8.2 单个正态总体的假设检验

合集下载

正态总体均值的假设检验

正态总体均值的假设检验
t 检验 用 t 分布
2 用 分布
检验
下,若能求得检验统计量的 极限分布,依据它去决定临界值C.
例 1 (用例中数据,但未知)
n=10, =0.05, 0=10 t10-1(/2)=t9(0.025)=2.2622
X 10.05,S2 0.05, S 0.224 X 10 0.05 , 即未落入拒绝域为 S 10 2.262 0.160 S 10 2.262
抽取 样本
检验 假设
拒绝还是不能 拒绝H0
P(T W)=
类错误的概率, W为拒绝域
对差异进行定量的分析, 确定其性质(是随机误差 显著性 水平
还是系统误差. 为给出两 者界限,找一检验统计量T, 在H0成立下其分布已知.)
-----犯第一

一般说来,按照检验所用的统计量的分布, 分为 U 检验 用正态分布
以上检验法叫U检验法.
X ~tn 1 S/ n
0
于是当原假设 H0:μ =μ X 0 ~tn 1 S/ n
成立时,有:
X 0 P tn 1 2 S / n S 即P X 0 tn 1 n 2 S 拒绝域为 X 0 tn 1 n 2 以上检验法叫t检验法.
第八章 第二节
正态总体均值的假设检验
一、单个正态总体N(,2)均值的检验
(I) H0:μ = μ
0
H1:μ ≠ μ
0
设X1,X2, ,Xn为来自总体N(,2)的样本. 求:对以上假设的显著性水平=的假设检验. 方差2已知的情况
根据第一节例1,当原假设 H0:μ =μ , 有:

概率论与数理统计第8章(公共数学版)

概率论与数理统计第8章(公共数学版)
则犯弃真错误的概率为
P (弃真)
P(拒 绝H0
|
H

0
真)
P(
A
|
H

0
真)
小概率事件发生的概率就是犯弃真错误的概率
越大,犯第一类错误的概率越大, 即越显著. 故在检验中,也称为显著性水平
20
2.第二类错误:纳伪错误




设H

0



的, 但






了Hቤተ መጻሕፍቲ ባይዱ
0
此时我们便犯了“纳伪”错误,也称为第二类错误
统计量观测值 u 57.9 53.6 2.27 6 10
该批产品次品率 p 0.04 , 则该批产品不能出厂.
11
若从一万件产品中任意抽查12件发现1件次品
p 0.04 代入
取 0.01,则 P12(1) C112 p1(1 p)11 0.306 0.01
这不是小概率事件,没理由拒绝原假设,从而接受 原假设, 即该批产品可以出厂.
13
例2 某厂生产的螺钉,按标准强度为68/mm2, 而实际
称其中的一个为原假设,也称零假设或基本假设 记 为H0 称另一个为备择假设,也称备选假设或对立假设 记为H1 一般将含有等号的假设称为原假设
7
二、假设检验的基本原理
假设检验的理论依据是“小概率原理” 小概率原理:如果一个事件发生的概率很小,那么在一 次实验中,这个事件几乎不会发生. 如: 事件“掷100枚均匀硬币全出现正面”
(三)对给定(或选定)的显著性水平 ,由统计
量的分布查表确定出临界值,进而得到H0的拒绝域 和接受域.

北京工业大学《概率论与数理统计》课件 第8章 正态总体均值的假设检验

北京工业大学《概率论与数理统计》课件 第8章 正态总体均值的假设检验
● 建立一个假设:H0: μ =10。并且要经过样 本来检验该假设是否成立(其实为可以接受)。
在数理统计中,把 “ X 的均值 μ =10” 这样
的一个欲检验的假设称为 “原假设” 或 “零 假设”,记成 “ H0:μ =10”。这里的“H”是 从英文“ hypothesis ”的字头而来,“ 0 ” 是从 “null”或“zero” 含义而生。
该检验称为两样本 t 检验。
说明
上面,我们假定 12=22。当然,这是个 不得已而强加上去的条件。因为,如果不加 这个条件,就无法使用简单易行的 t 检验。
在实用中,只要我们有理由认为12和22 相差不是太大,就可使用上述方法。通常的 做法是:如果方差比检验未被拒绝(见下节), 就认为12和22相差不是太大。
又如:考察一项新技术对提高产品质量是 否有效,就把新技术实施前后生产的产品质量
指标分别看成正态总体 N(1, 12)和 N(2, 22)。
这时,所考察的问题就归结为检验这两个正态
总体的均值 1和 2是否相等的问题。
设X1, X2, …, Xm与Y1, Y2, …, Yn 分别为抽
自正态总体 N(1, 12) 和N(2, 22) 的样本,记
的大小检验 H0 是否
成立。
合理的做法应该是:找出一个界限 c,
这里的问题是:如何确定常数 c 呢? 细致地分析:根据定理 6.3.1,有
于是,当原假设 H0:μ =10 成立时,有
为确定常数 c,我们考虑一个很小的正数, 如 =0.05。当原假设H0:μ =10 成立时,有
于是,我们就得到如下检验准则:
即新技术或新配方对提高产品质量确实有效。
单边检验 H0: μ =μ0 ‹–› H1: μ >μ0

单正态总体的参数假设检验

单正态总体的参数假设检验

单正态总体的参数假设检验一、引言在统计学中,参数假设检验是一种常用的统计推断方法,用于对总体参数的假设进行验证。

在本文中,我们将讨论单正态总体的参数假设检验方法。

单正态总体是指样本来自一个服从正态分布的总体。

二、参数假设检验的基本步骤参数假设检验的基本步骤包括以下几个方面:1. 提出假设:在进行参数假设检验时,首先需要提出原假设和备择假设。

原假设(H0)是对总体参数的一个特定取值或一组取值的陈述,备择假设(H1)是对原假设的补充或对立假设。

2. 选择检验统计量:检验统计量是一个用于判断是否拒绝原假设的量。

在单正态总体的参数假设检验中,常用的检验统计量有样本均值、样本比例等。

3. 确定显著性水平:显著性水平是在进行假设检验时所允许的犯第一类错误的概率。

通常情况下,显著性水平取0.05或0.01。

4. 计算检验统计量的观察值:根据样本数据,计算检验统计量的观察值。

5. 确定拒绝域:拒绝域是一组检验统计量的取值,如果观察到的检验统计量的取值落在这个区域内,则拒绝原假设。

6. 做出决策:根据观察到的检验统计量的取值和拒绝域的关系,做出接受或拒绝原假设的决策。

三、单正态总体均值的参数假设检验在单正态总体均值的参数假设检验中,常用的检验方法有Z检验和t检验。

1. Z检验:当总体的标准差已知时,可以使用Z检验。

Z检验的检验统计量为样本均值与总体均值之差除以标准差的样本标准差。

根据中心极限定理,当样本容量较大时,检验统计量近似服从标准正态分布。

2. t检验:当总体的标准差未知时,使用t检验。

t检验的检验统计量为样本均值与总体均值之差除以标准误差的样本标准差。

根据学生t分布的性质,当样本容量较小时,检验统计量服从t分布。

四、实例分析为了更好地理解单正态总体的参数假设检验方法,我们以某电商平台的订单发货时间为例进行分析。

假设我们关注的是该电商平台订单的平均发货时间。

我们提出如下的原假设和备择假设:原假设(H0):订单的平均发货时间为3天。

正态总体均值的假设检验

正态总体均值的假设检验

上一段中, H0:μ=μ0 ; H1: μ≠μ0 的对立假设为H1:μ≠μ0 ,该假设称为双边对立假设。

2. 单边检验 H0: μ=μ0; H1: μ>μ0而现在要处理的对立假设为 H1: μ>μ0, 称为右边对立假设。

类似地,H0: μ=μ0; H1: μ<μ0 中的对立假设H1: μ<μ0,假设称为左边对立假设。

右边对立假设和左边对立假设统称为单边对立假设,其检验为单边检验。

例如:工厂生产的某产品的数量指标服从正态分布,均值为μ0 ;采用新技术或新配方后,产品质量指标还服从正态分布,但均值为µ。

我们想了解“µ是否显著地大于μ”,即产品的质量指标是否显著地增加了。

8.2.2 两个正态总体N(µ1, σ12) 和N(µ2, σ22)均值的比较在应用上,经常会遇到两个正态总体均值的比较问题。

例如:比较甲、乙两厂生产的某种产品的质量。

将两厂生产的产品的质量指标分别看成正态总体N(µ1, σ12) 和N(µ2, σ22)。

比较它们的产品质量指标的问题,就变为比较这两个正态总体的均值µ1和µ2的的问题。

上面,我们假定 σ12=σ22。

当然,这是个不得已而强加上去的条件,因为如果不加此条件,就无法使用简单易行的 t 检验。

在实用中,只要我们有理由认为σ12和σ22相差不是太大,往往就可使用上述方法。

通常是:如果方差比检验未被拒绝(见下节), 就认为σ12和σ22相差不是太大。

J 说明小结本讲首先介绍假设检验的基本概念;然后讨论正态总体均值的各种假设检验问题,给出了检验的拒绝域及相关例题。

8.2.1 单个正态总体均值

8.2.1  单个正态总体均值
解 此为已知方差=3.5的右边单侧检验,其假设为 H0:μ=54;H1:μ>54
n=10,σ=3.5,所以
x 57.12 57.12 54 u 2.8189 3.5 / 10
u 2.8189 u 1.645
所以拒绝H0,认为本年度的株产量较往年有较大提高。
5
第8章
§8.2 单个正态总体均值与方差的检验
(n 1) S 2
2
f ( x)
~ 2 (n 1)
2 P({ 2 2 (n)}{ 2 (n)}) 1 2 2
X ~ 2 ( n)
12 2 (n)
2 2 (n)
x
2
第8章
§8.2 单个正态总体均值与方差的检验
第3页
8.2.1 单个正态总体均值的假设检验
X X 1. u ~ N (0 ,1) ; t ~ t (n 1) n S/ n
P{| u | u } ; P{| t | t a (n 1)}
2 2
n
(x)
/2
1-
/2
-u/2
0
u/2 x
2. 2
1

2 2 2 ( X ) ~ ( n ) ; i 2 i 1
x 1052 x 0 1052 1000 t 4.65 s/ n 50 / 20 t a (n 1) t 0.05 (19) 1.7291
t t (n 1)
所以接受H0,认为该县已经达到了吨粮县的标准。
1
n
~ t ( n 1)
已知
2
2
2 2 ( x ) ~ ( n) i i 1

单个正态总体的假设检验

单个正态总体的假设检验

计算统计量 Z 的观察值
z0
x 0

n
.
(8.3)
如果:( a ) | z0 |> zα/2,则在显著性水平 α 下,拒绝原假设 H0
(接受备择假设H1),所以| z 0|> zα/2 便是 H0 的拒绝域。
( b ) | z0 | z /2 ,则在显著性水平 α 下,接受原假设 H0,认
=0.05 下 否 定 H0 , 即 不 能 认 为 这 批 产 品 的 平 均 抗 断 强 度 是
32.50kg·cm-2。
把上面的检验过程加以概括,得到了关于方差已知的正态总体期
望值 μ 的检验步骤:
( a )提出待检验的假设 H0 :μ = μ0; H1:μ ≠ μ0。
( b )构造统计量 Z ,并计算其观察值 z0 :
1277°(可看作温度的真值),试问此仪器间接测量有无系统偏差?
这里假设测量值 X 服从 X ~ N ( μ , σ2) 分布。

①问题是要检验
提出假设 H0 :μ = μ0=1227; H1:μ ≠ μ0。
由于
σ2
未知( 即仪器的精度不知道 ),我们选取统计量 T
当 H0 为真时,T ~ t ( n -1) ,T 的观察值为
X
X 0

N ( , ) ,
n
Z
n
X 0

n
N (0,1) ,
(8.2)
作为此假设检验的统计量,显然当假设 H0 为真(即μ = μ0正确)
时, Z ~ N ( 0 , 1),所以对于给定的显著性水平 α ,可求出 zα/2,
使
P{| Z | z 2 } .
见图8-3,即

一个正态总体均值和方差假设检验

一个正态总体均值和方差假设检验

0.6685
1.7531
16
故接受H0 ,即认为元件的平均寿命不大于225小时。
12
二. 未知期望,检验方差
1.双边假设检验
未知期望, H0: 2 = 02 , H1: 202
(1) 提出原假设H0: 2 = 02 ,H1: 202.
(2)
选择统计量
2
(n
1)S
2
2
(3) 在假设H0成立的条件下,确定该统计量服从的 分布:2~2(n-1),自由度为n-1.

2 0
2 (n
1)时, 则拒绝H0


2 0
2 (n
1)时,则接受H0
.
19
例5 某种导线要求其电阻的标准差不得超0.005欧. 今在生产的一批导线中取样品9根,测得s=0.007欧. 问在=0.05条件下,能认为这批导线的方差显著的 偏大吗?
解 提出原假设H0: 2 (0.005)2 ,H1: 2>(0.005)2.
选择统计量 T X
S
n
如果假设H0成立,那么
T
X
12 S
77
~
t(4)
5
9
取=0.05,得t0.025(4)=2.776,则
P{|
X
S
1277 |
2.776}
0.05
4
根据样本值计算得x =1259, s2=570/4.所以
x 1277
| t0 || 570
|
45
| 1259 1277| 3.37 2.776
1)时,
2
2
则拒绝H0 ;

2 1
(n 1)
2 0

概率论与数理统计(文科)吴传生8.2节

概率论与数理统计(文科)吴传生8.2节

U 检验法 (
2
已知)
ch8-3
原假设 备择假设 检验统计量及其 H0为真时的分布 H0 H1
拒绝域
0 0
0 < 0
~ N (0,1) n U
U z
2

X 0
U z
0
> 0
U z
T 检验法 (
2
未知)
ch8-4
原假设 备择假设 检验统计量及其 H0 H1 H0为真时的分布
试问在 = 0.05 的水平上能否认为 满足设计要求? 解一 H0: 1/30 ; H1: 1/30
(n 1) S 2 0
2 2
2
或 2 2 (n 1)
2
~ (n 1)
( 未知)
(n 1)
2 2 1
2 02 2> 02
(n 1)
2 2
ch8-12
例2 某汽车配件厂在新工艺下 对加工好的25个活塞的直径进行测量, 得样本方差S2=0.00066.已知老工艺生 产的活塞直径的方差为0.00040. 问 进一步改革的方向应如何? ( P.244 例6 ) 解 一般进行工艺改革时, 若指标 的方差显著增大, 则改革需朝相反方 向进行以减少方差;若方差变化不显 著, 则需试行别的改革方案.
ch8-15
两个正态总体
设 X ~ N ( 1 1 2 ), Y ~ N ( 2 2 2 ) 两样本 X , Y 相互独立, 样本 (X1, X2 ,…, Xn ), ( Y1, Y2 ,…, Ym )
样本值 ( x1, x2 ,…, xn ), ( y1, y2 ,…, ym )

单个正态总体参数的假设检验

单个正态总体参数的假设检验

单个正态总体参数的假设检验1.提出假设:首先,我们需要提出关于总体参数的假设。

在单个正态总体参数的情况下,我们通常对总体的均值(μ)或标准差(σ)进行假设。

2.确定显著性水平:显著性水平(α)是一个事先设定的临界值。

根据显著性水平,我们可以决定接受还是拒绝原假设。

3.构建统计量:接下来,我们需要构建一个适当的统计量来判断总体参数的假设。

在单个正态总体参数的情况下,通常使用t统计量或z统计量。

4.计算统计量的值:根据样本数据,计算所选统计量的值。

如果使用t统计量,则需要计算样本均值和标准差;如果使用z统计量,则只需计算样本均值。

5.确定拒绝域:拒绝域是根据显著性水平和统计量的分布确定的。

根据统计量的值和拒绝域的临界值,我们可以决定是否拒绝原假设。

6.做出决策:根据统计量的值和拒绝域,我们可以做出决策:接受原假设或拒绝原假设。

下面以一个具体的例子来说明单个正态总体参数的假设检验。

假设我们要检验一些公司员工的平均工资是否等于5000元。

我们从公司中随机抽取了50个员工的工资数据,假设工资数据服从正态分布。

现在我们要进行假设检验。

1.假设提出:原假设(H0):员工的平均工资等于5000元;备择假设(H1):员工的平均工资不等于5000元。

2.显著性水平:我们设定显著性水平为0.053.构建统计量:由于样本量较大(n=50),我们可以使用z统计量。

z统计量的计算方法为(样本均值-总体均值)/(总体标准差/根号n)。

4.计算统计量的值:假设我们计算出样本均值为4950元,总体标准差为100元。

5.确定拒绝域:由于显著性水平为0.05,我们需要找出z值对应的临界值。

在标准正态分布表中查找z=1.96对应的值,并根据原假设的双侧检验找出拒绝域的范围。

6.做出决策:根据统计量的值和拒绝域的范围,我们可以判断是否拒绝原假设。

如果统计量的值落在拒绝域之外,我们将拒绝原假设,即认为员工的平均工资不等于5000元。

8.2 正态总体均值的假设检验v2有推导汇总

8.2 正态总体均值的假设检验v2有推导汇总

k 0 (0 k ) , / n / n
因此要控制 P{拒绝 H0 | H0 为真} ,
k 只需令 , / n
即 k ( / n )z ,
检验问题 H 0 : 0 , H1 : 0 的拒绝域为
当 2为已知时, 关于 0的检验问题 :
(1) 假设检验 H 0 : 0 , H1 : 0 ; ( 2 ) 假设检验 H 0 : 0 , H1 : 0 ; ( 3 ) 假设检验 H 0 : 0 , H1 : 0 .
在这些检验问题中, 我们都是利用统计量
现在来求检验问题 : H 0 : 1 2 , H1 : 1 2
( 为已知常数 )的拒绝域 . 取显著性水平为 .
引入 下述t 统计量作为检验统计量 : (X Y ) t , 1 1 Sw n1 n2
P{ 拒绝 H 0 | H 0 为真 } P 0 ( x 0 k )
x 0 0 k P 0 / n / n
(0 k ) ( k ) 0 1 / n 0 / n 0
x 0 x 0 ( / n)z , 即 z . / n 比较正态总体N ( , 2 )在方差 2已知时, 对均值
的两种检验问题
H 0 : 0 , H 1 : 0 和 H 0 : 0 , H 1 : 0 ,
尽管原假设H0的形式不同 ,实际意义也不同 , 但对
第二节 正态总体均值的假设检验
一、单个总体均值 的检验
二、两个总体均值差的检验(t 检验)
三、基于成对数据的检验(t 检验) 四、小结

8.2正态总体均值的假设检验

8.2正态总体均值的假设检验

t t ( n1 n2 2).
x y 因为 t 4.295, 1 1 sw 10 10
t0.05 (18) 1.7341,
所以拒绝 H 0 ,
即认为建议的新操作方法较原来的方法为优.
例5 有甲、乙两台机床加工相同的产品, 从这两台机床加工 的产品中随机地抽取若干件, 测得产品直径(单位:mm)为 机床甲: 20.5, 19.8, 19.7, 20.4, 20.1, 20.0, 19.0, 19.9
X 0 P Z / n
拒绝域为 Z Z
或 H0: 0;H1:0
X 0 P Z / n
拒绝域为 Z Z
2、方差未知 问题:总体 X~N(,2),2未知 假设 H0:=0;H1:≠0 构造T统计量 T X 0 ~ t (n 1)
t检验 双边检验
X 0 由 P t 2 (n 1) S n 确定拒绝域 T t 2 (n 1) x 0 如果统计量的观测值 T t 2 (n 1) S n
则拒绝原假设;否则接受原假设
S
n
例2 化工厂用自动包装机包装化肥,每包重量服从正态 分布,额定重量为100公斤。某日开工后,为了确定包 装机这天的工作是否正常,随机抽取9袋化肥,称得平 均重量为99.978,均方差为1.212,能否认为这天的包 装机工作正常?(=0.1) 解 由题意可知:化肥重量X~N(,2),0=100 方差未知,要求对均值进行检验,采用T检验法。
得 k t / 2 (n1 n2 2).
故拒绝域为
( x y) t t / 2 ( n1 n2 2). 1 1 sw n1 n2

第八章假设检验

第八章假设检验
于是可以选定一个适当的正数k,
若过分大,则有理由 怀疑H0的正确性
7/51
§8.1 假设检验
当观察值 x 满足 x 0
此即假定H0正确 时的小概率事件
/ n
k时, 拒绝假设 H0 ,
反之, 当观察值 x 满足
x 0
/ n
k时, 接受假设 H0 .
如何选取k呢,先看以下事实: 由于作出决策的依据是一个样本,当实际 上H0为真时,仍可能作出拒绝H0的决策,这种 可能性是无法消除的,这是一种错误。
24/51
第八章 假设检验

§8.1 假设检验 §8.2 正态总体均值的假设检验 §8.3 正态总体方差的假设检验

§8.6 分布拟合检验
25/51
§8.2 正态总体均值的假设检验

假设检验是针对弃真这一可能犯的错误人为设定一个界限, 如果在这个界限内,认为原假设成立,否则的话,由于显 著性水平取得很小,表明小概率事件发生,根据实际推断 原理,原假设不成立。 尽管也可能犯第II类取伪的错误,这时尽管总体的性质发 生了改变但没有发现,往往影响较小。 正态总体均值的检验分为三种情况
/ n
若|z|= X 0 k,则称 x 与μ0的差异是显著的,以至
于小概率事件发生了,这时拒绝H0, 否则则称 x与μ0的差异是不显著的,这时接受H0, 选定的数α称为显著性水平,在α下对显著性判断
X 0 统计量Z= 称为检验统计量 / n
13/51
/ n
§8.1 假设检验
假设检验的相关定义: 像上例中的假设检验问题可叙述成: “在显著性水平α下,检验假设H0:μ=μ0,H1:μ≠μ0” 或“在显著性水平α下,针对H1检验H0”
例如:提出总体期望服从泊松分布的假设,然后进行判断 提出正态总体期望为μ0的假设,然后进行判断

单个正态总体均值的检验.

单个正态总体均值的检验.
因此,检验的拒绝域为 W1 { u u },或者记为 2 W1 {x1, x2 , , xn : u u } 2
其中 u为统计量U的观测值.这种利用U统计量来 检验的方法称为U检验法.
第八章 假设检验
§8.2 单个正态总体参数的假设检验
例1 某切割机在正常工作时,切割每段金属棒的平均 长度为10.5cm,标准差是0.15cm,今从一批产品中随 机的抽取15段进行测量,其结果如下:
例3 某厂生产的某种型号的电池,其寿命长期以来
服从方差 2=5000 (小时2) 的正态分布,现有一批这
种电池,从它生产情况来看,寿命的波动性有所变 化.现随机的取26只电池,测出其寿命的样本方差 sn*=2 9200(小时2).问根据这一数据能否推断这批电池
的寿命的波动性较以往的有显著的变化? ( 0.02)
设 X1, X2 , , Xn 为来自总体 X 的样本,
因为 2 未知, 不能利用 X 0 来确定拒绝域. / n
因为 Sn*2 是 2 的无偏估计, 故用 Sn* 来取代 ,
即采用T

X Sn* /0n来自来作为检验统计量.第八章 假设检验
§8.2 单个正态总体参数的假设检验
根据第六章§3定理2知,
解 依题意 X ~ N (, 2 ) , , 2均为未知 ,
要检验假设 H0 : 10.5, H1 : 10.5, n 15, x 10.48, 0.05, sn* 0.237 ,
t
x 0
sn* / n
10.48 10.5 0.237 / 15
|
x

/
0
n
|
0.516

u0.05

§8.2 正态总体参数的假设检验

§8.2  正态总体参数的假设检验



202 2>02 2 i1
2 0
202 2<02
H0的拒绝域 2 2 2 (n)
或 2
2 1
2 (n)
2 2(n)
2 12(n)
2 检验
2 2 2(n1)


2=02 202
2
(n
1)S2
02
202 2>02
或2
2 1
2(n1)
22(n1)
202 2<02
212(n1)
例2.1 用热敏电阻测温仪间接测量地热,
检验法 条件 H0 H1 检验统计量
Z检 验


=0 0
0 >0
Z
X
0
0 <0
n
T检 验


=0
0 0
0 >0
<0
T
X 0
Sn
H0的拒绝域 |Z|z/2
Zz Z–z |T|t/2(n–1) Tt(n–1) T–t(n–1)
检验法 条件 H0 H1 检验统计量
2 检验
2=02 202
n
(Xi )2
故t 11.2811.26 0.46592.4469 1.13587
所以接受原假设, 认为用热敏电阻测温仪间接测量温度无系 统偏差。
例2.2 某厂生产的某种型号的电池, 其
寿命长期以来服从方差2=5000(小时2)的
正态分布。现有一批这种电池, 从它的生 产情况来看, 寿命的波动性有所改变。现 随机取26只电池, 测出其样本方差 s2=9200(小时2), 试根据这一数据能否推 断这批电池的寿命的波动性较以往的有

单个正态总体参数的假设检验

单个正态总体参数的假设检验

单个正态总体参数的假设检验一、假设检验的基本概念假设检验是统计推断的一种方法,其基本思想是通过抽样来对总体参数进行推断,并判断总体参数是否满足其中一种假设。

在进行假设检验时,我们首先提出一个原假设(H0),这是一个既定的假设,表示总体参数满足其中一种特定的值或不满足其中一种特定的关系。

同时,我们还提出一个备择假设(H1),表示总体参数不满足原假设。

通过对样本数据的统计推断,我们可以对原假设进行拒绝或不拒绝的判断。

二、假设检验的步骤假设检验一般包括以下步骤:1.提出假设:根据问题的需求和背景条件,提出原假设和备择假设。

2.确定显著性水平:显著性水平(α)是指当原假设成立时,我们愿意犯第一类错误的概率。

一般情况下,我们常使用0.05作为显著性水平。

3.选择检验统计量:根据所需检验的问题,选择适当的检验统计量。

在单个正态总体参数的假设检验中,常用的检验统计量有Z检验和t检验。

4.计算检验统计量的观察值:根据样本数据计算出检验统计量的观察值。

5.根据显著性水平查找拒绝域:根据显著性水平和检验统计量的分布,查找拒绝域的临界值。

6.判断并作出结论:如果检验统计量的观察值落在拒绝域内,则拒绝原假设,否则不拒绝原假设。

三、应用领域1.药物临床试验:在新药物的临床试验中,可以通过对患者进行抽样,检验患者服用药物前后的药效差异是否显著,以判断药物的疗效。

2.市场调研:在市场调研中,可以通过对一定数量的顾客进行问卷调查,检验顾客对其中一种产品的满意度是否显著不同,以了解产品在市场中的竞争力。

3.品质控制:在生产过程中,可以通过抽样检验产品的质量是否符合设定的标准。

例如,食品加工厂可以通过抽样检验产品的营养成分是否达到设定的要求。

4.经济学研究:在经济学研究中,可以通过对一定数量的经济指标进行抽样,检验指标的差异是否显著,以判断宏观经济政策的有效性。

总结:单个正态总体参数的假设检验是统计学中一种重要的方法,通过对样本数据的统计推断,判断总体参数是否满足其中一种假设。

单个正态总体参数的假设检验

单个正态总体参数的假设检验
拒绝域为 | u | z / 2
576.2 576 x 576 0.079 其中 | U | 8 / 10 8/ n
查表 z / 2 z0.025 1.96 0.079 故未落在拒绝域之内,故接受H0 ,即可以认为 576.
综合⑴与⑵,该生跳远成绩水平与鉴定成绩无显著差异.
X -0 取统计量 t ~ t (n 1) S/ n
x -0 拒绝域为 | t | t / 2 (n 1) s/ n 计算 | t | 2.6
| t | 2.6 t0.025 (35) 2.0301
故落在拒绝域之内,拒绝H0 ,接受H1 即不能认为全体考生的平均成绩为70分。 ⑵ μ的置信水平为0.95的置信区间为
2 2 2 双边假设检验 H 0 : 2 0 , H1 : 0
拒绝域为
(n 1) s 2
2 0
12 / 2 (n 1) 或 f y

2 2
(n 1) s 2

2 0
2 / 2 ( n 1)
2 12 / 2 (n 1) / 2 ( n 1)
观测5台压缩机的冷却用水的升高温的平均值为 x 5.34,
样本方差为 s 2 0.631. ⑴ 在显著水平α=0.05下是否可以
认为冷却用水升高温度的平均值不多于5°?(2)求σ2的
置信水平为0.95的置信区间。
解: ⑴ 先提出假设 H 0 : 0 5, H1 : 0
H1 : 0 ,拒绝域为
| x -0 | | u | z / 2 / n
2. σ2未知,检验μ (t 检验法)
n 1 2 可用样本方差 S 2 ( X X ) 代替σ2 k n 1 k 1

单正态总体的参数假设检验

单正态总体的参数假设检验

单正态总体的参数假设检验在统计学中,假设检验是一种用于判断总体参数是否符合某种特定假设的方法。

而单正态总体的参数假设检验则是指对一个正态分布总体的参数进行假设检验。

单正态总体的参数假设检验通常涉及两个假设:原假设(H0)和备择假设(H1)。

原假设是我们想要进行检验的假设,而备择假设则是与原假设相反的假设。

在单正态总体的参数假设检验中,我们通常关注的参数有均值(μ)和标准差(σ)。

下面将分别介绍如何进行均值和标准差的参数假设检验。

1. 均值参数假设检验对于均值参数的假设检验,常用的方法有Z检验和T检验。

Z检验适用于总体的标准差已知的情况,而T检验适用于总体的标准差未知的情况。

假设我们要对一个正态分布总体的均值进行假设检验,原假设为均值等于某个特定值(H0: μ = μ0),备择假设为均值不等于特定值(H1: μ ≠ μ0)。

我们需要计算样本的均值(X̄)和标准差(S),然后根据样本量(n)和总体标准差(σ)的已知情况选择对应的检验方法。

如果总体标准差已知,可以使用Z检验。

计算Z统计量的公式为:Z = (X̄ - μ0) / (σ / √n)然后,根据显著性水平(α)选择临界值,比较计算得到的Z统计量与临界值的大小,以判断是否拒绝原假设。

如果Z统计量的绝对值大于临界值,则拒绝原假设;否则,接受原假设。

如果总体标准差未知,可以使用T检验。

计算T统计量的公式为:T = (X̄ - μ0) / (S / √n)同样地,根据显著性水平(α)选择临界值,比较计算得到的T统计量与临界值的大小,以判断是否拒绝原假设。

2. 标准差参数假设检验对于标准差参数的假设检验,常用的方法有卡方检验和F检验。

卡方检验适用于单个总体标准差的假设检验,而F检验适用于两个总体标准差的假设检验。

假设我们要对一个正态分布总体的标准差进行假设检验,原假设为标准差等于某个特定值(H0: σ = σ0),备择假设为标准差不等于特定值(H1: σ ≠ σ0)。

假设检验的基本概念.ppt

假设检验的基本概念.ppt
实际应用中,常将以往的经验性结论作为原假设, 与其相反的结论作为备选假设.
这样,原假设不会被轻易拒绝,一旦结果为拒绝 原假设,其结果也是可以信赖的,而且我们还知道此
时犯第一类错误的概率不超过;
如果结果为不能拒绝原假设,考虑到原假设为以 往的经验,做出接受原假设的推断也是比较合理的.
8.1.4 假设检验的步骤
因此,假设检验问题可能会犯如下两类错误:
第一类错误(“弃真”):实际情况是H0成立,而检验 的结果表明H0不成立,拒绝了H0.
第二类错误(“取伪”):实际情况是H0不成立,H1成 立,而检验的结果表明H0成立,接受了H0. 下面我们来研究一下犯这两类错误的概率.
8.1.3 假设检验的两类错误
犯第一类错误的概率:
没有足够的理由拒绝H0,应认可H0.
8.1.2 假设检验的基本思想
看来,是否拒绝 H0的关键是看U
因此
x 0
/ n
z
2
X
/
0
n
的取值是否满足

x 0
/ n
z
2 即{|
U
|
z/2}称为H0的拒绝域.
称–z/2和z/2为H0的拒绝域的临界点(值).
称 U X 0 为检验统计量.
/ n
0.499 0.515 0.508 0.512 0.498 0.515 0.516 0.513 0.524
问这台包装机工作是否正常? 通过分析知道: 要检验包装机工作是否正常,就是要检验总体均值
= 0.5kg是否成立.
Hale Waihona Puke 8.1.1 假设检验的思想方法
具体思路是:
首先提出两个对立的假设:
H0: = 0.5

数理统计与管理课件 (9)

数理统计与管理课件 (9)

(3)对于给定的显著性水平α=0.05 ,查标准正态分布表 z z0.025 1.96
2
(4)计算统计量观察值 (5)结论
x 0 1637 1600 z 1.258 n 150 26
z 1.258 z 1.96
2
接受原假设H0
即不能否定这批产品该项指标为1600。
X 0 对于给定的显著性水平α=0.05 , S n 查t分布表得 t (n 1) t0.05 (8) 1.8595
S பைடு நூலகம்0 .3
t
由题意, x 62 .5
计算统计量观察值
x 0 62.5 62.0 5 S n 0.3 9
由于
t 5 t (n 1) 1.8595
X 0 选取统计量 Z n
查标准正态分布表
对于给定的显著性水平α=0.05 ,
z z0.05 1.645
已知n=9,σ=3, x 13.5 计算统计量观察值 x 0 13.5 15.5 z 2 n 3 9 由于 z 2 z 1.645 所以拒绝原假设H0,而接受H1, 即说明用新方法所需时间比用老方法所需时间短。
(2) H0:μ= μ0,H1:μ>μ0;检验规则为 X 0 当 T t (n 1) 时,拒绝H0 S n
当 T X 0 t (n 1) 时,接受H0 S n (3) H0:μ= μ0,H1:μ<μ0;检验规则为
X 0 当 T t (n 1) 时,拒绝H0 S n X 0 当 T t (n 1) 时,接受H0 S n
(2) H0:μ= μ0,H1:μ>μ0;检验规则为 X 0 当 Z z 时,拒绝H0 n
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

显然
2.7 02 19.023
则H0相容,接受H0 。
可信这批延期药的静止燃烧时间T的方差为
例2
某次统考后随机抽查26份试卷, 测得平均成绩:
试分析该次考试成绩标准差是否为
已知该次考试成绩
解: 提出假设
(=0.05)
取统计量 查表 根据样本值算得
显然
则H0相容,故接受H0 。
表明考试成绩标准差与12无显著差异。
解: H 0 : 4.55 ( 4.55) X 4.55 统计量 Z 0.11 5
H1 : 4.55
由 p{Z z } α
得水平为的拒绝域为
Z z 1.645
这里
4.364 4.55 Z0 3.78 1.645 拒绝H0 0.11 5
由样本算得
543 549 这里 | T0 || | 1.77 t0.025 (4) 2.776 7.58 5 H0相容,接受H0。
即这批新罐的平均爆破压力与过去无显著差别。
二、关于σ 2假设检验
在显著性水平条件下检验假设 其中σ 0是已知常数, 例1 已知某种延期药静止燃烧时间T, T ~ N ( , 2 ) 今从一批延期药中任取10副测得静止燃烧时间(单位
S n
例2
拒绝域为
Tt0.05(9)=1.8331
这里
10631.4 10620 T0 0.45 1.8331 81 10
接受H0
例2(续) 某厂生产镍合金线,其抗拉强度X的均值为
10620 (kg/mm2)今改进工艺后生产一批镍合金线,抽 取10根,测得抗拉强度(kg/mm2)为: 10512, 10623, 10668, 10554, 10776, 10707, 10557, 10581, 10666, 10670. 认为 X ~ N ( , 2 ) ,取=0.05 ,问 新生产的镍合金线的抗拉强度是否比过去生产的合 金线抗拉强度要高? 如假设: H0: 10620; H1:<10620 结论如何? X 0 H 0 真时 : T X 10631.4
S n
拒绝域为 T -t0.05(9)=-1.8331 10631.4 10620 0.45>-1.8331 接受H0 这里 T0 81 10
同一个问题,因为不同的假设结论完全相反,怎么解释? 这涉及到如何进行原假设的设计问题 原假设的设立带有一定的倾向性,可从下列问题来体会
有一生产厂家向超市供货,质量指标服从正态分布 N ( , 2 ), 越大质量越好,而0为合格界限
即x 0 t ( n 1)
s n
请大家分析一下商场和生产厂家希望哪个原假设?
从以上的分析也可看出:否定原假设通常比较困难 通常所说,假设检验具有保护原假设的特点 确定原假设时要 体现倾向性,通常假定保持原来的状况不变 或者采用保守的观点
2 2 2 对于单边问题H 0: 2 ( 2 0);H1: 2 0, 0
0。
之外的两侧,
此检验称为双侧检验。
2、未知σ 2,检验
H 0 : 0
H1 : 0
(H1可以不写)
2
1 n 未知σ 2,可用样本方差 S 2 ( X k X ) 2 代替σ n 1 k 1 检验步骤
第一步:
提出原假设和备择假设
第二步:取一检验统计量,在H0成立下求出它的分布 X 0 T ~ t (n 1) S n 第三步: 确定H0的否定域。 对给定的显著性水平 , 查表确定临界值 t 2 (n 1) 使
1
[ 2 (n 1)]
2 2 2
是小概率事件。
因此, 在样本值
下计算



则否定H0。
则H0相容。
本题 1 (n 1)
2
(9) 2.7 2 2 2 9 0.023 2 7.6176 根据样本值算得 0 2 0.025
2 0.975
2 (n 1) 02.025 (9) 19.023
即“
得 H0否定域
”是一个小概率事件 .
或 代入算出统计量 则H0相容,接受H0 则否定H0,接受H1
第四步: 将样本值 第五步:判断
故称其为t 检验法。 由于取用的统计量服从t分布,
例3
某工厂生产的一种螺钉, 标准要求长度是32.5
毫米. 实际生产的产品其长度 X 假定服从正态分布 , 2 2 现从该厂生产的一批产品中 X ~ N ( , ), 未知, 抽取6件, 得尺寸数据如下:
可解得拒绝域: 2 12 ( n 1);
2 2 2 而对单边问题 H 0: 2 ( 2 0);H1: 2 0, 0 2 可解得拒绝域: 2 ( n 1)。
(n 1)s 2= 2
2
0
例5
取10根测得其熔化 电工器材厂生产一批保险丝, 59, 57, 68, 54, 55, 71.
为了解释方便,假设 H 0 : 0 H1 : 0
另外 x
Z X 0
如要接受H1 : 0
/ n
应该比较小 否定域在左边, 形式为Z<?
z0 z
思考
例4
某织物强力指标X的均值
公斤.
改进
工艺后生产一批织物,今从中取30件,测得
X ~ N ( , 2 ),且已知 公斤.假设强力指标服从正态分布 1.2 公斤,问在显著性水平 0.01 下,新生产
时间(min)为 42, 65, 75, 78,
问是否可以认为整批保险丝的熔化时间的方差大于
80?(=0.05) , 熔化时间
X ~ N ( , 2 )
2

2
H 0: 80;H1: 80
2
2 2
这里
9S 80 时 ~χ 2 (9) 80
9S 2 2 2 σ0
四.单边检验及其拒绝域
双边假设检验
H 0 : 0
单边检验
H1 : 0
双边备择假设
H 0 : 0 (=0)H1 : 0
右边检验
H 0 : 0 (=0)H1 : 0
左边检验
H 0 : 0 (=0)H1 : 0
某厂生产镍合金线,其抗拉强度X的均值为 10620 (kg/mm2)今改进工艺后生产一批镍合金线,抽 取10根,测得抗拉强度(kg/mm2)为: 10512, 10623, 10668, 10554, 10776, 10707, 10557, 10581, 10666, 10670. 认为 X ~ N ( , 2 ) ,取=0.05 ,问 新生产的镍合金线的抗拉强度是否比过去生产的合 金线抗拉强度要高? 解: H0:≤10620; H1:>10620 X 0 H 0 真时 : T X 10631.4
第八章
假设检验
一 、假设检验的基本概念
二、正态总体均值与方差 的假设检验
§8。2
正态总体均值与方差的假设检验
设总体 X ~ N ( , 2 ) X 1 , X 2 ,, X n 为X的样本。 我们对μ ,σ 2作显著性检验 1、单个正态总体均值的假设检验
X ~ N ( , 2 ), 已知
x 0 Z0 n 第五步:判断
(x )

2
| Z 0 | Z | Z 0 | Z
2 2
则H0相容,接受H0
z
2
0
z x
2
则否定H0,接受H1 故称其为 由于取用的统计量服从 Z(U)分布, Z(U) 检验法。 选择假设H1 表示Z可能大于μ 0,也可能小于μ 如图,拒绝域是是区域
T0 2.997 4.0322
故不能拒绝H0 .
没有落入 拒绝域
这并不意味着H0一定对,只是差异还不够显著,
不足以否定H0 .
例5
对一批新的某种液体存储罐进行耐裂试验, 545 530 550 545
重复测量5次,测得爆破压力数据为(单位斤/寸2): 545
过去该种液体存储罐的平均爆破压力为549斤寸(可
秒)数据为 1.3405 1.4059 1.3836 1.857 1.3804
1.3760 1.4053 1.3789 1.4021 1.3424
问:是否可信这批延期药的静止燃烧时间T的方差为
2 0.0252. ( 0.05) 我们的任务是根据所得的样本值检验
我们先讨论一般的检验法。
提出假设
9 121.8 13.7 80
由 p{ χ (9)}
2 2
得水平为
2 2
=0.05
2 0.05
· 左边检验问题 方差未知 H0: 0 ;H1: <0,
说明:有些教材上
用“H0: =0 ;H1: <0 ,”表示
X 0 统计量 : T S n

P{T t (n 1)}
得水平为的拒绝域为
T t (n 1)

· 右边检验问题 H0: ≤ 0 ;H1: >0 或 H0: =0 ;H1: >0,

2
已知,检验假设 的过程分为五个步骤:
第一步: 提出原假设和备择假设
第二步:取统计量,在H0成立下求出它的分布
Z
X 0

n
~ N (0 , 1)
第三步: 对给定的显著性水平 查表确定临界值 k Z ,使
2
P{| Z | Z 2 }
得H0否定域 第四步:将样本值
x1 , x2 ,, xn代入算出统计量
织物比过去的织物强力是否有提高?
解: 提出假设:
相关文档
最新文档