一级倒立摆的建模与控制分析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
研究生《现代控制理论及其应用》课程小论文
一级倒立摆的建模与控制分析
学院:机械工程学院
班级:机研131
姓名:尹润丰
学号: 201321202016
2014年6月2日
目录
1. 问题描述及状态空间表达式建立..............................................................- 1 -
1.1问题描述.......................................................................................................................................- 1 -
1.2状态空间表达式的建立...............................................................................................................- 1 -
1.2.1直线一级倒立摆的数学模型 ..........................................................................................- 1 -
1.2.2 直线一级倒立摆系统的状态方程 .................................................................................- 5 -
2.应用MATLAB分析系统性能 .....................................................................- 6 -
2.1直线一级倒立摆闭环系统稳定性分析 ......................................................................................- 6 -
2.2 系统可控性分析.........................................................................................................................- 7 -
2.3 系统可观测性分析.....................................................................................................................- 8 -
3. 应用matlab进行综合设计.........................................................................- 8 -
3.1状态反馈原理...............................................................................................................................- 8 -
3.2全维状态反馈观测器和simulink仿真 .......................................................................................- 9 -
4.应用Matlab进行系统最优控制设计 ........................................................ - 11 -
5.总结 ............................................................................................................. - 13 -
1.问题描述及状态空间表达式建立
1.1问题描述
倒立摆是机器人技术、控制理论、计算机控制等多个领域、多种技术的有机结合,其被控系统本身又是一个绝对不稳定、高阶次、多变量、强耦合的非线性系统,可以作为一个典型的控制对象对其进行研究。倒立摆系统作为控制理论研究中的一种比较理想的实验手段,为自动控制理论的教学、实验和科研构建一个良好的实验平台,以用来检验某种控制理论或方法的典型方案,促进了控制系统新理论、新思想的发展。
下对于倒立摆系统,经过小心的假设忽略掉一些次要的因素后,它就是一个典型的运动的刚体系统,可以在惯性坐标系内应用经典力学理论建立系统的动力学方程。下面采用其中的牛顿—欧拉方法建立直线一级倒立摆系统的数学模型。
1.2状态空间表达式的建立
1.2.1直线一级倒立摆的数学模型
.
. 图1.1 直线一级倒立摆系统
本文中倒立摆系统描述中涉及的符号、物理意义及相关数值如表1.1所示。
图1.2是系统中小车的受力分析图。其中,N和P为小车与摆杆相互作用力的水平和垂直方向的分量。
.
图1.2 系统中小车的受力分析图
图1.3是系统中摆杆的受力分析图。F s 是摆杆受到的水平方向的干扰力, F h 是摆杆受到的垂直方向的干扰力,合力是垂直方向夹角为α的干扰力F g 。
图1.3 摆杆受力分析图
分析小车水平方向所受的合力,可以得到以下方程:
()11- 设摆杆受到与垂直方向夹角为α 的干扰力Fg ,可分解为水平方向、垂直方向的干扰力,所产生的力矩可以等效为在摆杆顶端的水平干扰力FS 、垂直干扰力Fh 产生的力矩。
()21-
对摆杆水平方向的受力进行分析可以得到下面等式:
()θsin 22
l x dt
d m F N S +=- ()31-
N
x f F x M --=&&&α
sin g S F F =α
cos g h F F =