2014年湖北省八市高三3月联考文科数学试题(含答案)(高清扫描版)
2014年湖北省高考数学文科试卷(含解析)
2014年湖北省高考数学文科试卷(含解析)绝密★启用前2014年湖北省高考数学文科试卷(含解析)本试题卷共5页,22题。
全卷满分150分。
考试用时120分钟。
★祝考试顺利★注意事项:1.答卷前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
用统一提供的2B铅笔将答题卡上试卷类型A后的方框涂黑。
2.选择题的作答:每小题选出答案后,用统一提供的2B铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.填空题和解答题的作答:用统一提供的签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.2014•湖北卷]已知全集U={1,2,3,4,5,6,7},集合A={1,3,5,6},则∁UA=()A.{1,3,5,6}B.{2,3,7}C.{2,4,7}D.{2,5,7}1.C解析]由A={1,3,5,6},U={1,2,3,4,5,6,7},得∁UA={2,4,7}.故选C.2.2014•湖北卷]i为虚数单位,1-i1+i2=()A.1B.-1C.iD.-i2.B解析]1-i1+i2=(1-i)2(1+i)2=-2i2i=-1.故选B. 3.2014•湖北卷]命题“∀x∈R,x2≠x”的否定是()A.∀x∈/R,x2≠xB.∀x∈R,x2=xC.∃x0∈/R,x20≠x0D.∃x0∈R,x20=x03.D解析]特称命题的否定方法是先改变量词,然后否定结论,故命题“∀x∈R,x2≠x”的否定是“∃x0∈R,x20=x0”.故选D.4.2014•湖北卷]若变量x,y满足约束条件x+y≤4,x-y≤2,x≥0,y≥0,则2x+y的最大值是()A.2B.4C.7D.84.C解析]作出约束条件x+y≤4,x-y≤2,x≥0,y≥0表示的可行域如下图阴影部分所示.设z=2x+y,平移直线2x+y=0,易知在直线x+y=4与直线x-y=2的交点A(3,1)处,z=2x+y取得最大值7.故选C.5.2014•湖北卷]随机掷两枚质地均匀的骰子,它们向上的点数之和不超过5的概率记为p1,点数之和大于5的概率记为p2,点数之和为偶数的概率记为p3,则()A.p1<p2<p3B.p2<p1<p3C.p1<p3<p2D.p3<p1<p25.C解析]掷出两枚骰子,它们向上的点数的所有可能情况如下表:123456123456723456783456789456789105678910116789101112则p1=1036,p2=2636,p3=1836.故p16.2014•湖北卷]根据如下样本数据x345678y4.02.5-0.50.5-2.0-3.0得到的回归方程为y^=bx+a,则()A.a>0,b<0B.a>0,b>0C.a<0,b<0D.a<0,b>06.A解析]作出散点图如下:由图像不难得出,回归直线y^=bx+a的斜率b0,所以a>0,b图1-1 7.2014•湖北卷]在如图1-1所示的空间直角坐标系O-xyz中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0),(1,2,1),(2,2,2).给出编号为①、②、③、④的四个图,则该四面体的正视图和俯视图分别为()图1-2A.①和②B.③和①C.④和③D.④和②7.D解析]由三视图可知,该几何体的正视图显然是一个直角三角形(三个顶点坐标分别是(0,0,2),(0,2,0),(0,2,2))且内有一虚线(一锐角顶点与一直角边中点的连线),故正视图是④;俯视图是一个斜三角形,三个顶点坐标分别是(0,0,0),(2,2,0),(1,2,0),故俯视图是②.故选D.8.、2014•湖北卷]设a,b是关于t的方程t2cosθ+tsinθ=0的两个不等实根,则过A(a,a2),B(b,b2)两点的直线与双曲线x2cos2θ-y2sin2θ=1的公共点的个数为()A.0B.1C.2D.38.A解析]由方程t2cosθ+tsinθ=0,解得t1=0,t2=-tanθ,不妨设点A(0,0),B(-tanθ,tan2θ),则过这两点的直线方程为y=-xtanθ,该直线恰是双曲线x2cos2θ-y2sin2θ=1的一条渐近线,所以该直线与双曲线无公共点.故选A.9.、2014•湖北卷]已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2-3x,则函数g(x)=f(x)-x+3的零点的集合为()A.{1,3}B.{-3,-1,1,3}C.{2-7,1,3}D.{-2-7,1,3}9.D解析]设x0,所以f(x)=-f(-x)=-(-x)2-3(-x)]=-x2-3x.求函数g(x)=f(x)-x+3的零点等价于求方程f(x)=-3+x的解.当x≥0时,x2-3x=-3+x,解得x1=3,x2=1;当x10.2014•湖北卷]《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“囷盖”的术“置如其周,令相乘也.又以高乘之,三十六成一.”该术相当于给出了由圆锥的底面周长L与高h,计算其体积V的近似公式V≈136L2h.它实际上是将圆锥体积公式中的圆周率π近似取为3.那么,近似公式V≈275L2h相当于将圆锥体积公式中的π近似取为()A.227B.258C.15750D.35511310.B解析]设圆锥的底面圆半径为r,底面积为S,则L=2πr.由题意得136L2h≈13Sh,代入S=πr2化简得π≈3.类比推理,若V≈275L2h时,π≈258.故选B.11.2014•湖北卷]甲、乙两套设备生产的同类型产品共4800件,采用分层抽样的方法从中抽取一个容量为80的样本进行质量检测.若样本中有50件产品由甲设备生产,则乙设备生产的产品总数为________件.11.1800解析]设乙设备生产的产品总数为n,则80-50n=804800,解得n=1800.12.、2014•湖北卷]若向量OA→=(1,-3),|OA→|=|OB→|,OA→•OB→=0,则|AB→|=________.12.25解析]由题意知,OB→=(3,1)或OB=(-3,-1),所以AB=OB-OA=(2,4)或AB=(-4,2),所以|AB|=22+42=25. 13.2014•湖北卷]在△ABC中,角A,B,C所对的边分别为a,b,c.已知A=π6,a=1,b=3,则B=________.13.π3或2π3解析]由正弦定理得asinA=bsinB,即1sinπ6=3sinB,解得sinB=32.又因为b>a,所以B=π3或2π3.14.2014•湖北卷]阅读如图1-3所示的程序框图,运行相应的程序,若输入n的值为9,则输出S的值为________.图1-314.1067解析]第一次运行时,S=0+21+1,k=1+1;第二次运行时,S=(21+1)+(22+2),k=2+1;……所以框图运算的是S=(21+1)+(22+2)+…+(29+9)=1067. 15.2014•湖北卷]如图1-4所示,函数y=f(x)的图像由两条射线和三条线段组成.若∀x∈R,f(x)>f(x-1),则正实数a的取值范围为________.图1-415.0,16解析]“∀x∈R,f(x)>f(x-1)”等价于“函数y=f(x)的图像恒在函数y=f(x-1)的图像的上方”,函数y=f(x-1)的图像是由函数y=f(x)的图像向右平移一个单位得到的,如图所示.因为a>0,由图知6a16.2014•湖北卷]某项研究表明:在考虑行车安全的情况下,某路段车流量F(单位时间内经过测量点的车辆数,单位:辆/小时)与车流速度v(假设车辆以相同速度v行驶,单位:米/秒)、平均车长l(单位:米)的值有关,其公式为F=76000vv2+18v+20l.(1)如果不限定车型,l=6.05,则最大车流量为________辆/小时;(2)如果限定车型,l=5,则最大车流量比(1)中的最大车流量增加________辆/小时.16.(1)1900(2)100解析](1)依题意知,l>0,v>0,所以当l=6.05时,F=76000vv2+18v+121=76000v+121v+18≤760002v•121v+18=1900,当且仅当v=11时,取等号.(2)当l=5时,F=76000vv2+18v+100=76000v+100v+18≤2000,当且仅当v=10时,取等号,此时比(1)中的最大车流量增加100辆/小时.17.2014•湖北卷]已知圆O:x2+y2=1和点A(-2,0),若定点B(b,0)(b≠-2)和常数λ满足:对圆O上任意一点M,都有|MB|=λ|MA|,则(1)b=________;(2)λ=________.17.(1)-12(2)12解析]设点M(cosθ,sinθ),则由|MB|=λ|MA|得(cosθ-b)2+sin2θ=λ2(cosθ+2)2+sin2θ,即-2bcosθ+b2+1=4λ2cosθ+5λ2对任意的θ都成立,所以-2b=4λ2,b2+1=5λ2.又由|MB|=λ|MA|,得λ>0,且b≠-2,解得b=-12,λ=12.18.、、、2014•湖北卷]某实验室一天的温度(单位:℃)随时间t(单位:h)的变化近似满足函数关系:f(t)=10-3cosπ12t-sinπ12t,t∈0,24).(1)求实验室这一天上午8时的温度;(2)求实验室这一天的最大温差.18.解:(1)f(8)=10-3cosπ12×8-sinπ12×8=10-3cos2π3-sin2π3=10-3×-12-32=10.故实验室上午8时的温度为10℃.(2)因为f(t)=10-232cosπ12t+12sinπ12t=10-2sinπ12t+π3,又0≤t所以π3≤π12t+π3当t=2时,sinπ12t+π3=1;当t=14时,sinπ12t+π3=-1.于是f(t)在0,24)上取得最大值12,最小值8.故实验室这一天最高温度为12℃,最低温度为8℃,最大温差为4℃. 19.、、2014•湖北卷]已知等差数列{an}满足:a1=2,且a1,a2,a5成等比数列.(1)求数列{an}的通项公式.(2)记Sn为数列{an}的前n项和,是否存在正整数n,使得Sn>60n+800?若存在,求n的最小值;若不存在,说明理由.19.解:(1)设数列{an}的公差为d,依题意知,2,2+d,2+4d成等比数列,故有(2+d)2=2(2+4d),化简得d2-4d=0,解得d=0或d=4,当d=0时,an=2;当d=4时,an=2+(n-1)•4=4n-2,从而得数列{an}的通项公式为an=2或an=4n-2.(2)当an=2时,Sn=2n,显然2n此时不存在正整数n,使得Sn>60n +800成立.当an=4n-2时,Sn=n2+(4n-2)]2=2n2.令2n2>60n+800,即n2-30n-400>0,解得n>40或n此时存在正整数n,使得Sn>60n+800成立,n的最小值为41.综上,当an=2时,不存在满足题意的正整数n;当an=4n-2时,存在满足题意的正整数n,其最小值为41.20.、2014•湖北卷]如图1-5,在正方体ABCD-A1B1C1D1中,E,F,P,Q,M,N分别是棱AB,AD,DD1,BB1,A1B1,A1D1的中点.求证:(1)直线BC1∥平面EFPQ;(2)直线AC1⊥平面PQMN.图1-520.证明:(1)连接AD1,由ABCD-A1B1C1D1是正方体,知AD1∥BC1.因为F,P分别是AD,DD1的中点,所以FP∥AD1.从而BC1∥FP.而FP⊂平面EFPQ,且BC1⊄平面EFPQ,故直线BC1∥平面EFPQ.(2)如图,连接AC,BD,A1C1,则AC⊥BD.由CC1⊥平面ABCD,BD⊂平面ABCD,可得CC1⊥BD.又AC∩CC1=C,所以BD⊥平面ACC1A1.而AC1⊂平面ACC1A1,所以BD⊥AC1.因为M,N分别是A1B1,A1D1的中点,所以MN∥BD,从而MN⊥AC1. 同理可证PN⊥AC1.又PN∩MN=N,所以直线AC1⊥平面PQMN.21.2014•湖北卷]π为圆周率,e=2.71828…为自然对数的底数.(1)求函数f(x)=lnxx的单调区间;(2)求e3,3e,eπ,πe,3π,π3这6个数中的最大数与最小数.21.解:(1)函数f(x)的定义域为(0,+∞).因为f(x)=lnxx,所以f′(x)=1-lnxx2.当f′(x)>0,即0当f′(x)e时,函数f(x)单调递减.故函数f(x)的单调递增区间为(0,e),单调递减区间为(e,+∞).(2)因为e即ln3e于是根据函数y=lnx,y=ex,y=πx在定义域上单调递增可得,3e故这6个数中的最大数在π3与3π之中,最小数在3e与e3之中.由e即lnππ由lnπππ3.由ln33综上,6个数中的最大数是3π,最小数是3e.22.2014•湖北卷]在平面直角坐标系xOy中,点M到点F(1,0)的距离比它到y轴的距离多1.记点M的轨迹为C.(1)求轨迹C的方程;(2)设斜率为k的直线l过定点P(-2,1),求直线l与轨迹C恰好有一个公共点、两个公共点、三个公共点时k的相应取值范围.22.解:(1)设点M(x,y),依题意得|MF|=|x|+1,即(x-1)2+y2=|x|+1,化简整理得y2=2(|x|+x).故点M的轨迹C的方程为y2=4x,x≥0,0,x(2)在点M的轨迹C中,记C1:y2=4x(x≥0),C2:y=0(x依题意,可设直线l的方程为y-1=k(x+2).由方程组y-1=k(x+2),y2=4x,可得ky2-4y+4(2k+1)=0.①当k=0时,y=1.把y=1代入轨迹C的方程,得x=14.故此时直线l:y=1与轨迹C恰好有一个公共点14,1.当k≠0时,方程①的判别式Δ=-16(2k2+k-1).②设直线l与x轴的交点为(x0,0),则由y-1=k(x+2),令y=0,得x0=-2k+1k.③(i)若Δ12.即当k∈(-∞,-1)∪12,+∞时,直线l与C1没有公共点,与C2有一个公共点,故此时直线l与轨迹C恰好有一个公共点.(ii)若Δ=0,x00,x0≥0,由②③解得k∈-112或-12≤k即当k∈-1,12时,直线l与C1只有一个公共点,与C2有一个公共点.当k∈-12,0时,直线l与C1有两个公共点,与C2没有公共点.故当k∈-12,0∪-1,12时,直线l与轨迹C恰好有两个公共点.(iii)若Δ>0,x0即当k∈-1,-12∪0,12时,直线l与C1有一个公共点,与C2有一个公共点,故此时直线l与轨迹C恰好有三个公共点.综上所述,当k∈(-∞,-1)∪12,+∞∪{0}时,直线l与轨迹C恰好有一个公共点;当k∈-12,0∪-1,12时,直线l与轨迹C恰好有两个公共点;当k∈-1,-12∪0,12时,直线l与轨迹C恰好有三个公共点.。
湖北省部分重点中学2014届高三第一次联考文数答案-含答案
湖北省部分重点中学2014届高三第一次联考高三数学答案(文史类)一、1——5 C,D,B,B,A; 6——10 B,D,C,A,C二、11、022,2≤+-∈∃x x R x 12、300 13、223+14、6 15、21-52113+ 16、4910 17、①② 三、18、解:(I )由正弦定理得C R c B R b A R a sin 2,sin 2,sin 2===,则, …………2分故 B C B A C B cos sin cos sin 4cos sin -=,可得 B A B C C B cos sin 4cos sin cos sin =+,即 B A C B cos sin 4)sin(=+,可得 B A A cos sin 4sin =, …………4分又 由 可得 …………6分 (II )解:由2=⋅BC BA ,可得2cos c =⋅B a ,又因为 , 故. …………8分又, 可得, …………10分 所以0)(2=-c a ,即c a =.所以. …………12分 19、解:(1)连BD ,Θ四边形ABCD 为菱形,∴AB=AD又060=∠BAD ∴ABD ∆为正三角形,Q 为AD 的中点∴BQ AD ⊥B C R B A R C B R cos sin 2cos sin 8cos sin 2-=0sin ≠A 41cos =B 41cos =B 8=ac Bac c a b cos 2222-+=1622=+c a 22==c a1221,1)1(22)12()2(4234411111-=∴⎩⎨⎧==⎪⎩⎪⎨⎧+-+=-++=⋅+∴n a d a d n a d n a d a d a n 解得ΘPA=PD,Q 为AD 的中点 PQ AD ⊥∴ 又PAD AD PQB AD Q PQ BQ 平面,平面⊂⊥∴=⋂ PAD PQB 平面平面⊥∴(2)当t=31时,PA ∥平面MQB证明:若PA ∥平面MQB ,连AC 交BQ 于N 由AQ ∥BC 可得,△ ANQ ∽△BNC 21==∴NC AN BC AQ ΘPA ∥平面MQB,PA ⊂平面PAC,平面PAC ⋂平面MQB=MN, ∴PA ∥MN, 31==∴AC AN PC PM ,即:31t ,31=∴=∴PC PM 20、解:(1)12,4224+==n n a a S S Θ .21、解:解方程组⎪⎩⎪⎨⎧=+-=12222b y ax c x 得P 点的坐标为),(2a b c - ac b c c a b k PF 2222-=--=∴ 22QF PF ⊥Θ 222bac k QF =∴ )12.(462324321112112121111114121311211111),211(2118).1(2)()()()(2,32212121341112232111分分)(也成立时,当)由题(+++-=⎥⎦⎤⎢⎣⎡+-+-+=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+-+⎪⎭⎫ ⎝⎛+--++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=++++=∴+-=∴=+=+++++=+-+-++-+-=≥=-+---n n n n n n n n n b b b b T n n b n n n b a a a a b b b b b b b b b b n b n n n n n n n n n n n ΛΛΛΛ)(222c x b ac y QF -=∴的方程为: 将ca x 2=代入上式解得a y 2= )2,(2a ca Q 点的坐标为∴ (1)因为Q 点的坐标为(4,4),所以4242==∴a ca 且 3,1,2222=-===∴c abc a 13422=+∴y x C 的方程为椭圆 (2))2,(2a c a Q 点的坐标为Θ P 点的坐标为),(2a b c - a c c a a b a c c ca ab a k PQ =+-=---=∴)()2()(2222222 )(22ca x a c a y PQ -=-∴的方程为 即a x ac y += 将PQ 的方程代入椭圆C 的方程得222222)(b a a x ac a x b =++ 02)(2242222=-+++∴b a a cx a x c b ① 222c b a +=Θ方程①可化为0222222=++c a cx a x a解得c x -=所以直线PQ 与椭圆C 只有一个公共点22、解:(1)x ex x f -='1)( 由1,0)(=='x x f 解得当单调递增;时)(,0)(1x f x f x >'< 当单调递减。
2014年湖北省八市高三3月联考理科数学试题(含答案)(高清扫描版)
解得 ,所以 ………………………………6分
(Ⅱ) ,
… ……………………………9分
对 恒成立,即 对 恒成立
又
∴ 的最小值为 ……………………………………………………………12分
19.(Ⅰ)在图甲中,由△ABC是等边三角形,E,D分别为AB,AC的三等分点,点G为BC边的中点,易知DE⊥AF,DE⊥GF,DE//BC.………………………………2分
设平面ABE的一个法向量为 .
则 ,即 ,
取 ,则 , ,则 .………………………………8分
显然 为平面ADE的一个法向量,
所以 .………………………………………………10分
二面角 为钝角,所以二面角 的余弦值为 .………12分
20.解法1:
(Ⅰ)依题意知,ξ的所有可能值为2,4,6.
设每两局比赛为一轮,则该轮结束时比赛停止的概率为( )2+( )2= .………4分
当 ,即 时, , 有两个解, 有 个解;
当 ,即 时, 且 , 有 个解;………………………………………………………………………11分
当 ,即 时, , 有 个解;
当 ,即 时, , 有 个解.……13分
综上所述:
当 时,方程有 个解;
当 时,方程有 个解;
当 时,方程有 个解;
当 时,方程有 个解.……………………………………………………14分
=4( )2( )2= ,…………………………………………7分
∴ξ的分布列为
ξ
2
4
6
P
………9分
(Ⅱ)Eξ=2× +4× +6× = .…………………………………………12分
2014年湖北省八市高三年级三月联考答案
2014年湖北省八市高三年级三月联考一、语文基础知识(共15分,共5小题,每小题3分)1、D(A趿tā B禺yú C徵zhī)2、B(A掎角之势 C青青子衿D坐落)3、A(传颂:传扬歌颂,多用于事迹。
传诵:流传诵读;辗转传播称道,多用于美名。
敬赠:是指恭敬的赠送,用于自己对别人的赠送行动。
惠赠:指对方赠予(财物),则是用于称对方对自己的赠送。
质疑:提出疑问。
置疑:怀疑(多用于否定式)。
百花齐放:比喻各种不同形式和风格的艺术自由发展,也形容艺术界的繁荣景象。
百家争鸣:指各种学术流派的自由争论互相批评,也指不同意见的争论。
结合语境进行的是艺术批评,此处应为百家争鸣。
)4、C(A成分残缺,句首加“针对”或将“的”改为“了”B句式杂糅,主动句与被动句杂糅在一起,去掉“对”或“被” D搭配不当,应该是“物质的损失和精神的损伤)5、B(“公西华”改为“曾皙”)二、现代文(论述类文本)阅读(共9分,共3小题,每小题3分)6、B (A项中“定会”一词,变或然为必然;C项中“化学教授和化学工业界,都对卡逊女士发表的《寂静的春天》发动了排山倒海的围剿”是违背科学精神的,是对“她”本人非作品。
D项中“基因科学必将造福人类”一说没有注意到基因科学可能造成的危害。
)7、D (A这是制止违反科学精神的做法。
B欧洲科学家反对,基因工程的农业会导致“基因流动”和“基因污染”,应防止其危险;“是今后世界农业发展的方向”一说系无中生有。
C、不只是“欧洲‘英国医学会’里的一大群生化专家”)8、B(基因科技发展到最后,会形成一种“基因定时炸弹”,它的致命效果就会出现。
原文是从基因科技发展的整体而言的。
)三、古代诗文阅读(共34分,共7小题)9.A(让:辞让,推让)10.B(①表现其“勤学嗜古”的。
④这里的“辞不就”不能说明其磊落。
⑤“廷麟所募兵亦散”是不得已。
)11.B(“言者多荐廷麟”是说“朝廷中还有很多人上书推荐他”。
)12.(1)(3分)这样的连坐法不先在大臣中实行,想收到保举的效果,怎么做得到呢?(重点词语“是”“得”)(2)(3分)嗣昌料定廷麟也死掉了,后来听说他当时出使在外地没死,因此心里很多天都不痛快。
百强重点名校高考备考_2014年湖北省八市高三三月联考试卷(完美整理版)
2014年湖北省八市高三三月联考试卷未0313 08582014年湖北省八市高三三月联考试卷语文本试卷共8页,五大题,23小题。
全卷满分l50分,考试用时l50分钟。
★ 祝考试顺利★注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在试题卷和答题卷上。
2.选择题的作答:用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
答在试题卷上无效。
3.非选择题的作答:用0.5毫米黑色墨水签字笔直接答在答题卡上对应的答题区域内,答在试题卷上无效。
4.考生必须保持答题卡的整洁。
考试结束,只上交答题卷。
一、(共15分,每小题3分)1.下列词语中加点的字,每对读音都不相同的一组是A.蹊跷/蹊径纤维/纤尘不染殷红/殷勤稽首/无稽之谈B.伶俜/招聘叱咤/姹紫嫣红标识/卓识翘楚/憔悴不堪C.伺候/伺机数落/数见不鲜慰藉/蕴藉暴雨/一暴十寒D.蓬蒿/竹篙木讷/方枘圆凿信笺/栈道咀嚼/咬文嚼字2.下列词语中,没有错别字的一组是A.融资磕拌欢呼雀跃真知灼见B.文身猫腻动辄得咎侯门似海C.惦量发祥繁文缛节师出无名D.厮杀荒疏恪尽职守不依不挠3.下列各句中,加点的词语使用恰当的一项是A.从2014年元月11日起,国家工信部、发改委、国标委等部门在北京召集技术专家及校车制造企业技术负责人,对我国校车新标准进行审定,相信不久我国校车新国标将呼之欲出。
B.这种文风承继自周作人、董桥以来中国文人隐忍的传统,抒情而不煽情,简洁凝练的句子体现的是大方之家的功底与素养。
C.近日,记者在无极县见到了神奇的“景观”——红色碱性皮革污水汇成了千岛湖一样的大水塘,十余个水塘连成一片,水坑中满是红色污水,场面蔚为壮观。
D.这个装修公司的施工队确实不一般,无论什么样的房屋,经他们一装修,都能蓬荜生辉。
4.下列各句中,没有语病的一句是A.温家宝总理9月7日主持召开国务院常务会议,听取关于蓬莱19-3油田溢油事故处理,研究部署加强环境保护工作。
湖北省八市届高三3月联考数学文试题 扫描版含答案
2
根据余弦定理可得: c2 a2 b2 ab (2)……………………8 分
14. 29.25
62
1
15.
2
…………………………3 分
…………………………4 分
(1)、(2)联立解得: b(b a) 0 ……………………………10 分
b 0,b a, 又C,= ABC 为等边三角形,……………………………12 分 3
-3-
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,通系电1,力过根保管据护线生高0不产中仅工资2艺料22高试2可中卷以资配解料置决试技吊卷术顶要是层求指配,机置对组不电在规气进范设行高备继中进电资行保料空护试载高卷与中问带资题负料2荷试2,下卷而高总且中体可资配保料置障试时2卷,32调需3各控要类试在管验最路;大习对限题设度到备内位进来。行确在调保管整机路使组敷其高设在中过正资程常料1工试中况卷,下安要与全加过,强度并看工且25作尽52下可22都能护可地1关以缩于正小管常故路工障高作高中;中资对资料于料试继试卷电卷连保破接护坏管进范口行围处整,理核或高对者中定对资值某料,些试审异卷核常弯与高扁校中度对资固图料定纸试盒,卷位编工置写况.复进保杂行护设自层备动防与处腐装理跨置,接高尤地中其线资要弯料避曲试免半卷错径调误标试高方中等案资,,料要编试求5写、卷技重电保术要气护交设设装底备备置。4高调、动管中试电作线资高气,敷料中课并设3试资件且、技卷料中拒管术试试调绝路中验卷试动敷包方技作设含案术,技线以来术槽及避、系免管统不架启必等动要多方高项案中方;资式对料,整试为套卷解启突决动然高过停中程机语中。文高因电中此气资,课料电件试力中卷高管电中壁气资薄设料、备试接进卷口行保不调护严试装等工置问作调题并试,且技合进术理行,利过要用关求管运电线行力敷高保设中护技资装术料置。试做线卷到缆技准敷术确设指灵原导活则。。:对对在于于分调差线试动盒过保处程护,中装当高置不中高同资中电料资压试料回卷试路技卷交术调叉问试时题技,,术应作是采为指用调发金试电属人机隔员一板,变进需压行要器隔在组开事在处前发理掌生;握内同图部一纸故线资障槽料时内、,设需强备要电制进回造行路厂外须家部同出电时具源切高高断中中习资资题料料电试试源卷卷,试切线验除缆报从敷告而设与采完相用毕关高,技中要术资进资料行料试检,卷查并主和且要检了保测解护处现装理场置。设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
2014年湖北省数学(文)高考真题含答案(超完美word版)
绝密★启用前2014年普通高等学校招生全国统一考试(湖北卷)数 学(文史类)本试题卷共5页,22题。
全卷满分150分。
考试用时120分钟。
★祝考试顺利★注意事项:1.答卷前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
用统一提供的2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
2.选择题的作答:每小题选出答案后,用统一提供的2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.填空题和解答题的作答:用统一提供的签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
一、选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集{1,2,3,4,5,6,7}U =,集合{1,3,5,6}A =,则U A =ð A .{1,3,5,6} B .{2,3,7}C .{2,4,7}D . {2,5,7}2.i 为虚数单位,21i ()1i -=+A .1B .1-C .iD . i -3.命题“x ∀∈R ,2x x ≠”的否定是 A .x ∀∉R ,2x x ≠ B .x ∀∈R ,2x x = C .x ∃∉R ,2x x ≠D .x ∃∈R ,2x x =4.若变量x ,y 满足约束条件4,2,0,0,x y x y x y +≤⎧⎪-≤⎨⎪≥≥⎩错误!未找到引用源。
则2x y +的最大值是A .2B .4C .7D .85.随机掷两枚质地均匀的骰子,它们向上的点数之和不超过5的概率记为1p ,点数之和大于5的概率记为2 p ,点数之和为偶数的概率记为3p ,则 A .123p p p << B .213p p p << C .132p p p << D .312p p p <<6.根据如下样本数据x 3 4 5 6 7 8 y4.02.50.5-0.52.0-3.0-得到的回归方程为ˆybx a =+,则 A .0a >,0b <B .0a >,0b >C .0a <,0b <D .0a <,0b >7.在如图所示的空间直角坐标系O-xyz 中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0),(1,2,1),(2,2,2). 给出编号为①、②、③、④的四个图,则该四面体的正视图和俯视图分别为A .①和②B .③和①C .④和③D .④和②8.设,a b 是关于t 的方程2cos sin 0tt θθ+=的两个不等实根,则过2(,)A a a ,2(,)B b b 两点的直线与双曲线22221cos sin x y θθ-=的公共点的个数为A .0B .1C .2D .3图③ 图①图④图② 第7题图9.已知()f x 是定义在R 上的奇函数,当0x ≥时,2()=3f x x x -. 则函数()()+3g x f x x =- 的零点的集合为A. {1,3}B. {3,1,1,3}--C. {27,1,3}-D. {27,1,3}--10.《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“囷盖”的术:置如其周,令相乘也. 又以高乘之,三十六成一. 该术相当于给出了由圆锥的底面周长L 与高h ,计算其体积V 的近似公式2136V L h ≈. 它实际上是将圆锥体积公式中的圆周率π近似取为3. 那么,近似公式2275V L h ≈相当于将圆锥体积公式中的π近似取为 A .227B .258C .15750D .355113二、填空题:本大题共7小题,每小题5分,共35分.请将答案填在答题卡对应题号.......的位 置上. 答错位置,书写不清,模棱两可均不得分.11.甲、乙两套设备生产的同类型产品共4800件,采用分层抽样的方法从中抽取一个容量为80的样本进行质量检测. 若样本中有50件产品由甲设备生产,则乙设备生产的产品总数为 件. 12.若向量(1,3)OA =- ,||||OA OB =,0OA OB ⋅= ,则||AB =.13.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c . 已知π6A =,a =1,3b =,则B = . 14.阅读如图所示的程序框图,运行相应的程序,若输入n 的值为9,则输出S 的值为 .输入n1k =,0S =开始否 是?k n ≤输出S结束2k S S k =++1k k =+15.如图所示,函数()y f x =的图象由两条射线和三条线段组成.O()y f x =yxa-2a-3a -a2a3aaa-若x ∀∈R ,()>(1)f x f x -,则正实数a 的取值范围为 .16.某项研究表明:在考虑行车安全的情况下,某路段车流量F (单位时间内经过测量点的 车辆数,单位:辆/小时)与车流速度v (假设车辆以相同速度v 行驶,单位:米/秒)、 平均车长l (单位:米)的值有关,其公式为2760001820vF v v l=++.(Ⅰ)如果不限定车型, 6.05l =,则最大车流量为 辆/小时;(Ⅱ)如果限定车型,5l =, 则最大车流量比(Ⅰ)中的最大车流量增加 辆/小时.17.已知圆22:1O x y +=和点(2,0)A -,若定点(,0)B b (2)b ≠-和常数λ满足:对圆O 上任意一点M ,都有||||MB MA λ=,则 (Ⅰ)b = ; (Ⅱ)λ= .三、解答题:本大题共5小题,共65分.解答应写出文字说明、证明过程或演算步骤. 18.(本小题满分12分)某实验室一天的温度(单位:℃)随时间t (单位:h )的变化近似满足函数关系:ππ()103cossin 1212f t t t =--,[0,24)t ∈. (Ⅰ)求实验室这一天上午8时的温度; (Ⅱ)求实验室这一天的最大温差.19.(本小题满分12分)已知等差数列{}n a 满足:12a =,且1a ,2a ,5a 成等比数列. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)记n S 为数列{}n a 的前n 项和,是否存在正整数n ,使得n S 60800n >+?若存在,求n 的最小值;若不存在,说明理由.20.(本小题满分13分)如图,在正方体1111ABCD A B C D -中,E ,F ,P ,Q ,M ,N 分别是棱AB ,AD ,1DD , 1BB ,11A B ,11A D 的中点. 求证:(Ⅰ)直线1BC ∥平面EFPQ ; (Ⅱ)直线1AC ⊥平面PQMN .21.(本小题满分14分)π为圆周率,e 2.71828= 为自然对数的底数.(Ⅰ)求函数ln ()xf x x=的单调区间; (Ⅱ)求3e ,e 3,πe ,e π,π3,3π这6个数中的最大数与最小数.22.(本小题满分14分)在平面直角坐标系xOy 中,点M 到点(1,0)F 的距离比它到y 轴的距离多1.记点M 的 轨迹为C .(Ⅰ)求轨迹C 的方程;(Ⅱ)设斜率为k 的直线l 过定点(2,1)P -. 求直线l 与轨迹C 恰好有一个公共点、两个公共点、三个公共点时k 的相应取值范围.第20题图绝密★启用前2014年普通高等学校招生全国统一考试(湖北卷)数学(文史类)试题参考答案一、选择题:1.C 2.B 3.D 4.C 5.C 6.A 7.D 8.A 9.D 10.B 二、填空题:11.1800 12.25 13.π3或2π314.1067 15.1(0)6, 16.(Ⅰ)1900;(Ⅱ)100 17.(Ⅰ)12-;(Ⅱ)12三、解答题:18.(Ⅰ)ππ(8)103cos 8sin 81212f =-⨯-⨯()()2π2π103cos sin33=--13103()1022=-⨯--=. 故实验室上午8时的温度为10 ℃.(Ⅱ)因为3π1πππ()102(cos sin )=102sin()212212123f t t t t =-+-+, 又024t ≤<,所以πππ7π31233t ≤+<,ππ1sin()1123t -≤+≤.当2t =时,ππsin()1123t +=;当14t =时,ππsin()1123t +=-. 于是()f t 在[0,24)上取得最大值12,取得最小值8.故实验室这一天最高温度为12 ℃,最低温度为8 ℃,最大温差为4 ℃.19.(Ⅰ)设数列{}n a 的公差为d ,依题意,2,2d +,24d +成等比数列,故有2(2)2(24)d d +=+,化简得240d d -=,解得0d =或d =4. 当0d =时,2n a =;当d =4时,2(1)442n a n n =+-⋅=-,从而得数列{}n a 的通项公式为2n a =或42n a n =-.(Ⅱ)当2n a =时,2n S n =. 显然260800n n <+,此时不存在正整数n ,使得60800n S n >+成立. 当42n a n =-时,2[2(42)]22n n n S n +-==.令2260800n n >+,即2304000n n -->, 解得40n >或10n <-(舍去),此时存在正整数n ,使得60800n S n >+成立,n 的最小值为41. 综上,当2n a =时,不存在满足题意的n ;当42n a n =-时,存在满足题意的n ,其最小值为41.20.证明:(Ⅰ)连接AD 1,由1111ABCD A B C D -是正方体,知AD 1∥BC 1,因为F ,P 分别是AD ,1DD 的中点,所以FP ∥AD 1. 从而BC 1∥FP .而FP ⊂平面EFPQ ,且1BC ⊄平面EFPQ ,故直线1BC ∥平面EFPQ .(Ⅱ)如图,连接AC ,BD ,则AC BD ⊥.由1CC ⊥平面ABCD ,BD ⊂平面ABCD ,可得1CC BD ⊥. 又1AC CC C = ,所以BD ⊥平面1ACC .而1AC ⊂平面1ACC ,所以1BD AC ⊥. 因为M ,N 分别是11A B ,11A D 的中点,所以MN ∥BD ,从而1MN AC ⊥. 同理可证1PN AC ⊥. 又PN MN N = ,所以直线1AC ⊥平面PQMN .21.(Ⅰ)函数()f x 的定义域为()∞0,+.因为ln ()x f x x =,所以21ln ()x f x x -'=. 当()0f x '>,即0e x <<时,函数()f x 单调递增; 当()0f x '<,即e x >时,函数()f x 单调递减.第20题解答图QBEMN ACD 1C () F 1D1A1BP故函数()f x 的单调递增区间为(0,e),单调递减区间为(e,)+∞. (Ⅱ)因为e 3π<<,所以eln 3eln π<,πln e πln 3<,即e e ln 3ln π<,ππln e ln 3<.于是根据函数ln y x =,e x y =,πx y =在定义域上单调递增,可得 e e 33ππ<<,3ππe e 3<<.故这6个数的最大数在3π与π3之中,最小数在e 3与3e 之中. 由e 3π<<及(Ⅰ)的结论,得(π)(3)(e)f f f <<,即ln πln3lneπ3e<<. 由ln πln3π3<,得3πln πln 3<,所以π33π>; 由ln 3ln e3e<,得e 3ln 3ln e <,所以e 33e <. 综上,6个数中的最大数是π3,最小数是e 3.22.(Ⅰ)设点(,)M x y ,依题意得||||1MF x =+,即22(1)||1x y x -+=+,化简整理得22(||)y x x =+.故点M 的轨迹C 的方程为24,0,0,0.x x y x ≥⎧=⎨<⎩(Ⅱ)在点M 的轨迹C 中,记1:C 24y x =,2:C 0(0)y x =<.依题意,可设直线l 的方程为1(2).y k x -=+由方程组21(2),4,y k x y x -=+⎧⎨=⎩ 可得244(21)0.ky y k -++= ①(1)当0k =时,此时 1.y = 把1y =代入轨迹C 的方程,得14x =. 故此时直线:1l y =与轨迹C 恰好有一个公共点1(,1)4.(2)当0k ≠时,方程①的判别式为216(21)k k ∆=-+-. ②设直线l 与x 轴的交点为0(,0)x ,则 由1(2)y k x -=+,令0y =,得021k x k+=-. ③ (ⅰ)若00,0,x ∆<⎧⎨<⎩ 由②③解得1k <-,或12k >.即当1(,1)(,)2k ∈-∞-+∞ 时,直线l 与1C 没有公共点,与2C 有一个公共点,故此时直线l 与轨迹C 恰好有一个公共点.(ⅱ)若00,0,x ∆=⎧⎨<⎩ 或00,0,x ∆>⎧⎨≥⎩ 由②③解得1{1,}2k ∈-,或102k -≤<.即当1{1,}2k ∈-时,直线l 与1C 只有一个公共点,与2C 有一个公共点.当1[,0)2k ∈-时,直线l 与1C 有两个公共点,与2C 没有公共点.故当11[,0){1,}22k ∈-- 时,直线l 与轨迹C 恰好有两个公共点.(ⅲ)若00,0,x ∆>⎧⎨<⎩ 由②③解得112k -<<-,或102k <<.即当11(1,)(0,)22k ∈-- 时,直线l 与1C 有两个公共点,与2C 有一个公共点,故此时直线l 与轨迹C 恰好有三个公共点.综合(1)(2)可知,当1(,1)(,){0}2k ∈-∞-+∞ 时,直线l 与轨迹C 恰好有一个公共点;当11[,0){1,}22k ∈-- 时,直线l 与轨迹C 恰好有两个公共点;当11(1,)(0,)22k ∈-- 时,直线l 与轨迹C 恰好有三个公共点.。
2014年湖北省八市高三三月联考文科数学试题
2014年湖北省八市高三年级三月联考文科数学参考答案及评分标准一、选择题(每小题5分,共50分)BDBDC DACAD二、填空题(每小题5分,共35分)11.32 12.45 13. 3 14. 2 15. 2± 16. 64361π17. 1936 , (10,44)第1问2分,第2问3分=x x x x sin sin cos cos sin sin -++ϕϕ=)sin(ϕ+x ………………………………3分因为)(x f 在πx =处取得最小值,所以1)sin(-=+ϕx ,故1s i n =ϕ,又0πϕ<<19.(Ⅱ)1(1)(2)12n n a a n n n n +==-++++, 11112334n T ∴=-+-+…1112n n +-++分 1n n T a λ+≤对n N *∀∈恒成立,即22(2)n n λ+≤(+)对n N *∀∈恒成立 又 211142(2)2(44)162(4)n n n ==++++≤ ∴λ分20.(Ⅰ) 证明: 由题设,⊥PH 平面ACD,∴平面PAD ⊥平面ACD ,…………………3分交线为AD ,又CD ⊥AD ,∴CD ⊥平面PAD ,PA ⊂平面PAD ,∴CD ⊥PA …………6分 (II )连接CH ,则∠PCH 为直线PC 与平面ACD 所成的角。
作HG ⊥AC ,垂足为G ,连接PG ,则AC ⊥平面PHG ∴AC ⊥PG ,…………9分又在矩形ABCD 中,AB=a ,BC=3a,060CAB =∠在rt ∆PGA 中,PA=a,=∠PAG 060CAB =∠∴AG=a 21 在rt ∆HAG 中,AH=030cos AG =a 33,又AC=2a, …………………………11分 在rt ∆CAH 中,根据余弦定理可得,CH=a 321,在rt ∆ PHA 中可得PH=a 36,∴tan 714==∠CH PH PCH ………………………………13分 21. (Ⅰ)依题意:12PF x -=………………………………………………………………2分12x =+ 22211()()22x y x ∴-+=+……………………4分 22y x ∴=……………………………………………………………………………………6分 注:或直接用定义求解.(Ⅱ)法Ⅰ:设1122(,),(,)A x y B x y ,直线AB 的方程为12x ty =+ 由2122x ty y x ⎧=+⎪⎨⎪=⎩得2210y ty --= …………………………………………………8分 121y y ∴=-直线AO 的方程为11y y x x = ∴点D 的坐标为111(,)22y x --……………………11分 112211112y y y x y y ∴-=-=-= ∴直线DB 平行于x 轴. ……………………………………………………………………14分法Ⅱ:设A 的坐标为200(,)2y y ,则OA 的方程为002(0)y x y y =≠ ∴点D 的纵坐标为01y y =-, ……………………………………………………………8分 1(,0)2F ∴直线AF 的方程为200201()(1)1222y y x y y =-≠- ∴点B 的纵坐标为01y y =-.……………………………………………………………12分BD x ∴∥轴;当201y =时,结论也成立,∴直线DB 平行于x 轴. …………………………………………………………………14分22. (Ⅰ) 92)(2)(-+=-+x x ee x g x g ,① ,92)(2)(-+=+---x x e e x g x g 即,912)(2)(-+=+-x x ee x g x g ② 由①②联立解得: 3)(-=x e x g . ………………………………………………………………2分 )(x h 是二次函数, 且1)0()2(==-h h ,可设()12)(++=x ax x h , 由2)3(-=-h ,解得1-=a .()1212)(2+--=++-=∴x x x x x h ,3)(-=∴x e x g 12)(2+--=x x x h .……………………………………………………………5分(Ⅱ)设()625)()(2+-+-=++=x a x ax x h x ϕ,()()33133)(-+-=---=x e x e x e x F x x x ,依题意知:当11x -≤≤时, min max ()()x F x φ≥ ()()()1333x x x F x e x e xe '=-+--+=-+,在[]1,1-上单调递减,min ()(1)30F x F e ''∴==-> ………………………………………………………………7分 )(x F ∴在[]1,1-上单调递增, ()01)(max ==∴F x F()()170,130a a φφ⎧-=-⎪∴⎨=+⎪⎩≥≥解得:37a -≤≤∴实数a 的取值范围为[]7,3-.……………………………10分(Ⅲ) )(x f 的图象如图所示:令)(x f T =,则.2)(=T f5ln ,121=-=∴T T 1)(-=x f 有两个解, 5ln )(=x f 有3个解.[]2)(=∴x f f 有5个解.………………………………………………………………………………14分命题人:荆门市教研室方延伟荆门市钟祥一中范德宪潘丽梅仙桃市教研室曹时武仙桃中学熊纵鄂州市教研室林春保鄂州市四中廖洪武潜江市教研室刘怀亮。
湖北省八市2014年高三年级三月联考数学文试卷-含答案
湖北省八市2014届高三下学期3月联考数学(理)试题本试卷满分150分,考试时间120分钟注意事项:1.考生在答题前,请务必将自己的姓名、准考证号等信息填在答题卡上.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号,答在试卷上无效.3.填空题和解答题用0.5毫米黑色墨水签字笔答在答题卡上每题对应的答题区域内.答在试题卷上无效.一、选择题(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.复数321i i -(i 为虚数单位)的虚部是A .15iB .15C .15i -D .15-2.设全集U=R ,A={x|2x (x-2)<1},B={x|y=1n (l -x )},则右图中阴影部分表示的集合为 A .{x |x≥1} B .{x |x≤1} C .{x|0<x≤1} D .{x |1≤x<2}3.等比数列{a n }的各项均为正数,且564718a a a a +=,则log 3 a 1+log 3a 2+…+log 3 a l0= A .12 B .10C .8D .2+log 3 54.若x=6π是f (x )sin x ω+cos x ω的图象的一条对称轴,则ω可以是 A .4 B .8 C .2 D .15.己知某几何体的三视图如图所示,则该几何体的体积是A π+B 2πC .2πD .π6.我国第一艘航母“辽宁舰”在某次舰载机起降飞行训练中,有’5架舰载机准备着舰.如果甲乙2机必须相邻着舰,而丙丁不能相邻着舰,那么不同的着舰方法有( )种 A .12 B .18 C .24 D .487.已知M=3(,)|3,{(,)|20}2y x y N x y ax y a x -⎧⎫==++=⎨⎬-⎩⎭且M N =∅I ,则a= A .-6或-2 B .-6 C .2或-6 D .-28.某工厂产生的废气经过过滤后排放,排放时污染物的含量不得超过1%.己知在过滤过程中废气中的污染物数量尸(单位:毫克/升)与过滤时间t (单位:小时)之间的函数关系为:P= P 0e -kt ,(k ,P 0均为正的常数).若在前5个小时的过滤过程中污染物被排除了90%.那么,至少还需( )时间过滤才可以排放. A .12小时 B .59小时 c .5小时 D .10小时9.己知抛物线22(0)y px p =>的焦点F 恰好是双曲线22221(0,0)x y a b a b-=>>的右焦点,且两条曲线的交点的连线过点F ,则该双曲线的离心率为A +1B .2CD -110.实数a i (i =1,2,3,4,5,6)满足(a 2-a 1)2+(a 3-a 2)2+(a 4-a 3)2+(a 5-a 4)2+(a 6-a 5)2=1则(a 5+a 6)-(a 1+a 4)的最大值为A .3B . CD .1二、填空题(本大题共6小题,考生共需作答5小题.每小题5分,共25分,请将答案填在答题卡对应题号的位置上.答错位置,书写不清,模棱两可均不得分.)(一)必考题.(11-14题) 11.己知0(sin cos )xa t t dt =+⎰,则(1x ax-)6的展开式中的常数项为 。
湖北省八市2014届高三下学期3月联考数学(文)试题
湖北省八市2014届高三下学期3月联考数学(文)试题本试卷满分150分,考试时间120分钟★祝考试顺利★注意事项:1.考生在答题前,请务必将自己的姓名、准考证号等信息填在答题卡上.2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号,答在试卷上无效.3.填空题和解答题用0.5毫米黑色墨水签字笔答在答题卡上每题对应的答题区域内,.答在试题卷上无效,一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.复数321ii-(i为虚数单位)的虚部是A.15i B.15C.15i-D.15-2.设全集U=R,A={x|2x(x-2)<1},B={x|y=1n(l-x)},则右图中阴影部分表示的集合为A.{x |x≥1}B.{x |x≤1}C.{x|0<x≤1}D.{x |1≤x<2}3.等比数列{a n}的各项均为正数,且564718a a a a+=,则log3 a1+log3a2+…+log3 a l0= A.12 B.10 C.8 D.2+log3 54.在某项测量中得到的A样本数据如下:82、84、84、86、86、86、88、88、88、88,若B样本数据恰好是A样本数据每个都加2后所得的数据,则A、B两样本的下列数字特征对应相同的是.A.众数B.平均数C.中位数D.标准差5.己知某几何体的三视图如图所示,则该几何体的体积是AπB2πC.2πD.π6.已知3,|3,{,|20}2yM x y N x y ax y a M Nxφ-⎧⎫===++==⎨⎬-⎩⎭,且a=A .-2B .-6C .2D .一2或-67.设变量x .y 满足约束条件20510080x y x y x y -+≥⎧⎪-+≤⎨⎪+-≤⎩则目标函数34z x y =-的最大值和最小值分别为A .3,一11B .-3,一11C .11,—3D .11,38.某工厂产生的废气经过过滤后排放,排放时污染物的含量不得超过1%.己知在过滤过程中废气中的污染物数量(单位:毫克/升)与过滤时间t (单位:小时)之间的函数关系为:P= P 0e -kt ,(k ,P 0均为正的常数).若在前5个小时的过滤过程中污染物被排除了90%.那么,至少还需( )时间过滤才可以排放. A .12小时 B .59小时 c .5小时 D .10小时9.己知抛物线22(0)y px p =>的焦点F 恰好是双曲线22221(0,0)x y a b a b-=>>的右焦点,且两条曲线的交点的连线过点F ,则该双曲线的离心率为 A+1 B .2CD-110.如图,已知正方体ABCD 一A 1B 1 C 1 D 1中,P 为面ABCD 上一动点,且11tan 2tan PA A PD D ∠=∠,则点P 的轨迹是A .椭圆的一段B .双曲线的一段C .抛物线的一段D .圆的一段二、填空题(本大题共7小题,每小题5分,共35分,请将答案填在答题卡对应题号的位置上,答错位置,书写不清,模棱两可均不得分。
(完整版)2014年高考湖北文科数学试题及答案(word解析版),推荐文档
2014年普通高等学校招生全国统一考试(湖北卷)数学(文科)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项符合题目要求. (1)【2014年湖北,文1,5分】已知全集{1,2,3,4,5,6,7}U =,集合{1,3,5,6}A =,则U A =ð( ) (A ){1,3,5,6} (B ){2,3,7} (C ){2,4,7} (D ){2,5,7} 【答案】C【解析】∵全集{}1,2,3,4,5,6,7U =,集合{}1,3,5,6A =,∴{}2,4,7U A =ð,故选C .【点评】此题考查了补集及其运算,熟练掌握补集的定义是解本题的关键.(2)【2014年湖北,文2,5分】i 为虚数单位,21i ()1i-=+( )(A )1 (B )1- (C )i (D )i - 【答案】B【解析】因为21i 2i 11i 2i --⎛⎫==- ⎪+⎝⎭,故选B . 【点评】本题主要考查两个复数代数形式的乘除法,虚数单位i 的幂运算性质,属于基础题. (3)【2014年湖北,文3,5分】命题“x ∀∈R ,2x x ≠”的否定是( )(A )x ∀∉R ,2x x ≠ (B )x ∀∈R ,2x x = (C )x ∃∉R ,2x x ≠ (D )x ∃∈R ,2x x =【答案】D【解析】根据全称命题的否定是特称命题,∴命题的否定是:0x ∃∈R ,200x x =,故选D .【点评】本题考查了全称命题的否定,要注意命题的否定与命题的否命题是两个完全不同的命题,全称命题的否定是特称命题.(4)【2014年湖北,文4,5分】若变量x ,y 满足约束条件420,0x y x y x y +≤⎧⎪-≤⎨⎪≥≥⎩,则2x y +的最大值是( )(A )2 (B )4 (C )7 (D )8 【答案】C【解析】满足约束条件4,2,0,0,x y x y x y +≤⎧⎪-≤⎨⎪≥≥⎩的可行域如下图中阴影部分所示:∵目标函数2Z x y =+,∴0O Z =,4A Z =,7B Z =,4C Z =,故2x y +的最大值是7,故选C .【点评】用图解法解决线性规划问题时,分析题目的已知条件,找出约束条件和目标函数是关键,可先将题目中的量分类、列出表格,理清头绪,然后列出不等式组(方程组)寻求约束条件,并就题目所述找出目标函数.然后将可行域各角点的值一一代入,最后比较,即可得到目标函数的最优解.(5)【2014年湖北,文5,5分】随机掷两枚质地均匀的骰子,它们向上的点数之和不超过5的概率记为1p ,点数之和大于5的概率记为2 p ,点数之和为偶数的概率记为3p ,则( ) (A )123p p p << (B )213p p p << (C )132p p p << (D )312p p p <<【答案】C【解析】列表得:(1,6) (2,6) (3,6) (4,6) (5,6)(6,6) (1,5) (2,5) (3,5) (4,5) (5,5) (6,5) (1,4) (2,4) (3,4) (4,4) (5,4) (6,4) (1,3) (2,3) (3,3) (4,3) (5,3) (6,3) (1,2) (2,2) (3,2) (4,2) (5,2) (6,2) (1,1) (2,1) (3,1) (4,1)(5,1) (6,1)∴一共有36种等可能的结果,∴两个骰子点数之和不超过5的有10种情况,点数之和大于5的有26种情况,点数之和为偶数的有18种情况,∴向上的点数之和不超过5的概率记为11053618p ==,点数之和大于5的概率记为226133618p ==,点数之和为偶数的概率记为3181362p ==,∴132p p p <<,故选C .【点评】本题考查了树状图法与列表法求概率.注意树状图法与列表法可以不重不漏的表示出所有等可能的结果.用到的知识点为:概率=所求情况数与总情况数之比.(6)【2014年湖北,文6,x 3 4 5 6 7 8 y 4.0 2.5 -0.5 0.5 -2.0 -3.0 得到的回归方程为ˆy=(A )0a >,0b < (B )0a >,0b > (C )0a <,0b < (D )0a <,0b > 【答案】A【解析】样本平均数 5.5x =,0.25y =,∴()()6124.5i i i x x y y =--=-∑,()26117.5i i x x=-=∑,∴24.51.417.5b =-=-,∴()0.25 1.4 5.57.95a =--⋅=,故选A .【点评】本题考查线性回归方程的求法,考查最小二乘法,属于基础题. (7)【2014年湖北,文7,5分】在如图所示的空间直角坐标系O xyz -中,一个四面体的顶点坐标分别是()0,0,2,()2,2,0,()1,2,1,()2,2,2,给出编号①、②、③、④的四个图,则该四面体的正视图和俯视图分别为( )(A )①和②(B )③和①(C )④和③(D )④和② 【答案】D【解析】在坐标系中标出已知的四个点,根据三视图的画图规则判断三棱锥的正视图为④与俯视图为②,故选D .【点评】本题考查三视图的画法,做到心中有图形,考查空间想象能力,是基础题. (8)【2014年湖北,文8,5分】设是关于t 的方程2cos sin 0t t θθ+=的两个不等实根,则过,两点的直线与双曲线的公共点的个数为( )(A )0 (B )1 (C )2 (D )3 【答案】A【解析】∵a ,b 是关于t 的方程2cos sin 0t t θθ+=的两个不等实根,∴sin cos a b θθ+=-,0ab =,过()2,A a a ,()2,B b b 两点的直线为()222b a y a x a b a --=--,即()y b a x ab =+-,即sin cos y x θθ=-, ∵双曲线22221cos sin x y θθ-=的一条渐近线方程为sin cos y x θθ=-,∴过()2,A a a ,()2,B b b 两点的直线与双 曲线22221cos sin x y θθ-=的公共点的个数为0,故选A .【点评】本题考查双曲线的方程与性质,考查直线与双曲线的位置关系,考查学生的计算能力,属于中档题. (9)【2014年湖北,文9,5分】已知()f x 是定义在R 上的奇函数,当0x ≥时,2()=3f x x x -.则函数()()+3g x f x x =-的零点的集合为( ) (A ){1,3} (B ){3,1,1,3}-- (C ){27,1,3}- (D ){27,1,3}-- 【答案】D【解析】∵()f x 是定义在R 上的奇函数,当0x ≥时,2()=3f x x x -,令0x <,则0x ->,∴()()23f x x x f x -=+=-,∴2()=3f x x x --,∴()223030x x x f x x x x ⎧-≥⎪=⎨--<⎪⎩,∵()()3g x f x x =-+,,a b 2(,)A a a 2(,)B b b 22221cos sin x y θθ-=∴()22430430x x x g x x x x ⎧-+≥⎪=⎨--+<⎪⎩,令()0g x =,当0x ≥时,2430x x -+=,解得1x =,或3x =,当0x <时,2430x x --+=,解得2x =-∴函数()()3g x f x x =-+的零点的集合为{21,3}-,故选D . 【点评】本题考查函数的奇偶性及其应用,考查函数的零点,函数方程思想.(10)【2014年湖北,文10,5分】《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“盖”的术:置如其周,令相承也.又以高乘之,三十六成一.该术相当于给出了有圆锥的底面周长L 与高h ,计算其体积V 的近似公式21.36v L h ≈它实际上是将圆锥体积公式中的圆周率π近似取为3.那么近似公式2275v L h ≈相当于将圆锥体积公式中的π近似取为( )(A )227 (B )258 (C )15750 (D )355113【答案】B【解析】设圆锥底面圆的半径为r ,高为h ,依题意,()22L r π=,()22122375r h r h ππ=,所以218375ππ=,即π的近似值为258,故选B .【点评】本题考查圆锥体积公式,考查学生的阅读理解能力,属于基础题.二、填空题:共7小题,每小题5分,共35分.请将答案填在答题卡对应题号.......的位置上....答错位置,书写不清,模棱两可均不得分.(11)【2014年湖北,文11,5分】甲、乙两套设备生产的同类型产品共4800件,采用分层抽样的方法从中抽取一个容量为80的样本进行质量检测. 若样本中有50件产品由甲设备生产,则乙设备生产的产品总数为 件. 【答案】1800【解析】∵样本容量为80,∴抽取的比例为801480060=,又样本中有50件产品由甲设备生产,∴样本中30件产品由乙设备生产,∴乙设备生产的产品总数为30×60=1800.【点评】本题考查了分层抽样方法,熟练掌握分层抽样方法的特征是解题的关键.(12)【2014年湖北,文12,5分】若向量(1,3)OA =-u u u r ,||||OA OB =u u u r u u u r ,0OA OB ⋅=u u u r u u u r,则||AB =u u u r .【答案】【解析】设(),OB x y =u u u r ,∵向量()1,3OA =-u u u r ,||||OA OB =u u u r u u u r ,0OA OB ⋅=u u u r u u u r,∴30x y -=⎪⎩,解得31x y =⎧⎨=⎩ 或31x y =-⎧⎨=-⎩.∴()3,1OB =u u u r ,()3,1--.∴()2,4AB OB OA =-=u u u r u u u r u u u r 或()4,2-.∴||AB =u u u r 【点评】本题考查了向量模的计算公式、向量垂直与数量积的关系,属于基础题.(13)【2014年湖北,文13,5分】在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c . 已知π6A =,a =1,b =则B = . 【答案】3π或23π【解析】∵在ABC ∆中,6A π=,1a=,b =sin sin a b A B=得:1sin 2sin 1b A B a ===, ∵a b <,∴A B <,∴3B π=或23π.【点评】此题考查了正弦定理,以及特殊角的三角函数值,熟练掌握正弦定理是解本题的关键. (14)【2014年湖北,文14,5分】阅读如图所示的程序框图,运行相应的程序,若输入n 的值为9,则输出S 的值为_________. 【答案】1067【解析】由程序框图知:算法的功能是求1222212k S k =+++++++L L 的值,∵输入n 的值为9,∴跳出循环的k 值为10,∴输出()91291021219222129922451067122S -+=+++++++=+⨯=-+=-L L . 【点评】本题考查了当型循环结构的程序框图,根据框图的流程判断是否的功能是解题的关键. (15)【2014年湖北,文15,5分】如图所示,函数()y f x =的图象由两条射线和三条线段组成.若x ∀∈R ,()>(1)f x f x -,则正实数a 的取值范围为 . 【答案】10,6⎛⎫⎪⎝⎭【解析】由已知可得:0a >,且()4f a a =,()4f a a -=-,若x ∀∈R ,()>(1)f x f x -,则()()421241a a a a ⎧-->⎪⎨=->⎪⎩,解得16a >,故正实数a 的取值范围为:10,6⎛⎫ ⎪⎝⎭. 【点评】本题考查的知识点是函数的图象,其中根据已知分析出()()421241a a a a ⎧-->⎪⎨=->⎪⎩是解答的关键.(16)【2014年湖北,文16,5分】某项研究表明:在考虑行车安全的情况下,某路段车流量F (单位时间内经过测量点的车辆数,单位:辆/小时)与车流速度v (假设车辆以相同速度v 行驶,单位:米/秒)、 平均车长l (单位:米)的值有关,其公式为2760001820vF v v l=++.(1)如果不限定车型, 6.05l =,则最大车流量为 辆/小时;(2)如果限定车型,5l =, 则最大车流量比(1)中的最大车流量增加 辆/小时. 【答案】(1)1900;(2)100【解析】(1)2760007600020182018v F l v v lv v==++++,∵121212122v v +≥=,当11v =时取最小值,∴7600019002018F l v v=≤++, 故最大车流量为:1900辆/小时. (2)22760007600076000100182********v v F v v l v v v v===++++++,∵100210020v v +≥=,∴2000F ≤, 2000﹣1900=100(辆/小时),故最大车流量比(1)中的最大车流量增加100辆/小时.【点评】本题主要考查了基本不等式的性质.基本不等式应用时,注意“一正,二定,三相等”必须满足. (17)【2014年湖北,文17,5分】已知圆22:1O x y +=和点,若定点(,0)B b (2)b ≠-和常数λ满足:对圆O 上任意一点,都有||||MB MA λ=,则(1) ;(2) .【答案】(1)12-;(2)12【解析】(1)设(),M x y ,则∵||||MB MA λ=,∴()()2222222x b y x y λλ-+=++,由题意,取()1,0、()1,0-分别代入可得()()222112b λ-=+,()()222112b λ--=-+,∴12b =-,12λ=. (2)由(1)知12λ=. 【点评】本题考查圆的方程,考查赋值法的运用,考查学生的计算能力,属于基础题. 三、解答题:共5题,共65分.解答应写出文字说明,演算步骤或证明过程. (18)【2014年湖北,文18,12分】某实验室一天的温度(单位:℃)随时间t (单位:h )的变化近似满足函数关系:ππ()103cos sin 1212f t t t =--,[0,24)t ∈(1)求实验室这一天上午8时的温度; (2)求实验室这一天的最大温差.(2,0)A -M b =λ=解:(1)ππ(8)103cos 8sin 81212f =-⨯-⨯()()2π2π103cos sin 33=--13103()102=-⨯--=.故实验室上午8时的温度为10 ℃.(2)因为3π1πππ()102(cos sin )=102sin()12212123f t t t t =-+-+, 又024t ≤<,所以πππ7π31233t ≤+<,ππ1sin()1123t -≤+≤.当2t =时,ππsin()1123t +=;当14t =时,ππsin()1123t +=-.于是()f t 在[0,24)上取得最大值12,取得最小值8.故实验室这一天最高温度为12 ℃,最低温度为8 ℃,最大温差为4 ℃.【点评】本题主要考查函数()sin y A x ωϕ=+的图象特征,正弦函数的值域,属于中档题.(19)【2014年湖北,文19,12分】已知等差数列{}n a 满足:12a =,且123,,a a a 成等比数列.(1)求数列{}n a 的通项公式;(2)记n S 为数列{}n a 的前n 项和,是否存在正整数n ,使得n S 60800n >+?若存在,求n 的最小值;若不存在,说明理由.解:(1)设数列{}n a 的公差为d ,依题意,2,2,24d d ++成等比数列,故有2(2)2(24)d d +=+,化简得240d d -=, 解得0d =或4d =,当0d =时,2n a =;当4d =时,2(1)442n a n n =+-⋅=-,从而得数列{}n a 的通项 公式为2n a =或42n a n =-.(2)当2n a =时,2n S n =,显然260800n n <+,此时不存在正整数n ,使得60800S n >+成立,当42n a n =-时,2[2(42)]22n n n S n +-==,令2260800n n >+,即2304000n n -->,解得40n >或10n <-(舍去),此时存在正整数n ,使得60800n S n >+成立,n 的最小值为41 综上,当2n a =时,不存在满足题意的n ;当42n a n =-时,存在满足题意的n ,其最小值为41.【点评】本题主要考查了等差数列和等比数列的性质.要求学生对等差数列和等比数列的通项公式,求和公式熟练记忆.(20)【2014年湖北,文20,13分】如图,在正方体1111ABCD A B C D -中,E ,F ,P ,Q ,M ,N 分别是棱AB ,AD ,1DD ,1BB ,11A B ,11A D 的中点.求证: (1)直线1BC ∥平面EFPQ ; (2)直线1AC ⊥平面PQMN .解:(1)连接AD 1,由1111ABCD A B C D -是正方体,知AD 1∥BC 1,因为F ,P 分别是AD ,1DD的中点,所以FP ∥AD 1.从而BC 1∥FP .而FP ⊂平面EFPQ ,且1BC ⊄平面EFPQ , 故直线1BC ∥平面EFPQ .(2)如图,连接AC ,BD ,则AC BD ⊥.由1CC ⊥平面ABCD ,BD ⊂平面ABCD ,可得1CC BD ⊥.又1AC CC C =I ,所以BD ⊥平面1ACC .而1AC ⊂平面1ACC ,所以1BD AC ⊥.因为M ,N 分别是11A B ,11A D 的中点,所以MN ∥BD ,从而1MN AC ⊥.同理可证1PN AC ⊥. 又PN MN N =I ,所以直线1AC ⊥平面PQMN . 【点评】本题考查了证明空间中的线面平行与线面垂直的问题,解题时应明确空间中的线面平行、线面垂直的判定方法是什么,也考查了逻辑思维能力与空间想象能力,是基础题.(21)【2014年湖北,文21,14分】π为圆周率,e 2.71828=L 为自然对数的底数.(1)求函数ln ()xf x x=的单调区间;(2)求3e ,e 3,πe ,e π,π3,3π这6个数中的最大数与最小数.解:(1)函数()f x 的定义域为(0,)+∞,因为ln ()x f x x =,所以21ln ()xf x x -'=,当()0f x '>,即0x e <<时,函数()f x 单调递增;当()0f x '<,即x e >时,函数()f x 单调递减.故函数()f x 的单调递增区间为(0,)e , 单调递减区间为(,)e +∞. (2)因为3e π<<,所以ln33ln ,ln ln3e e πππ<<,即ln3ln ,ln ln3e e e πππ<<,于是根据函数ln ,x y x y e ==,x y π=在定义域上单调递增,可得333,3e e e e ππππ<<<<,故这6个数的最大数在3π与3π之中,最小数在3e 与3e 之中.由3e π<<及(1)的结论,得()(3)()f f f e π<<,即ln ln3ln 3eeππ<<. 由ln ln33ππ<,得3ln ln3ππ<,所以33ππ>;由ln3ln 3ee<,得3ln3ln e e <,所以33e e >. 综上,6个数中最大数是3π,最小数是3e.【点评】1、求单调区间时,先写出函数的定义域,为后面取区间时作参考.2、利用指数函数、对数函数的单调性比较数的大小时,应注意以下几个要点: (1)寻找同底的指数式或对数式;(2)分清是递增还是递减;(3)把自变量的值放到同一个单调区间上.(22)【2014年湖北,文22,14分】在平面直角坐标系xOy 中,点M 到点(1,0)F 的距离比它到y 轴的距离多1.记点M 的轨迹为C . (1)求轨迹C 的方程;(2)设斜率为k 的直线l 过定点(2,1)P -. 求直线l 与轨迹C 恰好有一个公共点、两个公共点、三个公共点时k 的相应取值范围.解:(1)设点(,)M x y ,依题意得||||1MF x =+||1x =+,化简整理得22(||)y x x =+, 故点M 的轨迹C 的方程为24,00,0x x y x ≥⎧=⎨<⎩.(2)在点M 的轨迹C 中,记212:4,:0(0)C y x C y x ==<,依题意,可设直线l 的方程为1(2)y k x -=+,由方程组21(2)4y k x y x-=+⎧⎨=⎩,可得244(21)0ky y k -++= ①1)当0k =时,此时1y =,把1y =代入轨迹C 的方程,得14x =,故此时直线:1l y =与轨迹C 恰好有一个公共点1(,1)42)当0k ≠时,方程①的判别式为216(21)k k ∆=-+- ②设直线l 与x 轴的交点为0(,0)x ,则由1(2)y k x -=+,令0y =,得021k x k+=-③ (ⅰ)若000x ∆<⎧⎨<⎩由②③解得1k <-,或12k >,即当1(,1)(,)2k ∈-∞-⋃+∞时,直线l 与1C 没有公共点,与2C 有一个公共点,故此时直线l 与轨迹C 恰好有一个公共点. (ⅱ)若000x ∆=⎧⎨<⎩或000x ∆>⎧⎨≥⎩,由②③解得1{1,}2k ∈-,或102k -≤<,即当1{1,}2k ∈-时,直线l 与1C只有一个公共点,与2C 有一个公共点,当1[,0)2k ∈-时,直线l 与1C 有两个公共点,与2C 没有公共点,故当11[,0){1,}22k ∈--U 时,直线l 与轨迹C 恰好有两个公共点.(ⅲ)若000x ∆>⎧⎨<⎩由②③解得112k -<<-,或102k <<,即当11(1,)(0,)22k ∈--⋃时,直线l 与1C 有两个公共点,与2C 有一个公共点,故此时直线l 与轨迹C 恰好有三个公共点. 综合1)2)可知,当1(,1)(,){0}2k ∈-∞-⋃+∞⋃时,直线l 与轨迹C 恰好有一个公共点;当11[,0){1,}22k ∈--U 时,直线l 与轨迹C 恰好有两个公共点;当11(1,)(0,)22k ∈--U 时,直线l 与轨迹C恰好有三个公共点.【点评】本题考查轨迹方程,考查了直线与圆锥曲线的关系,体现了分类讨论的数学思想方法,重点是做到正确分类,是中档题.。
2014年湖北省八市高三年级三月联考文综试卷和答案
文综试卷第1页 (共12页)2014年湖北省八市高三年级三月联考文科综合能力测试注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答题前,考生务必将自己的姓名、考生号填写在答题卡上。
2. 回答第Ⅰ卷时,选出每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在试卷上无效。
3. 回答第Ⅱ卷时,将答案写在答题卡上,写在试卷上无效。
4. 考试结束后,只交答题卡。
第Ⅰ卷本卷共35小题。
每小题4分,共140分。
在每个小题给出的四个选项中,只有一项是符合题目要求的。
几乎像永恒的约定,每当季节变换,生活在阿尔泰山、天山、帕米尔高原的农民便开始“搬家”;从山前平原搬到深山里,再从高山带回到河谷低地或沙地。
他们敏锐地踩着季节的节奏,与之周旋、适应,永远在路上。
当南方地区的农民以某处固定的“家”为阡陌世界的核心时,新疆的农民却将“转场”当做了生活的本身,并因此形成了新疆才有的行吟诗人般的生活。
阅读上述材料并完成1--3题。
1. 材料中所述的“搬家”或“转场”在地理学中被称为 A .迁移农业 B .混合农业 C .乳畜业 D .游牧业2. 材料中所述地区与季节对应关系较为科学的一组是 A .山前平原—夏季 B .高山-春季 C .河谷低地-冬季 D .沙漠-秋季3. 上述现象产生的原因属于 A. 垂直地带性分异 B .非地带性分异 C .从沿海向内陆的地域分异D .从赤道向两极的地域分异图2是我国某石灰岩分布广泛地区的等高线图,图2中A 河流被称为“白水河”,人们发现这条河流的底部呈乳白色;而B 河流被称为“黑水河”,人们发现这条河流的底部沉积了大量黑色的淤泥。
图1是图2中M 处天然形成的碳酸钙沉积作用形成的水池,并且还在不断地增多和长大,科学术语被称为“钙化池”,钙化池光滑平整,水平如镜,清澈见底。
据此回答4--6题。
4. 图中M 处钙化池形成的碳酸钙来源于 A .A 河流 B .B 河流 C .C 山脊 D .D 河流5. 从钙化池的形成中可以判断下列说法正确的是 ①池的外边缘流速较池内小; ②池的外边缘较池内流速大; ③池内沉积作用快于池的边缘;④池的边缘沉积作用快于池内 A .①③ B .②④ C .①④ D .②③6. 科学家们将钙化池的边缘切开研究发现,其边缘呈层状结构,层状结构呈白色与黄色相间分布,厚薄不一。
湖北省八市2014届高三下学期3月联考文综
湖北省八市2014年高三年级三月联考文科综合能力测试第Ⅰ卷24.采邑制是欧洲封建时代,尤其是中世纪早期的一种土地占有制度。
它的主要内容是将土地及其上面的农民一起作为采邑层层分封给有功劳的人,以服骑兵役为条件,供其终身享用,但是不能世袭,从而造成层层附庸的关系。
以下采邑制与西周分封制相比较,正确的说法是A.两者受封的对象极为相似 B.两者都体现了政权族权二者的结合C.两者涉及的经济性质不同 D.两者都有利于统一民族文化的形成25.苏格拉底提出“美德即知识”,认为德性的根据在于知识,有知识就有德性。
王阳明提出“致良知”,认为德性的根据在于“良知”,良知是是非善恶的标准。
以下评述准确的是A.都强调知识在美德形成中的主导性 B.都坚持德性在政治活动中的关键性C.都遵循逻辑在理论体系中的建构性 D.都重视道德在个人修养中的重要性26.钱基博先生说:“就耳目所睹记,语言文章之工,合于逻辑者,无有逾于八股文者也! ”“章炳麟与人论文,以为严复气体比于制举;而胡适论梁启超之文,亦称蜕自八股。
斯不愧知言之士已!”这两句话A.直接肯定了八股文的积极作用 B.间接批判了四书五经的消极作用C.直接肯定了梁启超的政治主张 D.间接批判了维新变法的不彻底性27.柏拉图在《理想国》中谈到雅典的现状时说:“所有这一切总起来使得这里的公民灵魂变得非常敏感,只要有谁建议要稍加约束,他们就会觉得受不了,就要大发雷霆……他们真的不要任何人管了。
”从该谈话中可看出他A.推崇民主制度 B.认为雅典民主发展到相当高的水平C.欣赏僭主政治 D.认为雅典政治受到人性的负面影响28.1861年海关外籍税务司制度的确立,侵犯了中国的主权,使近代中国的海关半殖民地化。
但据统计,海关税收在1861年为500余万两,到1910年达到3450余万两,50年增加6倍多。
究其主要原因是A.数据统计的科学化B.海关税率的逐年提高C.海关管理的近代化D.洋务运动的客观作用29.20世纪30年代蒋介石发动新生活运动,糅合了“亲爱精诚”、“礼义廉耻”、日本“武士道”精神和基督教价值观等内容,试图改造中国国民的习性,以实现现代国家发展的需要。
湖北省八市2014年高三年级三月联考
湖北省八市2014年高三年级三月联考高三2014-03-10 22:38湖北省八市2014年高三年级三月联考语文试题(2014年3月)一、语文基础知识(共15分,共5小题,每小题3分)1.下列各组词语中,加点字的注音全都正确的一组是A.猗郁(yī)浸渍(jìn)趿拉(jī) 叱咤风云(zhà)B.曹禺(yǔ)门槛(kăn)飞湍(tuān)畏葸不前(xǐ )C. 列观(guàn)顷刻(qǐng)蕴藉(jiâ)变徵之声(zǐ)D.气馁(něi)庇佑(bì)绯红(fēi)不落言筌(quán)2.下列各组词语中,没有错别字的一组是A.喋血修葺殒身不恤犄角之势B.肄业踯躅正襟危坐卷帙浩繁C.惫懒厮打度长絜大青青子矜D.提炼座落门衰祚薄无语凝噎3.依次填入下列横线处的词语,最恰当的一组是①昨日,央视《新闻联播》、《朝闻天下》和《新闻直播间》栏目三度聚焦助残犟妈易勤的故事,神州大地到处易勤8年助残扶残、坚守良心的感人事迹。
②春节期间,不少商家为促销贴出这样的广告:凡在本店购货满500元者,本店将热忱______一份精美的礼品。
③湖北省奖励“衣锦还乡”的新科澳网冠军李娜80万元,引发。
对此,省体育局负责人在接受媒体采访时回应称:对李娜的奖励符合现有政策和奖励标准。
④学术批评需要更多人的积极参与,形成的局面;同时需要强调学术的严肃性,需要民主、平等、理性和包容的学术品格。
A.传颂敬赠质疑百家争鸣 B.传颂惠赠置疑百花齐放C.传诵惠赠质疑百花齐放 D.传诵敬赠置疑百家争鸣4.下列各项中,没有语病的一项是A.国内近期发生的恶性暴力伤医事件,中科院院士、我国肝脏外科创始人吴孟超呼吁:全社会应共同关心医生的生存处境,通过立法保护医务人员的人身安全和合法权益。
B.城市发展论坛的与会专家普遍认为:我国城镇化研究主要集中在预测城镇化速度和趋势上,而对城镇化过程中公共政策的负面影响则明显被忽视。
湖北省八市2014届高三下学期3月联
湖北省八市2014年高三年级三月联考语 文 试 题(2014年3月)一、语文基础知识(共15分,共5小题,每小题3分)1.下列各组词语中,加点字的注音全都正确的一组是A.猗郁(yī) 浸渍(jìn) 趿拉(jī)叱咤风云(zhà)B.曹禺 (yǔ) 门槛(kăn) 飞湍(tuān)畏葸不前(xǐ )C. 列观(guàn) 顷刻(qǐng) 蕴藉(jiè)变徵之声(zǐ)D.气馁(něi) 庇佑(bì) 绯红(fēi) 不落言筌(quán)2.下列各组词语中,没有错别字的一组是A.喋血 修葺 殒身不恤 犄角之势B.肄业 踯躅 正襟危坐 卷帙浩繁C.惫懒 厮打 度长絜大 青青子矜D.提炼 座落 门衰祚薄 无语凝噎3.依次填入下列横线处的词语,最恰当的一组是①昨日,央视《新闻联播》、《朝闻天下》和《新闻直播间》栏目三度聚焦助残犟妈易勤的故事,神州大地到处 易勤8年助残扶残、坚守良心的感人事迹。
②春节期间,不少商家为促销贴出这样的广告:凡在本店购货满500元者,本店将热忱______一份精美的礼品。
③湖北省奖励“衣锦还乡”的新科澳网冠军李娜80万元,引发 。
对此,省体育局负责人在接受媒体采访时回应称:对李娜的奖励符合现有政策和奖励标准。
④学术批评需要更多人的积极参与,形成 的局面;同时需要强调学术的严肃性,需要民主、平等、理性和包容的学术品格。
A.传颂 敬赠 质疑 百家争鸣 B.传颂 惠赠 置疑 百花齐放C.传诵 惠赠 质疑 百花齐放 D.传诵 敬赠 置疑 百家争鸣4.下列各项中,没有语病的一项是A.国内近期发生的恶性暴力伤医事件,中科院院士、我国肝脏外科创始人吴孟超呼吁:全社会应共同关心医生的生存处境,通过立法保护医务人员的人身安全和合法权益。
B.城市发展论坛的与会专家普遍认为:我国城镇化研究主要集中在预测城镇化速度和趋势上,而对城镇化过程中公共政策的负面影响则明显被忽视。
湖北省八校2014届高三数学第一次联考试题 文
湖北省八校2014届高三数学第一次联考试题 文一、选择题:本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U =R ,集合{|21}x M x =>,集合2{|log 1}N x x =>,则下列结论中成立的是( ) A .MN M =B .M N N =C .()U MC N =∅D .()U C M N =∅2.命题“x ∀∈R ,2e x x >”的否定是( ) A .不存在x ∈R ,使2e x x > B .x ∃∈R ,使2e x x < C .x ∃∈R ,使e x ≤2xD .x ∀∈R ,使e x ≤2x3.已知αβ、为锐角,3cos 5α=,1tan()3αβ-=-,则tan β的值为( ) A .13B .3C .913D .1394.已知各项均为正数的等比数列{}n a 满足6542a a a =+,则64a a 的值为( ) A .4 B .2 C .1或4 D .15.已知一个几何体的三视图如右图所示,则该几何体的表面积为( ) A .1096π+ B .996π+C .896π+D .980π+644214968S ππ=⨯⨯+⨯⨯=+,选C.考点:1.三视图;2.几何体的表面积6.将函数sin(2)y x ϕ=+的图象向左平移4π个单位后得到的函数图象关于点4(,0)3π成中心对称,那么||ϕ的最小值为( )44442正视图 侧视图俯视图 第5题图A .6π B .4π C .3π D .2π7.定义方程()()'=f x f x 的实数根0x 叫做函数的“新驻点”,若函数()sin (0)g x x x π=<<,()ln (0),h x x x =>3()(0)x x x ϕ=≠的“新驻点”分别为a ,b ,c ,则a ,b ,c 的大小关系为( ) A .a b c >>B .c b a >>C .a c b >>D . b a c >>8.若,(0,2]x y ∈且2xy =,使不等式2a x y +()≥(2)(4)x y --恒成立,则实数a 的取值范围为( ) A .a ≤12B .a ≤2C .a ≥2D .a ≥129.已知集合{}(,)|()M x y y f x ==,若对于任意11(,)x y M ∈,存在22(,)x y M ∈,使得12120x x y y +=成立, 则称集合M 是“理想集合”, 则下列集合是“理想集合”的是( )A .1{(,)|}M x y y x==B .{(,)|cos }M x y y x ==C .2{(,)|22}M x y y x x ==-+D .2{(,)|log (1)}M x y y x ==-10.如图,点P 从点O 出发,分别按逆时针方向沿周长均为12的正三角形、正方形运动一周,,O P 两点连线的距离y 与点P 走过的路程x 的函数关系分别记为(),()y f x y g x ==,定义函数()()()()()()()f x f x g x h x g x f x g x ⎧⎪=⎨>⎪⎩,≤,,.对于函数()y h x =,下列结论正确的个数是( )第10题图① (4)10h = ;②函数()h x 的图象关于直线6x =对称;OPP O③函数()h x 值域为013⎡⎤⎣⎦, ;④函数()h x 增区间为05(,). A .1 B .2C .3D .4第Ⅱ卷(共100分)二、填空题(本大题共7小题,每小题5分,共35分. 请将答案填在答题卡对应题号.......的位置上. 答错位置,书写不清,模棱两可均不得分.) 11.如果复数1i 12im z -=-的实部与虚部互为相反数,则实数=m .考点:1.复数的定义;2.复数的四则运算12.设,x y ∈R ,向量(,1)x =a ,(1,)y =b ,(3,6)=-c ,且⊥c a ,b ∥c ,则+⋅()a b c = .13.直线(1)y k x =+与曲线()ln f x x ax b =++相切于点(1,2)P ,则2a b +=________.14.在△ABC 中,cos cos =b C c Ba+ .15.已知数列{}n a ,若点*(,)()n n a n ∈N 在直线3(6)y k x -=-上,则数列{}n a 的前11项和11S = .16.设点(,)P x y 为平面上以(4,0)0,4),1,2A B C ,(()为顶点的三角形区域(包括边界)上一动点,O 为原点,且OP OA OB λμ=+,则+λμ的取值范围为 .17.用符号[)x 表示超过x 的最小整数,如4,1[)[ 1.5)π==--,记{}[)x x x =-. (1)若(1,2)x ∈,则不等式{}[)x x x ⋅<的解集为 ;(2)若(1,3)x ∈,则方程22cos sin 10[){}x x +-=的实数解为 .三、解答题 (本大题共5小题,满分65分.解答须写出文字说明证明过程或演算步骤.) 18.(本小题满分12分)已知函数2()2cos 23cos f x x x x x =+∈R ,. (Ⅰ)求函数()f x 的最小正周期; (Ⅱ)求函数()f x 在区间,64[]ππ-上的值域.【答案】(Ⅰ)T π=;(Ⅱ)()f x 的值域为03⎡⎤⎣⎦,. 【解析】19.(本小题满分12分)如图,在直三棱柱111ABC A B C -中, 12=2AA AC AB ==,且11BC AC ⊥. (Ⅰ)求证:平面1ABC ⊥平面1A C ;(Ⅱ)设D 是11A C 的中点,判断并证明在线段1BB 上是否存在点E ,使DE ‖平面1ABC ;若存在,求三棱锥1E ABC -的体积.【答案】(Ⅰ)证明见解析;(Ⅱ) 【解析】A 1C 1BAC第19题图DB 120.(本小题满分13分)若数列{}n A 满足21n n A A =+,则称数列{}n A 为“平方递推数列”.已知数列{}n a 中,91=a ,点),(1+n n a a 在函数x x x f 2)(2+=的图象上,其中n 为正整数. (Ⅰ)证明数列{1}n a +是“平方递推数列”,且数列{lg(1)}n a +为等比数列; (Ⅱ)设(Ⅰ)中“平方递推数列”的前n 项积为n T ,即12(1)(1)(1)n n T a a a =+++,求lg n T ;(Ⅲ)在(Ⅱ)的条件下,记)1lg(lg +=n nn a T b ,求数列{}n b 的前n 项和n S ,并求使2014n S >的n 的最小值.又2014n S >,即112220142n n --+>,110082nn +>,21.(本小题满分14分)某校课外兴趣小组的学生为了给学校边的一口被污染的池塘治污,他们通过实验后决定在池塘中投放一种能与水中的污染物质发生化学反应的药剂.已知每投放(14,)m m m ∈R ≤≤且个单位的药剂,它在水中释放的浓度y (克/升)随着时间x(天)变化的函数关系式近似为)(x f m y ⋅=,其中16048()154102x x f x x x ⎧⎪⎪-=⎨⎪-<⎪⎩,≤≤,,≤.若多次投放,则某一时刻水中的药剂浓度为各次投放的药剂在相应时刻所释放的浓度之和.根据经验,当水中药剂的浓度不低于4(克/升)时,它才能起到有效治污的作用.(Ⅰ)若一次投放4个单位的药剂,则有效治污时间可达几天?(Ⅱ)若第一次投放2个单位的药剂,6天后再投放m 个单位的药剂,要使接下来的4天中能够持续有效治污,试求m 的最小值.22.(本小题满分14分)已知实数0,a >函数()e 1x f x ax =--(e 为自然对数的底数). (Ⅰ)求函数()f x 的单调区间及最小值;(Ⅱ)若()f x ≥0对任意的x ∈R 恒成立,求实数a 的值;(Ⅲ)证明:*12482ln(1)ln(1)ln(1)ln 1 1 ().233559(21)(21)n n n n -⎡⎤++++++++<∈⎢⎥⨯⨯⨯++⎣⎦N。
湖北省八市高三3月调考数学文科试题及答案.doc
湖北省八市201X 年高三年级三月调考数学(文科)试题本试卷共4页。
全卷满分150分,考试时间120分钟。
★ 祝考试顺利 ★注意事项:1.考生在答题前,请务必将自己的姓名、准考证号等信息填在答题卡上.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号,答在试卷上无效.3.填空题和解答题用0.5毫米黑色墨水签字笔答在答题卡上每题对应的答题区域内.答在试题卷上无效.一、选择题(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.若,a b R ∈,i 是虚数单位,且(2)1a b i i +-=+,则a b +的值为A .1B .2C .3D .42.已知命题:,20x p x R ∀∈>,那么命题p ⌝为A .,20x x R ∃∈<B .20x x R ∀∈<,C .,20x x R ∃∈≤D .20x x R ∀∈,≤3.已知直线1:l y x =,若直线12l l ⊥,则直线2l 的倾斜角为A . ππ()4k k Z +∈ B .π2 C .3ππ()4k k Z +∈ D .3π44.平面向量a 与b 的夹角为60,(2,0)a =,1b =,则2a b +=AB .C .4D .125.不等式组(3)()004x y x y x -++⎧⎨⎩≥≤≤表示的平面区域是A .矩形B .三角形C .直角梯形D .等腰梯形6.设a R ∈,函数()x x f x e ae -=+的导函数是()f x ',且()f x '是奇函数,则a 的值为A .1-B .12-C .1D .127.某中学高三年级从甲、乙两个班级各选出7名学生 参加数学竞赛,他们取得的成绩(满分100分)的 茎叶图如右图,其中甲班学生成绩的平均分是85, 乙班学生成绩的中位数是83,则x +y 的值为 A .7 B .8 C .9 D .1688.《莱因德纸草书》(Rhind Papyrus )是世界上最古老的数学著作之一,书中有这样的一道题目:把100个面包分给5个人,使每人所得成等差数列,且使较大的三份之和的17是较小的两份之和,则最小的1份为 A .53B .116C .56D .1039. 从221x y m n-=(其中{},2,5,4m n ∈--)所表示的圆锥曲线(椭圆、双曲线、抛物线)方程中任取一个,则此方程是焦点在y 轴上的双曲线方程的概率为( )A .12B .47C .23D .3410.已知函数21(0)()log (0)x x f x x x +⎧=⎨>⎩≤,,则函数[()]1y f f x =+的零点个数是A .4B .3C . 2D .1二、填空题(本大题共5小题,每小题7分,共35分,请将答案填在答题卡对应题号的位置上)11.已知集合{1,2,3,4,5,6}U =,}6,4,2,1{=M ,则U M =ð ▲ . 12.已知4cos 5θ=-,且tan 0θ<,则sin θ= ▲ .第7题图乙甲y x 61192611805679813.某高三年级有500名同学,将他们的身高(单位:cm )数据绘制成频率分布直方图(如图),若用分层抽样的方法选取30人参加一项活动,则从身高在[160,170)内的学生中选取的人数应为 ▲ .14.某地区恩格尔系数(%)y 与年份x 的统计数据如下表:从散点图可以看出y 与x 线性相关,且可得回归直线方程为ˆˆ4055.25ybx =+,据此模型可预测201X 年该地区的恩格尔系数(%)为 ▲ .15.16.已知实数[0,10]x ∈,若执行如下左图所示的程序框图,则输出的x 不小于 47的概率为 ▲ .17.右下表中数阵为“森德拉姆素数筛”,其特点是每行每列都成等差数列,记第i 行第j 列的数为),(*N j i a ij ∈,则:(Ⅰ)99a = ▲ ; (Ⅱ)表中数82共出现 ▲ 次.第13题图 第15题图 侧视图俯视图正视图第16题图 ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙37312519137312621161162521171395191613107413119753765432第17题图三、解答题(本大题共5小题,共65分,解答应写出文字说明,证明过程或演算步骤) 18.(本小题满分12分)已知A 、B 、C 为ABC ∆的三个内角且向量3(1,cos )(3sin cos ,)2222C C C m n ==+与共线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(Ⅱ) ,
… ……………………………9分
对 恒成立,即 对 恒成立
又
∴ 的最小值为 ……………………………………………………………12分
20.(Ⅰ)证明:由题设, 平面ACD, 平面PAD 平面ACD,…………………3分
交线为AD,又CD AD, CD 平面PAD,PA 平面PAD, CD PA…………6分
轴;当 时,结论也成立,
直线 平行于 轴.…………………………………………………………………14分
22.(Ⅰ) ,①
即 ②
由①②联立解得: .………………………………………………………………2分
是二次函数,且 ,可设 ,
由 ,解得 .
.……………………………………………………………5分
(Ⅱ)设 ,
,
(II)连接CH,则 PCH为直线PC与平面ACD所成的角。
作HG AC,垂足为G,连接PG,则AC 平面PHG AC PG,…………9分
又在矩形ABCD中,AB=a,BC= a,
在rt PGA中,PA=a, AG=
在rt HAG中,AH= = ,又AC=2a,…………………………11分
在rt CAH中,根据余弦定理可得,CH= ,在rt PHA
2014年湖北省八市高三年级三月联考
文科数学参考答案及评分标准
一、选择题(每小题5分,共50分)
BDBDCDACAD
二、填空题(每小题. 15. 16.
17.1936,(10,44)第1问2分,第2问3分
三、解答题
18.(Ⅰ)
= = ………………………………3分
直线 的方程为 点 的坐标为 ……………………11分
直线 平行于 轴.……………………………………………………………………14分
法Ⅱ:设 的坐标为 ,则 的方程为
点 的纵坐标为 ,……………………………………………………………8分
直线 的方程为
点 的纵坐标为 .……………………………………………………………12分
依题意知:当 时,
,在 上单调递减,
………………………………………………………………7分
在 上单调递增,
解得:
实数 的取值范围为 .……………………………10分
(Ⅲ) 的图象如图所示:
令 ,则
有两个解, 有 个解.
有 个解.………………………………………………………………………………14分
中可得PH= , tan ………………………………13分
21.(Ⅰ)依题意: ………………………………………………………………2分
……………………4分
……………………………………………………………………………………6分
注:或直接用定义求解.
(Ⅱ)法Ⅰ:设 ,直线 的方程为
由 得 …………………………………………………8分
因为 在 处取得最小值,所以 ,故 ,又 所以 ……………………………………………………………………………6分
(Ⅱ)由(1)知 ,因为 ,且A为△ 内角,所以 由正弦定理得 ,所以 或 .…9分
当 时 ,当 时 .
综上, …………………………………………………………12分
19.(Ⅰ)设公差为d.由已知得 ………………………………3分