除氧器结构及工作原理
除氧器结构及工作原理
定期更换除氧器滤芯,确 保除氧效果
定期清洗除氧器,保持内 部清洁
定期检查除氧器压力表、 温度表等仪表,确保其准 确性
定期检查除氧器阀门、管 道等部件,确保其正常工 作
定期检查除氧器控制系统, 确保其正常运行
感谢您的观看
汇报人:XX
除氧器主要由壳体、加热管、蒸汽管、疏水阀等组成 加热过程是通过加热管将蒸汽加热到一定温度,使水中的溶解氧逸出 加热过程中,蒸汽管中的蒸汽与壳体内的水进行热交换,提高水温 加热过程中,疏水阀自动排出多余的蒸汽,保持加热管内的压力稳定
工作原理:利用蒸汽喷射原理,将水加热到一定温度,使水中的氧气溶解度降低,从而去除水中的氧气。
喷射器:蒸汽喷射器是除氧器的核心部件,通过喷射器将蒸汽与水混合,形成高速喷射流,使水中的氧气溶解度 降低。
喷射器结构:喷射器主要由喷嘴、混合室、扩散室等部分组成,通过喷射器将蒸汽与水混合,形成高速喷射流。
喷射器工作过程:蒸汽通过喷嘴高速喷射,与水混合形成高速喷射流,使水中的氧气溶解度降低,从而达到除氧 的目的。
核电站:用于去除核反应堆冷 却水中的氧气,防止核反应堆 腐蚀
火力发电厂:用于去除锅炉给 水中的氧气,防止锅炉腐蚀
水电站:用于去除水轮机冷却 水中的氧气,防止水轮机腐蚀
输变电设备:用于去除输变电 设备冷却水中的氧气,防止输
变电设备腐蚀
石油化工:用于去除石油中的氧气, 提高石油品质
精细化工:用于去除精细化工产品 中的氧气,提高产品质量
的部件
定期检查除氧 器各阀门、管 道的密封情况,
确保无泄漏
定期检查除氧 器各仪表、传 感器的工作情 况,确保其准
确性
定期清洗除氧 器内部,保持 内部清洁,防 止腐蚀和结垢
除氧器工作原理
除氧器工作原理
除氧器是一种常用于水系统中的设备,其工作原理是利用化学反应去除水中的溶解氧。
除氧器内部通常填充有一种特殊的除氧剂,例如活性炭或硫化钠等。
当水通过除氧器时,溶解在水中的氧气会与除氧剂发生化学反应。
这些化学反应会将氧气转化为不溶于水的气体,如氮气或二氧化碳,从而将水中的溶解氧含量降低。
除氧剂在除氧器中的填充物形成了一个大表面积,有效地增加了氧气与除氧剂之间的接触面积。
这样一来,氧气在通过除氧器时与除氧剂之间的反应速率就会增加,从而加快了除氧的过程。
此外,除氧器还通常配备有一个空气抽吸装置。
这个装置可以将除氧过程中生成的气体从除氧器中抽出,并排出到环境中。
这样一来,除氧器内部的气体氧浓度就会保持在较低水平,有助于更好地去除水中的溶解氧。
除氧器在许多领域中都有广泛的应用,特别是在锅炉、冷却水循环系统和饮用水处理中。
通过使用除氧器,可以有效地降低水中的溶解氧含量,防止金属腐蚀、泡沫和沉淀等问题的发生,并提高水系统的性能和寿命。
锅炉除氧器的工作原理
锅炉除氧器的工作原理
锅炉除氧器是一种用于去除锅炉进水中溶解氧的设备,其工作原理主要是通过化学方法将溶解氧转化为不易溶解于水中的氧化物沉淀,以达到除氧的目的。
锅炉除氧器通常由一个装有辅助设备的闭式容器组成,主要包括氧化剂注入系统、催化剂床和除氧剂回收系统等部分。
工作过程如下:
1. 进水通过进水管道进入锅炉除氧器,同时进行加热,提高水温,以促进氧气的释放。
2. 氧化剂注入系统将含有高氧气浓度的空气或纯氧气注入锅炉除氧器内。
这些氧化剂会与溶解在进水中的氧气反应,形成氧化物。
3. 进入除氧器的溶解氧与注入的氧化剂在催化剂床上发生反应,反应产物氧化物会附着在催化剂床表面并逐渐形成固体沉淀。
同时,化学反应也会释放热能,提高进水的温度。
4. 经过催化剂床的处理后,包含溶解氧的水进入除氧剂回收系统。
其中,除氧剂回收系统会有一个分离装置,用于将水中的氧化物沉淀与水分离,并将除氧剂回收至除氧器中再次使用。
5. 经过除氧剂回收系统处理后的水再次进入锅炉供应蒸汽。
通过锅炉除氧器的工作原理,能够有效去除水中的溶解氧,降低锅炉内的氧含量,有效预防锅炉腐蚀和氧腐蚀。
同时,由于氧化物形成固体沉淀,还能减小锅炉内的水垢和沉淀物产生,提高锅炉的工作效率和寿命。
除氧器的工作原理
除氧器的工作原理除氧器是一种用于去除水中溶解氧的设备,其工作原理基于氧气和水之间的气体交换过程。
本文将详细介绍除氧器的工作原理,包括其结构和工作过程。
一、除氧器的结构除氧器通常由以下几部份组成:1. 气体进口:用于引入气体,通常是空气或者纯氧气。
2. 水进口:用于引入水,通常是含有溶解氧的水。
3. 气液接触器:用于将气体和水进行接触,以实现气体交换。
4. 气体出口:用于排出含有溶解氧的气体。
5. 水出口:用于排出去除了溶解氧的水。
二、除氧器的工作过程除氧器的工作过程可以分为以下几个步骤:1. 气体进入:气体进口通常连接到一个气体供应系统,将气体引入除氧器中。
气体可以是空气或者纯氧气,取决于具体的应用需求。
2. 水进入:水进口通常连接到一个水源,将含有溶解氧的水引入除氧器中。
水通过进入除氧器的气液接触器与气体进行接触。
3. 气液接触:在气液接触器中,气体和水进行接触,并发生气体交换。
气体中的氧气会从气体相转移到水相中,从而降低水中的溶解氧浓度。
4. 气体排出:经过气液接触后,含有较低溶解氧浓度的气体通过气体出口排出除氧器。
5. 水排出:经过气液接触后,除去了溶解氧的水通过水出口排出除氧器。
三、除氧器的原理除氧器的工作原理基于气体和水之间的气体交换过程。
当气体与水接触时,氧气份子会从气体相转移到水相中。
这是由于氧气份子在气体和水中的溶解度不同,氧气份子在水中的溶解度较高。
气体与水之间的气体交换过程遵循亨利定律,即溶解度与气体分压成正比。
当气体与水接触时,氧气份子会从气体相向水相扩散,直到氧气在两相之间达到平衡。
在这个过程中,氧气份子会从气体相向水相转移,从而降低水中的溶解氧浓度。
除氧器通过增大气液接触面积,提高气体与水之间的接触效率,从而加速气体交换过程。
常见的气液接触器结构包括气泡塔、喷淋塔和膜接触器等。
这些结构能够将气体和水进行充分的接触,使氧气份子更容易从气体相向水相转移。
除氧器的工作原理使得溶解氧的浓度在水中逐渐降低,从而实现了去除水中溶解氧的目的。
除氧器的结构和原理
除氧器的结构和原理一、除氧器用途:旋膜式除氧器是喷雾填料式除氧器的替代产品,是一种最新型热力式除氧器,旋膜除氧器原理是补水经起膜管呈螺旋状按一定的角度喷出与加热蒸汽进行热交换除氧,给水加热到对应除氧器工作压力下的饱和温度,除去溶解于给水的氧及其它气体,防止和降低锅炉给水管、省煤器和其它附属设备的腐蚀。
电力部GB1576-2001《电站压力式除氧器安全技术监察规程》,对除氧器含氧量提出了部颁标准,即低压大气式除氧器给水含氧量应小于15ц二、除氧器结构旋膜式除氧器结构主要是由外壳、旋膜喷管、水篦子、填料液汽网、水箱、汽水分离器等组成:1. 外壳:是由筒身和冲压随园形封头焊制成。
中、小低压除氧器配有一对法兰联接上下部,供装配和检修用,高压除氧器装有供检修的人孔。
2. 旋膜喷管:由水室、汽室、旋膜管、凝结水接管、补充水接管和一次进汽接管组成。
新型旋膜器的旋膜管内增加了水膜导向装置,即使低负荷运行时也能强力旋膜,保持良好的水膜裙。
凝结水、化学补水经起膜管呈螺旋状按一定的角度喷出,形成水膜裙,并与一次加热蒸汽接管引进的加热蒸汽进行热交换,形成了一次除氧,给水经过水篦子上升的二次加热蒸汽接触被加热到接近除氧器工作压力下的饱和温度即低于饱和温度2-3℃,并进行粗除氧。
一般经此旋膜段可除去给水中含氧量的90-96%左右。
3. 水篦子:是由数层交错排列的角形钢制件组成,经旋膜段粗除氧的给水在这里进行二次分配,呈均匀雨雾状落到装在其下的液汽网上。
4. 填料液汽网:是由许多形状尺寸相同的单元组成的SW型网孔波纹填料,组成的一个圆筒体,该规整填料保持丝网波纹填宵和孔板波纹填料的优点外,而且通量大,压降小、操作弹性大,分离效率高、能耗低,永远不脱落等特点。
蓄热填料本身就是二次蒸汽的蓄热器,给水与蓄热器充分热交换,达到了深度除氧的目的,低压大气式除氧器低于10ug/L、高压除氧器低于5ug/L。
5. 水箱:除过氧的给水汇集到除氧头的下部容器即水箱内,除氧水箱内装有最新科学设计的强力换热再沸腾装置,该装置具有强力换热,迅速提升水温,更深度除氧.ɡ/L,三、除氧器技术特性和配套参数CYG-系列新型压力式除氧器四、除氧器工作原理凝结水及补充水首先进入除氧头内旋膜器组水室,在一定的水位差压下从膜管的小孔斜旋喷向内孔,形成射流,由于内孔充满了上升的加热蒸汽,水在射流运动中便将大量的加热蒸汽吸卷进来(试验证明射流运动具有卷吸作用);在极短时间很小的行程上产生剧烈的混合加热作用,水温大幅度提高,而旋转的水沿着膜管内孔壁继续下旋,形成一层翻滚的水膜裙,(水在旋转流动时的临界雷诺数下降很多即产生紊流翻滚),此时紊流状态的水传热传质效果最理想,水温达到饱和温度。
除氧器的工作原理
除氧器的工作原理引言概述:除氧器是一种常见的设备,用于去除液体中的氧气。
它在许多工业领域中发挥着重要的作用,例如发电厂、化工厂、锅炉等。
本文将详细介绍除氧器的工作原理,包括氧气的生成、除氧器的结构、工作过程以及应用。
正文内容:1. 氧气的生成1.1 热除氧法热除氧法是一种常见的氧气生成方式。
当液体通过除氧器时,通过加热使液体中的氧气蒸发,然后通过排气系统将氧气排出。
1.2 化学除氧法化学除氧法是另一种常见的氧气生成方式。
通过在液体中添加化学试剂,例如亚硫酸钠,与氧气发生反应生成无害的物质,从而去除氧气。
2. 除氧器的结构2.1 进气口除氧器的进气口是液体进入除氧器的通道。
它通常位于除氧器的顶部,并与液体的供应管道相连接。
2.2 除氧室除氧室是除氧器的主要部分,液体在这里与氧气进行接触和反应。
除氧室通常由耐腐蚀材料制成,以防止氧气对设备的腐蚀。
2.3 出气口出气口是将去除氧气的液体排出除氧器的通道。
它通常位于除氧器的底部,并与排气系统相连接。
3. 除氧器的工作过程3.1 液体进入除氧器液体通过进气口进入除氧器,进入除氧室。
3.2 氧气的去除在除氧室中,液体与氧气进行接触和反应。
通过热除氧或化学除氧的方式,将液体中的氧气去除。
3.3 除氧液体的排出去除氧气后的液体通过出气口排出除氧器,进入下一个工艺环节。
4. 除氧器的应用4.1 发电厂在发电厂中,除氧器用于去除锅炉给水中的氧气,以防止锅炉腐蚀和气泡形成。
4.2 化工厂在化工厂中,除氧器用于去除反应过程中产生的氧气,以保证反应的正常进行。
4.3 锅炉在锅炉中,除氧器用于去除给水中的氧气,以防止锅炉管道的腐蚀和气泡形成。
总结:除氧器是一种重要的设备,用于去除液体中的氧气。
它通过热除氧或化学除氧的方式,将液体中的氧气去除。
除氧器的结构包括进气口、除氧室和出气口。
除氧器广泛应用于发电厂、化工厂和锅炉等领域,以保证设备的正常运行和延长使用寿命。
除氧器检修规程
除氧器检修规程1、除氧器1.1设备结构概述及工作原理1.1.1结构概述:凝结水在流经负压系统时,在密闭不严处会有空气漏入凝结水中,加之凝结水补给水中也含有一定量的氧气。
这部分气体在满足一定条件下,不仅会腐蚀系统中的设备,而且使加热器及锅炉的换热能力降低。
除氧器的作用就是去除给水中溶解的气体,进一步提高给水品质。
除氧方法分为化学除氧和热力除氧两种,电厂常用以热力除氧为主,化学除氧为辅的方法进行除氧。
除氧器是利用热力除氧原理进行工作的混合式加热器,既能解析除去给水中的溶解气体;又能储存一定量给水,缓解凝结水与给水的流量不平衡。
在热力系统设计时,也用除氧器回收高品质的疏水。
除氧器的设计应满足以下几点要求:除氧能力满足最大负荷的要求、水容积足够大且有一定裕量、设有防止超压和水位过高的措施。
除氧器的汽源设计决定于除氧器系统的运行方式。
当除氧器以带基本负荷为主时,多采用定压运行方式,这时,供汽汽源管路上设有压力调节阀,要求汽源的压力略高于定压运行压力值,并设有更高一级压力的汽源作为备用。
这种方式节流损失大,效率较低;而以滑压运行为主的除氧器,其供汽管路上不设调节阀,除氧器的压力随机组负荷而改变,因不发生节流,其效率较高。
我公司除氧器采用定一滑一定运行方式,设有两路汽源:本机四抽和辅汽。
在四抽管路上只设防止汽轮机进水的截止阀和逆止门,不设调节阀,实现滑压运行。
而辅汽供汽管路上设压力调节阀,用于除氧器定压运行时的压力条件。
1.1.2除氧器工作原理热力除氧的原理建立在亨利定律和道尔顿定律基础上。
亨利定律指出:当液体和气体间处于平衡状态时,对应一定的温度,单位体积水中溶解的气体量与水面上该气体的分压力成正比。
显然,如用某种方法降低液面上该气体的分压力时(平衡压力p b大于气体在水面上的实际分压力p时),则该气体就会在不平衡压差作用下自水中离析出来,直至达到新的平衡状态为止。
如果能将某种气体从液面上完全清除掉(即实际分压力为0)就可把该气体从液体中完全除出。
除氧器结构及工作原理 ppt课件
三、无头除氧器工作过程
1、除氧器汽源: 除氧器的加热蒸汽 有两路汽源,分别为 四抽和辅汽,四抽 引入底部主要用于 深度除氧和加热给 水;辅汽引入本体 内经分配管后均匀 布置在汽水空间, 供启动时加热用。 加热蒸汽排管沿除
氧器筒体轴向均布.
ppt课件 9
2、无头除氧器工作过程
进水
ppt课件
18
3、吹扫管
吹扫管布置在水面上。在吹扫管中布置了许多吹扫 口。作用是: (1)吹扫蒸汽吹散聚集在水面上的氧气层,增加水 面上、下的氧气浓度差,有利于氧气的扩散。 (2)吹扫蒸汽吹破水面,减少了水的表面张力,便 于水中的氧气向水面扩散。 (3)吹扫后蒸汽向上流动,加热淋水、填料层中的 水膜和喷嘴喷出的雾化水,充分利用了余热。
1、总体结构:其主要部件由壳体、恒速喷嘴、加热蒸汽管、挡 板、蒸汽平衡管、排氧口、出水管及安全门、测量装置、人孔等 组成。
ppt课件
13
各部件名称
1、安全门 2、进水口 3、排气口(每个喷嘴 周围四个) 4、再循环接口 5、四抽供汽接口
6、辅汽供汽接口
7、高加疏水接口 8、就地水位计 9、溢流口 10、放水口 11、出水口 12、人孔 13、压力测点
ppt课件
17
2、除氧器汽平衡管
每个加热蒸汽管路上均设一 路蒸汽平衡管,并在蒸汽平 衡管上装有逆止阀,起到平 衡供汽管和除氧器压力的作 用。在正常运行时蒸汽平衡 管不起作用,当供汽压力突 降时逆止阀打开,使除氧器 的压力跟跟随汽源压力一同 变化,减小除氧器和供汽管 的压差,进而防止供汽管内 进水。
除氧器结构及工作原理
(2)送入的补给水量应尽量稳定:补给水量应连续均 匀地加入,不宜间断送入或变化太大;此外,锅炉运 行中应尽量回收凝结水,因为回水温度高,含氧量 少。
7、疏水闪蒸区 高加的疏水进入除氧器后,先在闪蒸区降压
蒸发,降低品质并释放热量。闪蒸的作用在 于除去疏水中的少量气体,利用释放的热量 加热给水。
8、安全门 为防止除氧器超压,除氧器装有两个安全阀,
其动作压力为1.35Mpa,单个安全阀的通流 量为61.310t/h。
四、除氧器的运行
除氧器采用滑压运行方式 设有两路汽源:本机四段抽汽和辅汽。 在四抽管路上只设防止汽轮机进水的截止阀和
(3)排汽阀开度应合适:太小除氧效果不好,太大则 造成热能损失。一般运行中排汽管应有轻微的蒸汽冒 出,排汽量控制在总进汽量的5%-10%。
三、无头除氧器工作过程
1、除氧器汽源: 除氧器的加热蒸汽 有两路汽源,分别为 四抽和辅汽,四抽 引入底部主要用于 深度除氧和加热给 水;辅汽引入本体 内经分配管后均匀 布置在汽水空间, 供启动时加热用。 加热蒸汽排管沿除
除氧器的两侧分别安装有一个蝶型喷嘴,凝结水分两路进入除氧器。喷 嘴的作用在于使凝结水形成适当的水膜,以获得最佳的水滴,既增大水 与蒸汽的接触表面积,又缩短了气体离析的路径。
除氧器共布置有两只进口喷 头(流量为1200t/h,由荷 兰STORK公司进口),由于 喷头弧形圆盘的调节作用,
当机组负荷大时,喷头内外 压差增大,弧形圆盘开度亦 增大,流量随之增大。当机 组负荷小时,喷头压差降低, 弧形圆盘开度亦减少,流量 随之减少。使喷出的水膜始 终保持稳定的形态,以适应 机组滑压运行。
锅炉房除氧器原理及结构
锅炉房除氧器原理及结构锅炉房除氧器是一种用于去除锅炉进水中氧气的设备。
它的原理是利用化学反应将氧气转化为水,从而达到除氧的目的。
除氧器的结构主要包括进水口、出水口、反应室、填料层和排气口等部分。
进水口是除氧器的入口,它将含氧的水引入反应室。
出水口则是除氧器的出口,它将除去氧气的水排出。
反应室是除氧器的核心部分,它是氧气和还原剂发生化学反应的地方。
填料层则是为了增加反应表面积而设置的,它可以让水和还原剂充分接触,从而提高反应效率。
排气口则是为了排出反应后产生的气体,保证除氧器的正常运行。
除氧器的原理是利用还原剂将氧气还原成水。
在反应室中,还原剂与氧气发生化学反应,生成水和其他物质。
这个过程中,氧气被还原成水,从而达到除氧的目的。
常用的还原剂有亚硫酸钠、亚硫酸氢钠、氨水等。
除氧器的结构和原理决定了它的应用范围。
除氧器广泛应用于各种锅炉房中,特别是高压锅炉房。
在高压锅炉房中,氧气会对锅炉造成严重的腐蚀和损害,因此必须采取措施去除氧气。
除氧器可以有效地去除氧气,保护锅炉的安全运行。
除氧器的性能和效率是衡量其质量的重要指标。
除氧器的性能主要包括除氧率、反应速率和反应效率等。
除氧率是指除氧器去除氧气的能力,反应速率是指反应的快慢,反应效率是指反应的完整程度。
除氧器的性能和效率取决于其结构和使用条件,因此在使用过程中需要注意维护和保养。
总之,锅炉房除氧器是一种重要的设备,它可以有效地去除锅炉进水中的氧气,保护锅炉的安全运行。
除氧器的原理是利用化学反应将氧气转化为水,其结构包括进水口、出水口、反应室、填料层和排气口等部分。
除氧器的性能和效率是衡量其质量的重要指标,需要注意维护和保养。
除氧器的工作原理
除氧器的工作原理除氧器是一种用于去除水中氧气的设备,其工作原理主要包括物理吸附和化学反应两个方面。
下面将详细介绍除氧器的工作原理。
一、物理吸附原理除氧器中常用的物理吸附材料是活性炭。
活性炭具有很大的比表面积和孔隙结构,能够吸附水中的氧气。
当水通过除氧器时,氧气会被活性炭表面的孔隙吸附,并在活性炭颗粒之间形成一层薄膜。
这样,水中的氧气就被有效地去除了。
二、化学反应原理除氧器中常用的化学反应原理是氧气与还原剂之间的反应。
常见的还原剂有亚硫酸钠、亚硫酸氢钠等。
当水通过除氧器时,还原剂会与水中的氧气发生反应,生成相应的氧化物。
这样,水中的氧气就被转化为其他物质,从而实现了去除氧气的目的。
三、工作过程除氧器的工作过程通常包括进水、吸附/反应和排气三个阶段。
1. 进水阶段:水通过进水管道进入除氧器。
在进水过程中,水中的氧气开始被吸附或者反应。
2. 吸附/反应阶段:水经过活性炭层或者化学反应层,其中的氧气被吸附或者反应。
吸附层或者反应层的设计和材料选择对除氧器的效果有着重要影响。
3. 排气阶段:除氧后的水通过出水管道排出,其中的氧气已经被去除。
排气过程中,除氧器中的氧气会被排放到大气中。
四、优点和应用领域除氧器的工作原理使其具有以下优点:1. 去除氧气效果好:通过物理吸附和化学反应的双重作用,除氧器能够有效地去除水中的氧气。
2. 操作简便:除氧器的操作相对简单,只需通过控制进水和出水的流量即可。
3. 适合范围广:除氧器可用于各种水质的处理,包括自来水、工业废水等。
除氧器的应用领域主要包括以下几个方面:1. 锅炉系统:除氧器可用于锅炉系统中,去除水中的氧气,减少锅炉腐蚀和氧化。
2. 发电厂:发电厂中的冷却水系统需要去除水中的氧气,以减少金属腐蚀和设备损坏。
3. 饮用水处理:除氧器可用于饮用水处理过程中,提高水质,减少氧化物的生成。
4. 化工生产:在一些化工生产过程中,水中的氧气会对反应产生影响,除氧器可以匡助去除氧气,提高反应效果。
除氧器的工作原理
除氧器的工作原理一、引言除氧器是一种用于去除水中溶解氧的装置,广泛应用于工业生产、水处理、实验室等领域。
本文将详细介绍除氧器的工作原理,包括其基本原理、结构组成和工作过程。
二、基本原理除氧器的工作原理基于以下两个基本原理:1. 气体溶解原理:氧气在水中的溶解是一个动态平衡过程。
当氧气与水接触时,会发生氧气份子与水份子之间的相互作用,一部份氧气份子会溶解到水中。
溶解氧的浓度取决于氧气与水之间的平衡状态。
2. 气体传质原理:氧气在水中的传质过程是通过气体份子在气液界面上的扩散实现的。
氧气份子在气液界面上扩散到水中,然后在水中进行传递和扩散,最终达到水体中的平衡浓度。
基于以上原理,除氧器通过一系列的工艺步骤去除水中的溶解氧,从而达到除氧的目的。
三、结构组成除氧器通常由以下几个主要部份组成:1. 气液接触装置:用于将气体与水进行充分接触,促进氧气的溶解和传质。
常见的气液接触装置包括喷淋装置、曝气装置、膜分离装置等。
2. 气体供应系统:负责向除氧器提供氧气或者其他气体。
气体供应系统通常包括气体储存罐、气体输送管道、气体调节阀等。
3. 水流系统:用于将待处理的水送入除氧器,并将处理后的水排出。
水流系统通常包括进水管道、出水管道、水泵等。
4. 控制系统:用于监测和控制除氧器的运行状态,确保其正常工作。
控制系统通常包括传感器、仪表、自动控制装置等。
四、工作过程除氧器的工作过程可以分为以下几个步骤:1. 气体供应:氧气或者其他气体通过气体供应系统输入除氧器。
2. 气液接触:气体与水在气液接触装置中进行充分接触,氧气份子逐渐溶解到水中。
3. 氧气传质:溶解的氧气份子在水中进行传质和扩散,通过气液界面的扩散和水中的传递,使溶解氧的浓度逐渐降低。
4. 出水排放:处理后的水通过出水管道排出除氧器,溶解氧的浓度大大降低。
5. 控制和监测:控制系统监测除氧器的运行状态,根据需要调节气体供应量和水流量,以保持除氧器的正常工作。
除氧器的工作原理
除氧器的工作原理一、引言除氧器是一种用于除去水中溶解氧的设备,广泛应用于发电厂、锅炉房、工业生产等领域。
本文将详细介绍除氧器的工作原理,包括其结构、工作过程以及影响除氧效果的因素。
二、除氧器的结构除氧器主要由以下几个部分组成:1. 水箱:用于存放待处理的水。
2. 进水口:将待处理的水引入除氧器。
3. 出水口:将除去氧的水排出。
4. 除氧器壳体:通常采用不锈钢材料制成,具有良好的耐腐蚀性能。
5. 填料层:填充在除氧器壳体内,用于增加水与空气接触的面积。
6. 除氧剂喷淋装置:用于将除氧剂均匀喷淋到填料层上。
7. 排气装置:用于排出除去的氧气。
三、除氧器的工作过程除氧器的工作过程可以分为以下几个步骤:1. 进水阶段:待处理的水从进水口进入除氧器的水箱。
2. 填料层接触阶段:水从水箱流入填料层,与填料接触,使水中的氧气与除氧剂发生反应。
3. 氧气分离阶段:通过填料层接触,氧气被除去,形成除氧水。
4. 出水阶段:除氧水从出水口排出。
5. 排气阶段:通过排气装置将除去的氧气排出。
四、影响除氧效果的因素除氧器的工作效果受到多种因素的影响,包括以下几个方面:1. 温度:较高的水温有利于除氧剂的溶解和反应,有助于提高除氧效果。
2. 压力:较高的压力可以增加水与空气的接触面积,有助于提高除氧效果。
3. 填料种类和形状:不同种类和形状的填料对水与空气的接触效果不同,影响除氧效果。
4. 除氧剂种类和浓度:不同种类和浓度的除氧剂对除氧效果有直接影响。
5. 水流速度:适当的水流速度可以增加水与空气的接触时间,有助于提高除氧效果。
6. 水质:水中的溶解物质和杂质会影响除氧效果,特别是对除氧剂的稳定性和反应速率有影响。
五、总结除氧器是一种重要的设备,用于除去水中的溶解氧,保证水质的稳定和安全。
本文详细介绍了除氧器的工作原理,包括其结构、工作过程以及影响除氧效果的因素。
了解除氧器的工作原理对于合理使用和维护除氧器具有重要意义。
除氧器结构
除氧器结构除氧器是一种有效的设备,用于去除用水中的氧化剂和氧气。
它的最主要的功能是通过去除水中的氧化剂和氧气,使水质保持稳定。
目前,它们在污水处理厂、淡水处理厂、鱼苗场、饲料加工厂、渔业、生物燃料等行业中广泛应用。
除氧器的结构一般由几大部分组成:解决部分、内外壳部分、动力部分、控制系统部分和检测部分。
解决部分由湿式解决器和气液分离器组成。
湿式解决器由混合气流控制器、湿式反应器、膜分离器和气液分离装置构成,主要用于分离水溶液中的氧气和气体。
气液分离器是设备的重要组成部分,它将雾状的混合气体中的气体和液体分离。
内外壳部分由除氧器的内壳和外壳组成。
内壳是用于安装和容纳湿式解决器和气液分离器的重要部分,包括控制器,搅拌器,滤网,气动开关等。
外壳是湿式解决器和气液分离器连接的重要部分,最常见的材料是不锈钢,可以防止空气和水汽从内壳中扩散出来。
动力部分由电动机和涡轮泵组成。
电动机是设备的重要组成部分,主要用于驱动涡轮泵,涡轮泵则用于驱动混合解决器的运行,确保气体和液体的混合和均匀,以保证设备的有效运行。
控制系统部分,主要由控制器、调节器和变送器组成。
控制器用于检测除氧器的运行状况并进行自动控制,以保证设备的正常运行。
调节器可以调整湿式解决器的压力,使混合气流保持稳定。
变送器可以监测和控制湿式解决器的温度和湿度,以此确保设备正常运行。
检测部分由排放监测仪和检测测试仪组成。
排放监测仪可以监测除氧器的排放水质,并及时发现污染物特性的变化;检测测试器用于实时检测除氧器的操作参数,以及检测备件及消耗件的性能变化。
除氧器是一种有效的设备,能够有效去除水中的氧化剂和氧气,保持水质的稳定性。
而且,它的结构是由几大部分构成,包括解决部分、内外壳部分、动力部分、控制系统部分和检测部分。
为了保证设备的正常运行,各部分的功能和作用不容忽视。
热力除氧器结构范文
热力除氧器结构范文1.壳体结构:热力除氧器一般由进气口、出气管、排污口和外壳四部分组成。
外壳通常由耐腐蚀材料制成,如不锈钢、钛合金等,以保证除氧器的长期稳定运行。
2.除氧室:即热力除氧器的内部空间,是氧气与热力水分离和排除的关键部分。
除氧室通常分为两部分,即气-液接触区和汽-液分离区。
-气-液接触区:位于进气口附近,用于将水中的氧气转移到蒸汽中。
这一区域通常设置气-液分离板,以增加气-液接触面积,并减小气泡尺寸。
此外,一些除氧器还会在气-液接触区设置一系列的气-液分离装置,如金属丝网、塔板等,以进一步提高除氧效果。
-汽-液分离区:位于除氧器的上部,用于将水中的蒸汽与残留氧气分离。
在汽-液分离区,通常设置有除气装置,如针型除气阀和为热力水提供均匀流动的分配系统。
这些装置能够有效地去除水中气泡和氧气,保证水中的氧含量降到较低水平。
3.热力供暖系统:热力除氧器通常采用热力水作为输送介质,并与热力供暖系统紧密连接。
热力水通过进气口进入除氧器,与进气区的水进行接触和分离,然后再通过出气管离开除氧器,供给给热力系统使用。
为了保证热力供暖系统的正常运行,热力除氧器通常还会设置有压力控制和温度控制装置,以及自动排污系统。
4.控制系统:热力除氧器的控制系统通常由温度控制装置、压力控制装置和自动排污系统组成。
温度控制装置用于监测和调节热力水的温度,以确保除氧效果和正常工作。
压力控制装置用于监测热力水的压力,并根据需要进行调节。
自动排污系统用于定期清除除氧器中积聚的污水和杂物,以保持设备的清洁度和除氧效果。
热力除氧器结构的设计和安装对于除氧效果和设备的寿命具有重要影响。
合理的结构设计和严格的安装工艺能够提高除氧器的工作效率和稳定性,延长设备的使用寿命,并提高整个热力供暖系统的工作效果。
因此,在选择和安装热力除氧器时,需要仔细考虑结构与工艺要求,以确保设备的正常运行。
除氧器结构
除氧器结构
除氧器是一种具有高效可靠的气体处理器,用来去除气体中的氧分子。
它具有紧凑的结构,维护和运行成本低,使其成为重要的工业应用结构之一。
除氧器的结构主要包括反应容器、除氧剂板材、除氧剂组件、脱氧室、温度传感器、连接管等组成。
反应容器中装有一定量的氧化剂,在温度传感器控制的温度范围内,气态氧化剂可与气体中的氧混合反应,从而在原料气体中去除气体中的氧分子。
除氧剂板材是除氧器的主体,主要是由耐酸性和耐热的热塑性材料制成,具有高强度、低密度和抗化学腐蚀能力等特点。
除氧剂组件是除氧器的主要部件之一,其结构主要有风机、气液分离器、连接管、减压阀、氧化铁等组成。
它们可以满足除氧器的特定功能。
脱氧室是除氧器中最重要的部分,其结构主要有萃取塔、脱氧室壁、脱氧室内衬垫、回火系统等组成,主要负责把原料气体中的氧分子热解,并以气态形式排出排气口。
连接管是把除氧器的各组件连接起来的传输管路。
它是由耐酸碱耐热性能好的不锈钢材料制成,主要起到传输、消耗、除湿的作用。
通过以上介绍,可以看出除氧器的结构虽然紧凑,但功能十分强大,用以去除气体中的氧分子,在工业应用中具有重要作用。
为此,应该根据工程需要对除氧器进行灵活选择,以使其在最大限度地发挥功能,发挥最大的经济效益。
此外,如果在安装和使用除氧器时遇到问题,应及时采取有效措施,以减轻损失,并确保除氧器的安全可靠运行。
综上所述,除氧器的结构紧凑,维护和运行成本低,使得它成为工业应用的重要结构之一,但由于使用特殊的气体处理器,如果在使用过程中出现问题,应及时采取有效措施,以减轻损失,保障其安全可靠运行。
除氧器结构
除氧器结构
除氧器是一种重要的空气污染处理装置,由于其重要的环保功能,被广泛应用于化工、电力、采矿、汽车制造、食品加工、制药等多个行业。
除氧器的结构可以分为两个部分,包括传统的干式除氧器和新型的湿式除氧器。
干式除氧器一般由进料罐、再生罐、过滤器、逆流膜器、湿氧处理器、料仓等部分组成。
过不断循环,使气体得到有效的净化。
在进料罐里,有污染物聚集,如微尘、有机物和酸碱度等,经过细过滤,除去污染物。
在再生罐中,有特殊的湿氧处理器,可以有效除去气态中的氧气,有效提高除氧效率。
湿式除氧器采用新型的吸收技术,其结构主要由反应罐、塔板、再生罐、活性碳吸收剂、给水系统、分离器和其他部件组成。
反应罐内有活性碳吸收剂,当空气经过时,氧气和水蒸气在活性碳表面上吸收,除去气体中的氧气。
塔板上有湿度传感器,实时检测气体的湿度,用于调节湿气的水分量。
再生罐内有特殊的抗化剂,可以加速氧气的除去率,降低气体的湿度,延长吸收剂的使用寿命。
除氧器是空气污染处理的有效方式之一,对于某些行业来说,它是一种绿色环保技术。
它不仅减少了污染物的排放,而且还能提高气体的净化效率,提高工作效率,减少能源的消耗。
因此,除氧器的结构设计应符合工业及环保的要求,以便于充分发挥其功能的最大化。
由于除氧器的环保功能所带来的优势越来越受到人们的重视,传统的干式除氧器和新型的湿式除氧器都成为了很多行业和企业的重
要选择,当他们需要除氧器时,可以根据实际情况,选择合适的除氧器结构,以便获得最佳的污染防治效果。
除氧器内部结构范文
除氧器内部结构范文
除氧器是一种广泛应用于汽车、工程机械、冶金设备等领域的设备,
用于去除系统中的氧气,以防止设备的腐蚀和损坏。
下面将介绍除氧器的
内部结构。
除氧器一般由壳体、内部填料、气液入口、气液出口、排气阀等组成。
1.壳体:壳体是除氧器的外部结构,通常由金属材料制成,具有良好
的密封性和耐腐蚀性能。
壳体内部通常分为两个室,即气室和液室。
2.内部填料:内部填料位于壳体的气室中,用于增大接触面积,便于
氧气与液体的反应和去除。
填料通常由金属丝网或化学纤维制成,具有较
大的表面积和良好的湿润性。
3.气液入口:气液入口位于除氧器壳体的顶部或侧面,用于将含氧气
体和液体导入除氧器。
在液体进入除氧器之前,通常通过过滤器进行预处理,以去除悬浮颗粒和杂质。
4.气液出口:气液出口位于除氧器壳体的底部或侧面,用于排出已经
去除氧气的液体。
出口处通常装有流量控制装置,以控制液体的排出速度
和防止气体逆流。
5.排气阀:排气阀用于排除除氧器中的气体。
排气阀位于壳体的顶部
或侧面,通过手动或自动控制来打开和关闭。
排气阀通常与压力表联动,
用于监测除氧器的工作压力,并调节气体的排放量。
在除氧器的工作过程中,氧气通过气液入口进入除氧器的气室,与液
体进行反应,并被去除。
去除后的液体通过气液出口排出,同时通过排气
阀排出残余气体。
总结起来,除氧器的内部结构包括壳体、内部填料、气液入口、气液出口和排气阀。
这些组成部分共同协作,完成对系统中氧气的去除,保护设备的正常运作。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
除氧器的分类
根据除氧器中的压力不同,可分为真空除氧器、大气式除氧器、
高压除氧器三种。 根据水在除氧器中散布的形式不同,又分淋水盘式、喷雾式和喷 雾填料式三种结构型式。 我厂采用的是喷雾填料式高压除氧器。
采用高压除氧器的优缺点
优点:
当高压加热器故障停用时,进入锅炉的给水温度仍可保持150~ 160℃,有利于锅炉的正常运行。 可以减少一级价格昂贵而运行不十分可靠的高压加热器。 有利于回收利用加热器疏水的热量。同时在凝结水量很少时,仍 能保持有加热蒸汽进入除氧器,使除氧器工作稳定。 缺点:
除氧器结构及工作原理
除氧器结构及工作原理
除氧头
除氧器水箱
除氧器的作用
除氧器的主要作用就是用它来除去锅炉给水中的氧气及其它气体,
保证给水的品质。同时,除氧器本身又是给水回热加热系统中的 一个混合式加热器,起了加热给水,提高给水温度的作用。 如果锅炉给水中含有氧气,将会使给水管道、锅炉设备及汽轮机 通流部分遭受腐蚀,缩短设备的寿命。防止腐蚀最有效的办法是 除去水中的溶解氧和其它气体,这一过程称为给水的除氧。
除氧器水箱容积有什么要求
除氧器水箱的容积一般考虑满足锅炉额定负荷下20min用水量的要 求。当汽轮机甩全负荷,除氧器停止进水,锅炉打开向空排汽门 ,除氧器水箱尚可维持一段时间,给水泵可继续向锅炉供水。除
氧器水箱有效容积:1OOMW机组为1OOm³,125MW机组为150m³,
200MW机组为180m³,300MW机组为200m³。 当除氧器水箱容积一定时,为充分发挥水箱有效容积的作用,运 行中应尽量维持较高的水位。
喷雾填料式除氧器的原理和特点
喷雾填料式除氧器既保持了喷雾式除氧器的优点又增设了填料层
弥补其不足,因而是一种除氧效果比较理想的除氧器。 喷雾填料式除氧器的凝结水经喷嘴雾状喷出,加热蒸汽对雾状水
珠进行第一次加热,使80%~90%的溶解氧逸出,经第一次加热
的凝结水流入填料层(125MW汽轮机用形不锈钢皮,200MW机组用 许多扁钢条组成筛盘),在填料层形成水膜,减小了水的表面张 力,第二次加热的蒸汽进入除氧器下部向上流动,对填料层上的 水膜再次加热,除去残留水中的气体,分离出的气体和少量蒸汽 由塔顶的排气管排出。 实质上喷雾填料式除氧器是对水进行了两次加热除氧,因而除氧
思考题
除氧器加热除氧应具备哪两个条件?
谢 谢
配套的给水泵处在高温高压条件下运行,设备投资费用高,运行
时给水泵耗用厂用电较多。同时,这种除氧器必须设置在水泵上 方较高的标高层(17~18m),以避免运行中给水泵发生汽蚀和给 水管道内发生水冲击。
Байду номын сангаас
除氧器结构
它主要由:壳体、水箱、除氧头、进水装置、进汽装置、淋水盘、
填料及喷嘴等组成。
除氧器结构图
再沸腾管的作用
除氧器加热蒸汽有一路引入水箱的低部或下部(正常水面以下) ,作为给水再沸腾用。装设再沸腾管有两点作用: 有利于机组起动前对水箱中给水的加温及备用水箱维持水温。因
为这时水并未循环流动,如加热蒸汽只在水面上加热,压力升高
较快,但水不易得到加热。 正常运行中使用再沸腾管对提高除氧效果有益处。开启再沸腾阀 ,使水箱内的水经常处于沸腾状态,同时水箱液面上的汽化蒸汽 还可以把除氧水与水中分离出来的气体隔绝,从而保证了除氧效 果。 使用再沸腾管的缺点是汽水加热沸腾时噪声较大,且该路蒸汽一
效果好,出水含氧量可小于0.007mg/L。此外还有低负荷适应性较
好、出力大的优点。
除氧器各汽水管道如何排列
汽水管道排列的原则: 进水应在除氧器的上部,因其温度低,蒸汽管放在除氧器的下部 。这样使汽水形成良好的对流加热条件。
喷雾填料式除氧器为了防止二次蒸汽对雾状水滴加热不足,另设
一路蒸汽通过旁路蒸汽管进入除氧塔头部喷水热交换区,使水滴 能够获得更大的热量,以加速水中气体的逸出
除氧器横截面图
除氧器的工作原理
水中溶解气体量的多少与气体的种类,水的温度及各种气体在水 面上的分压力有关。 除氧器的工作原理是:把压力稳定的蒸汽通入除氧器加热给水,
在加热过程中,水面上水蒸气的分压力逐渐增加,而其它气体的
分压力逐渐降低,水中的气体就不断地分离析出。当水被加热到 除氧器压力下的饱和温度时,水面上的空间全部被水蒸汽充满, 各种气体的分压力趋于零,此时水中的氧气及其它气体即被除去
般不经过自动加汽调节阀,操作调整不方便。
除氧器滑压运行
除氧器滑压运行最主要的优点是提高了运行的经济性。 避免了抽汽的节流损失;低负荷时不必切换压力高一级的抽汽, 投资节省;同时可使汽轮机抽汽点得到合理分配,使除氧器真正
作为一级加热器用,起到加热和除氧两个作用,提高机组的热经
济性。另外还可避免出现除氧器超压。