九年级数学上册专题突破讲练四点共圆问题大盘点试题新版青岛版

合集下载

九年级数学上册专题突破讲练与圆有关的角试题新版青岛版

九年级数学上册专题突破讲练与圆有关的角试题新版青岛版

与圆有关的角角是几何图形中最重要的元素,圆心角和圆周角是圆中比较常见的角。

圆的特征赋予角极强的灵活性,使得角之间能灵活的互相转化。

1. 圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。

OBACD说明:在同圆或等圆中,根据圆周角与圆心角的倍半关系,可实现圆心角与圆周角的转化,由同弧或等弧所对的圆周角相等,可将圆周角在大小不变的情况下,改变顶点在圆上的位置进行探索。

2. 圆周角定理推论:推论1:半圆(或直径)所对的圆周角是直角;90º的圆周角所对的弦是直径。

推论2:圆内接四边形的对角互补。

说明:根据圆周角定理推论,可将直角三角形引入到圆中,解决圆中有关角或线段问题; 由圆内接四边形的对角互补和外角等于内对角,可将与圆有关的角互相联系起来。

3. 弧、弦、圆心角之间的关系:同圆或等圆中,两个圆心角、两条弧、两条弦中有一组量相等,它们所对应的其余各组量也相等。

说明:根据弧、弦、圆心角之间的关系,可在圆中弧、弦、圆心角之间架起一道桥梁。

4. 切线性质定理:圆的切线垂直于过切点的半径说明:圆的切线垂直于过切点的半径,可以把圆的有关问题转化为直角三角形的问题解决。

示例:如图,AB 是⊙O 的切线,B 为切点,AO与⊙O 交于点C ,若∠BAO=40°,则∠OCB 的度数为( )A. 40°B. 50°C. 65°D. 75°解析:本题出现了切线,利用切线的性质,可把问题转化为直角三角形的问题解决;同时根据同圆的半径相等,可以建立等腰三角形解答问题。

解:∵AB 是⊙O 的切线,∴∠OBA=90°,∴∠O=90°-∠BAO=90°-40°=50°,又∵OB=OC,∴∠OCB=∠OBC=21(180°-50°)=65°,故选C 。

最新九年级数学四点共圆例题讲解

最新九年级数学四点共圆例题讲解

精品文档九年级数学四点共圆例题讲解知识点、重点、难点四点共圆是圆的基本内容,它广泛应用于解与圆有关的问题.与圆有关的问题变化多,解法灵活,综合性强,题型广泛,因而历来是数学竞赛的热点内容。

在解题中,如果图形中蕴含着某四点在同一个圆上,或根据需要作出辅助圆使四点共圆,利用圆的有关性质定理,则会使复杂问题变得简单,从而使问题得到解决。

因此,掌握四点共圆的方法很重要。

、、、===OCOB四个点到定点DO 判定四点共圆最基本的方法是圆的定义:如果A的距离相等,即BOAC、、、D四点共圆.,那么ACB OD 由此,我们立即可以得出1.如果两个直角三角形具有公共斜边,那么这两个直角三角形的四个顶点共圆。

将上述判定推广到一般情况,得:2.如果四边形的对角互补,那么这个四边形的四个顶点共圆。

3.如果四边形的外角等于它的内对角,那么这个四边形的四个顶点共圆。

4.如果两个三角形有公共底边,且在公共底边同侧又有相等的顶角,那么这两个三角形的四个顶点共圆。

运用这些判定四点共圆的方法,立即可以推出:正方形、矩形、等腰梯形的四个顶点共圆。

其实,在与圆有关的定理中,一些定理的逆定理也是成立的,它们为我们提供了另一些证明四点共圆的方法.这就是:、、、D四点共圆。

B =CE·ED,则AC· 1.相交弦定理的逆定理:若两线段AB和CD相交于E,且AEEB、、、BPD,则APA,且·PB =PC 2.割线定理的逆定理:若相交于点P的两线段PB·PD上各有一点A、C、D四点共圆。

C3.托勒密定理的逆定理:若四边形ABCD中,AB·CD+BC·DA=AC·BD,则ABCD是圆内接四边形。

另外,证多点共圆往往是以四点共圆为基础实现的一般可先证其中四点共圆,然后证其余各点均在这个圆上,或者证其中某些点个个共圆,然后判断这些圆实际是同一个圆。

例题精讲、、、、、、、、、、F四点共圆,上。

中考压轴题-四点共圆精讲精练

中考压轴题-四点共圆精讲精练

中考压轴题之四点共圆问题精讲精练一.选择题1.如图,圆内接四边形ABCD 的外角ABE ∠为80︒,则ADC ∠度数为( )A .80︒B .40︒C .100︒D .160︒(第1题图) (第2题图) (第3题图)2.如图,在ABC ∆中,90ABC ∠=︒,4BC =,8AB =,P 为AC 边上的一个动点,D 为PB 上的一个动点,连接AD ,当CBP BAD ∠=∠时,线段CD 的最小值是( )A B .2 C .1 D .43.如图,在矩形ABCD 中,8AB =,6BC =,点P 在矩形的内部,连接PA ,PB ,PC ,若PBC PAB ∠=∠,则PC 的最小值是( )A .6B 3C .4D .44.如图,在矩形ABCD 中,5AD =,AB =E 在AB 上,12AE EB =,在矩形内找一点P ,使得60BPE ∠=︒,则线段PD 的最小值为( )A .2B .4-C .4D .5.如图,6AB AD ==,60A ∠=︒,点C 在DAB ∠内部且120C ∠=︒,则CB CD +的最大值( )A .B .8C .10D .二.填空题6.在ABC ∆中,4AB =,45C ∠=︒,则2AC BC +的最大值为 .7.如图,P 是矩形ABCD 内一点,4AB =,2AD =,AP BP ⊥,则当线段DP 最短时,CP = .8.如图,AB BC ⊥,5AB =,点E 、F 分别是线段AB 、射线BC 上的动点,以EF 为斜边向上作等腰Rt DEF ∆,90D ∠=︒,连接AD ,则AD 的最小值为 .9.在Rt ABC ∆中,AB AC =,90BAC ∠=︒,点E 是线段AC 上一点,过E 作EG BC ⊥,交BC 于G ,连接BE ,点D 是BE 的中点,连接AD 交BC 于点F .若25AD =,3BF =,则FG = .10.如图,ABC ∆和BCD ∆均为直角三角形,90BAC BDC ∠=∠=︒,2AB =,连接AD .若30ADB ∠=︒,则AC 的长为 .11.如图,在四边形ABCD 中,6BD =,90BAD BCD ∠=∠=︒,则四边形ABCD 面积的最大值为 .12.如图,在ABC ∆和ACD ∆中,45ABC ADC ∠=∠=︒,6AC =,则AD 的最大值为 .13.如图,ABC ∆中,AB AC =,90BAC ∠=︒,点D 是BC 的中点,点E ,F 分别为AB ,AC 边上的点,且90EDF ∠=︒,连接EF ,则DEF ∠的度数为 .14.如图,以C 为公共顶点的Rt ABC ∆和Rt CED ∆中,90ACB CDE ∠=∠=︒,30A DCE ∠=∠=︒,且点D 在线段AB 上,则ABE ∠= ,若10AC =,9CD =,则BE = . 三.解答题 15.【问题原型】如图①,在O 中,弦BC 所对的圆心角90BOC ∠=︒,点A 在优弧BC 上运动(点A 不与点B 、C 重合),连结AB 、AC .(1)在点A 运动过程中,A ∠的度数是否发生变化?请通过计算说明理由.(2)若2BC =,求弦AC 的最大值.【问题拓展】如图②,在ABC ∆中,4BC =,60A ∠=︒.若M 、N 分别是AB 、BC 的中点,则线段MN 的最大值为 .16.【问题提出】九年级(上册)教材在探究圆内接四边形对角的数量关系时提出了两个问题:1.如图(1),在O 的内接四边形ABCD 中,BD 是O 的直径.A ∠与C ∠、ABC ∠与ADC ∠有怎样的数量关系?2.如图(2),若圆心O 不在O 的内接四边形ABCD 的对角线上,问题(1)中发现的结论是否仍然成立?(1)小明发现问题1中的A ∠与C ∠、ABC ∠与ADC ∠都满足互补关系,请帮助他完善问题1的证明:BD是O的直径,∴,180∴∠+∠=︒,四边形内角和等于360︒,∴.A C(2)请回答问题2,并说明理由;【深入探究】如图(3),O的内接四边形ABCD恰有一个内切圆I,切点分别是点E、F、G、H,连接GH,EF.(3)直接写出四边形ABCD边满足的数量关系;(4)探究EF、GH满足的位置关系;(5)如图(4),若90CD=,请直接写出图中阴影部分的面积.BC=,2∠=︒,3C17.综合与实践:“善思”小组开展“探究四点共圆的条件”活动,得出结论:对角互补的四边形四个顶点共圆.该小组继续利用上述结论进行探究.提出问题:如图1,在线段AC同侧有两点B,D,连接AD,AB,BC,CD,如果B D∠=∠,那么A,B,C,D四点在同一个圆上.探究展示:如图2,作经过点A,C,D的O,在劣弧AC上取一点E(不与A,C重合),连接AE,CE,则180∠+∠=︒(依据1)AEC D∠=∠180B DAEC B∴∠+∠=︒∴点A,B,C,E四点在同一个圆上(对角互补的四边形四个顶点共圆)∴点B,D在点A,C,E所确定的O上(依据2)∴点A,B,C,D四点在同一个圆上反思归纳:(1)上述探究过程中的“依据1”、“依据2”分别是指什么?依据1:;依据2:.(2)如图3,在四边形ABCD中,12∠的度数为.∠=∠,345∠=︒,则4拓展探究:(3)如图4,已知ABC=,点D在BC上(不与BC的∆是等腰三角形,AB AC中点重合),连接AD.作点C关于AD的对称点E,连接EB并延长交AD的延长线于F,连接AE ,DE .①求证:A ,D ,B ,E 四点共圆;②若22AB =,AD AF ⋅的值是否会发生变化,若不变化,求出其值;若变化,请说明理由.18.如图,在矩形ABCD 中,点E 为边AD 的中点,点F 为AB 上的一个动点,连接FE 并延长,交CD 的延长线于点G ,以FG 为底边在FG 下方作等腰Rt FHG ∆,且90FHG ∠=︒.(1)如图①,若点H 恰好落在BC 上,连接BE ,EH .①求证:2AD AB =;②若tan 2BEH ∠=,1GD =,求FHG ∆的面积;(2)如图②,点H 落在矩形ABCD 内,连接CH ,若4AD =,3AB =,求四边形FHCB 面积的最大值.19.如图,ABC ∆是等边三角形,以AC 为腰在AC 右侧作等腰()ADE AD AE ∆=,点D 与点C 重合,连接BE .(1)如图①,过点C 作CG EB ⊥于点G ,若90CAE ∠=︒.①求证:BG CG =;②已知22BC =,求BCE ∆的周长;(2)如图②,若60DAE ∠=︒,将DAE ∆绕点A 逆时针旋转,使点E 落在BA 的延长线上.现DAB ∠内有一点M ,连接DM ,EM ,BM ,作DM 的垂直平分线交BM 的延长线于点N ,交EM 于点H ,直线NH 恰好过点A .若2AE =,当EH 取得最大值时,求AN 的长.20.如图,在ABC ∆中,以AB 为直径作O 交AC 于点D ,交BC 于点E ,CE BE =,过点E 作EF AC ⊥于点F ,FE 的延长线交AB 的延长线于点G ,连接DE .(1)求证:FG 是O 的切线;(2)求证:2EG AG BG =⋅;(3)若1BG =,2EG =,求sin CDE ∠的值.参考答案一.选择题1.解:四边形ABCD 为圆内接四边形,180ADC ABC ∴∠+∠=︒,180ABE ABC ∠+∠=︒,80ADC ABE ∴∠=∠=︒,故选:A .2.解:90ABC ∠=︒,90ABP CBP ∴∠+∠=︒,CBP BAD ∠=∠,90ABD BAD ∴∠+∠=︒,90ADB ∴∠=︒,取AB 的中点E ,连接DE ,CE ,142DE AB ∴==, 242EC EB ∴==,CD CE DE -, CD ∴的最小值为424-,故选:D .3.解:四边形ABCD 是矩形,90ABC ∴∠=︒,90ABP PBC ∴∠+∠=︒,PBC PAB ∠=∠,90PAB PBA ∴∠+∠=︒,90APB ∴∠=︒,∴点P 在以AB 为直径的圆上运动,设圆心为O ,连接OC 交O 于P ,此时PC 最小,222246213OC OB BC =+=+=,PC ∴的最小值为2134-,故选:C .4.解:如图,在BE 的上方,作OEB ∆,使得OE OB =,120EOB ∠=︒,连接OD ,过点O 作OQ BE ⊥于Q ,OJ AD ⊥于J .12BPE EOB ∠=∠,∴点P 的运动轨迹是以O 为圆心,OE 为半径的O ,∴当点P 落在线段OD 上时,DP 的值最小,四边形ABCD 是矩形,90A ∴∠=︒,33AB =,:1:2AE EB =,23BE ∴=,OE OB =,120EOB ∠=︒,OQ EB ⊥,3EQ BQ ∴==,60EOQ BOQ ∠=∠=︒,1OQ ∴=,2OE =,OJ AD ⊥,OQ AB ⊥,90A AJO AQO ∴∠=∠=∠=︒,∴四边形AQOJ 是矩形,1AJ OQ ∴==,23JO AQ ==,5AD =,4DJ AD AJ ∴=-=,22224(23)27OD JD OJ ∴=+=+=,PD ∴的最小值272OD OP =-=-,故选:A . 5.解:如图,连接AC ,BD ,在AC 上取点M 使DM DC =,60DAB ∠=︒,120DCB ∠=︒,180DAB DCB ∴∠+∠=︒,A ∴,B ,C ,D ,四点共圆,AD AB =,60DAB ∠=︒,ADB ∴∆是等边三角形,60ABD ACD ∴∠=∠=︒,DM DC =,DMC ∴∆是等边三角形,60ADB ACD ∴∠=∠=︒,ADM BDC ∴∠=∠,AD BD =,()ADM BDC SAS ∴∆≅∆,AM BC ∴=,AC AM MC BC CD ∴=+=+, 四边形ABCD 的周长为AD AB CD BC AD AB AC +++=++,且6AD AB ==,∴当AC 最大时,四边形ABCD 的周长最大,则CB CD +最大,此时C 点在BD 的中点处,30CAB ∴∠=︒,AC ∴的最大值cos3043AB =⨯︒=,CB CD ∴+最大值为43AC =,故选:A .二.填空题(共9小题)6.解:过点B 作BD AC ⊥于点D ,45C ∠=︒,BCD ∴∆为等腰直角三角形,BD CD ∴=,设BD CD a ==,延长AC 至点F ,使得CF a =, 1tan 22a AFB a ∠==,作ABF ∆的外接圆O ,过点O 作OE AB ⊥于点E ,则122AE AB ==,AOE AFB ∠=∠, 1tan 2AOE ∴∠=,4OE ∴=,222425OA =+=, ∴222()2()22()2AC BC AC BC AC CF AF OA OF +=+=+=+,∴2AC BC +的最大值为245410⨯=.故答案为:410.7.解:以AB 为直径作半圆O ,连接OD ,与半圆O 交于点P ',当点P 与P '重合时,DP 最短, 122AO OP OB AB ='===,2AD =,90BAD ∠=︒,22OD ∴=,45ADO AOD ODC ∠=∠=∠=︒,222DP OD OP ∴'=-'=-,过P '作P E CD '⊥于点E ,则2222P E DE DP '=='=-,22CE CD DE ∴=-=+,2223CP P E CE ∴'='+=. 故答案为:23.8.解:连接BD 并延长,如图,AB BC ⊥,90ABC ∴∠=︒,90EDF ∠=︒,180ABC EDF ∴∠+∠=︒,B ∴,E ,D ,F 四点共圆,DEF ∆为等腰直角三角形,45DEF DFE ∴∠=∠=︒,45DBF DEF ∴∠=∠=︒,45DBF DBE ∴∠=∠=︒,∴点D 的轨迹为ABC ∠的平分线上,垂线段最短,∴当AD BD ⊥时,AD 取最小值,AD ∴的最小值为25222AB =,故答案为:522. 9.解:连接AG ,将ACG ∆绕点A 逆时针旋转90︒得到ABM ∆,连接MG ,MF ,EG BC ⊥,90BAC ∠=︒,180BAC BGE ∴∠+∠=︒,∴点A 、B 、G 、E 四点共圆,GBE GAE ∴∠=∠,又点D 是BE 的中点,且AB AC =,90BAC ∠=︒,AD BD ∴=,ABE BAD ∴∠=∠,45BAD GAE ABE GBE ∴∠+∠=∠+∠=︒,45FAG ∴∠=︒,由旋转性质可得:90MAG ∠=︒,AM AG =,MB CG =,45MBA C ∠=∠=︒,45MAF FAG ∴∠=∠=︒,90MBF ∠=︒,在MAF ∆和GAF ∆中,AM AG MAF GAF AF AF =⎧⎪∠=∠⎨⎪=⎩,()MAF GAF SAS ∴∆≅∆,MF FG ∴=,EG BC ⊥,45C ∠=︒,EG GC MB ∴==,在MBG ∆和EGB ∆中,MB EG MBG EGB BG GB =⎧⎪∠=∠⎨⎪=⎩,()MBG EGB SAS ∴∆≅∆,245MG BE AD ∴===,设CG x =,FG y =,则MB x =,FM y =,在Rt MBG ∆中,222(3)(45)x y ++=①,在Rt MBF ∆中,2223x y +=②,联立①②,解得1145x y =⎧⎨=⎩,22558x y ⎧=⎪⎨=-⎪⎩(不合题意,舍去),33558x y ⎧=-⎪⎨=-⎪⎩(不合题意,舍去),4445x y =-⎧⎨=⎩(不合题意,舍去),综上,5FG =, 解法二:如图,延长AD 到H ,使得DH AD =,连接BH ,则ADE HDB ∆≅∆设AB AC x ==,AE BH y ==,则有228023x y y x x ⎧+=⎪⎨=⎪-⎩,解得622x y ⎧=⎪⎨=⎪⎩, 12345FG ∴=--=.故答案为:5.10.解:90BAC BDC ∠=∠=︒,A ∴,B ,C ,D 四点共圆,30ADB ∠=︒,2AB =,30ACB ADB ∴∠=∠=︒,24BC AB ∴==,22224223AC BC AB ∴--2311.解:90BAD BCD ∠=∠=︒,A ∴,C 两点在以BD 为直径的圆上,∴当AB AD =,CB CD =时,四边形ABCD 面积最大,6BD =,32AB AD CB CD ∴====,∴四边形BCD 的面积为132322182⨯⨯⨯=.故答案为:18. 12.解:45ABC ADC ∠=∠=︒,A ∴,C ,D ,B 四点共圆,如图,作O 经过A ,C ,D ,B 四点,当()AD D '为直径时,AD 有最大值,45ADC ∠=︒,90AOC ∴∠=︒,OA OC =,AOC ∴∆是等腰直角三角形,6AC =,26322AO ∴=⨯=, 262AD AO ∴'==,即AD 的最大值为62.故答案为:62.13.解:如图,连接AD ,ABC ∆中,AB AC =,90BAC ∠=︒,点D 是BC 的中点,90ADC ∴∠=︒,AD CD =,45BAD C ∠=∠=︒,而90EDF ∠=︒,ADE CDF ∴∠=∠,在ADE ∆和CDF ∆中,BAD C AD CDADE CDF ∠=∠⎧⎪=⎨⎪∠=∠⎩,()ADE CDF ASA ∴∆≅∆,DE DF ∴=, 而90EDF ∠=︒,45DEF DFE ∴∠=∠=︒.故答案为:45︒.14.解:90ACB CDE ∠=∠=︒,30A DCE ∠=∠=︒,60DBC DEC ∴∠=∠=︒,B ∴、C 、D 、E 四点共圆,30DBE DCE ∴∠=∠=︒,30ABE ∴∠=︒,设BC x =,则2AB x =,在Rt ABC ∆中,由勾股定理得222AB AC BC =+,10AC =,222(2)10x x ∴=+,解得:1033x =,1033BC ∴=, 设DE a =,则2CE a =,在Rt CED ∆中,由勾股定理得222CE DE CD =+,9CD =,222(2)9a a ∴=+,解得:33a =,33DE ∴=,63CE =,60ABC ∠=︒,30ABE ∠=︒,90CBE ABC ABE ∴∠=∠+∠=︒,在Rt CBE ∆中,由勾股定理得2222103442(63)()33BE CE BC =--=. 三.解答题(共9小题)15.解:【问题原型】(1)A ∠的度数不发生变化,理由如下:12A BOC ∠=∠,90BOC ∠=︒,∴190452A ∠=⨯︒=︒; (2)当AC 为O 的直径时,AC 最大,在Rt BOC ∆中,90BOC ∠=︒,根据勾股定理,得222OB OC BC +=,OB OC =,∴222222OC BC ==⨯=, ∴222AC OC ==,即AC 的最大值为22;【问题拓展】如图,画ABC ∆的外接圆O ,连接OB ,OC ,ON ,则ON BC ⊥,60BON ∠=︒,122BN BC ==,sin60BNOB∴===︒M、N分别是AB、BC的中点,MN∴是ABC∆的中位线,12MN AC∴=,AC∴为直径时,AC最大,此时2AC OB==,MN∴16.解:【问题提出】(1)BD是O的直径,90A C∴∠=∠=︒,180A C∴∠+∠=︒,四边形内角和等于360︒,180ABC ADC∴∠+∠=︒;故答案为:90A C∠=∠=︒,180ABC ADC∠+∠=︒;(2)成立,理由如下:连接AC、BD,DAC CBD∠=∠,ACD ABD∠=∠,DAC ACD DBC ABD ABC∴∠+∠=∠+∠=∠,180DAC ACD ADC∠+∠+∠=︒,180ABC ADC∴∠+∠=︒;同理,180BAD BCD∠+∠=︒;【深入探究】(3)AD BC AB CD+=+,理由如下:连接AI、BI、CI、DI ,圆I是四边形ABCD的内切圆,AG AE∴=,DE DH=,CH CF=,BF BG=,AD BC AE ED BF CF AG DH BG CH AB CD∴+=+++=+++=+,即AD BC AB CD+=+,故答案为:AD BC AB CD+=+;(4)EF GH⊥,理由如下:连接EH、IH、IG、IF、GF ,四边形ABCD是圆O的内接四边形,180B D∴∠+∠=︒,BG IG⊥,IF BF⊥,90BGI IFB∴∠=∠=︒,180B GIF∴∠+∠=︒,GIF D∴∠=∠,GI IF=,1902GFI GIF∴∠=︒-∠,ED DH=,1902DEH D∴∠=︒-∠,GFI DEH∴∠=∠,GE GE=,GFE GHE∴∠=∠,GHE GFI IFE∴∠=∠+∠,IF IE=,IFE IEF∴∠=∠,90FEH EHG FEH IEF DEH EID∴∠+∠=∠+∠+∠=∠=︒,EF GH∴⊥;(5)连接BD ,90C ∠=︒,90A ∴∠=︒,ABCD 是圆O 的内接圆,BD ∴是圆O 的直径,连接IF 、IH ,I 是四边形ABCD 的内切圆圆心,ADI IDH ∴∠=∠,ABI FBI ∠=∠,IH CD ⊥,IF BC ⊥,90BIF IBF ∴∠=︒-∠,90DIH IDH ∠=︒-∠, 1180()180()2BIF DIH IBF IDH ADC ABC ∴∠+∠=︒-∠+∠=︒-∠+∠, 180ABC ADC ∠+∠=︒,90BIF DIH ∴∠+∠=︒,IF FC ⊥,IH CD ⊥,90C ∠=︒,IH IF =,∴四边形IHCF 是正方形, 90HIF ∴∠=︒,I ∴点在BD 上,3BC =,2CD =,326ABCD S ∴=⨯=四边形,90DIH IDH ∠+∠=︒,90IBF IDH ∠+∠=︒,DIH IBF ∴∠=∠,90IHD IFB ∠=∠=︒,DHI IFB ∴∆∆∽,∴IH DH BF IF =,即23IH IH IH IH-=-, 解得65IH =,3625I S π∴=,∴阴影部分的面积36625π=-.17.(1)解:依据1:圆内接四边形对角互补;依据2:过不在同一直线上的三个点有且只有一个圆,故答案为:圆内接四边形对角互补;过不在同一直线上的三个点有且只有一个圆;(2)解:12∠=∠,∴点A ,B ,C ,D 四点在同一个圆上,34∴∠=∠,345∠=︒,445∴∠=︒,故答案为:45︒;(3)①证明:AB AC =,ABC ACB ∴∠=∠,点E 与点C 关于AD 的对称,AE AC ∴=,DE DC =,AEC ACE ∴∠=∠,DEC DCE ∠=∠,AED ACB ∴∠=∠,AED ABC ∴∠=∠,A ∴,D ,B ,E 四点共圆;②解:AD AF ⋅的值不会发生变化,理由如下:如图4,连接CF ,点E 与点C 关于AD 的对称, FE FC ∴=,FEC FCE ∴∠=∠,FED FCD ∴∠=∠, A ,D ,B ,E 四点共圆,FED BAF ∴∠=∠,BAF FCD ∴∠=∠, A ∴,B ,F ,C 四点共圆,BAD FAB ∠=∠,ABD AFB ∴∆∆∽, ∴AD AB AB AF=,28AD AF AB ∴⋅==.18.(1)①证明:如图①中,过点E 作ET BC ⊥于点T .四边形ABCD 是矩形,90A ADC EDG ∴∠=∠=∠=︒,在AEF ∆和DEG ∆中, 90A EDG AE EDAEF DEG ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩,()AEF DEG ASA ∴∆≅∆,EF EG ∴=, FGH ∆是等腰直角三角形,HE EF EG ∴==,HE FG ⊥, 90A ABT ETB ∠=∠=∠=︒,∴四边形ABTE 是矩形,90AET FEH ∴∠=∠=︒,AEF TEH ∴∠=∠,在EAF ∆和ETH ∆中,90A ETH AEF TEH EF EH ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,()EAF ETH AAS ∴∆≅∆,EA ET ∴=,∴四边形ABTE 是正方形,AE AB ∴=,2AD AE =,2AD AB ∴=;②解:如图①1-中,时FH 交BE 于点J .FJB EJH ∠=∠,45FBJ EHJ ∠=∠=︒,BFH BEH ∴∠=∠, tan tan 2BFH BEH ∴∠=∠=,∴2BH FB =,EAF ETH EDG ∆≅∆≅∆, 1AF DG TH ∴===,设AB BT x ==,则121x x +=-,3x ∴=,2BF ∴=,4BH =, 在Rt BFH ∆中,22222425FH BF BH =+=+=,12525102DGH S ∆∴=⨯⨯=; (2)解:如图②中,过点H 作HQ AB ⊥于点Q ,过点E 作ER QH ⊥于点R ,连接BH .同法可证,EAF ERH ∆≅∆,EA ER ∴=,AF RH =,2AE ED ==,2ER AE ∴==,四边形AQRE 是正方形,2AQ AE ∴==,1BQ ∴=,14122BCH S ∆∴=⨯⨯=,设AF RH y ==, 211125(3)(2)()2228BFH S y y y ∆∴=-⋅+=--+,102-<, 12y ∴=时,BFH ∆的面积最大,最大值为258, ∴四边形BCHF 的面积的最大值2541288=+=. 19.(1)①证明:如图①中,连接AG ,延长CG 交AB 于点J ,过点A 作AM CJ ⊥交CJ 的延长线于点M ,AN BE ⊥于点N .CG BE ⊥,90OAE OGC ∴∠=∠=︒,AOE GOC ∠=∠,AOE GOC ∴∆∆∽,∴AO EO GO CO =,∴AO GO EO CO=, AOG EOC ∠=∠,AOG EOC ∴∆∆∽,45AGO ACE ∴∠=∠=︒,90OGJ ∠=︒,45AGN AGM ∴∠=∠=︒, AM GM ⊥,AN GN ⊥,AM AN ∴=,90ANB AMC ∠=∠=︒,AC AB =, Rt AMC Rt ANB(HL)∴∆≅∆,ACM ABN ∴∠=∠,AB AC =, ABC ACB ∴∠=∠,GBC GCB ∴∠=∠,GB GC ∴=;②解:GB GC =,90BGC ∠=︒,22BC =,2GB GC ∴==, AB AC =,GB GC =,AG ∴垂直平分线线段BC ,30CAG ∴∠=︒,AOG EOC ∆∆∽,30OEC OAG ∴∠=∠=︒, 24EC CG ∴==,23EG =,223BE ∴=+,BCE ∴∆的周长22223422236BC BE EC =++=+++=++;(2)解:如图②中,以A 为圆心,AE 为半径作A ,设AN 交DM 于点J .AD AE =,60DAE ∠=︒,ADE ∴∆是等边三角形,点D ,M 关于AN 对称,AD AM ∴=,∴点M 在A 上, 1302EMD EAD ∴∠=∠=︒,AN DM ⊥,90MJH ∴∠=︒,60AHE MHJ ∠=∠=︒,60AHE ADE ∴∠=∠=︒,A ∴,E ,D ,H 四点共圆, 60EHD EAD ∴∠=∠=︒,120AHD ∴∠=︒,∴当EH 是四边形AEDH 的外接圆的直径时,EH 的值最大,此时点C 与点M 重合,B ,C ,N 共线,且EM AD ⊥(如图②1-中),30AEM DEM ∴∠=∠=︒,90AEN ∴∠=︒,90BAN ∴∠=︒, 2AB AE ==,60B ∠=︒,tan 6023AN AB ∴=⋅︒=20.(1)证明:连接OE ,CE BE =,OA BO =,OE ∴是ABC ∆的中位线, //OE AC ∴,EF AC ⊥,OE EF ∴⊥,E 点在圆O 上,FG ∴是O 的切线;(2)证明:OE GF ⊥,90OEG ∴∠=︒,222OG OE EG ∴=+, 222()()EG OG OE OG OE OG OE =-=+-,EO BO OA ==, 2()()EG OG OA OG OB AG BG ∴=+-=⋅; (3)解:连接AE ,过E 点作EM AB ⊥交于点M ,2EG AG BG =⋅,1BG =,2EG 2AG ∴=,1AB ∴=,AB 是直径,90AEB ∴∠=︒,90OEG ∠=︒,AEO BEB ∴∠=∠,AO OE =,EAO OEA ∴∠=∠, BEG EAO ∴∠=∠,AEG EBG ∴∆∆∽,∴2EG EB AG AE =,设EB x =,则2AE x , 在Rt ABE ∆中,2212x x =+,解得3x =,3BE ∴=,6AE =,AE BE AB EM ⋅=⋅,23EM ∴=,A 、B 、E 、D 四点共圆,CDE ABE ∴∠=∠,263sin sin 333EM CDE EBM EB ∴∠=∠===.。

青岛版数学九上圆练习题

青岛版数学九上圆练习题

青岛版数学九上圆练习题在数学的学习过程中,练习题是巩固知识点和提高解题能力的重要手段。

下面是一些青岛版数学九年级上册关于圆的练习题,供学生们练习。

一、选择题1. 已知圆的半径为5,圆心到直线的距离为3,那么直线与圆的位置关系是:A. 直线与圆相交B. 直线与圆相切C. 直线与圆相离D. 直线是圆的直径2. 点P在圆O上,PA和PB是圆的两条半径,如果∠APB=60°,那么圆的周长是:A. 12πB. 15πC. 18πD. 20π二、填空题3. 已知圆的直径为10,那么圆的周长是_______。

4. 圆的半径为r,圆心角为α,扇形的弧长为l,若α=30°,则l=_______。

三、计算题5. 已知圆的半径为7,求圆的面积。

6. 如果一个扇形的半径为5,圆心角为45°,求扇形的面积和弧长。

四、解答题7. 圆O的半径为10,点A在圆O上,点B在圆O外,AB=12,求弦AB 所对的圆心角。

8. 在圆中,弦AB=10,弦CD=8,且AB⊥CD,求圆的半径。

五、证明题9. 已知圆的半径为r,点P在圆上,PA和PB是圆的两条半径,证明∠APB=2∠AOB。

10. 已知圆O的半径为r,点A和点B在圆上,且AB是圆的直径,证明∠AOB=90°。

这些练习题覆盖了圆的基本性质、面积和周长的计算、扇形的面积和弧长的计算,以及一些几何证明问题。

通过解决这些问题,学生可以加深对圆的理解,并提高解决几何问题的能力。

希望这些练习题能够帮助学生们更好地掌握青岛版数学九年级上册关于圆的知识点。

在解答过程中,如果遇到难题,不妨多尝试几种解题方法,或者与同学和老师讨论,以获得更深刻的理解。

青岛版九年级(上) 中考题单元试卷:第4章 对圆的进一步认识(26)

青岛版九年级(上) 中考题单元试卷:第4章 对圆的进一步认识(26)

青岛版九年级(上)中考题单元试卷:第4章对圆的进一步认识(26)一、选择题(共22小题)1.若⊙O1和⊙O2的半径分别为3cm和4cm,圆心距d=7cm,则这两圆的位置是()A.相交B.内切C.外切D.外离2.已知⊙O1的半径为1cm,⊙O2的半径为3cm,两圆的圆心距O1O2为4cm,则两圆的位置关系是()A.外离B.外切C.相交D.内切3.已知⊙O1与⊙O2的半径分别为3cm和5cm,若圆心距O1O2=8cm,则⊙O1与⊙O2的位置关系是()A.相交B.相离C.内切D.外切4.已知⊙O1的半径是3cm,⊙O2的半径是2cm,O1O2=cm,则两圆的位置关系是()A.相离B.外切C.相交D.内切5.已知⊙O1和⊙O2的半径分别是方程x2﹣4x+3=0的两根,且两圆的圆心距等于4,则⊙O1与⊙O2的位置关系是()A.外离B.外切C.相交D.内切6.两圆半径分别为3cm和7cm,当圆心距d=10cm时,两圆的位置关系为()A.外离B.内切C.相交D.外切7.两个圆的半径分别为2和3,当圆心距d=5时,这两个圆的位置关系是()A.内含B.内切C.相交D.外切8.两圆的半径分别为3和5,圆心距为7,则两圆的位置关系是()A.内切B.相交C.外切D.外离9.已知两圆的半径分别是3和6,若两圆相交,则两圆的圆心距可以是()A.2B.5C.9D.1010.已知⊙O1与⊙O2的半径分别为2cm和3cm,若O1O2=5cm.则⊙O1与⊙O2的位置关系是()A.外离B.相交C.内切D.外切11.⊙O1的半径为1cm,⊙O2的半径为4cm,圆心距O1O2=3cm,这两圆的位置关系是()A.相交B.内切C.外切D.内含12.已知⊙O1与⊙O2相交,它们的半径分别是4,7,则圆心距O1O2可能是()A.2B.3C.6D.1213.如图,已知⊙O1的半径为1cm,⊙O2的半径为2cm,将⊙O1,⊙O2放置在直线l上,如果⊙O1在直线l上任意滚动,那么圆心距O1O2的长不可能是()A.6cm B.3cm C.2cm D.0.5cm14.已知⊙O1的半径r1=2,⊙O2的半径r2是方程的根,⊙O1与⊙O2的圆心距为1,那么两圆的位置关系为()A.内含B.内切C.相交D.外切15.如果两个圆的半径分别为5和3,圆心距为4,那么两圆的位置关系是()A.相交B.相切C.外离D.内含16.如图,⊙A的半径是3,⊙B的半径是5,如果两圆相交,则圆心距AB的取值范围在数轴上表示正确的是()A.B.C.D.17.如图,⊙O1,⊙O2的圆心在直线l上,⊙O1的半径为2cm,⊙O2的半径为3cm.O1O2=8cm,⊙O1以1cm/s的速度沿直线l向右运动,7s后停止运动.在此过程中,⊙O1和⊙O2没有出现的位置关系是()A.外切B.相交C.内切D.内含18.已知⊙O1和⊙O2的半径分别为2cm和3cm,圆心距O1O2为5cm,则⊙O1和⊙O2的位置关系是()A.外离B.外切C.相交D.内切19.如图所示的两圆位置关系是()A.内含B.内切C.相交D.外切20.下列说法正确的是()A.平分弦的直径垂直于弦B.半圆(或直径)所对的圆周角是直角C.相等的圆心角所对的弧相等D.若两个圆有公共点,则这两个圆相交21.下列说法中,正确的有()(1)的平方根是±5.(2)五边形的内角和是540°.(3)抛物线y=3x2﹣x+4与x轴无交点.(4)等腰三角形两边长为6cm和4cm,则它的周长是16cm.(5)若⊙O1与⊙O2的半径分别是方程x2﹣4x+3=0的两根,且O1O2=3,则两圆相交.A.2个B.3个C.4个D.5个22.两个半径不等的圆相切,圆心距为6cm,且大圆半径是小圆半径的2倍,那么小圆的半径为()A.3cm B.4cm C.2或4cm D.2cm或6cm二、填空题(共7小题)23.已知⊙O1与⊙O2相切,两圆半径分别为3和5,则圆心距O1O2的值是.24.在同一平面内,已知线段AO=2,⊙A的半径为1,将⊙A绕点O按逆时针方向旋转60°得到的像为⊙B,则⊙A与⊙B的位置关系为.25.若两圆的半径分别是2和3,圆心距是5,则这两圆的位置关系是.26.已知⊙O1和⊙O2相切,⊙O1的半径为3,O1O2=5,则⊙O2的半径为.27.已知⊙O1与⊙O2的半径分别是a,b,且a、b满足,圆心距O1O2=5,则两圆的位置关系是.28.若⊙A和⊙B相切,它们的半径分别为8cm和2cm,则圆心距AB为cm.29.已知⊙O1的半径为3,⊙O2的半径为r,⊙O1与⊙O2只能画出两条不同的公共切线,且O1O2=5,则⊙O2的半径为r的取值范围是.三、解答题(共1小题)30.若⊙O1和⊙O2的圆心距为4,两圆半径分别为r1、r2,且r1、r2是方程组的解,求r1、r2的值,并判断两圆的位置关系.青岛版九年级(上)中考题单元试卷:第4章对圆的进一步认识(26)参考答案一、选择题(共22小题)1.C;2.B;3.D;4.C;5.B;6.D;7.D;8.B;9.B;10.D;11.B;12.C;13.D;14.B;15.A;16.C;17.D;18.B;19.C;20.B;21.B;22.D;二、填空题(共7小题)23.8或2;24.外切;25.外切;26.2或8;27.外切;28.10或6;29.2<r <8;三、解答题(共1小题)30.;。

中考数学总复习《四点共圆问题》专题(含答案)

中考数学总复习《四点共圆问题》专题(含答案)
如图,已知 内接于 , 、 为 的切线,作 ,交 于 ,连结 并延长交 于 ,求证: .
如图,在 中, , 中, ,若 三点在同一直线 上. 连接 、 ,点 、 、 分别为 、 、 的中点.求证 .
在梯形ABCD中, , , , 分别在 , 上, .
求证: .
如图 和 中, ,求证点 , , , 四点在同一个圆上.
(1)当点 在 内时,延长 交 于 ,连结 ,则有
如图,在△ABC中,分别以AB,AC为直径在 ABC外作半圆 和半圆 ,其中 和 分别为两个半圆的圆心.F是边BC的中点,点D和点E分别为两个半圆圆弧的中点.过点A作半圆 的切线,交CE的延长线于点Q,过点Q作直线FA的垂线,交BD的延长线于点P,连结PA.
求证:PA是半圆 的切线.
如图,在四边形ABCD中,已知∠BAD=60°,∠ABC=90°,∠BCD=120°,对角线AC,BD交于点E,且DE=2EB,F为AC的中点.
求证:(1)∠FBD=30°;(2)AD=DC.
四点共圆问题答案解析
一、解答题
(1)∵ ,∴ ,
∴ ,∴ 四点共圆.
(2) 连结 ,设 相交于
由(1)可知 是圆的直径,
又∵ 是平行四边形,∴ 是 中点,
∴ 是圆心,∴ ,
∵ ,∴ .
取 的中点 ,连接 ,故
【解析】取斜边中点,利用斜边中线等于斜边长一半,然后利用证明方法一.
∵ 是 的切线,∴ ,
∴ ,
∵ ,
∴ ,
∴ 四点共圆,
∵ ,∴ .
连结ห้องสมุดไป่ตู้,
∵ ,
∴ ,
∴ ,
∵ ,
∴ 四点共圆, 四点共圆,
∴ 五点共圆,
∴ .

九年级数学上册 专题突破讲练 剖析与圆有关的计算试题 (新版)青岛版

九年级数学上册 专题突破讲练 剖析与圆有关的计算试题 (新版)青岛版

剖析与圆有关的计算圆中有关的计算问题主要涉及以下三个知识点:1. 利用勾股定理:要想利用勾股定理解题,必须确定出直角三角形,根据两直角边的平方和等于斜边的平方求出未知线段;或者用同一字母表示出三条边长,并根据勾股定理列出方程求解;2. 利用三角函数:利用三角函数求线段长也必须在直角三角形中才能实施,在直角三角形中知道一角一边即可解此直角三角形得出未知的角和边,因此熟记特殊角的三角函数值是解决问题的基础;注意:在圆中,往往利用垂径定理和直径所对的圆周角以及切线的性质构造直角三角形。

3. 利用相似三角形:利用相似三角形求线段长是圆中最重要的一种解题方法和思路。

因此要善于发现和构造相似三角形。

常见的相似三角形模型有:例题(南充)如图,已知AB是⊙O的直径,BP是⊙O的弦,弦CD⊥AB于点F,交BP 于点G,E在CD的延长线上,EP=EG,(1)求证:直线EP为⊙O的切线;(2)点P在劣弧AC上运动,其他条件不变,若BG2=BF•BO。

试证明BG=PG;(3)在满足(2)的条件下,已知⊙O的半径为3,sinB=33。

求弦CD的长。

解析:(1)连结OP,先由EP=EG,证出∠EPG=∠BGF,再由∠BFG=∠BGF+∠OBP=90°,推出∠EPG+∠OPB=90°来求证。

(2)连结OG,由BG2=BF•BO,得出△BFG∽△BGO,得出∠BGO=∠BFG=90°,根据垂线定理可得出结论。

(3)连结AC、BC、OG,由sinB=33,求出OG,由(2)得出∠B=∠OGF,求出OF,再求出BF,FA,利用直角三角形来求斜边上的高,再乘以2得出CD长度。

解答:(1)证明:连结OP,∵EP=EG,∴∠EPG=∠EGP,又∵∠EGP=∠BGF,∴∠EPG=∠BGF,∵OP=OB,∴∠OPB=∠OBP,∵CD⊥AB,∴∠BFG=∠BGF+∠OBP=90°,∴∠EPG+∠OPB=90°,∴直线EP为⊙O的切线;(2)证明:如图,连结OG,OP,∵BG2=BF•BO,∴BG BF BO BG,∴△BFG∽△BGO,∴∠BGO=∠BFG=90°,由垂线定理知:BG =PG ;(3)解:如图,连结AC 、BC 、OG 、OP ,∵sinB∴OG OB = ∵OB =r =3,∴OG由(2)得∠EPG +∠OPB =90°, ∠B +∠BGF =∠OGF +∠BGF =90°, ∴∠B =∠OGF ,∴sin ∠OGF =OFOG∴OF =1,∴BF =BO -OF =3-1=2,FA =OF +OA =1+3=4, 在Rt △BCA 中,CF 2=BF •FA ,∴CF ==∴CD =2CF =点拨:本题主要考查了圆的综合题,解题的关键是通过作辅助线,找准角之间的关系,灵活运用直角三角形中的正弦值。

九年级数学上册专题突破讲练认识圆的轴对称性试题青岛版(2021年整理)

九年级数学上册专题突破讲练认识圆的轴对称性试题青岛版(2021年整理)

九年级数学上册专题突破讲练认识圆的轴对称性试题(新版)青岛版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(九年级数学上册专题突破讲练认识圆的轴对称性试题(新版)青岛版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为九年级数学上册专题突破讲练认识圆的轴对称性试题(新版)青岛版的全部内容。

认识圆的轴对称性1。

垂径定理的内容垂径定理:垂直于非直径的弦的直径,平分弦且平分弦所对的两段弧。

符号语言:如图,圆O中,如果直径CD⊥AB于E,那么有结论:AE=BE,AD=BD,CA=CB。

说明:(1)垂径定理是由圆是轴对称图形(直径所在的直线是对称轴)得来的.(2)定理中为什么不能遗忘“不是直径"这个附加条件?因为若是直径,由于两条直径总是互相平分的,因此不会有垂径定理的其他结论。

(3)概括成一句话:直径平分弦(不是直径)(4)一条直线①过圆心;②垂直于一条弦;③平分这条弦;④平分弦所对的劣弧;⑤平分弦所对的优弧。

这五个条件只需知道两个,即可得出另三个(平分弦时,直径除外)。

2. 垂径定理的应用垂径定理在中考中经常和勾股定理结合使用:如图,如果直径CD ⊥AB 于E,当我们连接圆心O和点A时,利用垂径定理可以得到直角三角形OAE,进而可以利用勾股定理进行相关的计算。

例如:直径CD ⊥AB于E,弦AB=2a,半径为r,求OE、DE的长。

由AB=2a,根据垂径定理可以得到AE=a,进而,DE=r-OE=r-22r a利用垂径定理和勾股定理解决圆中的相关计算问题例题1 (西青区二模)如图,在半径为5的⊙O中,AB、CD是互相垂直的两条弦,垂足为P,且AB=CD=8,求OP的长。

915.四点共圆-奥数精讲与测试(9年级)

915.四点共圆-奥数精讲与测试(9年级)

915.四点共圆-奥数精讲与测试(9年级)知识点、重点、难点四点共圆是圆的基本内容,它⼴泛应⽤于解与圆有关的问题.与圆有关的问题变化多,解法灵活,综合性强,题型⼴泛,因⽽历来是数学竞赛的热点内容。

在解题中,如果图形中蕴含着某四点在同⼀个圆上,或根据需要作出辅助圆使四点共圆,利⽤圆的有关性质定理,则会使复杂问题变得简单,从⽽使问题得到解决。

因此,掌握四点共圆的⽅法很重要。

判定四点共圆最基本的⽅法是圆的定义:如果A、B、C、D四个点到定点O的距离相等,即OA=OB=OC=OD,那么A、B、C、D四点共圆.由此,我们⽴即可以得出1.如果两个直⾓三⾓形具有公共斜边,那么这两个直⾓三⾓形的四个顶点共圆。

将上述判定推⼴到⼀般情况,得:2.如果四边形的对⾓互补,那么这个四边形的四个顶点共圆。

3.如果四边形的外⾓等于它的内对⾓,那么这个四边形的四个顶点共圆。

4.如果两个三⾓形有公共底边,且在公共底边同侧⼜有相等的顶⾓,那么这两个三⾓形的四个顶点共圆。

运⽤这些判定四点共圆的⽅法,⽴即可以推出:正⽅形、矩形、等腰梯形的四个顶点共圆。

其实,在与圆有关的定理中,⼀些定理的逆定理也是成⽴的,它们为我们提供了另⼀些证明四点共圆的⽅法.这就是:1.相交弦定理的逆定理:若两线段AB和CD相交于E,且AE·EB=CE·ED,则A、B、C、D四点共圆。

2.割线定理的逆定理:若相交于点P的两线段PB、PD上各有⼀点A、C,且PA·PB =PC·PD,则A、B、C、D四点共圆。

3.托勒密定理的逆定理:若四边形ABCD中,AB·CD+BC·DA= AC·BD,则ABCD是圆内接四边形。

另外,证多点共圆往往是以四点共圆为基础实现的⼀般可先证其中四点共圆,然后证其余各点均在这个圆上,或者证其中某些点个个共圆,然后判断这些圆实际是同⼀个圆。

例题精讲例1:如图,P为△ABC内⼀点,D、E、F分别在BC、CA、AB上。

【专题突破训练】青岛版九年级数学上册 第四章 一元二次方程 单元检测试题(有答案)

【专题突破训练】青岛版九年级数学上册  第四章  一元二次方程  单元检测试题(有答案)

【专题突破训练】青岛版九年级数学上册 第四章 一元二次方程 单元检测试题一、单选题(共10题;共30分)1.x =1 是关于 x 的一元二次方程 x 2+mx −5=0 的一个根,则此方程的另一个根是( )A. 5B. -5C. 4D. -42.关于x 的一元二次方程 mx 2+2x −1=0 有两个实数根,则m 的取值范围是( )A. m ≤−1B. m ≥−1C. m ≤1且 m ≠0D. m ≥−1且 m ≠03.方程3x 2﹣4=﹣2x 的二次项系数、一次项系数、常数项分别为( )A. 3,﹣4,﹣2B. 3,2,﹣4C. 3,﹣2,﹣4D. 2,﹣2,04.已知x=1是方程x 2+bx-2=0的一个根,则方程的另一个根是( )A. 1B. 2C. -2D. -15.用配方法解方程x 2-2x-5=0时,原方程应变形为( )A. (x+1)2=6B. (x-1)2=6C. (x+2)2=9D. (x-2)2=96.某种商品零售价经过两次降价后的价格为降价前的81%,则平均每次降价( )A. 19%B. 10%C. 9.5%D. 20%7.等腰三角形边长分别为a ,b ,2,且a ,b 是关于x 的一元二次方程x 2﹣6x+n ﹣1=0的两根,则n 的值为( )A. 9B. 1C. 9或10D. 8或108.已知关于x 的一元二次方程(m −2)2x 2+(2m +1)x +1=0有两个不相等的实数根,则m 的取值范围是( ).A. m >34B. m ≥34C. m >34且m ≠2D. m ≥34且m ≠29.关于x 的一元二次方程x 2-2x+k=0有两个不相等的实数根,则k 的取值范围是( ).A. k <1B. k≥1C. k >-1D. k >110.在一幅长80cm 、宽50cm 的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图如下图所示,如果要使整个挂图的面积是5 400 cm 2 , 设金色纸边的宽为x cm ,那么x 满足的方程是( )A. x 2+130x -1 400=0B. x 2+65x -350=0C. x 2-130x -1 400=0D. x 2-65x -350=0二、填空题(共10题;共30分)11.关于 的一元二次方程 有实数根,则m 的取值范围是________.12.方程x 2=6x 的根是________.13.已知关于x 的一元二次方程x 2+ √k −1 x ﹣1=0有两个不相等的实数根,则k 的取值范围是________.14.若关于x的一元二次方程x2−6x+a=0有两个相等的实数根,则a的值是________.15.现定义运算“★”,对于任意实数a、b,都有a★b=a2−3a+b,如:3★5=32−3×3+5,若x★2=6,则实数x的值是________ .16.若α、β是方程x2+2x﹣2017=0的两个实数根,则α2+3α+β的值为________.17.如果关于x的一元二次方程x2+4x﹣m=0没有实数根,那么m的取值范围是________.18.若关于x的三个方程x2+4mx+4m2+2m+3=0,x2+(2m+1)x+m2=0,(m﹣1)x2+2mx+m﹣1=0中至少有一个方程有实根,则m的取值范围是________.19.刘谦的魔术表演风靡全国,小明也学起了刘谦发明了一个魔术盒,当任意实数对(a,b)进入其中时,会得到一个新的实数:a2−b−1,例如把(3,−2)放入其中,就会得到32+(−2)−1=6.现将实数对(m,−2m)放入其中,得到实数2,则m=________.20.某花圃用花盆培育某种花苗,经过实验发现每盆的盈利与每盆的株数构成一定的关系.每盆植入3株时,平均单株盈利3元;以同样的栽培条件,若每盆每增加1株,平均单株盈利就减少0.5元.要使每盆的盈利达到10元,每盆应该植多少株?小明的解法如下:设每盆花苗增加x株,可列一元二次方程为________ .三、解答题(共9题;共60分)21.求下列x的值:(1)x2﹣25=0 (2)(x+5)2=16.22.已知方程:(m2﹣1)x2+(m+1)x+1=0,求:(1)当m为何值时原方程为一元二次方程.(2)当m为何值时原为一元一次方程.23.高盛超市准备进一批季节性小家电,每个进价为40元,经市场预测,销售定价为50元,可售出400个;定价每增加1元,销售量将减少10个.(1)设每个小家电定价增加x元,每售出一个小家电可获得的利润是多少元?(用含x的代数式表示)(2)当定价增加多少元时,商店获得利润6000元?24.“铁路建设助推经济发展”,近年来我国政府十分重视铁路建设.渝利铁路通车后,从重庆到上海比原铁路全程缩短了320千米,列车设计运行时速比原铁路设计运行时速提高了l20千米/小时,全程设计运行时间只需8小时,比原铁路设计运行时间少用16小时.(1)渝利铁路通车后,重庆到上海的列车设计运行里程是多少千米?(2)专家建议:从安全的角度考虑,实际运行时速要比设计时速减少m%,以便于有充分时间应对突发事m小时,求m的值.件,这样,从重庆到上海的实际运行时间将增加11025.满洲里市某楼盘准备以每平方米5000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望.为了加快资金周转,房地产开发商对价格经过两次下调后,决定以每平方米4050元的均价开盘销售.(1)求平均每次下调的百分率;(2)某人准备以开盘均价购买一套100平方米的房子.开发商还给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,送两年物业管理费,物业管理费是每平方米每月1.5元,请问哪种方案更优惠?26.巴中市某楼盘准备以每平方米5000元的均价对外销售,由于有关部门关于房地产的新政策出台后,部分购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4050元的均价开盘销售,若两次下调的百分率相同,求平均每次下调的百分率.27.百货大楼服装柜在销售中发现:某品牌童装每件成本60元,现以每件100元销售,平均每天可售出20件.为了迎接“五•一”劳动节,商场决定采取适当的降价措施,以扩大销售量,增加盈利,尽量减少库存.经市场调查发现:如果每件童装降价1元,那么平均每天就可多销售2件.要想平均每天销售这种童装盈利1200元,请你帮商场算一算,每件童装应定价多少元?28.某学校规定,该学校教师的每人每月用电量不超过A度,那么这个月只需交10元电费,如果超过A度,则这个月除了仍要交10元用电费外,超过部分还要按每度A元交费.100(1)胡教师12月份用电90度,超过了规定的A度,则超过的部分应交电费多少元?(用含A的代数式表示)(2)下面是该教师10月、11月的用电情况和交费情况:根据上表数据,求A值,并计算该教师12月份应交电费多少元?29.某农场要建一个长方形的养鸡场,鸡场的一边靠墙(墙长25m)另三边用木栏围成,木栏长40m.(1)鸡场的面积能达到180m2吗?能达到200m2吗?(2)鸡场的面积能达到250m2吗?如果能,请你给出设计方案;如果不能,请说明理由.答案解析部分一、单选题1.【答案】B2.【答案】D3.【答案】B4.【答案】C5.【答案】B6.【答案】B7.【答案】B8.【答案】C9.【答案】A10.【答案】B二、填空题11.【答案】m≤112.【答案】x=0或x=613.【答案】k≥114.【答案】915.【答案】x1=4,x2=-116.【答案】201517.【答案】m<﹣418.【答案】m≤﹣32或m≥﹣1419.【答案】3或-120.【答案】(x+3)(3﹣0.5x)=10三、解答题21.【答案】解:(1)∵x2﹣25=0,∴x2=25,∴x=±5.(2)∵(x+5)2=16,∴x+5=±4,∴x=﹣1或﹣9.22.【答案】解:(1)当m2﹣1≠0时,(m2﹣1)x2+(m+1)x+1=0是一元二次方程,解得m≠±1,所以当m≠±1时,(m2﹣1)x2+(m+1)x+1=0是一元二次方程;(2)当m2﹣1=0,且m+1≠0时,(m2﹣1)x2+(m+1)x+1=0是一元一次方程,解得m=±1,且m≠﹣1,m=﹣1(不符合题意的要舍去),m=1.所以当m=1时,(m2﹣1)x2+(m+1)x+1=0是一元一次方程.23.【答案】解:(1)50+x-40=x+10;(2)由已知得,(x+10)(400-10x)=6000,整理得:x2-30x+200=0解得,x1=10,x2=20 ,经检验: x1=10,x2=20 ,答:当定价增加10元或20元时,商店获得利润6000元.24.【答案】解:(1)设原时速为xkm/h,通车后里程为ykm,则有:{8(120+x)=y(8+16)x=320+y,解得:{x=80y=1600,答:渝利铁路通车后,重庆到上海的列车设计运行里程是1600千米;(2)由题意可得出:(80+120)(1﹣m%)(8+110m)=1600,解得:m1=20,m2=0(不合题意舍去),答:m的值为20.25.【答案】解:(1)设平均每次降价的百分率是x,根据题意列方程得,5000(1﹣x)2=4050,解得:x1=10%,x2=1.9(不合题意,舍去);答:平均每次降价的百分率为10%.(2)方案一的房款是:4050×100×0.98+3600=400500(元);方案二的房款是:4050×100﹣1.5×100×12×2=401400(元)∵400500元<401400元.∴选方案一更优惠.26.【答案】解:设平均每次下调的百分率为x,根据题意得:5000(1﹣x)2=4050,解得:x1=0.1=10%,x2=1.9(不合题意,舍去).答:平均每次下调的百分率为10%27.【答案】解:设每件童装应降价x元,由题意得:(100﹣60﹣x)(20+2x)=1200,解得:x1=10,x2=20,∵商场决定采取适当的降价措施,以扩大销售量,增加盈利,尽量减少库存,∴x=20,∴每件童装应定价为:100﹣20=80(元),答:每件童装应定价8028.【答案】解:(1)(90-A)×A100(2)10+(80-A)×A100=25;整理得A2-80A+1500=0解得A1=50,A2=30,由10月交电费情况可知A⩾45,∴A=50,∴(90-A)×A/100+10=20+10=30;答:12月份应交电费30元.29.【答案】解;(1)设宽为x米,长(40-2x)米,根据题意得:x(40-2x)=200,-2x2+40x-200=0,解得:x1=x2=10,则鸡场靠墙的一边长为:40-2x=20(米),答:鸡场靠墙的一边长20米.(2)根据题意得:x(40-2x)=250,∴-2x2+40x-250=0,∵b2-4ac=402-4×(-2)×(-250)<0,∴方程无实数根,∴不能使鸡场的面积能达到250m2.。

青岛市中九年级数学上册第四单元《圆》测试卷(包含答案解析)

青岛市中九年级数学上册第四单元《圆》测试卷(包含答案解析)

一、选择题1.如图,AC 为半圆的直径,弦3AB =,30BAC ∠=︒,点E 、F 分别为AB 和AC 上的动点,则BF EF +的最小值为( )A .3B .332C .3D .332+ 2.如图,A 是B 上任意一点,点C 在B 外,已知2AB =,4BC =,ACD △是等边三角形,则BCD △的面积的最大值为( )A .434+B .43C .438+D .633.下列说法:(1)三点确定一个圆;(2)直径所对的圆周角是直角;(3)平分弦的直径垂直于弦,并且平分弦所对的弧;(4)相等的圆心角所对的弧相等;(5)圆内接四边形的对角互补.其中正确的个数为( )A .1个B .2个C .3个D .4个 4.如图,在⊙O 中,直径AB =10,弦DE ⊥AB 于点C ,若OC :OB =3:5,连接DO ,则DE 的长为( )A .3B .4C .6D .85.如图,AB 是半圆O 的直径,20BAC =︒∠,则D ∠的度数是( )A .70°B .100°C .110°D .120° 6.点P 到圆上各点的最大距离为10cm ,最小距离为6cm ,则此圆的半径为( )A .8cmB .5cm 或3cmC .8cm 或2cmD .3cm 7.如图,一条公路的拐弯处是一段圆弧AB ,点O 是这段弧所在的圆的圆心,20cm AB =,点C 是AB 的中点,点D 是AB 的中点,且5cm CD =,则这段弯路所在圆的半径为( )A .10cmB .12.5cmC .15cmD .17cm 8.在平面直角坐标系中,以点()3,4-为圆心,半径为5作圆,则原点一定( ) A .与圆相切B .在圆外C .在圆上D .在圆内 9.已知正方形的边长a ,其内切圆的半径为r ,外接圆的半径为R ,则::R r a =( ) A .2:1:2B .2:1:1C .2:1:1D .2:2:4 10.已知⊙O 的直径为6,圆心O 到直线l 的距离为3,则能表示直线l 与⊙O 的位置关系的图是( ) A . B .C .D .11.如图,EM 经过圆心O ,EM CD ⊥于M ,若4CD =,6EM =,则CED 所在圆的半径为( )A .103B .83C .3D .412.下列说法中,正确的是( )A .三点确定一个圆B .在同圆或等圆中,相等的弦所对的圆周角相等C .平分弦的直径垂直于弦D .在同圆或等圆中,相等的圆心角所对的弦相等 二、填空题13.下列说法:①弦是圆上任意两点之间的部分;②平分弦的直径垂直于弦;③垂直于弦的直线平分弦所对的两条弧;④直径是最长的弦;⑤弦的垂直平分线经过圆心;⑥直径是圆的对称轴.其中正确的是________.14.如图,PA ,PB 是O 的切线,A ,B 为切点,AC 是O 的直径,35BAC ∠=︒,则P ∠的度数为________.15.如图,AB 是半圆O 的直径,且4AB =,30BAC ︒∠=,则AC 的长为_________.16.在ABC 中,90,3,4C AC BC ∠===,则ABC 的内切圆的周长为___________.17.如图,O 是正方形ABCD 的外接圆,2,AB =点E 是劣弧AD 上的任意一点,连接BE ,作CF BE ⊥于点F ,连接,AF 则当点E 从点A 出发按顺时针方向运动到点D 时,AF 长的取值范围为________________.18.如图,正五边形ABCDE 内接于⊙O ,点F 在DE 上,则∠CFD =_____度.19.如图,AB 是O 的直径,O 交BC 的中点于D ,DE AC ⊥于E ,连接AD ,则下列结论正确的有______(填序号) ①AD BC ⊥;②EDA B ∠=∠;③12OA AC =;④DE 是O 的切线.20.湖州南浔镇河流密如蛛网,民间有“千步一桥”之说.如图,某圆弧形桥拱的跨度AB =12米,拱高CD =4米,则该拱桥的半径为____米.三、解答题21.如图,在矩形ABCD 中,4AB =,6BC =.E 为CD 边上的一个动点(不与C 、D 重合),⊙O 是BCE 的外接圆.(1)若2CE =,⊙O 交AD 于点F 、G .求FG 的长度;(2)若CE 的长度为m ,⊙O 与AD 的位置关系随着m 的值变化而变化,试探索⊙O 与AD 的位置关系及对应的m 的取值范围.22.如图,已知O 的直径AB ⊥弦CD 于点E ,且E 是OB 的中点,连接CO 并延长交AD 于点F .(1)求证:CF AD ⊥;(2)若12AB =,求CD 的长.23.如图,AB 是O 的一条弦,⊥OD AB ,垂足为C ,OD 交O 于点D ,点E 在O 上,若50AOD .(1)求DEB ∠的度数:(2)若3OC =,5OA =,①求弦AB 的长;②求劣弧AB 的长.24.对于平面直角坐标系xOy 中的点P 和C ,给出如下定义:如果C 的半径为r ,C 外一点P 到C 的切线长小于或等于2r ,那么点P 叫做C 的“离心点”. (1)当C 的半径为1时,①在点())12313,0,2,5,02P P P ⎛- ⎝⎭中,C 的“离心点”是_____________; ②点P(m ,n)在直线3y x =-+上,且点P 是O 的“离心点”,求点P 横坐标m 的取值范围; (2) C 的圆心C 在y 轴上,半径为2,直线132y x =-+与x 轴.y 轴分别交于点A 、B .如果线段AB 上的所有点都是C 的“离心点”,请直接写出圆心C 纵坐标的取值范围.25.如图,在Rt△ABC中,∠C=90°,以BC为直径的圆O交AB于点D,切线DE交AC于点E.(1)求证:∠A=∠ADE;(2)若AD=8,DE=5,求BC的长.26.如图,ABC内接于O,60∠=︒,点D是BC的中点.BC,AB边上的高BACAE,CF相交于点H.试证明:∠=∠;(1)FAH CAO(2)四边形AHDO是菱形.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】作B点关于直径AC的对称点B′,过B′点作B′E⊥AB于E,交AC于F,如图,利用两点之间线段最短和垂线段最短可判断此时FB+FE的值最小,再判断△ABB′为等边三角形,然后计算出B′E的长即可.【详解】解:作B点关于直径AC的对称点B′,过B′点作B′E⊥AB于E,交AC于F,如图,则FB =FB′,∴FB +FE =FB′+FE =B′E ,此时FB +FE 的值最小,∵∠BAC =30°,∴∠B′AC =30°,∴∠BAB′=60°,∵AB =AB′,∴△ABB′为等边三角形,∵B′E ⊥AB ,∴AE =BE =32, ∴B′E 3=332, 即BF +EF 33. 故选:B .【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.也考查了等腰三角形的性质.2.A解析:A【分析】以BC 为边作等边BCM ,连接DM ,则DCM CAB ≅△△,根据全等三角形的性质得到DM=AB=2为定值,即点D 在以M 为圆心,半径为2的圆上运动,当点D 运动至BC 为中垂线与圆的交点时,BC 边上的高取最大值为232,根据三角形的面积即可得到结论.【详解】解:以BC 为边作等边BCM ,连接DM ,∵60DCA MCB ==∠∠,∴DCM ACB =∠∠,∵DC=AC ,MC=BC ,∴DCM CAB ≅△△(SAS ),∴DM=AB=2为定值,即点D 在以M 为圆心,半径为2的圆上运动,当点D 运动至BC 为中垂线与圆的交点时,BC 边上的高取最大值为232, 此时面积为:434故选:A【点睛】本题考查了等边三角形的性质,三角形面积的计算,找出点D 的位置是解题的关键. 3.B解析:B【分析】根据确定圆的条件、直径的性质、垂径定理、圆周角定理、圆内接四边形的性质一一判断即可.【详解】解:(1)任意三点确定一个圆;错误,应该是不在同一直线上的三点可以确定一个圆; (2)直径所对的圆周角是直角;正确;(3)平分弦的直径垂直于弦;并且平分弦所对的弧,错误,直径与直径互相平分,但不一定互相垂直;(4)相等的圆心角所对的弧相等;错误,应该是在同圆或等圆中;(5)圆内接四边形对角互补;正确;故选:B .【点睛】本题考查确定圆的条件、直径的性质、垂径定理、圆周角定理、圆内接四边形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.4.D解析:D【分析】根据题意可求出OC 长度,再根据勾股定理求出CD 长度,最后根据垂径定理即可得到DE【详解】∵AB =10,∴OB =5OC :OB =3:5,∴OC =3,在Rt OCD △ 中,4CD ===∵DE ⊥AB ,∴DE =2CD =8,故选:D .【点睛】本题考查垂径定理、勾股定理.掌握垂径定理“垂直于弦的直径平分这条弦”是解题的关键.5.C解析:C【分析】先根据圆周角定理可得90ACB ∠=︒,再根据直角三角形的性质可得70B ∠=︒,然后根据圆内接四边形的性质即可得.【详解】AB 是半圆O 的直径,90ACB ∴∠=︒,20BAC ∠=︒,9070B BAC ∴∠=︒-∠=︒, 又四边形ABCD 是圆O 内接四边形,180110D B ∴∠=︒-∠=︒,故选:C .【点睛】本题考查了圆周角定理、直角三角形的性质、圆内接四边形的性质,熟练掌握圆周角定理是解题关键.6.C解析:C【分析】分析题意,本题应分两种情况讨论:(1)点P 在圆内;(2)点P 在圆外;根据“一个点到圆的最大距离和最短距离都在过圆心的直线上”可知,点P 到圆的最大距离与最小距离的和或差即是圆的直径,进而即可得出半径的长.【详解】当点P 在圆内时,圆的直径是10+6=16cm ,所以半径是8cm .当点P 在圆外时,圆的直径是10-6=4cm ,所以半径是2cm .【点睛】本题考查了圆的有关性质,熟知一个点到圆的最大距离和最短距离都在过圆心的直线上是解题的关键.7.B解析:B【分析】根据题意,可以推出AD=BD=10,若设半径为r,则OD=r﹣5,OA=r,结合勾股定理可推出半径r的值.【详解】解:∵OC⊥AB,AB=20,∴AD=DB=10,在Rt AOD中,OA2=OD2+AD2,设半径为r得:r2=(r﹣5)2+102,解得:r=12.5,∴这段弯路的半径为12.5,故选:B.【点睛】本题主要考查垂径定理的应用、勾股定理的应用,关键在于设出半径为r后,用r表示出OD、OA的长度.8.C解析:C【分析】设点(-3,4)为点P,原点为点O,先计算出OP的长,然后根据点与圆的位置关系的判定方法求解.【详解】解:∵设点(-3,4)为点P,原点为点O,∴OP5,而⊙P的半径为5,∴OP等于圆的半径,∴点O在⊙P上.故选:C.【点睛】本题考查了点与圆的位置关系:点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.9.A解析:A【分析】经过圆心O 作正方形一边AB 的垂线OC ,垂足是C .连接OA ,则在直角△OAC 中,∠AOC=45°.OC 是边心距r ,OA 即半径R ,进而即可求解【详解】如图:作出正方形的边心距,连接正方形的一个顶点和中心可得到一直角三角形 在中心的直角三角形的角为360°÷4÷2=45°,∴内切圆的半径为2a ,外接圆的半径为2a , ∴::R r a22a :2a :a=2:1:2 故选A【点睛】本题主要考查正多边形的外接圆与内切圆的半径,掌握相关概念,作出图形,是解题的关键.10.C解析:C【分析】因为⊙O 的直径为6,所以圆的半径是3,圆心O 到直线l 的距离为3即d=3,所以d=r ,所以直线l 与⊙O 的位置关系是相切.【详解】解:∵⊙O 的直径为6,∴r=3,∵圆心O 到直线l 的距离为3即d=3,∴d=r∴直线l 与⊙O 的位置关系是相切.故选:C .【点睛】本题考查直线与圆的位置关系,若圆的半径为r ,圆心到直线的距离为d ,d >r 时,圆和直线相离;d=r 时,圆和直线相切;d <r 时,圆和直线相交.11.A解析:A【分析】如图,连接OD ,设半径为r ,则OM=6-r;再由垂径定理求出MD 的长,然后根据勾股定理解答即可.【详解】解:如图,连接OD ,设半径为r ,则OM=6-r∵EM CD ⊥∴MD=12CD=2 在Rt △MOD 中,OD=r ,OM=6-r ,MD=2 ∴222OM MD OD +=,即()22262r r -+=,解得r=103. 故答案为A .【点睛】本题考查了圆的垂径定理和勾股定理,根据垂径定理求得MD 的长是解答本题的关键. 12.D解析:D【分析】根据确定圆的条件、垂径定理、圆周角定理一一判断即可.【详解】解:A 、任意三点确定一个圆;错误,应该的不在同一直线上的三点可以确定一个圆,不符合题意;B 、在同圆或等圆中,相等的弦所对的圆周角相等或互补,错误,不符合题意;C 、平分弦的直径垂直于弦,错误,此弦不是直径,不符合题意;D 、在同圆或等圆中,相等的圆心角所对的弦相等,正确,符合题意;故选:D .【点睛】本题考查确定圆的条件、垂径定理、圆周角定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.二、填空题13.④⑤【分析】根据弦的定义垂径定理圆的对称性即可求解【详解】解:①连接圆上两点间的线段才是弦故原说法错误;②平分弦(不是直径)的直径垂直于弦故原说法错误;③垂直于弦的直径平分弦所对的两条弧故原说法错误解析:④⑤.【分析】根据弦的定义、垂径定理、圆的对称性即可求解.【详解】解:①、连接圆上两点间的线段才是弦,故原说法错误;②平分弦(不是直径)的直径垂直于弦,故原说法错误;③垂直于弦的直径平分弦所对的两条弧,故原说法错误;④直径是最长的弦,正确;⑤弦的垂直平分线经过圆心,正确;⑥直径所在的直线是圆的对称轴,故原说法错误;所以,正确的结论有④⑤.故答案为:④⑤.【点睛】本题考查了圆的对称性,垂径定理的应用,主要考查学生的理解能力和辨析能力,熟练掌握垂径定理是解决问题的关键.14.70°【分析】根据题意可以求得∠OAP和∠OBP的度数然后根据∠BAC=35°即可求得∠P的度数【详解】解:连接OB:∵PAPB是⊙O的两条切线AB是切点AC是⊙O的直径∴∠OAP=∠OBP=90°解析:70°【分析】根据题意可以求得∠OAP和∠OBP的度数,然后根据∠BAC=35°,即可求得∠P的度数.【详解】解:连接OB:∵PA、PB是⊙O的两条切线,A、B是切点,AC是⊙O的直径,∴∠OAP=∠OBP=90°,∵∠BAC=35°,OA=OB,∴∠BAC=∠OBA=35°,∴∠PAB=∠PBA=55°,∴∠P=180°−∠PAB−∠PBA=70°,即∠P的度数是70°,故答案为:70°.【点睛】本题考查切线的性质,解答此类问题的关键是明确题意,找出所求问题需要的条件,利用切线的性质解答问题.15.【分析】先根据可求得进而可求得再利用弧长公式计算即可求得答案【详解】解:∵∴∴∵∴∴的长为故答案为:【点睛】本题考查了圆周角定理弧长公式的应用熟练掌握圆周角定理弧长公式是解决本题的关键 解析:43π 【分析】先根据30BAC ∠=︒可求得260BOC BAC ∠=∠=︒,进而可求得180120AOC BOC ∠=︒-∠=︒,再利用弧长公式计算即可求得答案.【详解】解:∵30BAC ∠=︒,∴260BOC BAC ∠=∠=︒,∴180120AOC BOC ∠=︒-∠=︒,∵4AB =, ∴122AO AB ==, ∴AC 的长为120241803ππ⋅⋅=, 故答案为:43π. 【点睛】本题考查了圆周角定理,弧长公式的应用,熟练掌握圆周角定理,弧长公式是解决本题的关键.16.【分析】先根据勾股定理求出斜边AB 的长再根据直角三角形内切圆的半径公式求出半径再算出周长【详解】解:根据勾股定理内切圆半径内切圆周长故答案是:【点睛】本题考查三角形的内切圆解题的关键是掌握直角三角形 解析:2π【分析】先根据勾股定理求出斜边AB 的长,再根据直角三角形内切圆的半径公式求出半径,再算出周长.【详解】解:根据勾股定理,5AB ==, 内切圆半径345122AC BC AB +-+-===, 内切圆周长22r ππ==.故答案是:2π.【点睛】本题考查三角形的内切圆,解题的关键是掌握直角三角形内切圆半径的求解方法.17.【分析】首先根据题意可知当点与点重合时最长的最大值为;再证明点的运动轨迹为以为直径的通过添加辅助线连接交于点连接由线段公理可知当点与点重合时最短的最小值为即可得解【详解】解:∵由题意可知当点与点重合 解析:512AF -≤≤【分析】 首先根据题意可知,当点F 与点B 重合时AF 最长,AF 的最大值为2;再证明点F 的运动轨迹为以BC 为直径的'O ,通过添加辅助线连接'AO 交'O 于点M ,连接'O F ,由线段公理可知,当点F 与点M 重合时AF 最短,AF 的最小值为51-.即可得解.【详解】解:∵由题意可知,当点F 与点B 重合时AF 最长∴此时2AF AB ==,即AF 的最大值为2∵CF BE ⊥∴90CFB ∠=︒ ∴点F 的运动轨迹为以BC 为直径的'O ,连接'AO 交'O 于点M ,连接'O F ,如图:∵2AB =∴11'122BO BC AB === ∴在'Rt ABO 中,22''5AO AB BO =+=∴''51AM AO O M =-=∴由两点之间,线段最短可知,当点F 与点M 重合时AF 最短∴AF 51∴512AF ≤≤.【点睛】本题考查了正多边形和圆的动点问题、90︒的圆周角所对的弦为直径、勾股定理、线段公理等知识点,解题的关键是确定AF 取最大值和最小值时点F 的位置,属于中考常考题型,难度中等.18.36【分析】连接OCOD 求出∠COD 的度数再根据圆周角定理即可解决问题【详解】如图连接OCOD∵五边形ABCDE是正五边形∴∠COD==72°∴∠CFD=∠COD=36°故答案为:36【点睛】本题考解析:36.【分析】连接OC,OD.求出∠COD的度数,再根据圆周角定理即可解决问题.【详解】如图,连接OC,OD.∵五边形ABCDE是正五边形,∴∠COD=3605︒=72°,∴∠CFD=12∠COD=36°,故答案为:36.【点睛】本题考查了正多边形和圆、圆周角定理等知识,解题的关键是熟练掌握基本知识.19.①②③④【分析】根据题意易得∠ADB=90°可得①进而根据线段垂直平分线的性质可得AC=AB连接OD然后根据圆的基本性质及切线的判定定理可求解【详解】解:∵是的直径∴∠ADB=90°∴AD⊥BC故①解析:①②③④【分析】根据题意易得∠ADB=90°,可得①,进而根据线段垂直平分线的性质可得AC=AB,连接OD,然后根据圆的基本性质及切线的判定定理可求解.【详解】解:∵AB是O的直径,∴∠ADB=90°,∴AD⊥BC,故①正确;∵点D是BC的中点,∴AC=AB,∴△ABC是等腰三角形,∴∠B=∠C,∠CAD=∠BAD,∵DE⊥AC,∠CDA=90°,∴∠EDA+∠EAD=90°,∠CAD+∠C=90°,∴EDA C∠=∠,∴EDA B ∠=∠,故②正确; ∵12OA AB =, ∴12OA AC =,故③正确; 连接OD ,如图所示:∵OD=OA ,∴∠ADO=∠DAO ,∴∠ADO=∠EAD ,∴∠ADO+∠EDA=90°,∴ED 是⊙O 的切线,故④正确;∴正确的有①②③④;故答案为①②③④.【点睛】本题主要考查切线的判定定理及等腰三角形的性质与判定,熟练掌握切线的判定定理及等腰三角形的性质与判定是解题的关键.20.65【分析】根据垂径定理的推论此圆的圆心在CD 所在的直线上设圆心是O 连接OA 根据垂径定理和勾股定理求解【详解】根据垂径定理的推论知此圆的圆心在CD 所在的直线上设圆心是O 连接OA 拱桥的跨度AB=12m解析:6.5【分析】根据垂径定理的推论,此圆的圆心在CD 所在的直线上,设圆心是O .连接OA .根据垂径定理和勾股定理求解.【详解】根据垂径定理的推论,知此圆的圆心在CD 所在的直线上,设圆心是O ,连接OA . 拱桥的跨度AB =12m ,拱高CD =4m ,根据垂径定理,得AD=6 m ,利用勾股定理可得:()22264AO AO =--,解得:AO =6.5m .即圆弧半径为6.5米,故答案为:6.5.【点睛】本题综合运用了勾股定理以及垂径定理.注意由半径、半弦、弦心距构造的直角三角形进行有关的计算. 三、解答题21.(1)2FG =;(2)当704m <<时,⊙O 与AD 相离;当74m =时,⊙O 与AD 相切;当744m <<时,⊙O 与AD 相交 【分析】(1)过点O 作OM FG ⊥于点M ,延长MO 交BC 于点N ,连接OG .在Rt BCE ∆中,利用勾股定理求出BE ,再在Rt OMG ∆中求出MG 即可解决问题.(2)如图1中,当O 与AD 相切于点M 时,连接OM 并反向延长交BC 于点N .求出相切时,m 的值即可判断.【详解】解:(1)解:过点O 作OM FG ⊥于点M ,延长MO 交BC 于点N ,连接OG ,四边形ABCD 是矩形,90C D ∴∠=∠=︒,BE ∴是O 的直径.90C D DMN ∠=∠=∠=︒,∴四边形MNCD 是矩形,MN BC ∴⊥,4MN CD AB ===,BN CN ∴=.OB OE =,ON ∴是BCE ∆的中位线,112ON CE ∴==, 413OM ∴=-=,在Rt BCE ∆中,22210=+=BE BC CE ,1102OG BE ∴==, 在Rt OMG ∆中,221=-=MG OG OM ,22FG MG ∴==.(2)解:如图1中,当O 与AD 相切于点M 时,连接OM 并反向延长交BC 于点N .由(1)易得1122==ON CE m ,142==-OB OM m ,3BN =, 在Rt BON ∆中,222+=ON BN OB ,即22211()3(4)22m m +=-, 解得74m =, ∴当704m <<时,O 与AD 相离, 当74m =时,O 与AD 相切, 当744m <<时,O 与AD 相交. 【点睛】本题考查直线与圆的位置关系,矩形的性质,垂径定理,三角形的外心等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.22.(1)证明见解析;(2)63CD =【分析】(1)首先根据垂径定理和等腰三角形的性质得到CB=CO ,然后结合OC=OB ,得到OCB 是等边三角形根据圆周角定理和对顶角的性质,结合三角形内角和定理即可证明90AFO ∠=︒,即可证明;(2)根据题意和(1)问结论得到OE=3,在Rt OCE 中应用勾股定理求得CE ,结合垂径定理即可求得CD .【详解】(1)证明:如图,连接BC .∵AB CD ⊥,E 是OB 的中点,∴CB CO =,12BCD BCO ∠=∠. ∵OC OB =,∴OB OC BC ==, ∴OCB 是等边三角形,∴60BOC BCO ∠=∠=°,∴60AOF BOC ∠=∠=°,30BCD BAD ∠=∠=︒, ∴()180603090AFO ∠=-+=°°°°,∴CF AD ⊥.(2)∵12AB =,∴6OB =.∵E 是OB 的中点, ∴132OE OB ==. 在Rt OCE 中,22226333CE OC OE --=∵AB CD ⊥, ∴263CD CE ==.【点睛】本题考查了垂径定理,圆周角定理,等边三角形的判定和性质,勾股定理,属于圆的综合题,重点是掌握相关定理,要求考生熟记并能熟练应用,是中考的重难点.23.(1)25°;(2)①8;②25π9 【分析】(1)根据垂径定理和圆周角定理求解即可;(2)①根据勾股定理和垂径定理求解即可;②先求出100AOB ∠=︒,再根据弧长公式计算即可.【详解】解:(1)∵⊥OD AB ,∴AD BD =,∴11502522DEB AOD ∠=∠=⨯︒=︒; (2)①∵3OC =,5OA =,⊥OD AB , ∴4AC ==,∴AB=2AC=8;②∵50AOD ,AD BD =,∴100AOB ∠=︒, ∵5OA =,∴弧AB 的长π1005π25π1801809n r ⨯===. 【点睛】本题考查了垂径定理,圆周角定理,弧、弦、圆心角的关系,以及弧长公式,熟练掌握各知识点是解答本题的关键.24.(1)①23,P P ;②12m ≤≤;(2)圆心C 的纵坐标满足34y <≤或11y -≤<-【分析】(1) ①分别计算123OP OP OP ,,的长,判断P 到C 的切线长是否小于或等于2r ,即可解题;②设(),3P m m -+,根据题意,当过点P 的切线长为2时,OP=5,列出相应的一元二次方程,解方程即可;(2) 分类讨论,当C 在y 轴的正半轴上时,当点C 在y 轴的负半轴上时,当圆C 与直线112y x =-+相切时,画出相应的图形,结合全等三角形的判定与性质解题. 【详解】①())1231,,0,2,22P P P ⎛- ⎝⎭1231,2,OP OP OP ===所以点1P 不在圆上,不符合题意;因为过点2P 的切线长为==2<所以2P 是圆的离心点因为过3P 的切线长为22===所以3P 是离心点;故答案为23,P P ;②如图设(),3P m m -+当过点P 的切线长为2时,OP=5,所以22(3)5m m +-+=解得m=1或m=2观察图像得12m ≤≤(2)如图2,当C 在y 轴的正半轴上时,经过点B(1,0),A(2,0)当AC=25,点A 是离心点,此时C(0,4); 观察图像知圆的纵坐标满足34y <≤,线段AB 上所有的点都是离心点;如图3,当点C 在y 轴的负半轴上时,25BC =,点B 是离心点,此时C(0, 125-)如图4,当圆C 与直线112y x =-+相切时,设切点为N ,如图,由题意得CNB AOB ∆≅∆5CB NB ==(0,15C ∴,观察图像得当圆C 的纵坐标满足11y -≤<-AB 上的所有点都是离心点;综上所述,圆C 的纵坐标满足34y <≤或11y -≤<-【点睛】本题考查直线与圆的位置关系、切线等知识,是重要考点,难度中等,掌握相关知识是解题关键.25.(1)证明见解析;(2)152. 【分析】(1)只要证明90A B ∠+∠=︒,90ADE B ∠+∠=︒,即可解决问题;(2)首先证明210AC DE ==,在Rt △ADC 中,6DC =,设BD x =,在Rt △BDC 中,2226BC x =+,在Rt △ABC 中,()222810BC x =+-,可得()22226810x x +=+-,解方程即可解决问题;【详解】(1)证明:连接OD ,∵DE 是切线,∴90ODE ∠=︒,∴90ADE BDO ∠+∠=︒,∵90ACB ∠=︒,∴90A B ∠+∠=︒,∵OD=OB ,∴B BDO ∠=∠,∴ADE A ∠=∠;(2)连接CD ,∵ADE A ∠=∠,∴AE=DE ,∵BC 为圆O 的直径,90ACB ∠=︒,∴EC 是O 的切线,∴ED=EC ,∴AE=EC ,∵5DE =,∴210AC DE ==,在Rt △ADC 中,6DC =,设BD x =,在Rt △BDC 中,222=6BC x +,在Rt △ABC 中,()222810BC x =+-,∴()22226810x x +=+-,解得:92x =, ∴22915622BC ⎛⎫=+= ⎪⎝⎭.【点睛】本题主要考查了圆的基本性质,切线的性质,准确分析计算是解题的关键.26.(1)见详解;(2)见详解【分析】(1)连接AD ,根据题意易得,BAD CAD OD BC ∠=∠⊥,则有∠DAE=∠ODA ,∠DAO=∠ODA ,然后根据角的等量关系可求解;(2)过点O 作OM ⊥AC 于M ,由题意易得AC=2AM ,AC=2AF ,进而可证△AFH ≌△AMO ,然后可得四边形AHDO 是平行四边形,最后问题可证.【详解】证明:(1)连接AD ,如图所示:∵点D 是BC 的中点,∴,BAD CAD OD BC ∠=∠⊥,∵AE ⊥BC ,∴AE ∥OD ,∴∠DAE=∠ODA ,∵OA=OD ,∴∠DAO=∠ODA ,∴∠BAD-∠DAE=∠CAD-∠DAO ,∴∠FAH=∠CAO ;(2)过点O 作OM ⊥AC 于M ,∴AC=2AM,∵CF⊥AB,∠BAC=60°,∴AC=2AF,∴AF=AM,∵∠AFH=∠AMO=90°,∠FAH=∠OAM,∴△AFH≌△AMO(ASA),∴AH=AO,∵OA=OD,∴AH//CD,∴四边形AHDO是平行四边形,∵OA=OD,∴四边形AHDO是菱形.【点睛】本题主要考查圆周角定理、垂径定理及菱形的判定,熟练掌握圆周角定理、垂径定理及菱形的判定是解题的关键.。

九年级数学上册 专题突破讲练 圆中辅助线添加技巧试题 (新版)青岛版

九年级数学上册 专题突破讲练 圆中辅助线添加技巧试题 (新版)青岛版

圆中辅助线添加技巧1. 辅助线方法:连半径、作垂直、构造直角三角形。

说明:此方法多用于求半径或弦长,利用勾股定理求长度。

方法依据:(垂径定理)垂直于弦的直径平分这条弦,并且平分弦所对的弧。

2. 辅助线方法:连中点说明:在圆中如果出现弦的中点或弧的中点,连接圆心和中点的线段。

方法依据:(垂径定理推论)①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。

②平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧。

3. 与切线有关的辅助线作法:(1)点已知,连半径,证垂直说明:当直线和圆有一个公共点时,把圆心和这个公共点连接起来,则得到半径,然后证明直线垂直于这条半径。

(2)点未知,作垂直,证半径说明:当直线和圆的公共点没有明确时,过圆心作直线的垂线,再证圆心到直线的距离(d)等于半径(r)。

(3)见切线,连半径,得垂直说明:有圆的切线时,常常连接圆心和切点得切线垂直半径。

方法依据:切线的性质定理:圆的切线垂直于过切点的半径。

例题1 ⊙O的弦AB、CD相交于点P,且AC=BD。

求证:PO平分∠APD。

解析:由等弦AC=BD可得出弧AC等于弧BD,进一步得出弧AB等于弧CD,从而可证等弦AB=CD,由同圆中等弦上的弦心距相等且分别垂直于它们所对应的弦,因此可作辅助线OE⊥AB,OF⊥CD,易证△OPE≌△OPF,得出PO平分∠APD。

答案:证明:作OE⊥AB于E,OF⊥CD于F∵AC=BD∴AC BD=∴AB CD=∴AB=CD∴OE OFOEP OFP OP OP=⎧⎪∠=∠⎨⎪=⎩∴∠OPE=∠OPF∴ PO平分∠APD.点拨:在解决与弦、弧有关的问题时,常常需要作出弦心距、半径等辅助线,以便应用于垂径定理和勾股定理解决问题。

例题2(鞍山一模)如图,在等腰三角形ABC中,AB=AC,以AC为直径作圆O,与BC交于点E,过点E作ED⊥AB,垂足为点D。

求证:DE为⊙O的切线。

解析:连接OE,根据等边对等角,由AB=AC得到∠B=∠C,再由半径OC与OE相等得到∠C=∠CEO,利用等量代换得到∠B=∠CEO,由同位角相等两直线平行,得到AB与EO平行,再根据两直线平行内错角相等,由角BDE为直角得到角DEO为直角,又OE为圆O的半径,根据切线的判断方法得到DE为⊙O的切线。

九年级数学上册专题突破讲练解决圆锥问题的四字秘诀试题青岛版(2021年整理)

九年级数学上册专题突破讲练解决圆锥问题的四字秘诀试题青岛版(2021年整理)

九年级数学上册专题突破讲练解决圆锥问题的四字秘诀试题(新版)青岛版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(九年级数学上册专题突破讲练解决圆锥问题的四字秘诀试题(新版)青岛版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为九年级数学上册专题突破讲练解决圆锥问题的四字秘诀试题(新版)青岛版的全部内容。

解决圆锥问题的四字秘诀关于圆锥的侧面展开图计算问题在中考中时常出现,这类问题的解答,可以用四个字来概括:一、二、三、四.其中:“一个转化",是指将圆锥侧面问题转化为平面图形——扇形问题;“二个对应",是指圆锥的底面周长对应着扇形的弧长,圆锥的母线长对应着扇形的半径;“三个图形",是指圆锥侧面问题常常需要用到圆形、扇形、直角三角形来解决;“四个公式",是指圆锥侧面问题需要用①l 2=r 2+h 2,其中,如图,圆锥的底面半径r ,圆锥母线ι,圆锥的高h ,构成直角三角形; ②2=360n S l π侧 ③S 侧=21·2πr·ι=πrι ④2=S rl r ππ+全.圆锥侧面问题公式的灵活应用圆锥侧面问题四个公式共有5个量:l 、h 、r 、n 、S 侧,由于每个公式中只有三个量,从而只要知道其中的两个量,就可以将另外三个量利用方程或方程组求出来。

一、计算圆心角的度数例题1 (浙江中考)若圆锥的轴截面为等边三角形,则称此圆锥为正圆锥,则正圆锥侧面展开图的圆心角是( )A. 90° B 。

120° C. 150° D 。

180° 解析:因为此圆锥为正圆锥,所以圆锥底面圆的直径等于展开图扇形的半径,然后利用弧长公式求解。

2021九年级数学上册 专题突破讲练 解决圆锥问题的四字秘诀试题(新版)青岛版

2021九年级数学上册 专题突破讲练 解决圆锥问题的四字秘诀试题(新版)青岛版

2021九年级数学上册专题突破讲练解决圆锥问题的四字秘诀试题(新版)青岛版2021九年级数学上册专题突破讲练解决圆锥问题的四字秘诀试题(新版)青岛版质量试卷解决圆锥问题的四字秘诀圆锥的侧面展开图的计算经常出现在中学入学考试中。

这些问题的答案可以概括为四个词:一、二、三和四。

其中:“一个转化”,是指将圆锥侧面问题转化为平面图形――扇形问题;“二个对应”,是指圆锥的底面周长对应着扇形的弧长,圆锥的母线长对应着扇形的半径;“三个图形”,是指圆锥侧面问题常常需要用到圆形、扇形、直角三角形来解决;“四个公式”,是指圆锥侧面问题需要用二百二十二①l=r+h,其中,如图,圆锥的底面半径r,圆锥母线ι,圆锥的高h,构成直角三角形;NL236001③ s侧=2πRι=πRι22④s全=?rl??r。

② S侧=圆锥侧面问题公式的灵活应用圆锥边问题的四个公式中有五个量:l、h、R、N和S。

由于每个公式中只有三个量,只要我们知道其中的两个,我们就可以通过方程或方程来计算其他三个量。

1、计算中心角的度数例题1(浙江中考)若圆锥的轴截面为等边三角形,则称此圆锥为正圆锥,则正圆锥侧面展开图的圆心角是()a、90°b.120°c.150°d.180°解析:因为此圆锥为正圆锥,所以圆锥底面圆的直径等于展开图扇形的半径,然后利用弧长公式求解。

解:设圆锥侧面展开图扇形的圆心角为n,半径为r,则圆锥的底面直径也为r,根据圆锥侧面展开图扇形的弧长等于圆锥底面圆的周长,可得NRr、溶液为n=180°。

180答案:D点拨:在解决圆锥与展开图有关问题时,可以利用“圆锥侧面展开图扇形的弧长等于圆锥底面圆的周长”这一规律解决问题。

二、计算圆锥体的底部面积例题2如图,圆锥形冰淇淋盒的母线长是13cm,高是12cm,则该圆锥形底面圆的面积是()质量试卷精品试卷二a.10πcmb.25πcmc.60πcmd.65πcm分析:绘制圆锥体的轴截面图,然后根据等腰三角形的“三线合一”特性将其转换成直角三角形。

专题23 四点共圆九年级数学全一册重点题型通关训练(人教版)(解析版)

专题23 四点共圆九年级数学全一册重点题型通关训练(人教版)(解析版)

专题二十三四点共圆【导例】如图,在△ABC中,AB=AC,点D在BA延长线上,点E在BC边上,∠CAE=2∠ACD,∠BAE=60°.求证:A,E,C,D四点共圆.证明:如图,在△ABC中,AB=AC,∴∠B=∠ACB,∴∠DAC=2∠ACB,∵∠CAE=2∠ACD,∴∠CAD+∠CAE=2∠ACB+2∠ACD=2(∠ACB+∠ACD),∴∠DAE=2∠BCD,∵∠BAE=60°,∴∠DAE=180°-∠BAE=120°,∴∠BCD=60°,∴∠DAE+∠DCB=180°,∴点A,E,C,D四点共圆.【方法点睛】如何判断四点共圆:①四边形对角互补②借助同弦所对的圆周角相等,如:∠ADB=∠ACB,可判断ADCB四点共圆.借助四点共圆,能轻松得出构成同弦的圆周角相等.【典例精讲】【例1】如图,在四边形ABCD中,∠ABC=∠ADC=90°,∠ABD=72°,求∠CAD 的度数.解:∵∠ABC=∠ADC=90°,∴点A,点B,点C,点D四点共圆,∴∠ABD=∠ACD=72°,∴∠CAD=90°-∠ACD=18°.【例2】如图,若D为等腰Rt△ABC的边BC上一点,且DE⊥AD,BE⊥AB,AD=2,求AE的长.解:∵△ABC是等腰直角三角形,∴∠ABC=45°,∵DE⊥AD,BE⊥AB,∴∠ADE=∠ABE=90°,∴A,D,B,E四点共圆,∴∠AED=∠ABD=45°.在△ADE中,∠ADE=90°,∠AED=45°,∴△ADE为等腰直角三角形,=2√2.AE=ADsin45°【专题过关】1. 如图,已知∠ADB=∠ACB=60°,∠BAD=65°,则∠ACD=____.55°解:∵∠ADB=∠ACB=60°,∴A,B,C,D四点共圆,∴∠ACD=∠ABD=180°-∠ADB-∠BAD=180°-60°-65°=55°.2. 如图,△ABC中,∠ABC=60°,BD平分∠ABC,且∠ADC=120°.求证:AD=DC.证明:∵∠ABC+∠ADC=60°+120°=180°∴点A,点B,点C,点D四点共圆,∴∠ABD=∠ACD,∠DBC=∠DAC,∵BD平分∠ABC,∴∠ABD=∠DBC∴∠ACD=∠DAC∴AD=DC,3. 如图,在等腰Rt △ABC 中,∠ABC=90°,AB=BC=4,D 是BC 中点,∠CAD=∠CBE ,求AE 的长度.解:如图,连接DE ,∵∠ABC=90°,AB=BC=4,∴∠C=∠BAC=45°,AC=√2AB=4√2,∵D 是BC 中点,∴CD=12BC=2,∵∠CAD=∠CBE ,∴点A ,点B ,点D ,点E 四点共圆,∴∠ABD=∠DEC=90°,∴∠C=∠EDC=45°,∴DE=CE=√22CD=√2,∴AE=AC-CE=3√2.【专题提升】4.如图,正方形ABCD 的边长为6,点E ,F 分别在线段BC ,CD 上,且CF=3,CE=2,若点M ,N 分别在线段AB ,AD 上运动,P 为线段MF 上的点,在运动过程中,始终保持∠PEB=∠PFC ,则线段PN 的最小值为_____.9−√132解:如图1,∵∠PEB=∠PFC ,∠PEB+∠CEP=180°,∴∠CEP+∠CFP=180°,∴C 、E 、P 、F 四点共圆,∵四边形ABCD 是正方形,∴∠BCD=90°,∴EF 是直径,取EF 的中点为O ,以EF 为直径作圆O ,如图1,连接OP ,ON ,∵PN≥ON -OP ,∵OP 是定值,OP=12EF=12√22+32=√132, 即当O 、N 、P 三点共线,且ON ⊥AD 时,ON 最小,PN 最小,如图2,PN 最小,延长NO 交BC 于Q ,则OQ ⊥CE ,∴EQ=12EC=1, 由勾股定理得:OQ=√OE 2−EQ 2=√(√132)2−12=32, ∴PN=6-32-√132=9−√132. 即线段PN 的最小值为9−√132.5如图,在△ABC 中,∠B=75°,∠C=45°,AC=2√2,点P 是BC 上一动点,PE ⊥AB 于E ,PD ⊥AC 于D .无论P 的位置如何变化,线段DE 的最小值为____.√3解:∵PE⊥AB于E,PD⊥AC于D,即∠AEP=∠ADP=90°,∴A,E,P,D四点共圆,且AP为直径,AP中点O为圆心.连接OE,OD.∵∠DAD=180°-∠B-∠C=60°,∴∠EOD=2∠EAD=120°.∴△OED为顶角120°的等腰三角形,可得ED=√3OE.要求ED最小值,即求圆的直径AP最小,当AP⊥BC是AP最小.此时△APC为等腰直角三角形,∴AP=ACsin45°=2.AP=√3.ED=√3OE=√326.△ABC是等边三角形,点D是△ABC内一点,连接CD,将线段CD绕C逆时针旋转60°得到线段CE,连接BE,DE,AD,并延长AD交BE于点F.当点D在如图所示的位置时.(1)求∠AFB的度数;(2)直接写出线段FD,FE,FC之间的数量关系:____________.解:(1)∵△ABC是等边三角形,∴AB=AC=BC,∠BAC=∠ACB=∠ABC=60°,∴∠ACD+∠DCB=60°,由旋转知,CE=CD,∠DCE=60°,∴∠BCE+∠DCB=60°,∴∠ACD=∠BCE,∴△ACD≌△BCE(SAS),∴∠ADC=∠BEC,∵∠ADC+∠FDC=180°,∴∠BEC+∠FDC=180°,∴C,D,F,E四点共圆,∴∠AFE+∠DCE=180°,∵∠AFB+∠AFE=180°,∴∠AFB=∠DCE=60°.(2)由(1)知,△DCE是等边三角形,∴CE=DE,∠DFE=180°-∠DCE=120°,点C,D,F,E四点共圆,∴∠CFE=∠CDE=60°,在FC上取一点G,使FG=FE,∴△EFG是等边三角形,∴EG=FE,∠EGF=60°,∴∠CGE=120°=∠DFE,∵点C,D,F,E四点共圆,∴∠ECG=∠EDF,∴△CEG≌△DEF(AAS),∴CG=FD,∴FC=FG+CG=FE+FD.7. 如图,在等腰△ABC中,AB=AC=√5,D为BC边上异于中点的点,点C关于直线AD的对称点为点E,EB的延长线与AD的延长线交于点F,求AD•AF的值.解:如图,连接AE ,CF ,DE ,∵AB=AC ,∴∠ABD=∠ACB ,∵点C 关于直线AD 的对称点为点E ,∴∠BED=∠BCF ,∠AED=∠ACD=∠ACB , ∴∠ABD=∠AED ,∴点A ,E ,B ,D 四点共圆,∴∠BED=∠BAD ,∴∠BAD=∠BCF ,∴点A ,B ,F ,C 四点共圆,∴∠AFB=∠ACB=∠ABD ,∴△AFB ∽△ABD ,∴AB AD =AF AB ,∴AD•AF=AB 2=(√5)2=5。

九年级数学奥数知识点专题精讲---四点共圆

九年级数学奥数知识点专题精讲---四点共圆

知识点、重点、难点四点共圆是圆的基本内容,它广泛应用于解与圆有关的问题.与圆有关的问题变化多,解法灵活,综合性强,题型广泛,因而历来是数学竞赛的热点内容。

在解题中,如果图形中蕴含着某四点在同一个圆上,或根据需要作出辅助圆使四点共圆,利用圆的有关性质定理,则会使复杂问题变得简单,从而使问题得到解决。

因此,掌握四点共圆的方法很重要。

判定四点共圆最基本的方法是圆的定义:如果A、B、C、D四个点到定点O的距离相等,即OA=OB=OC=OD,那么A、B、C、D四点共圆.由此,我们立即可以得出1.如果两个直角三角形具有公共斜边,那么这两个直角三角形的四个顶点共圆。

将上述判定推广到一般情况,得:2.如果四边形的对角互补,那么这个四边形的四个顶点共圆。

3.如果四边形的外角等于它的内对角,那么这个四边形的四个顶点共圆。

4.如果两个三角形有公共底边,且在公共底边同侧又有相等的顶角,那么这两个三角形的四个顶点共圆。

运用这些判定四点共圆的方法,立即可以推出:正方形、矩形、等腰梯形的四个顶点共圆。

其实,在与圆有关的定理中,一些定理的逆定理也是成立的,它们为我们提供了另一些证明四点共圆的方法.这就是:1.相交弦定理的逆定理:若两线段AB和CD相交于E,且AE·EB=CE·ED,则A、B、C、D四点共圆。

2.割线定理的逆定理:若相交于点P的两线段PB、PD上各有一点A、C,且PA·PB =PC·PD,则A、B、C、D四点共圆。

3.托勒密定理的逆定理:若四边形ABCD中,AB·CD+BC·DA= AC·BD,则ABCD是圆内接四边形。

另外,证多点共圆往往是以四点共圆为基础实现的一般可先证其中四点共圆,然后证其余各点均在这个圆上,或者证其中某些点个个共圆,然后判断这些圆实际是同一个圆。

例题精讲例1:如图,P为△ABC内一点,D、E、F分别在BC、CA、AB上。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

四点共圆问题大盘点
1. 四点共圆的性质:
(1)共圆的四个点所连成同侧共底的两个三角形的顶角度数相等;
(2)圆内接四边形的对角互补;
(3)圆内接四边形的外角等于内对角。

2. 四点共圆常用的判定方法:
判定1:到定点的距离等于定长的点在同一圆上。

如果:OA=OB=OC=OD,则A、B、C、D四点共圆。

判定2:若两个直角三角形共斜边,则四个顶点共圆,且直角三角形的斜边为圆的直径。

如果:△ABD和△BCD是直角三角形,则A、B、C、D四点共圆。

判定3:共底边的两个三角形顶角相等,且在底边的同侧,则四个顶点共圆。

如果:A、D在公共边BC同侧,且∠A=∠D,则A、B、C、D四点共圆。

判定4:对于凸四边形ABCD,若对角互补或一个外角等于其邻补角的内对角,则A、B、C、D四点共圆。

如果:∠1+∠2=180°或∠1=∠3,则A 、B 、C 、D 四点共圆。

判定5:对于凸四边形ABCD 其对角线AC 、BD 交于点P ,若PA ·PC =PB ·PD ,则A 、B 、C 、D 四点共圆。

(相交弦定理的逆定理)
例题 (郑州模拟)如图,在正△ABC 中,点D ,E 分别在边AC ,AB 上,且AD=3
1
AC ,AE=
3
2
AB ,BD ,CE 相交于点F 。

(1)求证:A 、E 、F 、D 四点共圆;
(2)若正△ABC 的边长为2,求A 、E 、F 、D 所在圆的半径。

解析:(1)依题意,可证得△BAD ≌△CBE ,从而得到∠ADB =∠BEC ⇒∠ADF +∠AEF =180°,即可证得A ,E ,F ,D 四点共圆;
(2)取AE 的中点G ,连接GD ,可证得△AGD 为正三角形,GA =GE =GD =3
2
,即点G 是△AED 外接圆的圆心,且圆G 的半径为
3
2。

答案:(1)证明:∵AE =3
2
AB , ∴BE =
3
1
AB , ∵在正△ABC 中,AD =
3
1
AC , ∴AD =BE ,
又∵AB =BC ,∠BAD =∠CBE , ∴△BAD ≌△CBE , ∴∠ADB =∠BEC ,
即∠ADF +∠AEF =180°,所以A ,E ,F ,D 四点共圆。

(2)解:如图,
取AE 的中点G ,连接GD ,则AG =GE =1
2
AE , ∵AE =
32
AB , ∴AG =GE =13
AB =32

∵AD =13
AC =32
,∠DAE =60°,AB =AC
∴△AGD 为正三角形, ∴GD=AG=AD=
32,即GA=GE=GD=3
2, 所以点G 是△AED 外接圆的圆心,且圆G 的半径为
3
2
, 由于A ,E ,F ,D 四点共圆,即A ,E ,F ,D 四点共圆G ,其半径为
3
2。

点拨:本题着重考查全等三角形的证明与四点共圆的证明,突出推理能力与分析运算能力的考查,属于难题。

【方法定位】
将已知条件、欲求的结论以及所给图形的特点三个方面认真分析、思考,即可发现,适当利用四点共圆的有关性质以及定理,就能巧妙地找到解决问题的途径。

也就是说,四点共圆有时在解(证)题中起着“搭桥铺路”的作用。

例题(河南模拟)如图:AB是⊙O的直径,G是AB延长线上的一点,GCD是⊙O的割线,过点G作AG的垂线,交直线AC于点E,交直线AD于点F,过点G作⊙O的切线,切点为H。

(1)求证:C,D,E,F四点共圆;
(2)若GH=6,GE=4,求EF的长。

解析:(1)连接DB,利用AB是⊙O的直径,可得∠ADB=90°,在Rt△ABD和Rt△AFG 中,∠ABD=∠AFE,又同弧所对的圆周角相等可得∠ACD=∠ABD,进而得到∠ACD=∠AF E即可证明四点共圆;
(2)由C,D,E,F四点共圆,利用共线定理可得GE·GF=GC·GD。

由GH是⊙O的切线,利用切割线定理可得GH2=GC·GD,进而得到GH2=GE·GF。

即可
答案:
证明:(1)连接DB,∵AB是⊙O的直径,∴∠ADB=90°,
在Rt△ABD和Rt△AFG中,∠ABD=∠AFE,
又∵∠ABD=∠ACD,∴∠ACD=∠AFE。

∴C,D,E,F四点共圆;
(2)∵C,D,E,F四点共圆,∴GE·GF=GC·GD。

∵GH是⊙O的切线,∴GH2=GC·GD,∴GH2=GE·GF。

又因为GH=6,GE=4,所以GF=9。

∴EF=GF-GE=9-4=5。

点拨:熟练掌握圆的切线的性质、同弧所对的圆周角相等、四点共圆的判定方法、切割线定理等是解题的关键。

此题综合性较强,涉及知识点较全面。

(答题时间:30分钟)
一、选择题
1. 锐角△ABC的三条高AD、BE、CF交于H,在A、B、C、D、E、F、H七个点中。

能组成四点共圆的组数是()
A. 4组
B. 5组
C. 6组
D. 7组
2. 如图,在四边形ABCD 中,AC 、BD 为对角线,点M 、E 、N 、F 分别为AD 、AB 、BC 、CD 边的中点,下列说法:
①当AC =BD 时,M 、E 、N 、F 四点共圆。

②当AC ⊥BD 时,M 、E 、N 、F 四点共圆。

③当AC =BD 且AC ⊥BD 时,M 、E 、N 、F 四点共圆。

其中正确的是( )
A . ①②
B . ①③
C . ②③
D . ①②③
3. 如图,A ,B ,C ,D 是圆上四点,AD ,BC 的延长线交于点P ,弧AB 、弧CD 分别为100°、40°,则∠P 的度数为( )
A . 40°
B . 35°
C . 60°
D . 30°
4. (高青县模拟)如图,四边形ABCD 内接于⊙O ,AB 为⊙O 的直径,CM 切⊙O 于点C ,∠BCM =60°,则∠B 的正切值是( )
A .
1
2
B C D
5. 已知Pi (i =1,2,3,4)是抛物线y =x 2
+bx +1上共圆的四点,它们的横坐标分别为xi
(i =1,2,3,4),又xi (i =1,2,3,4)是方程(x 2-4x +m )(x 2
-4x +n )=0的根,则二次
函数y =x 2
+bx +1的最小值为( )
A . -1
B . -2
C . -3
D . -4
二、填空题
6. 如图,在△ABC 中,AD ,BE 分别是∠A ,∠B 的角平分线,O 是AD 与BE 的交点,若C ,D ,O ,E 四点共圆,DE =3,则△ODE 的内切圆半径为 。

7. (济宁)如图,四边形ABCD中,AB=AC=AD,若∠CAD=76°,则∠CBD= 度。

8. 已知△ABC的中线AD、BE交于K,AB=3,且K,D,C,E四点共圆,则CK= 。

**9. 如图,CD为△ABC外接圆的切线,AB的延长线交直线CD于点D,E,F分别为弦AB 与弦AC上的点,且BC·AE=DC·AF,B,E,F,C四点共圆。

若DB=BE=EA,则过B,E,F,C 四点的圆的面积与△ABC外接圆面积的比值为。

三、解答题
10. (太原模拟)如图,已知AB为半圆O的直径,BE、CD分别为半圆的切线,切点分别为B、C,DC的延长线交BE于F,AC的延长线交BE于E。

AD⊥DC,D为垂足。

(1)求证:A、D、F、B四点共圆;
(2)求证:EF=FB。

相关文档
最新文档