卷积-傅立叶变换-拉布拉斯变换经典物理含义

合集下载

卷积的物理意义

卷积的物理意义

卷积的物理意义
卷积的物理意义:卷积可代表某种系统对某个物理量或输入的调制或污染。

在泛函分析中,卷积、旋积或褶积(英语:Convolution)是
通过两个函数f和g生成第三个函数的一种数学算子,表征函数
f与g经过翻转和平移的重叠部分函数值乘积对重叠长度的积分。

如果将参加卷积的一个函数看作区间的指示函数,卷积还可以被看作是“滑动平均”的推广。

卷积定理
卷积定理指出,函数卷积的傅里叶变换是函数傅里叶变换的乘积。

即,一个域中的卷积相当于另一个域中的乘积,例如时域中的卷积就对应于频域中的乘积。

这一定理对拉普拉斯变换、双边拉普拉斯变换、Z变换、Mellin变换和Hartley变换(参见Mellin inversion theorem)等各种傅里叶变换的变体同样成立。

在调和分析中还可以推广到在局部紧致的阿贝尔群上定义的傅里叶变换。

利用卷积定理可以简化卷积的运算量。

对于长度为n的序列,按照卷积的定义进行计算,需要做(2n- 1)组对位乘法,其计算
复杂度为;而利用傅里叶变换将序列变换到频域上后,只需要一组对位乘法,利用傅里叶变换的快速算法之后,总的计算复杂度为。

这一结果可以在快速乘法计算中得到应用。

傅里叶变换的物理意义是

傅里叶变换的物理意义是

傅里叶变换的物理意义是
傅里叶变换是一种将时域信号转换为频域信号的数学变换方法。

在物理学中,傅里叶变换非常重要,因为它可以用来描述和分析许多物理现象。

具体而言,傅里叶变换的物理意义包括以下几个方面:
1. 频域分析:傅里叶变换可以将一个信号分解成不同频率的成分,
这在物理学中非常有用。

例如,当我们研究声波、光波、电磁波等波动现象时,可以通过傅里叶变换将信号分解成不同频率的谐波,从而更好地理解和分析它们的特性。

2. 滤波和去噪:在信号处理和通信领域,傅里叶变换可以用来实现
滤波和去噪。

通过对信号的傅里叶变换,我们可以找到信号中频率较高或较低的成分,并根据需要进行滤波,从而去除不必要的噪声。

3. 热传导:傅里叶变换在热传导方程中也有重要的应用。

通过对温
度分布的傅里叶变换,可以将热传导方程转化为一组独立的方程,从而更好地描述物体的热分布。

4. 量子力学:傅里叶变换在量子力学中也有广泛的应用。

例如,在
描述波函数时,傅里叶变换可以将波函数从位置空间转换为动量空间,
这对于研究原子和分子的行为非常重要。

总之,傅里叶变换在物理学中具有广泛的应用,它不仅能够帮助我们更好地理解和分析物理现象,还可以为我们解决一些实际问题提供有力的数学工具。

傅里叶变换拉普拉斯变换的物理解释及区别

傅里叶变换拉普拉斯变换的物理解释及区别

傅里叶变换在物理学、数论、组合数学、信号处理、概率论、统计学、密码学、声学、光学、海洋学、结构动力学等领域都有着广泛的应用(例如在信号处理中,傅里叶变换的典型用途是将信号分解成幅值分量和频率分量)。

傅里叶变换能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。

在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换。

傅里叶变换是一种解决问题的方法,一种工具,一种看待问题的角度。

理解的关键是:一个连续的信号可以看作是一个个小信号的叠加,从时域叠加与从频域叠加都可以组成原来的信号,将信号这么分解后有助于处理。

我们原来对一个信号其实是从时间的角度去理解的,不知不觉中,其实是按照时间把信号进行分割,每一部分只是一个时间点对应一个信号值,一个信号是一组这样的分量的叠加。

傅里叶变换后,其实还是个叠加问题,只不过是从频率的角度去叠加,只不过每个小信号是一个时间域上覆盖整个区间的信号,但他确有固定的周期,或者说,给了一个周期,我们就能画出一个整个区间上的分信号,那么给定一组周期值(或频率值),我们就可以画出其对应的曲线,就像给出时域上每一点的信号值一样,不过如果信号是周期的话,频域的更简单,只需要几个甚至一个就可以了,时域则需要整个时间轴上每一点都映射出一个函数值。

傅里叶变换就是将一个信号的时域表示形式映射到一个频域表示形式;逆傅里叶变换恰好相反。

这都是一个信号的不同表示形式。

它的公式会用就可以,当然把证明看懂了更好。

对一个信号做傅里叶变换,可以得到其频域特性,包括幅度和相位两个方面。

幅度是表示这个频率分量的大小,那么相位呢,它有什么物理意义?频域的相位与时域的相位有关系吗?信号前一段的相位(频域)与后一段的相位的变化是否与信号的频率成正比关系。

傅里叶变换就是把一个信号,分解成无数的正弦波(或者余弦波)信号。

也就是说,用无数的正弦波,可以合成任何你所需要的信号。

通俗浅谈傅里叶级数、傅里叶变换、拉普拉斯变换、z变换

通俗浅谈傅里叶级数、傅里叶变换、拉普拉斯变换、z变换

通俗浅谈傅里叶级数、傅里叶变换、拉普拉斯变换、z变换中国航天科工集团二院706所宋晓秋一、傅里叶级数(1) 一个周期为2π的函数表示成不同周期的正弦函数、余弦函数之和。

f t=a02+a n cos nt+b n sin nt ∞n=1a n=1πf t cos nt dtπ−π,n=0,1,2,⋯b n=1πf t sin nt dtπ−π,n=1,2,3,⋯(2) 周期为T的函数怎么办?做下变换,令ω=2πTf t=a02+a n cos nωt+b n sin nωt ∞n=1a n=2Tf t cos nωt dtT2−T2,n=0,1,2,⋯b n=2Tf t sin nωt dtT2−T2,n=1,2,3,⋯(3) 时域、频域的概念f t是随时间t变化的函数,它转换成了不同频率(周期的倒数)三角函数的和,即对应成了反映频率特征的a n、b n。

直接分析f t那是时域分析,通过a n、b n分析那是频域分析。

(4) 傅里叶级数的复数表达形式基础知识:复数e ix=cos x+i sin x,可知cos nωt=12e inωt+e−inωtsin nωt=12ie inωt−e−inωt将其代入下式的傅里叶级数(这里ω=2πT)f t=a02+a n cos nωt+b n sin nωt ∞n=1a n=2Tf t cos nωt dtT2−T2,n=0,1,2,⋯b n=2Tf t sin nωt dtT2−T2,n=1,2,3,⋯得到傅里叶级数的复数表达形式f t=F n e inωt∞n=−∞F n=1Tf(t)e−inωt dtT2−T2,n=⋯,−2,−1,0,1,2,⋯同理,直接分析f t那是时域分析,通过F n分析那是频域分析。

记住周期函数的傅里叶级数复数表达形式,由此引出傅里叶变换。

二、傅里叶变换对于非周期函数怎么办?当然是让T→∞了,可以证明此时有f t=F n e inωt∞n=−∞→12πF(iΩ)e iΩt dΩ∞−∞F n T = f (t )e −inωt dt T 2−T 2→ f (t )e −iΩt dt ∞−∞=F (iΩ)直接分析 f t 那是时域分析,通过 F (iΩ)分析那是频域分析。

卷积的本质及物理意义(整理)

卷积的本质及物理意义(整理)
t个大板子造成的痛苦程度=Σ(第τ个大板子引起的痛苦*衰减系数)
[衰减系数是(t-τ)的函数,仔细品味]
数学表达为:y(t)=∫T(τ)H(t-τ)
——拿人的痛苦来说卷积的事,太残忍了。除了人以外,其他事物也符合这条规律吗?
——呵呵,县令大人毕竟仁慈。其实除人之外,很多事情也遵循此道。好好想一想,铁丝为什么弯曲一次不折,快速弯曲多次却会轻易折掉呢?
卷积是在时域求解LTI系统对任意激励的零状态响应的好方法,可以避免直接求解复杂的微分方程。
从数学上来说卷积就是定义两个函数的一种乘法。对离散序列来说就是两个多项式的乘法。物理意义就是冲激响应的线性叠加,所谓冲激响应可以看作是一个函数,另一个函数按冲激信号正交展开。
在现实中,卷积代表的是将一种信号搬移到另一频率中.比如调制.这是频率卷
把一个点的像素值用它周围的点的像素值的加权平均代替。
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
卷积的物理意义,解释的真幽默!
有一个七品县令,喜欢用打板子来惩戒那些市井无赖,而且有个惯例:如果没犯大罪,只打一板,释放回家,以示爱民如子。

变焕世界-傅立叶、拉普拉斯、Z变换 汇总对比

变焕世界-傅立叶、拉普拉斯、Z变换 汇总对比

变焕世界-傅立叶、拉普拉斯、Z变换1、傅里叶变换简单通俗理解就是把看似杂乱无章的信号考虑成由一定振幅、相位、频率的基本正弦(余弦)信号组合而成,傅里叶变换的目的就是找出这些基本正弦(余弦)信号中振幅较大(能量较高)信号对应的频率,从而找出杂乱无章的信号中的主要振动频率特点。

2、拉普拉斯变换定义式:设有一时间函数f(t) [0,∞] 或 0≤t≤∞单边函数 ,其中,S=σ+jω是复参变量,称为复频率。

左端的定积分称为拉普拉斯积分,又称为f(t)的拉普拉斯变换;右端的F(S)是拉普拉斯积分的结果,此积分把时域中的单边函数f(t)变换为以复频率S为自变量的复频域函数F(S),称为f(t)的拉普拉斯象函数。

以上的拉普拉斯变换是对单边函数的拉普拉斯变换,称为单边拉普拉斯变换。

如f(t)是定义在整个时间轴上的函数,可将其乘以单位阶跃函数,即变为f(t)ε(t),则拉普拉斯变换为F(s),=mathcal left =int_ ^infty f(t),e^ ,dt 其中积分下标取0-而不是0或0+ ,是为了将冲激函数δ(t)及其导函数纳入拉普拉斯变换的范围。

z变换可将分散的信号(现在主要用于数字信号)从时域转换到频域。

作用和拉普拉斯变换(将连续的信号从时域转换到频域)是一样的。

拉普拉斯变换是将时域信号变换到“复频域”,与傅里叶变换的“频域”有所区别。

FT[f(t)]=从负无穷到正无穷对[f(t)exp(-jwt)]积分 ,LT[f(t)]=从零到正无穷对[f(t)exp(-st)]积分 ,(由于实际应用,通常只做单边拉普拉斯变换,即积分从零开始) .具体地,在傅里叶积分变换中,所乘因子为exp(-jwt),此处,-jwt显然是为一纯虚数;而在拉普拉斯变换中,所乘因子为exp(-st),其中s为一复数:s=D+jw,jw是为虚部,相当于Fourier变换中的jwt,而D则是实部,作为衰减因子,这样就能将许多无法作Fourier变换的函数(比如exp(at),a>0)做域变换。

傅立叶变换拉普拉斯变换z变换区别和应用场合

傅立叶变换拉普拉斯变换z变换区别和应用场合

傅立叶变换、拉普拉斯变换和z变换是信号与系统分析中常用的数学工具,它们在不同的应用场合有着各自独特的作用。

下面,我们将分别介绍这三种变换的定义、特点和应用场合。

一、傅立叶变换傅立叶变换是最常用的信号处理工具之一,它将时域信号转换为频域信号,可以用来分析信号的频谱特性。

傅立叶变换的定义如下:设x(t)是一个绝对可积的信号,则其傅立叶变换定义为:X(ω)=∫−∞∞x(t)e−jωtdt其中,X(ω)为频率为ω的复指数信号的系数。

傅立叶变换的特点包括:1. 线性性:傅立叶变换是线性的,即对信号进行线性组合后,其傅立叶变换也可以线性组合。

2. 积分性质:傅立叶变换是通过积分计算得出的,可以将信号在时域上的加权积分变换为频域上的乘积。

傅立叶变换的应用场合包括:1. 信号频谱分析:通过傅立叶变换可以将信号转换为频域上的频谱图,并从中分析信号的频率成分和能量分布。

2. 滤波器设计:在滤波器设计中,傅立叶变换可以用来分析系统的频率响应,从而设计出滤波器的频率特性。

3. 通信系统:在调制解调、频谱分析等通信系统中,傅立叶变换也有着重要的应用。

二、拉普拉斯变换拉普拉斯变换是一种广泛应用于控制系统分析和设计中的数学工具,它可以将时域信号转换为复频域信号,用于分析系统的稳定性和动态特性。

拉普拉斯变换的定义如下:设x(t)是一个绝对可积的信号,则其拉普拉斯变换定义为:X(s)=∫0∞x(t)e−stdt其中,X(s)为复频域上的复指数信号的系数。

拉普拉斯变换的特点包括:1. 收敛性:拉普拉斯变换要求信号在0到∞范围内绝对可积,以确保变换的收敛性。

2. 稳定性:拉普拉斯变换可以判断系统的稳定性,通过判断拉普拉斯变换的极点位置来分析系统的阶跃响应。

拉普拉斯变换的应用场合包括:1. 控制系统分析:在控制系统分析中,拉普拉斯变换可以用来分析系统的稳定性、阶跃响应和频率特性。

2. 信号处理:在滤波器设计和信号处理中,拉普拉斯变换也可以用来分析系统的频率响应和动态特性。

卷积的本质是什么?有什么物理意义?幽默的给你解释

卷积的本质是什么?有什么物理意义?幽默的给你解释

卷积的本质是什么?有什么物理意义?幽默的给你解释分三个部分来理解: 1.信号的角度 2.数学家的理解(外行) 3.与多项式的关系卷积这个东东是“信号与系统”中论述系统对输入信号的响应而提出的。

因为是对模拟信号论述的,所以常常带有繁琐的算术推倒,很简单的问题的本质常常就被一大堆公式淹没了,那么卷积究竟物理意义怎么样呢?卷积表示为y(n) = x(n)*h(n)使用离散数列来理解卷积会更形象一点,我们把y(n)的序列表示成y(0),y(1),y(2) and so on; 这是系统响应出来的信号。

同理,x(n)的对应时刻的序列为x(0),x(1),x(2)...and so on;其实我们如果没有学过信号与系统,就常识来讲,系统的响应不仅与当前时刻系统的输入有关,也跟之前若干时刻的输入有关,因为我们可以理解为这是之前时刻的输入信号经过一种过程(这种过程可以是递减,削弱,或其他)对现在时刻系统输出的影响,那么显然,我们计算系统输出时就必须考虑现在时刻的信号输入的响应以及之前若干时刻信号输入的响应之“残留”影响的一个叠加效果。

假设0时刻系统的响应为y(0),若其在1时刻时,此种响应未改变,则1时刻的响应就变成了y(0)+y(1),叫序列的累加和(与序列的和不一样)。

但常常系统中不是这样的,因为0时刻的响应不太可能在1时刻仍旧未变化,那么怎么表述这种变化呢,就通过h(t)这个响应函数与x(0)相乘来表述,表述为x(m)×h(n-m),具体表达式不用多管,只要记着有大概这种关系,引入这个函数就能够表述y(0)在1时刻究竟削弱了多少,然后削弱后的值才是y(0)在1时刻的真实值,再通过累加和运算,才得到真实的系统响应。

再拓展点,某时刻的系统响应往往不一定是由当前时刻和前一时刻这两个响应决定的,也可能是再加上前前时刻,前前前时刻,前前前前时刻,等等,那么怎么约束这个范围呢,就是通过对h(n)这个函数在表达式中变化后的h(n-m)中的m的范围来约束的。

傅里叶变换、拉氏变换、z变换的含义

傅里叶变换、拉氏变换、z变换的含义

傅里叶变换、拉氏变换、z变换的含义1、什么是傅里叶变换?答:fourier变换是将连续的时间域信号转变到频率域;它可以说是laplace变换的特例,laplace变换是fourier变换的推广,存在条件比fourier变换要宽,是将连续的时间域信号变换到复频率域(整个复平面,而fourier变换此时可看成仅在jΩ轴);z变换则是连续信号经过理想采样之后的离散信号的laplace变换,再令z=e^sT时的变换结果(T为采样周期),所对应的域为数字复频率域,此时数字频率ω=ΩT。

——参考郑君里的《信号与系统》。

傅里叶变换的实质是将一个信号分离为无穷多多正弦/复指数信号的加成,也就是说,把信号变成正弦信号相加的形式——既然是无穷多个信号相加,那对于非周期信号来说,每个信号的加权应该都是零——但有密度上的差别,你可以对比概率论中的概率密度来思考一下——落到每一个点的概率都是无限小,但这些无限小是有差别的。

所以,傅里叶变换之后,横坐标即为分离出的正弦信号的频率,纵坐标对应的是加权密度。

对于周期信号来说,因为确实可以提取出某些频率的正弦波成分,所以其加权不为零——在幅度谱上,表现为无限大——但这些无限大显然是有区别的,所以我们用冲激函数表示。

已经说过,傅里叶变换是把各种形式的信号用正弦信号表示,因此非正弦信号进行傅里叶变换,会得到与原信号频率不同的成分——都是原信号频率的整数倍。

这些高频信号是用来修饰频率与原信号相同的正弦信号,使之趋近于原信号的。

所以说,频谱上频率最低的一个峰(往往是幅度上最高的),就是原信号频率。

傅里叶变换把信号由时域转为频域,因此把不同频率的信号在时域上拼接起来进行傅里叶变换是没有意义的——实际情况下,我们隔一段时间采集一次信号进行变换,才能体现出信号在频域上随时间的变化。

我的语言可能比较晦涩,但我已尽我所能向你讲述我的一点理解——真心希望能对你有用。

我已经很久没在知道上回答过问题了,之所以回答这个问题,是因为我本人在学习傅里叶变换及拉普拉斯变换的过程中着实受益匪浅——它们几乎改变了我对世界的认识。

阐述傅里叶变换,拉普拉斯变换

阐述傅里叶变换,拉普拉斯变换

阐述傅里叶变换,拉普拉斯变换傅里叶变换和拉普拉斯变换是现代数学中重要的工具,它们在信号处理、数值计算、物理学和工程学等领域中广泛应用。

在这篇文章中,我们将详细阐述傅里叶变换和拉普拉斯变换的定义、性质以及其在实际问题中的应用。

首先,让我们来了解傅里叶变换。

傅里叶变换是一种将一个函数转换到频域的数学工具。

它将一个连续时间的信号或者离散时间的序列分解成由许多不同频率的正弦和余弦函数组成的频谱。

傅里叶变换的定义是:$$F(\omega) = \int_{-\infty}^{\infty} f(t)e^{-j\omegat}dt.$$其中,$f(t)$是输入信号,$F(\omega)$是频率域中的傅里叶变换结果。

$j$是虚数单位,$\omega$是频率。

傅里叶变换将信号从时间域转换到频域,能够展示信号中不同频率的分量。

通过傅里叶变换,我们可以分析信号的频谱信息,从而更好地理解信号的特性。

傅里叶变换具有许多重要的性质,其中一些最为常用的性质包括:1. 线性性质:傅里叶变换是线性的,即对于任意常数$a$和$b$,有$F(af(t) + bg(t)) = aF(f(t)) + bF(g(t))$。

2. 对称性:傅里叶变换具有奇偶对称性。

如果$f(t)$是一个实数函数,则傅里叶变换$F(\omega)$也是实数函数。

如果$f(t)$是一个奇函数(即满足$f(-t)=-f(t)$),则傅里叶变换$F(\omega)$是一个虚函数。

如果$f(t)$是一个偶函数(即满足$f(-t)=f(t)$),则傅里叶变换$F(\omega)$是实函数的偶函数。

3. 平移性质:如果$f(t)$经过平移变换,即$f(t-t_0)$,则傅里叶变换$F(\omega)$也将随之平移变换,即$F(\omega)e^{-j\omegat_0}$。

4. 绕行性质:如果$f(t)$经过时间反转变换,即$f(-t)$,则傅里叶变换$F(\omega)$也将随之进行频率反转变换,即$F(-\omega)$。

傅里叶变换与拉普拉斯变换

傅里叶变换与拉普拉斯变换

傅里叶变换与拉普拉斯变换
区别:
1、积分域与变换核
傅里叶变换与拉普拉斯变换都属于积分变换,是两种常见的数学变换手段,而所谓的积分变换就是通过积分运算,把一个函数变成另一个函数的变换,其作用就是将复杂的函数运算变成简单的函数运算,当选取不同的积分域和变换核时,就得到不同名称的积分变换,傅里叶变换与拉普拉斯变换就是因取不同的积分域与变换核得来的。

2、频域和复频域
傅里叶变换是拉普拉斯变换的特例。

拉普拉斯变换是将时域信号变换到“复频域”,与变换的“频域”有所区别。

应用:
1、拉普拉斯变换主要用于电路分析,作为解微分方程的强有力工具(将微积分运算转化为乘除运算)。

2、傅里叶变换在物理学、电子类学科、数论、组合数学、信号处理、概率论、统计学、密码学、声学、光学、海洋学、结构动力学等领域都有着广泛的应用(例如在信号处理中,傅里叶变换的典型用途是将信号分解成幅值谱——显示与频率对应的幅值大小)。

则随着FFT算法的发展已经成为最重要的数学工具应用于数字信号处理领域。

卷积的本质及物理意义(整理)

卷积的本质及物理意义(整理)

卷积的本质及物理意义分三个部分来理解:1.信号的角度2.数学家的理解(外行)3.与多项式的关系卷积这个东东是“信号与系统”中论述系统对输入信号的响应而提出的。

因为是对模拟信号论述的,所以常常带有繁琐的算术推倒,很简单的问题的本质常常就被一大堆公式淹没了,那么卷积究竟物理意义怎么样呢?卷积表示为y(n) = x(n)*h(n)使用离散数列来理解卷积会更形象一点,我们把y(n)的序列表示成y(0),y(1),y(2) and so on; 这是系统响应出来的信号。

同理,x(n)的对应时刻的序列为x(0),x(1),x(2)...and so on;其实我们如果没有学过信号与系统,就常识来讲,系统的响应不仅与当前时刻系统的输入有关,也跟之前若干时刻的输入有关,因为我们可以理解为这是之前时刻的输入信号经过一种过程(这种过程可以是递减,削弱,或其他)对现在时刻系统输出的影响,那么显然,我们计算系统输出时就必须考虑现在时刻的信号输入的响应以及之前若干时刻信号输入的响应之“残留”影响的一个叠加效果。

假设0时刻系统的响应为y(0),若其在1时刻时,此种响应未改变,则1时刻的响应就变成了y(0)+y(1),叫序列的累加和(与序列的和不一样)。

但常常系统中不是这样的,因为0时刻的响应不太可能在1时刻仍旧未变化,那么怎么表述这种变化呢,就通过h(t)这个响应函数与x(0)相乘来表述,表述为x(m)×h(n-m),具体表达式不用多管,只要记着有大概这种关系,引入这个函数就能够表述y(0)在1时刻究竟削弱了多少,然后削弱后的值才是y(0)在1时刻的真实值,再通过累加和运算,才得到真实的系统响应。

再拓展点,某时刻的系统响应往往不一定是由当前时刻和前一时刻这两个响应决定的,也可能是再加上前前时刻,前前前时刻,前前前前时刻,等等,那么怎么约束这个范围呢,就是通过对h(n)这个函数在表达式中变化后的h(n-m)中的m的范围来约束的。

傅里叶变换,拉普拉斯变换和Z变换的意义

傅里叶变换,拉普拉斯变换和Z变换的意义

傅里叶变换,拉普拉斯变换和Z变换的意义【傅里叶变换】傅里叶变换在物理学、数论、组合数学、信号处理、概率论、统计学、密码学、声学、光学、海洋学、结构动力学等领域都有着广泛的应用(例如在信号处理中,傅里叶变换的典型用途是将信号分解成幅值分量和频率分量)。

傅里叶变换是一种解决问题的方法,一种工具,一种看待问题的角度。

我们原来对一个信号其实是从时间的角度去理解的,不知不觉中,其实是按照时间把信号进行分割,每一部分只是一个时间点对应一个信号值,一个信号是一组这样的分量的叠加。

傅里叶变换后,其实还是个叠加问题,只不过是从频率的角度去叠加,只不过每个小信号是一个时间域上覆盖整个区间的信号,但他确有固定的周期,或者说,给了一个周期,我们就能画出一个整个区间上的分信号,那么给定一组周期值(或频率值),我们就可以画出其对应的曲线,就像给出时域上每一点的信号值一样,不过如果信号是周期的话,频域的更简单,只需要几个甚至一个就可以了,时域则需要整个时间轴上每一点都映射出一个函数值。

傅里叶变换就是将一个信号的时域表示形式映射到一个频域表示形式;逆傅里叶变换恰好相反。

这都是一个信号的不同表示形式。

对一个信号做傅里叶变换,可以得到其频域特性,包括幅度和相位两个方面。

幅度是表示这个频率分量的大小,那么相位呢,它有什么物理意义频域的相位与时域的相位有关系吗信号前一段的相位(频域)与后一段的相位的变化是否与信号的频率成正比关系傅里叶变换就是把一个信号,分解成无数的正弦波(或者余弦波)信号。

也就是说,用无数的正弦波,可以合成任何你所需要的信号。

想一想这个问题:给你很多正弦信号,你怎样才能合成你需要的信号呢答案是要两个条件,一个是每个正弦波的幅度,另一个就是每个正弦波之间的相位差。

所以现在应该明白了吧,频域上的相位,就是每个正弦波之间的相位。

傅里叶变换用于信号的频率域分析,一般我们把电信号描述成时间域的数学模型,而数字信号处理对信号的频率特性更感兴趣,而通过傅立叶变换很容易得到信号的频率域特性。

拉普拉斯变换与傅里叶变换

拉普拉斯变换与傅里叶变换

拉普拉斯变换与傅里叶变换在数学分析领域里面,拉普拉斯变换(Laplace Transform)和傅里叶变换(Fourier Transform)都是十分常见的概念。

它们在科学、工程等各个领域中都有着广泛的应用,特别是在信号处理和控制理论中。

虽然两种变换的定义和表达式看起来差别不大,但它们的应用场景却略有不同。

接下来,我们将详细探讨这两种变换。

一、傅里叶变换傅里叶变换可以将一个函数从时域转换为频域。

简单来说,傅里叶变换可以将一个函数分解成一系列不同频率的正弦和余弦波形。

傅里叶变换可以表示原始函数的频率成分,因此它是处理周期函数的重要工具,被广泛应用于音频、图像及视频处理等领域。

傅里叶变换的基本公式如下:$$F(\omega)=\int_{-\infty}^{\infty}f(t) e^{-j \omega t} \mathrm{d} t$$其中,$f(t)$ 是时域上的函数, $F(\omega)$ 是傅里叶变换后得到的频域上的函数,$\omega$ 是角频率。

在实际的应用中,傅里叶变换可以分为离散傅里叶变换(DFT)和快速傅里叶变换(FFT)两种。

离散傅里叶变换适用于离散的信号和离散的频率,而快速傅里叶变换则是一种高效计算离散傅里叶变换的算法。

二、拉普拉斯变换拉普拉斯变换可以将一个系统或者信号从时域转化为复域,包括实部和虚部。

虽然从理论上来看,傅里叶变换和拉普拉斯变换都可以将一个函数从时域转换到频域中,但是由于傅里叶变换是基于周期函数的,因此不是所有的函数都适合使用傅里叶变换。

拉普拉斯变换的公式如下:$$F(s)=\int_{0}^{\infty}f(t) e^{-st} \mathrm{d} t$$其中,$f(t)$ 是定义在$0$及多于$0$的函数, $F(s)$是$s$域的变量,$s$是一个复数域。

当$s$对应于滤波器等系统的特征值时,可以用于研究诸如控制系统的动力学行为等问题。

三、拉普拉斯变换与傅里叶变换的区别从上面的定义和公式可以看到,傅里叶变换和拉普拉斯变换在数学表达方式上有一些差别。

为什么要进行傅里叶变换其物理意义是什么

为什么要进行傅里叶变换其物理意义是什么

为什么要进行傅里叶变换其物理意义是什么傅里叶变换是一种用于将一个信号从时域(时钟域)转换到频域(频率域)的数学工具。

在信号分析、图像处理、通信系统和控制系统等领域中,傅里叶变换被广泛应用。

在傅里叶变换中,一个信号可以表示为多个正弦波或余弦波的叠加。

通过将信号转换到频域,我们可以分析信号中的频率成分和振幅。

以下是一些进行傅里叶变换的原因和物理意义:1.频谱分析:傅里叶变换可以将一个信号分解成不同频率的成分。

通过分析信号的频谱,我们可以了解信号中包含的频率信息。

这对于识别和分析信号中的周期性模式、分析信号中的噪声以及检测信号中的特定频率成分都非常有用。

2.滤波:傅里叶变换可以将信号分解为不同频率成分。

通过选择性地去除或弱化特定频率的成分,我们可以对信号进行滤波。

这种滤波方法被广泛应用于信号处理和通信系统中,用于去除噪声或特定频率的干扰。

3.时域和频域分析的互换:傅里叶变换提供了在时域和频域之间进行变换的能力。

这使得可以通过在频域对信号进行操作,然后再通过傅里叶逆变换将信号转换回时域。

这种时域和频域之间的变换关系为信号处理和系统分析提供了灵活性。

4.信号压缩:对于一些信号,它们在频域中具有稀疏性。

即信号的频谱中只有很少的频率成分具有显著的振幅,其他频率成分的振幅很小。

通过利用信号在频域中的稀疏性,可以对信号进行压缩和储存,以节省存储空间和传输带宽。

5.系统分析:傅里叶变换可以用于分析线性时不变系统(LTI)的性能。

通过将输入信号和系统的频率响应进行傅里叶变换,可以得到系统对不同频率的输入信号的响应。

这有助于研究系统的频率特性和稳定性,并对系统的滤波、放大和频率选择性等性能进行分析。

总而言之,傅里叶变换是一种强大的工具,可以将信号从时域转换到频域,从而帮助我们分析信号的频率成分、滤波信号、压缩信号、以及研究系统的频率响应。

这些分析和操作对于各种科学、工程和技术领域中的应用都非常重要。

傅里叶变换和卷积

傅里叶变换和卷积

傅里叶变换和卷积傅里叶变换和卷积这两个词一听就感觉高大上,像是和数学物理挂钩的那种学科。

但是,别担心,今天咱们就用简单的语言,把这两个“难搞”的概念捋一捋,说得明白点,跟做家常菜一样轻松。

首先啊,咱们要搞清楚,傅里叶变换和卷积都在做啥,它们俩可不是孤军奋战的两个概念,它们是好搭档,缺一不可。

就像是做饭时的锅和铲子,一个没有另一个就啥也做不出来。

说到傅里叶变换,很多人可能会想:“这是什么高深的东西?”傅里叶变换就是把一个复杂的信号分解成简单的“频率成分”。

听起来像是个抽象的数学符号,其实说白了,就是把复杂的信号拆成一堆简单的小部分。

比如你听到的音乐,不就是一堆不同频率的声音叠加起来的吗?傅里叶变换就能帮你把这些声音拆开,让你知道每个音符的频率到底有多高,或者多低。

想象一下,很多时候我们听到的噪音或是声音就像是一个大杂烩,里面混杂了各种各样的音频信号,傅里叶变换就像是个高手厨师,把这些杂七杂八的成分按频率拆分得清清楚楚。

这样一来,如果你是做信号处理的,或者干脆就是搞声音的,你就能把这些成分拿出来单独处理了。

现在来说卷积,卷积其实也不难理解。

你可以把它想象成两件事的“合体”。

比如你有一张图像和一个滤镜,这个滤镜就是卷积核,它会帮助你对图像进行处理。

卷积的作用就是用一个小小的滤镜(一个小小的矩阵)在整个图像上滚动,把图像每个部分的内容和滤镜进行合成,最终得到一个全新的图像。

你可以把它想象成你拿个小刷子在画布上涂抹,每涂抹一次,就会有一些新的效果显现出来。

卷积这个过程就像是在做一道菜,每次加点新材料进去,最后调出一锅美味的汤。

卷积就像是对原始信号进行“平滑”或者“增强”的过程。

好比你一开始有一段平凡无奇的声音,经过卷积一处理,可能就变得更加有节奏感,或者更加清晰。

说到这里,你是不是觉得傅里叶变换和卷积像是两个能变魔法的工具?没错,它们俩在信号处理、图像处理、音频处理,甚至机器学习里,都起着至关重要的作用。

傅里叶变换的物理意义

傅里叶变换的物理意义

傅里叶变换的物理意义傅里叶变换是数学中最著名的变换之一,在物理、无线电、信号处理等学科中都有广泛应用。

物理意义上来说,傅里叶变换是一种将时域函数转化为频域函数的技术,可以更加方便地对于复杂的波形进行分析和处理。

一般情况下,如果我们想要表达一个事件,就需要函数来描述它,称为时域函数。

但是这些函数中存在着很复杂的信号,根据它们的特征我们可以把它们分成不同的频率成分。

这个任务可以很容易地完成,只需要把时域函数作为输入,然后使用傅里叶变换。

傅里叶变换就是一种将时域函数转换成频域函数的工具,可以将时域函数分解成不同的频率成分。

同时,傅里叶变换也可以反过来,把频域函数转换回时域函数,这就是所谓的逆变换。

因此,傅里叶变换可以实现从时域到频域的信息的转换,也可以从频域到时域的信息的转换。

这种单向变换有助于我们更加容易地理解时域函数,也可以帮助我们分析频率成分。

傅里叶变换在传输信号与信号处理方面有着重要的应用,如在数据通讯和线性系统中,傅里叶变换可以帮助我们实现模拟信号与数字信号之间的转换,从而实现迅速准确的信号处理。

同时,傅里叶变换也可以使我们更好地理解波形的频率成分,这样就可以更准确地处理和测量信号。

此外,傅里叶变换也在信号压缩技术中发挥了重要作用。

傅里叶变换可以把信号分割为不同频率成分,这些成分中可能存在很多冗余成分,可以利用傅里叶变换将这些冗余成分去掉,从而实现信号压缩,从而节省空间和费用。

总之,傅里叶变换的物理意义是将时域函数转换为频域函数,利用傅里叶变换我们可以很容易地提取复杂信号的特征,并利用傅里叶变换实现信号压缩,从而在物理、无线电、信号处理等学科中都有广泛应用。

因此,我们可以断定傅里叶变换是解决众多物理问题的重要工具之一。

拉普拉斯变换傅里叶变换和Z变换的意义

拉普拉斯变换傅里叶变换和Z变换的意义

拉普拉斯变换傅里叶变换和Z变换的意义L{f(t)} = F(s) = ∫[0,∞] e^(-st) f(t) dt其中,L表示拉普拉斯变换算子,f(t)是定义在[0,∞]上的函数,s是复变量。

拉普拉斯变换的意义在于,它可以将时间域中的函数转换为复平面上的函数,从而方便地进行频域分析和求解微分方程。

通过拉普拉斯变换,我们可以得到函数的频谱特性、系统的稳定性和传递函数等重要信息。

在信号处理中,拉普拉斯变换可以用于信号的滤波、系统的响应和控制系统的设计等。

傅里叶变换是一种将函数从时域转换到频域的方法,它将一个连续函数分解为不同频率的正弦和余弦函数的叠加。

在实际应用中,傅里叶变换通常分为离散傅里叶变换(DFT)和连续傅里叶变换(FFT)两种形式。

傅里叶变换的定义如下:F(ω) = ∫[-∞,+∞] e^(-jωt) f(t) dt其中,F表示傅里叶变换算子,f(t)是定义在整个实数轴上的函数,ω是频率变量。

傅里叶变换的意义在于,它可以将时域中的函数分解为不同频率的正弦和余弦函数的叠加。

通过傅里叶变换,我们可以分析信号的频谱分布、信号的周期性和对信号进行滤波等。

在图像处理、语音处理和通信系统中,傅里叶变换广泛应用于信号分析、滤波和信息传输等方面。

Z变换是一种将离散函数转换为复变函数的方法,它将离散序列表示为复平面上的复数函数。

Z变换在数字信号处理和控制系统中广泛使用。

Z变换的定义如下:Z{f[n]}=F(z)=∑[-∞,+∞]f[n]z^(-n)其中,Z表示Z变换算子,f[n]是一个定义在整个整数轴上的离散序列,z是复变量。

Z变换的意义在于,它可以将离散序列转换为复平面上的函数,从而方便地进行频域分析和系统建模。

通过Z变换,我们可以得到离散序列的频谱特性、系统的稳定性和传递函数等信息。

在数字滤波器设计、控制系统分析和离散信号处理中,Z变换是一种重要的工具。

综上所述,拉普拉斯变换、傅里叶变换和Z变换是信号处理和系统分析中常用的工具。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一课什么是卷积卷积有什么用什么是傅利叶变换什么是拉普拉斯变换引子很多朋友和我一样,工科电子类专业,学了一堆信号方面的课,什么都没学懂,背了公式考了试,然后毕业了。

先说"卷积有什么用"这个问题。

(有人抢答,"卷积"是为了学习"信号与系统"这门课的后续章节而存在的。

我大吼一声,把他拖出去枪毙!)讲一个故事:张三刚刚应聘到了一个电子产品公司做测试人员,他没有学过"信号与系统"这门课程。

一天,他拿到了一个产品,开发人员告诉他,产品有一个输入端,有一个输出端,有限的输入信号只会产生有限的输出。

然后,经理让张三测试当输入sin(t)(t<1秒)信号的时候(有信号发生器),该产品输出什么样的波形。

张三照做了,花了一个波形图。

"很好!"经理说。

然后经理给了张三一叠A4纸: "这里有几千种信号,都用公式说明了,输入信号的持续时间也是确定的。

你分别测试以下我们产品的输出波形是什么吧!"这下张三懵了,他在心理想"上帝,帮帮我把,我怎么画出这些波形图呢?"于是上帝出现了: "张三,你只要做一次测试,就能用数学的方法,画出所有输入波形对应的输出波形"。

上帝接着说:"给产品一个脉冲信号,能量是1焦耳,输出的波形图画出来!"张三照办了,"然后呢?"上帝又说,"对于某个输入波形,你想象把它微分成无数个小的脉冲,输入给产品,叠加出来的结果就是你的输出波形。

你可以想象这些小脉冲排着队进入你的产品,每个产生一个小的输出,你画出时序图的时候,输入信号的波形好像是反过来进入系统的。

"张三领悟了:" 哦,输出的结果就积分出来啦!感谢上帝。

这个方法叫什么名字呢?"上帝说:"叫卷积!"从此,张三的工作轻松多了。

每次经理让他测试一些信号的输出结果,张三都只需要在A4纸上做微积分就是提交任务了!----------------------------------------张三愉快地工作着,直到有一天,平静的生活被打破。

经理拿来了一个小的电子设备,接到示波器上面,对张三说: "看,这个小设备产生的波形根本没法用一个简单的函数来说明,而且,它连续不断的发出信号!不过幸好,这个连续信号是每隔一段时间就重复一次的。

张三,你来测试以下,连到我们的设备上,会产生什么输出波形!"张三摆摆手:"输入信号是无限时长的,难道我要测试无限长的时间才能得到一个稳定的,重复的波形输出吗?"经理怒了:"反正你给我搞定,否则炒鱿鱼!"张三心想:"这次输入信号连公式都给出出来,一个很混乱的波形;时间又是无限长的,卷积也不行了,怎么办呢?"及时地,上帝又出现了:"把混乱的时间域信号映射到另外一个数学域上面,计算完成以后再映射回来" "宇宙的每一个原子都在旋转和震荡,你可以把时间信号看成若干个震荡叠加的效果,也就是若干个可以确定的,有固定频率特性的东西。

""我给你一个数学函数f,时间域无限的输入信号在f域有限的。

时间域波形混乱的输入信号在f域是整齐的容易看清楚的。

这样你就可以计算了""同时,时间域的卷积在f域是简单的相乘关系,我可以证明给你看看""计算完有限的程序以后,取f(-1)反变换回时间域,你就得到了一个输出波形,剩下的就是你的数学计算了!"张三谢过了上帝,保住了他的工作。

后来他知道了,f域的变换有一个名字,叫做傅利叶,什么什么... ... ----------------------------------------再后来,公司开发了一种新的电子产品,输出信号是无限时间长度的。

这次,张三开始学拉普拉斯了......后记:不是我们学的不好,是因为教材不好,老师讲的也不好。

很欣赏Google的面试题: 用3句话像老太太讲清楚什么是数据库。

这样的命题非常好,因为没有深入的理解一个命题,没有仔细的思考一个东西的设计哲学,我们就会陷入细节的泥沼: 背公式,数学推导,积分,做题;而没有时间来回答"为什么要这样"。

做大学老师的做不到"把厚书读薄"这一点,讲不出哲学层面的道理,一味背书和翻讲ppt,做着枯燥的数学证明,然后责怪"现在的学生一代不如一代",有什么意义吗?第二课到底什么是频率什么是系统?这一篇,我展开的说一下傅立叶变换F。

注意,傅立叶变换的名字F可以表示频率的概念(freqence),也可以包括其他任何概念,因为它只是一个概念模型,为了解决计算的问题而构造出来的(例如时域无限长的输入信号,怎么得到输出信号)。

我们把傅立叶变换看一个C语言的函数,信号的输出输出问题看为IO 的问题,然后任何难以求解的x->y的问题都可以用x->f(x)->f-1(x)->y来得到。

1. 到底什么是频率?一个基本的假设: 任何信息都具有频率方面的特性,音频信号的声音高低,光的频谱,电子震荡的周期,等等,我们抽象出一个件谐振动的概念,数学名称就叫做频率。

想象在x-y 平面上有一个原子围绕原点做半径为1匀速圆周运动,把x轴想象成时间,那么该圆周运动在y轴上的投影就是一个sin(t)的波形。

相信中学生都能理解这个。

那么,不同的频率模型其实就对应了不同的圆周运动速度。

圆周运动的速度越快,sin(t)的波形越窄。

频率的缩放有两种模式(a) 老式的收音机都是用磁带作为音乐介质的,当我们快放的时候,我们会感觉歌唱的声音变得怪怪的,调子很高,那是因为"圆周运动"的速度增倍了,每一个声音分量的sin(t)输出变成了sin(nt)。

(b) 在CD/计算机上面快放或满放感觉歌手快唱或者慢唱,不会出现音调变高的现象:因为快放的时候采用了时域采样的方法,丢弃了一些波形,但是承载了信息的输出波形不会有宽窄的变化;满放时相反,时域信号填充拉长就可以了。

2. F变换得到的结果有负数/复数部分,有什么物理意义吗?解释: F变换是个数学工具,不具有直接的物理意义,负数/复数的存在只是为了计算的完整性。

3. 信号与系统这们课的基本主旨是什么?对于通信和电子类的学生来说,很多情况下我们的工作是设计或者OSI七层模型当中的物理层技术,这种技术的复杂性首先在于你必须确立传输介质的电气特性,通常不同传输介质对于不同频率段的信号有不同的处理能力。

以太网线处理基带信号,广域网光线传出高频调制信号,移动通信,2G和3G分别需要有不同的载频特性。

那么这些介质(空气,电线,光纤等)对于某种频率的输入是否能够在传输了一定的距离之后得到基本不变的输入呢? 那么我们就要建立介质的频率相应数学模型。

同时,知道了介质的频率特性,如何设计在它上面传输的信号才能大到理论上的最大传输速率?----这就是信号与系统这们课带领我们进入的一个世界。

当然,信号与系统的应用不止这些,和香农的信息理论挂钩,它还可以用于信息处理(声音,图像),模式识别,智能控制等领域。

如果说,计算机专业的课程是数据表达的逻辑模型,那么信号与系统建立的就是更底层的,代表了某种物理意义的数学模型。

数据结构的知识能解决逻辑信息的编码和纠错,而信号的知识能帮我们设计出码流的物理载体(如果接受到的信号波形是混乱的,那我依据什么来判断这个是1还是0? 逻辑上的纠错就失去了意义)。

在工业控制领域,计算机的应用前提是各种数模转换,那么各种物理现象产生的连续模拟信号(温度,电阻,大小,压力,速度等) 如何被一个特定设备转换为有意义的数字信号,首先我们就要设计一个可用的数学转换模型。

4. 如何设计系统?设计物理上的系统函数(连续的或离散的状态),有输入,有输出,而中间的处理过程和具体的物理实现相关,不是这们课关心的重点(电子电路设计?)。

信号与系统归根到底就是为了特定的需求来设计一个系统函数。

设计出系统函数的前提是把输入和输出都用函数来表示(例如sin(t))。

分析的方法就是把一个复杂的信号分解为若干个简单的信号累加,具体的过程就是一大堆微积分的东西,具体的数**算不是这门课的中心思想。

那么系统有那些种类呢?(a) 按功能分类: 调制解调(信号抽样和重构),叠加,滤波,功放,相位调整,信号时钟同步,负反馈锁相环,以及若干子系统组成的一个更为复杂的系统----你可以画出系统流程图,是不是很接近编写程序的逻辑流程图? 确实在符号的空间里它们没有区别。

还有就是离散状态的数字信号处理(后续课程)。

(b) 按系统类别划分,无状态系统,有限状态机,线性系统等。

而物理层的连续系统函数,是一种复杂的线性系统。

5. 最好的教材?符号系统的核心是集合论,不是微积分,没有集合论构造出来的系统,实现用到的微积分便毫无意义----你甚至不知道运算了半天到底是要作什么。

以计算机的观点来学习信号与系统,最好的教材之一就是<<Structure and Interpretation of Signals and Systems>>,作者是UC Berkeley的Edward A.Lee and Pravin Varaiya----先定义再实现,符合人类的思维习惯。

国内的教材通篇都是数学推导,就是不肯说这些推导是为了什么目的来做的,用来得到什么,建设什么,防止什么;不去从认识论和需求上讨论,通篇都是看不出目的的方**,本末倒置了。

第三课抽样定理是干什么的1. 举个例子,打电话的时候,电话机发出的信号是PAM脉冲调幅,在电话线路上传的不是话音,而是话音通过信道编码转换后的脉冲序列,在收端恢复语音波形。

那么对于连续的说话人语音信号,如何转化成为一些列脉冲才能保证基本不失真,可以传输呢? 很明显,我们想到的就是取样,每隔M毫秒对话音采样一次看看电信号振幅,把振幅转换为脉冲编码,传输出去,在收端按某种规则重新生成语言。

那么,问题来了,每M毫秒采样一次,M多小是足够的? 在收端怎么才能恢复语言波形呢?对于第一个问题,我们考虑,语音信号是个时间频率信号(所以对应的F变换就表示时间频率)把语音信号分解为若干个不同频率的单音混合体(周期函数的复利叶级数展开,非周期的区间函数,可以看成补齐以后的周期信号展开,效果一样),对于最高频率的信号分量,如果抽样方式能否保证恢复这个分量,那么其他的低频率分量也就能通过抽样的方式使得信息得以保存。

如果人的声音高频限制在3000Hz,那么高频分量我们看成sin(3000t),这个sin函数要通过抽样保存信息,可以看为: 对于一个周期,波峰采样一次,波谷采样一次,也就是采样频率是最高频率分量的2倍(奈奎斯特抽样定理),我们就可以通过采样信号无损的表示原始的模拟连续信号。

相关文档
最新文档