+T A A *is then a bounded invertible operator.Relation to singular value decomposition and Wiener filterWith Γ= αI , this least squares solution can be analyzed in a special way viathe . Given the singular value decomposition of AT V U A ∑=with singular values σi , the Tikhonov regularized solution can be expressed asb VDU xT =ˆ where D has diagonal values22ασσ+=i i ii Dand is zero elsewhere. This demonstrates the effect of the Tikhonov parameteron the of the regularized problem. For the generalized case a similar representation can be derived using a . Finally, it is related to the :∑==qi iiT i i v bu f x1ˆσwhere the Wiener weights are 222ασσ+=i i i f and q is the of A .Determination of the Tikhonov factorThe optimal regularization parameter α is usually unknown and often in practical problems is determined by an ad hoc method. A possible approach relies on the Bayesian interpretation described above. Other approaches include the , , , and . proved that the optimal parameter, in the sense of minimizes:()()[]21222ˆTTXIX XX I Tr y X RSSG -+--==αβτwhereis the and τ is the effective number .Using the previous SVD decomposition, we can simplify the above expression:()()21'22221'∑∑==++-=qi iiiqi iiub u ub u y RSS ασα()21'2220∑=++=qi iiiub u RSS RSS ασαand∑∑==++-=+-=qi iqi i i q m m 12221222ασαασστRelation to probabilistic formulationThe probabilistic formulation of an introduces (when all uncertainties are Gaussian) a covariance matrix C M representing the a priori uncertainties on the model parameters, and a covariance matrix C D representing the uncertainties on the observed parameters (see, for instance, Tarantola, 2004 ). In the special case when these two matrices are diagonal and isotropic,and, and, in this case, the equations of inverse theory reduce to theequations above, with α = σD / σM .HistoryTikhonov regularization has been invented independently in many differentcontexts. It became widely known from its application to integral equations from the work of and D. L. Phillips. Some authors use the term Tikhonov-Phillips regularization . The finite dimensional case was expounded by A. E. Hoerl, who took a statistical approach, and by M. Foster, who interpreted this method as a - filter. Following Hoerl, it is known in the statistical literature as ridge regression .[] References•(1943). "Об устойчивости обратных задач [On the stability of inverse problems]". 39 (5): 195–198.•Tychonoff, A. N. (1963). "О решении некорректно поставленных задач и методе регуляризации [Solution of incorrectly formulated problems and the regularization method]". Doklady Akademii Nauk SSSR151:501–504.. Translated in Soviet Mathematics4: 1035–1038. •Tychonoff, A. N.; V. Y. Arsenin (1977). Solution of Ill-posed Problems.Washington: Winston & Sons. .•Hansen, ., 1998, Rank-deficient and Discrete ill-posed problems, SIAM •Hoerl AE, 1962, Application of ridge analysis to regression problems, Chemical Engineering Progress, 58, 54-59.•Foster M, 1961, An application of the Wiener-Kolmogorov smoothing theory to matrix inversion, J. SIAM, 9, 387-392•Phillips DL, 1962, A technique for the numerical solution of certain integral equations of the first kind, J Assoc Comput Mach, 9, 84-97•Tarantola A, 2004, Inverse Problem Theory (), Society for Industrial and Applied Mathematics,•Wahba, G, 1990, Spline Models for Observational Data, Society for Industrial and Applied Mathematics。

中值定理公开课一等奖课件省赛课获奖课件

中值定理公开课一等奖课件省赛课获奖课件
f ( x0 x) f ( x0 ) f ( x0 x) x (0 1). 也可写成 y f ( x0 x) x (0 1).
增量y的精确表达式 .
拉格朗日中值公式又称有限增量公式. 微分中值定理
拉格朗日中值定理又称有限增量定理.
推论1 如果函数 f ( x) 在区间 I 上的导数恒为零 , 那末 f ( x) 在区间 I 上是一个常数 . 推论2 如果 在区间 I 上 f ( x) g( x), 那末 在区间 I 上 f ( x) g( x) C

y x
f ( x0 )
是近似关系
(| x | 充分小)
而 lim y x0 x
f ( x0 )是极限关系,都不便应用
我们的任务是谋求差商与导数的直接关系,既 不是极限关系,也不是近似关系。对此,Lagrange 中值定理给出了圆满的解答:
y f ( x0 x)x
——导数应用的理论基础
本章我们先给出Rolle定理(它是Lagrange定 理的特殊状况),由特殊过渡到普通来证明 Lagrange定理和Cauchy定理,有了Cauchy定理 就能够给出Taylor中值定理及L, Hospital法则, 这就是本章理论部分的重要内容。
这三个条件只是充足条件,而非必要条件
如:y=x2在[-1,2]上满足(1),(2),不满足(3) 却在(-1,2)内有一点 x=0 使
y x0 2 x x0 0 但定理的条件又都是必须的,即为了确保结论成立 三个条件缺一不可。
例如, y x , x [2,2];
在[2,2]上除f (0)不存在外, 满足罗尔定理的 一切条件, 但在内找不到一点能使 f ( x) 0.
理论部分构造图
特例
推广

免疫治疗和化疗与生物治疗癌症的数学模型

免疫治疗和化疗与生物治疗癌症的数学模型
2 1
Abstract. In this paper, mathematical model of cancer treatments have been presented and analyzed using coupled ordinary differential equations (ODEs). This model describes cancer growth on a cell population level with combination immunotherapy and chemotherapy treatments are often called biochemotherapy. This model also describes the effect of tumor infiltrating lymphocytes (TIL), Mathematics Subject Classification: 35F25, 37N25, 92C50 Keywords and phrases: ordinary differential equations, immunotherapy, chemotherapy, biochemotherapy, tumor infiltrating lymphocytes (TIL), interleukin-2 (IL-2), interferon alpha (INF-α). interleukin-2 (IL-2) and interferon alpha (INF-α) on dynamics of tumor cells under the influence of immunotherapy, chemotherapy and biochemotherapy. Through this mathematical model, numerical simulations of immunotherapy, chemotherapy and biochemotherapy for some cases such as variation of tumor size and variation of parameter among patient 9 and patient 10 were presented. Our result shown that for parameter set patient 9 and patient 10, the biochemotherapy more effective than the immunotherapy and chemotherapy.
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Linear Algebra and its Applications432(2010)1531–1552Contents lists available at ScienceDirect Linear Algebra and its Applications j o u r n a l h o m e p a g e:w w w.e l s e v i e r.c o m/l o c a t e/l aaThe general coupled matrix equations over generalized bisymmetric matricesMehdi Dehghan∗,Masoud HajarianDepartment of Applied Mathematics,Faculty of Mathematics and Computer Science,Amirkabir University of Technology, No.424,Hafez Avenue,Tehran15914,IranA R T I C L E I N F O AB S T R AC TArticle history:Received20May2009Accepted12November2009 Available online16December2009 Submitted by S.M.RumpAMS classification:15A2465F1065F30Keywords:Iterative methodLeast Frobenius norm solution group Optimal approximation generalized bisymmetric solution group Generalized bisymmetric matrix General coupled matrix equations In the present paper,by extending the idea of conjugate gradient (CG)method,we construct an iterative method to solve the general coupled matrix equationspj=1A ij X jB ij=M i,i=1,2,...,p,(including the generalized(coupled)Lyapunov and Sylvester matrix equations as special cases)over generalized bisymmetric matrix group(X1,X2,...,X p).By using the iterative method,the solvability of the general coupled matrix equations over generalized bisym-metric matrix group can be determined in the absence of roundoff errors.When the general coupled matrix equations are consistent over generalized bisymmetric matrices,a generalized bisymmetric solution group can be obtained withinfinite iteration steps in the absence of roundoff errors.The least Frobenius norm generalized bisymmetric solution group of the general coupled matrix equa-tions can be derived when an appropriate initial iterative matrix group is chosen.In addition,the optimal approximation generalized bisymmetric solution group to a given matrix group( X1, X2,..., X p) in Frobenius norm can be obtained byfinding the least Frobe-nius norm generalized bisymmetric solution group of new general coupled matrix equations.The numerical results indicate that the iterative method works quite well in practice.©2009Elsevier Inc.All rights reserved.∗Corresponding author.E-mail addresses:mdehghan@aut.ac.ir,mdehghan.aut@(M.Dehghan),mhajarian@aut.ac.ir,masoudhajarian@ (M.Hajarian).0024-3795/$-see front matter©2009Elsevier Inc.All rights reserved.doi:10.1016/a.2009.11.0141532M.Dehghan,M.Hajarian /Linear Algebra and its Applications 432(2010)1531–15521.IntroductionFirst some symbols and notations are introduced.Let R m ×n be the set of all m ×n real matrices and SOR n ×n be the set of all symmetric orthogonal matrices in R n ×n .We denote by I n the n ×n identity matrix.We also write it as I ,when the dimension of this matrix is clear.The symbols A T ,tr (A )and R (A )stand the transpose,trace and column space of the matrix A ,respectively. A,B =tr (B T A )is defined as the inner product of the two matrices,which generates the Frobenius norm,i.e.||A ||2F =A,A =tr (A TA ).The Kronecker product of two matrices A andB is denoted by A ⊗B .The stretchingfunction vec (A )is defined as vec (A )= a T 1a T 2...a Tm T ,where a k is the k th column of A .The generalized bisymmetric matrices have wide applications in many fields which can be defined as follows:Definition 1.1.For arbitrary given matrix R ∈SOR n ×n ,i.e.,R =R T =R −1,we say that matrix A ∈R n ×n is generalized bisymmetric matrix with respect to R ,if RAR =A =A T .The set of order n gener-alized bisymmetric matrices with respect to R is denoted by BSR n ×nR .It is obvious that any symmetric matrix is also a generalized bisymmetric matrix with respect to I .In the literature,the problem for determining a solution to several linear matrix equations has been widely studied [10,14,22–24,27–30,33,35,43,44].In [4],the symmetric solution of the linear matrix equationAX=B,(1.1)have been considered using the singular-value,generalized singular-value,real Schur,and real gen-eralized Schur decompositions.By applying a formula for the partitioned minimum-norm reflexive generalized,Don [5]presented the general symmetric solution X to the matrix equation (1.1).By using the singular-value decomposition and the generalized singular-value decomposition,Dai [2]proposed the necessary and sufficient conditions for the consistency of two matrix equationsAX=C and AXB =C,(1.2)with a symmetric condition on solutions.In [1],the necessary and sufficient conditions for the existence of and the expressions for the symmetric solutions of the matrix equationsAX+YA =C,(1.3)AXA T +BYB T =C,(1.4)and(A T XA,B T XB )=(C,D ),(1.5)were derived.Many problems in systems and control theory require the solution of the matrix equation AX −YB =C .Baksalary and Kala [6]presented a condition for the existence of a solution and derived a formula for the general solution of the matrix equationAXB +CYD=E,(1.6)where A,B,C,D and E are given matrices of suitable sizes defined over real number field.Dehghan and Hajarian proposed an iterative method for solving a pair of matrix equations AYB =E and CYD =F over generalized centro-symmetric matrices [7]and some finite iterative algorithms for the reflexive and anti-reflexive solutions of (coupled)Sylvester matrix equations [8,9,13],and studied the lower bound for the product of eigenvalues of solutions to a class of linear matrix equations [12].In [26],the authors presented the necessary and sufficient conditions for the existence of constant solutions with bi(skew)symmetric constrains to the matrix equationsA i X−YB i =C i ,i =1,2,...,s,(1.7)M.Dehghan,M.Hajarian/Linear Algebra and its Applications432(2010)1531–15521533andA i XB i−C i YD i=E i,i=1,2,...,s.(1.8)In[31,32],Wang investigated the centro-symmetric solution to the system of quaternion matrix equationsA1X=C1,A3XB3=C3.(1.9) In[36],the maximal and minimal ranks and the least-norm of the general solution to the system A1X=C1,A2X2=C2,A3X1B1+A4X2B2=C3,(1.10) over a quaternion algebra were derived.When the solvability conditions of the system of linear real quaternion matrix equationsA1X=C1,XB1=C2,A2X2=C3,XB2=C4,A3X1B3+A4X2B4=C c,(1.11) are satisfied,Wang et al.[36]presented some necessary and sufficient conditions for the existence of a solution to this system and gave an expression of the general solution to the system.It is well-known that Sylvester and Lyapunov matrix equations are important equations which play a fundamental role in the variousfields of engineering theory,particularly in control systems. The numerical solution of Sylvester and Lyapunov matrix equations has been addressed in a large body of literature.Dehghan and Hajarian[11]proposed an efficient iterative method for solving the second-order Sylvester matrix equationEVF2−AVF−CV=BW.(1.12) Zhou and Duan[38,41,39]established the solution of the several generalized Sylvester matrix equations.Zhou et al.[40]proposed gradient-based iterative algorithms for solving the general coupled Sylvester matrix equations with weighted least squares solutions.In[42],general parametric solution to a family of generalized Sylvester matrix equations arising in linear system theory is presented by using the socalled generalized Sylvester mapping which has some elegant properties.Iterative algorithms are commonly employed to solve large linear matrix equations.By extending the well-known Jacobi and Gauss–Seidel iterations for Ax=b,Ding et al.[20]derived iterative solu-tions of the matrix equation AXB=F and the generalized Sylvester matrix equation AXB+CXD=F.In [15,16,20],to solve(coupled)matrix equations,the iterative methods are given which are based on the hierarchical identification principle[17,18].The gradient-based iterative(GI)algorithms[15,20]and least squares based iterative algorithm[16]for solving(coupled)matrix equations are innovational and computationally efficient numerical algorithms and were presented based on the hierarchical identification principle[17,18]which regards the unknown matrix as the system parameter matrix to be identified.Also Ding and Chen[19],applying the gradient search principle and the hierarchical identification principle,presented the gradient-based iterative algorithms for the general coupled matrix equationspA ij X jB ij=M i,i=1,2,...,p.(1.13)j=1We would like to comment that the coupled matrix equations(1.13)are quite general and include many matrix equations such as the generalized(coupled)Lyapunov and Sylvester matrix equations.Also by using the above-mentioned algorithms,we can not obtain the generalized bisymmetric solution group of the coupled matrix equations(1.13).In this paper,we mainly consider the following problems:Problem1.1.For given matrices A ij∈R r i×n j,B ij∈R n j×s i,M i∈R r i×s i and the symmetric orthogonal matrices R j∈SOR n j×n j,find the generalized bisymmetric matrix group(X1,X2,...,X p)with X j∈BSR n j×n j,j=1,2,...,p,such thatR jpA ij X jB ij=M i,i=1,2,...,p.j=11534M.Dehghan,M.Hajarian /Linear Algebra and its Applications 432(2010)1531–1552Problem 1.2.Let Problem 1.1be consistent,and its solution group set be denoted by S r .For a given gen-eralized bisymmetric matrix group (X 1, X 2,..., X p )with X j ∈BSR n j ×n jR j,j =1,2,...,p ,find ( X 1, X 2,..., X p )∈S r with X j ∈BSR n j ×nj R j ,j=1,2,...,p such thatp j =1|| X j − X j ||2F =min(X 1,X 2,...,X p )∈S r ⎧⎨⎩pj =1||X j − X j ||2F ⎫⎬⎭.(1.14)The rest of the paper is structured as follows.In Section 2,first we introduce an iterative method for solving Problem 1.1.Then we show that the introduced algorithm can obtain a generalized bisym-metric solution group (the minimal Frobenius norm generalized bisymmetric solution group)for any (special)initial matrix group within finite steps.Also we will solve Problem 1.2.Finally,we will give two numerical examples to verify our results in Section 4.2.Main resultsIn this section,by extending the idea of conjugate gradient method,we propose an iterative method to compute the generalized bisymmetric solution group of the matrix equations (1.13).Then some properties of such algorithm are discussed.By using these properties,we present the convergence results for the algorithm.In order to explain the method,we first give the following lemma.Lemma 2.1.The coupled matrix equations (1.13)have a generalized bisymmetric solution group if and only if the system of matrix equations⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩ p j =1A ij X j B ij =M i ,i =1,2,...,p, p j =1B T ij X j A T ij =M T i,i =1,2,...,p, pj =1A ij R j X j R j B ij =M i ,i =1,2,...,p, p j =1B T ij R j X j R j A T ij =M Ti ,i =1,2,...,p,(2.1)is consistent .Proof.If the coupled matrix equations (1.13)have a generalized bisymmetric matrix group X ∗1,X ∗2,...,X ∗p with X ∗j ∈BSR n j ×n j R j ,i.e.,X ∗j =X ∗T j =R j X ∗j R j for j =1,2,...,p ,then we getp j =1B T ij X ∗j A Tij=p j =1A ij X ∗Tj B ijT=p j =1A ij X ∗jB ijT=M T i ,(2.2)p j =1A ij R j X ∗j R j B ij=p j =1A ij X ∗jB ij=M i ,(2.3)andp j =1B T ij R j X ∗j R j A T ij=p j =1A ij R T j X ∗T j R T jB ijT=p j =1A ij X ∗j B ijT=M T i ,(2.4)for i=1,2,...,p .By combining the equalities (2.2)–(2.4),we obtain that the generalized bisymmetricmatrix group X ∗1,X ∗2,...,X ∗pis a solution group of the system of matrix equations (2.1).Conversely,suppose that the system of matrix equations (2.1)is consistent and (X 1,X 2,...,X p )isa solution group of (2.1).DefineM.Dehghan,M.Hajarian/Linear Algebra and its Applications432(2010)1531–15521535Y j=X j+R j X j R j+X T j+R j X T j R j4for j=1,2,...,p.(2.5)Obviously that Y j∈BSR n j×n jR jfor j=1,2,...,p.Now we can write pj=1A ij Y j B ij=pj=1A ijX j+R j X j R j+X T j+R j X T j R j4B ij=14⎡⎣pj=1A ij X jB ij+pj=1A ij R j X j R jB ij+pj=1A ij X T jB ij+pj=1A ij R j X T j R jB ij⎤⎦=14⎡⎣pj=1A ij X jB ij+pj=1A ij R j X j R jB ij+pj=1B T ij X j A T ijT+pj=1B T ij R j X j R j A T ijT⎤⎦=14M i+M i+(M T i)T+(M T i)T=M i,(2.6)for i=1,2,...,p.Hence(Y1,Y2,...,Y p)is a solution group of the coupled matrix equations(1.13). The proof is completed.By considering Lemma2.1,the solvability of the system of matrix equations(2.1)is equivalent to Problem1.1.Also the system of matrix equations(2.1)is equivalent to the following system:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝B T11⊗A11B T12⊗A12...B T1p⊗A1p............B T p1⊗A p1B T p2⊗A p2...B T pp⊗A ppA11⊗B T11A12⊗B T12...A1p⊗B T1p............A p1⊗B T p1A p2⊗B T p2...A pp⊗B T ppB T11R1⊗A11R1B T12R2⊗A12R2...B T1p R p⊗A1p R p............B T p1R1⊗A p1R1B T p2R2⊗A p2R2...B T pp R p⊗A pp R pA11R1⊗B T11R1A12R2⊗B T12R2...A1p R p⊗B T1p R p............A p1R1⊗B T p1R1A p2R2⊗B T p2R2...A pp R p⊗B T pp R p⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝vec(X1)vec(X2).................vec(X p)⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠=⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝vec(M1)...vec(M p)vec(M T1)...vec(M T p)vec(M1)...vec(M p)vec(M T1)...vec(M T p)⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.(2.7)The size of the system of the linear equations(2.7)is large.However,iterative methods consume more computer time and memory once the size of the system is large.To overcome these complications and drawbacks,by extending the idea of conjugate gradient method,we propose an iterative method for solving(1.13).Consider the linear algebraic system of equationsAx=b,(2.8) where we have denoted by A=(a ij)∈R n×n the coefficient matrix,by b=(b i)∈R n the right side vector and by x=(x i)∈R n the unknown vector,respectively.For solving systems of linear algebraic equations,the conjugate gradient method reads as follows:1536M.Dehghan,M.Hajarian/Linear Algebra and its Applications432(2010)1531–1552Conjugate gradient algorithm1.Select x(0)∈R n and set r(0)=b−Ax(0).Setα(0)=||r(0)||2and d(0)=r(0);2.for k=0,1,...until convergence do:3.s(k)=Ad(k);4.t(k)=α(k)/(d(k)T s(k));x(k+1)=x(k)+t(k)d(k);r(k+1)=r(k)−t(k)s(k);β(k+1)=||r(k+1)||2/||r(k)||2;d(k+1)=r(k+1)+β(k+1)d(k);5.end for.If A be a symmetric and positive definite matrix,then any method which employs conjugate direc-tions to solve(2.8)terminates after at most n steps,yielding the exact solution[21,25].In general,CG method cannot guarantee that x(k)converges to the exact solution x=A−1b.Also this method not suitable for solving the non-square system:Bx=c with B∈R m×n.This motivates us to study new iterative methods.It is obvious that CG method can be represented asx(k+1)=x(k)+t(k)d(k),(2.9) where parameter t(k)and vector d(k)to be determined.Now we decompose the general coupled matrix equations(1.13)into p subsystems and consider a large family of CG iterative methods for the subsystems as:X i(k+1)=X i(k)+T i(k)D i(k)for i=1,2,...,p,(2.10) where parameter T i(k)and matrix D i(k)(for i=1,2,...,p)to be determined.According to(2.10),we propose an iterative algorithm for solving Problem1.1.The details of algorithm are given as follows. Algorithm1Step1.Input matrices A ij∈R r i×n j,B ij∈R n j×s i,M i∈R r i×s i and the symmetric orthogonal matrices R j∈SOR n j×n j;Step2.Choose arbitrary X j(1)∈BSR n j×n jR jfor j=1,2,...,p;Step3.CalculateR(1)=diagM1−pt=1A1t X t(1)B1t,M2−pt=1A2t X t(1)B2t,...,M p−pt=1A pt X t(1)B pt;P i(1)=14⎧⎨⎩ps=1A T siM s−pt=1A st X t(1)B stB T si+ps=1⎡⎣BsiM s−pt=1A st X t(1)B stTA si⎤⎦+ps=1R i A T siM s−pt=1A st X t(1)B stB T si R i+ps=1⎡⎣Ri B siM s−pt=1A st X t(1)B stTA si R i⎤⎦⎫⎬⎭,i=1,2,...,p;k:=1;Step4.If R(k)=0,then stop and(X1(k),X2(k),...,X p(k))is the generalized bisymmetric solution group;else if R(k)/=0but P m(k)=0for all m=1,2,...,p,then stop and the general coupled matrix equations(1.13)are not consistent over generalized bisymmetric matrix group;else k:=k+1;Step5.CalculateX i(k)=X i(k−1)+||R(k−1)||2Fpt=1P t k1FP i(k−1),i=1,2,...,p;M.Dehghan,M.Hajarian /Linear Algebra and its Applications 432(2010)1531–15521537R (k )=diagM 1−p t =1A 1t X t (k )B 1t ,M 2−p t =1A 2t X t (k )B 2t ,...,M p −p t =1A pt X t (k )B pt;=R (k −1)−||R (k −1)||2Fpt =1||P t (k −1)||2F×diagpt =1A 1t P t (k −1)B 1t ,p t =1A 2t P t (k −1)B 2t ,...,p t =1A pt P t (k −1)B pt;P i (k )=14⎡⎣p s =1A T si M s−p t =1A st X t (k )B stB Tsi+p s =1B si M s−p t =1A st X t (k )B stTA si +p s =1R i A T si M s−p t =1A st X t (k )B stB Tsi R i+p s =1R i B siM s−p t =1A st X t (k )B stTA si R i ⎤⎦+||R (k )||2F||R (k −1)||2FP i (k −1),i =1,2,...,p ;Step 6.Go to Step 4.Remark 2.1.X j (k )and P j (k )(j =1,2,...,p )generated by Algorithm 1are the generalized bisymmetricmatrices with respect to R j ,i.e.,X j (k )=X T j (k )=R j X j (k )R j and P j (k )=P T j (k )=R j P j (k )R j ,for k =1,2,...,j =1,2,...,p .(2.11)Remark 2.2.Because of the influence of the error of calculation,the residual R (k )(k =1,2,...)is usually unequal to zero exactly in the process of the iteration.We regard the matrix R (k )as a zero matrix if ||R (k )||F <εwhere εis a small positive number.In Algorithm 1,the iteration will be stopped whenever ||R (k )||F <ε.We begin with the following useful lemmas about Algorithm 1to be used in the next results.Lemma 2.2.Suppose that the sequences {R (k )}and {P i (k )}for i =1,2,...,p and k =1,2,...,s (R (k )/=0,k =1,2,...,s )are generated by Algorithm 1,thentrR T(m )R (n )=0andp i =1trP T i (m )P i (n )=0,for m,n =1,2,...,s (m /=n ).(2.12)The proof of Lemma 2.2is presented in the Appendix.Lemma 2.3.Assume that the coupled matrix equations (1.13)are consistent over generalized bisymmetric matrix group (X 1,X 2,...,X p )and alsoX ∗1,X ∗2,...,X ∗pis an arbitrary generalized bisymmetric solution group of (1.13),then for any initial matrix group (X 1(1),X 2(1),...,X p (1))with X j (1)∈BSR nj ×n jR jandj=1,2,...,p,the sequences {X i (k )},{R (k )}and {P i (k )}(i =1,2,...,p )generated by Algorithm 1satisfyp i =1tr X ∗i −X i (n )T P i (m )=0for m <n,(2.13)1538M.Dehghan,M.Hajarian /Linear Algebra and its Applications 432(2010)1531–1552andp i =1trX ∗i−X i (n ) TP i (m )=||R (m )||2F for m n .(2.14)The proof of Lemma 2.3is given in the Appendix.Remark 2.3.If there exists a positive number j such that P i (j )=0for all i =1,2,...,p but R (j )/=0,then by considering Lemma 2.3,we can get the coupled matrix equations (1.13)are not consistent over generalized bisymmetric matrices.Hence,the solvability of Problem 1.1can be determined by Algorithm 1in the absence of roundoff errors.Theorem 2.1.Suppose that Problem 1.1is consistent .Then for any arbitrary initial matrix group (X 1(1),X 2(1),...,X p (1))with X j (1)∈BSR n j ×n jR jand j =1,2,...,p,a generalized bisymmetric solution group of Problem 1.1can be obtained with finite iteration steps in the absence of roundoff errors .Proof.Let R (i )/=0for i =1,2,...,m = pi =1r i s i ,then from Lemma 2.3and Remark 2.3we haveP g (i )/=0for some g ∈{1,2,...,p }.Hence R m +1andX (m +1)1,X (m +1)2,...,X (m +1)pcan be computed.Now from Lemma 2.2,it is not difficult to gettr (R T (m +1)R (i ))=0i =1,2,...,m,(2.15)andtr (R T (i )R (j ))=0i,j =1,2,...,m,i /=j .(2.16)Then R (1),R (2),...,R (m )is an orthogonal basis of the subspaceK = M |M =diag Z 1,Z 2,...,Z p where Z i ∈R r i ×s ifor i =1,2,...,p .It follows that R (m +1)=0and (X 1(m +1),X 2(m +1),...,X p (m +1))is a solution group of Prob-lem 1.1.Therefore when Problem 1.1is consistent,we can verify that the solution group of Problem 1.1can be obtained within finite iterative steps. Let E j be arbitrary matrices for j=1,2,...,p ,we can get⎛⎜⎜⎜⎜⎜⎜⎜⎝vecpj =1A T j 1E j B Tj 1+pj =1B j 1E T j A j 1+ p j =1R 1A T j 1E j B T j 1R 1+ p j =1R 1B j 1E Tj A j 1R 1vec p j =1A T j 2E j B T j 2+ p j =1B j 2E T j A j 2+ p j =1R 2A T j 2E j B T j 2R 2+ p j =1R 2B j 2E T j A j 2R 2 .........vec p j =1A T jp E j B T jp + p j =1B jp E T j A jp + p j =1R p A T jp E j B T jp R p + p j =1R p B jp E T j A jp R p⎞⎟⎟⎟⎟⎟⎟⎟⎠=⎛⎜⎜⎜⎜⎜⎜⎝B 11⊗A T 11...B p 1⊗A T p 1A T 11⊗B 11...A T p 1⊗B p 1R 1B 11⊗R 1A T 11B 12⊗A T 12...B p 2⊗A T p 2A T 12⊗B 12...A T p 2⊗B p 2R 2B 12⊗R 2A T 12.....................B 1p⊗A T 1p...B pp ⊗A T pp A T 1p ⊗B 1p...A T pp ⊗B pp R p B 1p ⊗R p A T 1p...R 1B p 1⊗R 1A T p 1R 1A T 11⊗R 1B 11...R 1A T p 1⊗R 1B p 1...R 2B p 2⊗R 2A T p 2R 2A T 12⊗R 2B 12...R 2A T p 2⊗R 2B p 2..................R p B pp ⊗R p A T pp R p A T 1p ⊗R p B 1p...R p A Tpp ⊗R p B pp⎞⎟⎟⎟⎟⎟⎟⎠M.Dehghan,M.Hajarian/Linear Algebra and its Applications432(2010)1531–15521539×⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝vec(E1)...vec(E p)vec(E T1)...vec(E T p)vec(E1)...vec(E p)vec(E T1)...vec(E T p)⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠=⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝B T11⊗A11B T12⊗A12...B T1p⊗A1p............B T p1⊗A p1B T p2⊗A p2...B T pp⊗A ppA11⊗B T11A12⊗B T12...A1p⊗B T1p............A p1⊗B T p1A p2⊗B T p2...A pp⊗B T ppB T11R1⊗A11R1B T12R2⊗A12R2...B T1p R p⊗A1p R p............B T p1R1⊗A p1R1B T p2R2⊗A p2R2...B T pp R p⊗A pp R pA11R1⊗B T11R1A12R2⊗B T12R2...A1p R p⊗B T1p R p............A p1R1⊗B T p1R1A p2R2⊗B T p2R2...A pp R p⊗B T pp R p⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠T⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝vec(E1)...vec(E p)vec(E T1)...vec(E T p)vec(E1)...vec(E p)vec(E T1)...vec(E T p)⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠∈R ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝B T11⊗A11B T12⊗A12...B T1p⊗A1p............B T p1⊗A p1B T p2⊗A p2...B T pp⊗A ppA11⊗B T11A12⊗B T12...A1p⊗B T1p............A p1⊗B T p1A p2⊗B T p2...A pp⊗B T ppB T11R1⊗A11R1B T12R2⊗A12R2...B T1p R p⊗A1p R p............B T p1R1⊗A p1R1B T p2R2⊗A p2R2...B T pp R p⊗A pp R pA11R1⊗B T11R1A12R2⊗B T12R2...A1p R p⊗B T1p R p............A p1R1⊗B T p1R1A p2R2⊗B T p2R2...A pp R p⊗B T pp R p⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠T⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.(2.17)Now if we consider the initial matricesX i(1)=pj=1A T ji E jB T ji+pj=1B ji E T j A ji+pj=1R i A T ji E j B T ji R i+pj=1R i B ji E T j A ji R i,i=1,2,...,p,(2.18)then all X i(k)for i=1,2,...,p generated by Algorithm1satisfy⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝vec(X1(k))vec(X2(k))vec(X3(k))..................vec(X p(k))⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠∈R⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝B T11⊗A11B T12⊗A12...B T1p⊗A1p............B T p1⊗A p1B T p2⊗A p2...B T pp⊗A ppA11⊗B T11A12⊗B T12...A1p⊗B T1p............A p1⊗B T p1A p2⊗B T p2...A pp⊗B T ppB T11R1⊗A11R1B T12R2⊗A12R2...B T1p R p⊗A1p R p............B T p1R1⊗A p1R1B T p2R2⊗A p2R2...B T pp R p⊗A pp R pA11R1⊗B T11R1A12R2⊗B T12R2...A1p R p⊗B T1p R p............A p1R1⊗B T p1R1A p2R2⊗B T p2R2...A pp R p⊗B T pp R p⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠T⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.1540M.Dehghan,M.Hajarian /Linear Algebra and its Applications 432(2010)1531–1552By using the Moore–Penrose pseudoinverse to solve a linear systems Ax =b ,it is well known that for a consistent linear system Ax =b ,all the solutions are given by x =A †b +Null (A );hence A †b gives the minimum norm solution.From Range (A †)=R (A T ),we have y ∗∈R (A T )is a least 2-norm solution of the system of linear equations.Hence with the initial matrix group (X 1(1),X 2(1),...,X p (1))whereX i (1)=p j =1A T ji E jB T ji +p j =1B ji E T j A ji +p j =1R i A T ji E j B Tji R i +p j =1R i B ji E T j A ji R i ,i=1,2,...,p,it follows that the generalized bisymmetric solution group obtained by Algorithm 1is the least Frobe-nius norm generalized bisymmetric solution group.By using the above conclusions,we can presentthe following theorem.Theorem 2.2.Suppose that Problem 1.1is consistent .Let the initial iteration matrices beX i (1)=p j =1A T ji E jB T ji +p j =1B ji E T j A ji +p j =1R i A T ji E j B Tji R i +p j =1R i B ji E T j A ji R i ,i=1,2,...,p,where E j be arbitrary matrices,or especially,X i (1)=0for j =1,2,...,p,then the solution group X ∗1,X ∗2,...,X ∗p,generated by Algorithm 1,is the least Frobenius norm generalized bisymmetric solution group of the coupled matrix equations (1.13).Now we study Problem 1.2as follows.When Problem 1.1is consistent,its solution group set S r is nonempty.For a given matrix group( X 1, X 2,..., X p )with X j ∈BSR n j ×n jR j,j =1,2,...,p ,it is not difficult to getp j =1A ij X jB ij=M i ,i =1,2,...,p ⇔p j =1A ij (X j − X j )B ij =M i −p j =1A ij X jB ij ,i=1,2,...,p .Define X j =X j − X j and M i =M i − p j =1A ij X j B ij for i =1,2,...,p .Then the matrix nearness Problem 1.2is equivalent to first finding the least Frobenius norm generalized bisymmetric solution group X ∗1,X ∗2,...,X ∗p of the new coupled matrix equationsp j =1A ij X jB ij=M i ,i =1,2,...,p,(2.19)which can be obtained by using Algorithm 1with the initial generalized bisymmetric matricesX i (1)=p j =1A T ji E jB Tji +p j =1B ji E T j A ji +p j =1R i A T ji E j B Tji R i +p j =1R i B ji E T j A ji R i ,i=1,2,...,p,where E j be arbitrary matrices,or especially,X i (1)=0for j =1,2,...,p .Here the generalized bisym-metric solution group of the matrix nearness Problem 1.2can be represented as ( X 1, X 2,..., X p )withX j=X ∗j +X j ,j =1,2,...,p .(2.20)3.Numerical experimentsIn this section,we reported two numerical examples to compute the generalized bisymmetric solution group of coupled matrix equations.We implemented the algorithms in MATLAB and run the programs on a Pentium IV.Meanwhile,we assumed that ε=10−12.。

相关文档
最新文档