课题_惯性矩总结(含常用惯性矩公式)

合集下载

计算惯性矩的公式

计算惯性矩的公式

矩形对于中线(垂直于h边的中轴线)的惯性矩:b*h^3/12三角形:b*h^3/36圆形对于圆心的惯性矩:π*d^4/64环形对于圆心的惯性矩:π*D^4*(1-α^4)/64;α=d/D§16-1 静矩和形心平面图形的几何性质一般与杆件横截面的几何形状和尺寸有关,下面介绍的几何性质表征量在杆件应力与变形的分析与计算中占有举足轻重的作用。

静矩:平面图形面积对某坐标轴的一次矩,如图Ⅰ-1所示。

定义式:,(Ⅰ-1)量纲为长度的三次方。

由于均质薄板的重心与平面图形的形心有相同的坐标和。

则由此可得薄板重心的坐标为同理有所以形心坐标,(Ⅰ-2)或,由式(Ⅰ-2)得知,若某坐标轴通过形心,则图形对该轴的静矩等于零,即,;,则;反之,若图形对某一轴的静矩等于零,则该轴必然通过图形的形心。

静矩与所选坐标轴有关,其值可能为正,负或零。

如一个平面图形是由几个简单平面图形组成,称为组合平面图形。

设第i块分图形的面积为,形心坐标为,则其静矩和形心坐标分别为,(Ⅰ-3),(Ⅰ-4)【例I-1】求图Ⅰ-2所示半圆形的及形心位置。

【解】由对称性,,。

现取平行于轴的狭长条作为微面积所以读者自己也可用极坐标求解。

【例I-2】确定形心位置,如图Ⅰ-3所示。

【解】将图形看作由两个矩形Ⅰ和Ⅱ组成,在图示坐标下每个矩形的面积及形心位置分别为矩形Ⅰ:mm2mm,mm矩形Ⅱ:mm2mm,mm整个图形形心的坐标为§16-2 惯性矩和惯性半径惯性矩:平面图形对某坐标轴的二次矩,如图Ⅰ-4所示。

,(Ⅰ-5)量纲为长度的四次方,恒为正。

相应定义,(Ⅰ-6)为图形对轴和对轴的惯性半径。

组合图形的惯性矩设为分图形的惯性矩,则总图形对同-轴惯性矩为,(Ⅰ-7)若以表示微面积到坐标原点的距离,则定义图形对坐标原点的极惯性矩(Ⅰ-8)因为所以极惯性矩与(轴)惯性矩有关系(Ⅰ-9)式(Ⅰ-9)表明,图形对任意两个互相垂直轴的(轴)惯性矩之和,等于它对该两轴交点的极惯性矩。

常用截面惯性矩计算公式

常用截面惯性矩计算公式

常用截面惯性矩计算公式截面的惯性矩是描述截面抵抗弯曲的特性之一,也称为截面二阶矩。

它是通过计算截面各点到其中一轴线的距离的二次方与其对应的面积乘积之和来获得。

常用的截面惯性矩计算公式如下:1.矩形截面的惯性矩公式:对于矩形截面,惯性矩可以通过以下公式进行计算:I=(b*h^3)/12其中,I为惯性矩,b为矩形宽度,h为矩形高度。

2.圆形截面的惯性矩公式:对于圆形截面,惯性矩可以通过以下公式进行计算:I=(π*R^4)/4其中,I为惯性矩,R为圆的半径。

3.I型截面的惯性矩公式:对于I型截面(又称为双T型截面或工字型截面),惯性矩可以通过以下公式进行计算:I = bw * hw^3 / 12 + hf * tf^3 / 12 + 2 * tf * hf * (hw / 2 + tf / 2)^2其中,I为惯性矩,bw为上翼板的宽度,hw为上翼板的高度,hf为下翼板的高度,tf为翼板的厚度。

4.H型截面的惯性矩公式:对于H型截面,惯性矩可以通过以下公式进行计算:I = [bw * (hw^3 - tw1 ^3) / 12] + [hf * (tf^3 - tw2^3) / 12] + 2 * tw1 * hw^3 / 12 + 2 * tw2 * tf^3 / 12 + 2 * hf * (hw / 2 + tf / 2)^2其中,I为惯性矩,bw为上翼板的宽度,hw为上翼板的高度,hf为下翼板的高度,tf为翼板的厚度,tw1为上翼板的厚度,tw2为下翼板的厚度。

5.T型截面的惯性矩公式:对于T型截面,惯性矩可以通过以下公式进行计算:I = [bw * hw^3 / 12] + [tf * hf^3 / 12] + tw * hw * (hw / 2 + tf)^2其中,I为惯性矩,bw为翼板的宽度,hw为翼板的高度,hf为梁的高度,tf为梁的厚度,tw为翼板的厚度。

这些公式是根据不同截面形状和尺寸推导出来的,可以用于计算截面的惯性矩。

材料力学惯性矩公式

材料力学惯性矩公式

材料力学惯性矩公式在材料力学中,惯性矩是一个重要的物理量,它描述了物体对于转动的惯性特性。

在工程和科学领域中,我们经常需要计算和应用惯性矩,因此了解惯性矩的计算公式是非常重要的。

惯性矩的计算公式与物体的形状和质量分布有关。

对于不同形状的物体,我们需要使用不同的公式来计算其惯性矩。

下面,我将介绍一些常见形状的物体的惯性矩计算公式。

首先,我们来看一下关于直线轴的惯性矩计算公式。

对于质量分布均匀的直线轴,其惯性矩的计算公式为I=1/12ML^2,其中M为物体的质量,L为物体的长度。

这个公式适用于绕通过物体质心且与物体轴线平行的转动轴。

接下来,我们来看一下关于圆环的惯性矩计算公式。

对于半径为R、质量分布均匀的圆环,其惯性矩的计算公式为I=1/2MR^2,其中M为圆环的质量。

这个公式适用于绕通过圆环中心且与圆环轴线垂直的转动轴。

除了直线轴和圆环,对于其他形状的物体,我们也可以根据其几何形状和质量分布来推导出相应的惯性矩计算公式。

在工程实践中,我们经常会遇到需要计算复杂形状物体的惯性矩,这时候我们可以利用积分来进行计算。

除了单个物体的惯性矩计算,当多个物体组合在一起时,我们也需要考虑它们的复合惯性矩。

对于多个物体组合体的复合惯性矩计算,我们可以利用平行轴定理和垂直轴定理来简化计算过程。

在应用惯性矩计算公式时,我们需要注意保持单位的一致性,以及正确地考虑物体的质量分布情况。

在实际工程中,我们还需要考虑到材料的弹性模量、截面形状等因素,以便更准确地描述物体的转动特性。

总之,惯性矩是描述物体对于转动的惯性特性的重要物理量,其计算公式与物体的形状和质量分布有关。

在工程和科学领域中,我们经常需要计算和应用惯性矩,因此了解惯性矩的计算公式是非常重要的。

希望本文介绍的惯性矩计算公式能够对您有所帮助。

惯性矩的定义和计算公式

惯性矩的定义和计算公式

惯性矩的定义●区域惯性矩-典型截面I●区域惯性矩,一个区域的惯性矩或典型截面轮廓的第二个区域惯性矩●面积惯性矩或面积惯性矩-也称为面积二阶矩-I,是用于预测梁的挠度、弯曲和应力的形状特性。

●面积惯性矩-英制单位●inches4●面积惯性矩-公制单位●mm4●cm4●m4●单位转换● 1 cm4 = 10-8 m4 = 104 mm4● 1 in4 = 4.16x105 mm4 = 41.6 cm4●示例-惯性单位面积矩之间的转换●9240 cm4 can be converted to mm4 by multiplying with 104●(9240 cm4) 104 = 9.24 107 mm4●区域惯性矩(一个区域或第二个区域的惯性矩)●●绕x轴弯曲可表示为●I x = ∫ y2 dA (1)●其中●I x =与x轴相关的惯性矩面积(m4, mm4, inches4)●y =从x轴到元件dA的垂直距离(m, mm, inches)●dA =基元面积(m2, mm2, inches2)●绕y轴弯曲的惯性矩可以表示为●I y = ∫ x2 dA (2)●其中●I x =与y轴相关的惯性矩面积(m4, mm4, inches4)●x =从轴y到元件dA的垂直距离(m, mm, inches)●典型截面I的面积惯性矩●典型截面II的面积惯性矩●实心方形截面●●实心方形截面的面积惯性矩可计算为●I x = a4 / 12 (2)●其中● a = 边长(mm, m, in..)●I y = a4 / 12 (2b)●实心矩形截面●●矩形截面惯性矩的面积可计算为●I x = b h3 / 12 (3)●其中● b = 宽●h = 高●I y = b3 h / 12 (3b)●实心圆形截面●●实心圆柱截面的面积惯性矩可计算为●I x = π r4 / 4●= π d4 / 64 (4)●其中●r =半径● d = 直径●I y = π r4 / 4●= π d4 / 64 (4b)●中空圆柱截面●空心圆柱截面的面积惯性矩可计算为●I x = π (d o4 - d i4) / 64 (5)●其中●d o = 外圆直径●d i = 内圆直径●I y = π (d o4 - d i4) / 64 (5b)●方形截面-对角力矩●●矩形截面的对角线面积惯性矩可计算为●I x = I y = a4 / 12 (6)●矩形截面-通过重心的任何线上的面积力矩●●通过重心在线计算的矩形截面和力矩面积可计算为●I x = (b h / 12) (h2 cos2 a + b2 sin2 a) (7)●对称形状●●对称形状截面的面积惯性矩可计算为●I x = (a h3 / 12) + (b / 12) (H3 - h3) (8)●I y = (a3 h / 12) + (b3 / 12) (H - h) (8b)●不对称形状●●非对称形状截面的面积惯性矩可计算为●I x = (1 / 3) (B y b3 - B1 h b3 + b y t3 - b1 h t3) (9)●典型截面II的面积惯性矩●区域惯性矩vs.极惯性矩vs.惯性矩●“面积惯性矩”是一种形状特性,用于预测梁的挠度、弯曲和应力●“极惯性矩”是衡量梁抗扭能力的一个指标,计算受扭矩作用的梁的扭曲度时需要用到它●“转动惯量”是测量物体在旋转方向上变化的阻力。

惯性矩计算公式

惯性矩计算公式

惯性矩计算公式(总1页)
--本页仅作为文档封面,使用时请直接删除即可--
--内页可以根据需求调整合适字体及大小--
惯性矩计算公式:
矩形:b*h^3/12
三角形:b*h^3/36
圆形:π*d^4/64
环形:π*D^4*(1-α^4)/64;α=d/D
^3表示3次
截面抵抗矩(W)就是截面对其形心轴惯性矩与截面上最远点至形心轴距离的比值1)找出达到极限弯矩时截面的中和轴。

它是与弯矩主轴平行的截面面积平行线,该中和轴两边的面积相等。

在双轴对称截面中,这条轴是主轴。

2)分别求两侧面积对中和轴的面积矩,面积矩之和即为塑性截面模量。

矩形截面抵抗矩W=bh^2/6 圆形截面的抵抗矩W=^3/32 圆环截面抵抗矩:W=π(R4-
r4)/(32R)
2。

材料力学笔记(惯性矩)汇总

材料力学笔记(惯性矩)汇总

材料力学笔记一、截面对形心轴的轴惯性矩矩形、实心圆、空心圆、薄壁圆截面的轴惯性矩分别为(B.3-4)(B.3-5)(B.3-6)式中,d—实心圆直径和空心圆内径,D—空心圆外径,R—薄壁圆平均半径。

t—薄壁圆壁厚。

惯性矩I量纲为长度的四次方(mm4),恒为正。

二、截面抗弯刚度EI z和抗弯截面模量Wz(a)上式代表距中性层为y处的任一纵向“纤维”的正应变,式中的ρ对同一横截面来说是个常数,所以正应变ε与y成正比(上缩下伸),与z无关。

式(a)即为横截面保持平面,只绕中性轴旋转的数学表达式,通常称为几何方面的关系式。

(b)式(b)表示横截面上正应力沿梁高度的变化规律,即物理方面的关系式。

由于式中ρ对同一横截面来说是个常数,均匀材料的弹性模量E也是常数,所以横截面上任一点处的正应力与y成正比(上压下拉)。

显然中性轴上的正应力为零,而距中性轴愈远,正应力愈大,最大正应力σmax发生在距中性轴最远的上下边缘(图7.2-4)。

图7.2-4 弯曲正应力分布微内力对中性轴z之矩组成弯矩M,即(e)代入式(b ),并将常数从积分号中提出,得。

令,称为横截面对z轴的惯性矩,它只取决于横截面的形状和尺寸,其量纲是长度的四次方,此值很容易通过积分求出。

于是得出(7.2-1)上式确定了曲率的大小。

式中EIz称为截面抗弯刚度(stiffness in bending)。

到此为止,式(a)中的y和ρ已经确定。

联合式(b)及式(7.2-1),得出(7.2-2)上式即为对称弯曲正应力公式。

当y=ymax时,得出最大正应力公式,即(7.2-3)式中称为抗弯截面模量(section modulus in bending),其量纲是长度的三次方。

表7.2-I列出了简单截面的Iz和Wz计算公式。

表中 =d/D,R为薄壁圆平均半径。

三、平行轴间惯性矩的移轴公式图B.3-3如图B.3-3所示,设y0、z为截面的一对形心轴,如果截面对形心轴的惯性矩为和,则截面对任一平行于它的轴y和z的惯性矩为:,(B.3-7)上式称为惯性轴的移轴公式或称平行轴定理(Parallel axis theorem)。

惯性矩计算公式范文

惯性矩计算公式范文

惯性矩计算公式范文惯性矩通常用于描述物体在旋转运动中的抵抗力度,它是物体旋转惯量的一种度量。

在物理学和工程学中,惯性矩被广泛应用于力学、机械工程、航空航天工程和许多其他领域。

惯性矩的计算涉及到物体的质量分布和旋转轴的位置。

具体来说,对于一个连续分布的物体,其惯性矩由物体的质量分布和几何形状决定。

对于一维线性物体,比如杆、绳子或薄片,其惯量更为简单,可以直接通过质量和长度计算得出。

对于直线物体而言,惯性矩的计算公式为:I=(1/3)*m*L^2其中,I表示物体的惯性矩,m为物体的质量,L为物体的长度。

该公式假设质量均匀分布在物体上。

对于一个平面物体,可以使用积分的方法计算其惯性矩。

对于一个平面或曲面的形状,可以通过自变量来描述其形状。

在三维空间中,一个连续分布的物体被描述为一个区域R,其惯性矩由以下公式给出:I = ∫∫∫ r^2 dm其中,r是物体上的一个点相对于旋转轴的距离,dm表示该点的质量元素。

质量元素可以表示为dm = ρ dV,其中ρ是密度,dV是体积元素。

在这种情况下,扩展为以下形式:I=∫∫∫ρr^2dV对于轴对称的物体,有几个特殊情况可以简化惯性矩的计算。

如果旋转轴与物体的对称轴重合,那么物体的惯性矩可通过以下公式计算:I = ∫∫ r^2 dm = ∫∫ r^2 ρ dV其中,r是点在旋转轴上的垂直距离。

对于圆柱体或球体,可以使用以下公式进行计算:I=(1/2)*m*r^2其中,m是物体的质量,r是物体的半径。

对于复杂的几何形状,可能需要借助于数值方法或计算机模拟来计算惯性矩。

利用三维建模软件,可以将物体的形状精确地建模,然后计算其惯性矩。

惯性矩在许多工程中都发挥着重要的作用。

例如,在机械工程中,惯性矩被用于计算旋转部件的稳定性和运动学性质。

在航空航天工程中,惯性矩是设计飞行器和导弹时考虑的重要参数。

此外,在物理学和材料科学中,惯性矩用于描述材料的旋转运动和稳定性。

总结而言,惯性矩的计算涉及到物体的质量分布和旋转轴的位置。

惯性矩计算公式

惯性矩计算公式

惯性矩计算公式
惯性矩计算公式是物理学中一个常用的计算工具,它可以用来计算物体的惯性矩。

惯性矩是物体与其自身的质量和形状有关的一种物理属性,它可以反映物体的相对惯性。

惯性矩计算公式由动量定理得出,它定义为物体的惯性矩等于物体自身质量乘以其转动半径的平方,可以用公式I=mr2来表示,其中I代表惯性矩,m代表质量,r代表半径。

惯性矩计算公式可以用来计算物体的惯性矩,它可以用来衡量物体的相对惯性,也可以用来研究物体的运动特性。

惯性矩计算公式可以用来计算物体在不同情况下的惯性矩,从而对物体的运动特性有一定的参考价值。

例如,惯性矩计算公式可以用来计算不同形状的物体在相同质量情况下的惯性矩,从而研究物体的各种运动特性。

此外,惯性矩计算公式还可以用来研究物体的转动行为。

例如,惯性矩计算公式可以用来计算物体转动过程中的惯性矩变化,从而更好地了解物体的转动行为。

总之,惯性矩计算公式是一种常用的物理学计算工具,它可以用来计算物体的惯性矩,也可以用来研究物体的运动特性和转动行为,为科学研究和工程实践提供了重要的参考。

惯性矩总结(含常用惯性矩公式).docx

惯性矩总结(含常用惯性矩公式).docx

惯性矩是一个物理量,通常被用作描述一个物体抵抗扭动,扭转的能力惯性矩的国际单位为(m^4) O工程构件典型截面几何性质的计算2.1面积矩1.面积矩的定义别定义为该图形对Z轴和y轴的面积矩或静矩,用符号S Z和S y,来表示,如式(2 —2.1)面积矩的数值可正、可负,也可为零。

面积矩的量纲是长度的三次方,其常用单3 3位为m或mm>2.面积矩与形心平面图形的形心坐标公式如式(2 —2.2)乩(2 — 2.2)或改写成,如式(2 —2.3)S2= A-y i(2 —2.3)面积矩的几何意义:图形的形心相对于指定的坐标轴之间距离的远近程度。

图形如图2-31所示为一任意截面的几何图形(以下简称图形)。

定义:积分川和J 分(2 —2.1)图2-2.1任意截面的几何图形S Z= I Z ydA形心相对于某一坐标距离愈远,对该轴的面积矩绝对值愈大。

图形对通过其形心的轴的面积矩等于零;反之,图形对某一轴的面积矩等于零, 该轴一定通过图形形心。

3 •组合截面面积矩和形心的计算组合截面对某一轴的面积矩等于其各简单图形对该轴面积矩的代数和。

如式 (2 — 2.4)Σ¾ =Σj ⅛z J (2 — 2.4)式中,A 和y i 、Z i 分别代表各简单图形的面积和形心坐标。

组合平面图形的形心位 置由式(2 — 2.5)确定2.2极惯性矩、惯性矩和惯性积1 •极惯性矩任意平面图形如图2-31所示,其面积为A 。

定义:积分丨「’川称为图形对O 点的 极惯性矩,用符号I P ,表示,如式(2 — 2.6)'[ 」(2 — 2.6)极惯性矩是相对于指定的点而言的,即同一图形对不同的点的极惯性矩一般是不同的。

极惯性矩恒为正,其量纲是长度的4次方,常用单位为m 4或mr ⅛(1)圆截面对其圆心的极惯性矩,如式(2 — 7)IP- 32 (2 — 2.7)(2)对于外径为D 内径为d 的空心圆截面对圆心的极惯性矩,如式(2 — 2.8)_(1 —況)P 32(2 — 2.8)式中,:二d/D 为空心圆截面内、外径的比值。

惯性矩总结(含常用惯性矩公式)

惯性矩总结(含常用惯性矩公式)

惯性矩总结(含常用惯性矩公式)惯性矩总结(含常用惯性矩公式)惯性矩是描述物体对旋转运动惯性性质的物理量。

它们在工程、物理学和机械设计等领域中起着非常重要的作用。

本文将对惯性矩进行总结,并介绍一些常用的惯性矩公式。

一、惯性矩的定义惯性矩又称为转动惯量或转动惯性矩,用符号I表示。

惯性矩描述了物体对于绕特定轴线旋转的难易程度。

它与物体的质量分布和轴线的位置有关。

对于一个质量分布均匀的物体,其惯性矩可以通过对质量元素的微小体积进行积分来计算。

二、常用惯性矩公式1. 刚体绕轴线旋转的惯性矩对于一个刚体绕轴线旋转,其惯性矩可以表示为:I = ∫r^2dm其中,r是质量元素到轴线的距离,dm是质量元素的微小质量。

2. 常见几何形状的惯性矩公式常见几何形状的惯性矩公式如下:- 环状物体绕其对称轴的惯性矩公式:I = (mR^2)/2其中,m是环状物体的质量,R是环的半径。

- 圆盘绕其对称轴的惯性矩公式:I = (mR^2)/4其中,m是圆盘的质量,R是圆盘的半径。

- 长棒绕其一端垂直轴的惯性矩公式:I = (mL^2)/3其中,m是长棒的质量,L是长棒的长度。

- 长方体绕通过其质心轴的惯性矩公式:I = (m(a^2 + b^2))/12其中,m是长方体的质量,a和b分别是长方体的两个相邻边的长度。

3. 复杂形状的惯性矩公式对于一些复杂的形状,可以利用积分来计算其惯性矩。

例如,对于一个半径为R的圆柱体,其绕通过其质心轴的惯性矩可以表示为:I = (mR^2)/2 + ∫(r^2 - R^2)dm其中,r是圆柱体内任意一点到轴线的距离。

三、应用举例惯性矩广泛应用于工程和物理学中的各种问题。

例如,在机械设计中,惯性矩用于计算旋转部件的稳定性和旋转惯量。

在物理学中,惯性矩用于描述刚体的转动运动和角动量。

以机械工程为例,当设计一个旋转的零件时,需要计算其惯性矩,以确定所需要的力矩和加速度。

同时,惯性矩也可以用来评估旋转零件的稳定性。

惯性矩公式

惯性矩公式

惯性矩(moment of inertia of an area)是一个几何量,通常被用作描述截面抵抗弯曲的性质。

惯性矩的国际单位为(m4)。

即面积二次矩,也称面积惯性矩,而这个概念与质量惯性矩(即转动惯量)是不同概念。

面积元素dA与其至z轴或y轴距离平方的乘积y2dA或z2dA的积分,分别称为该面积元素对于z轴或y轴的惯性矩或截面二次轴矩。

惯性矩的数值恒大于零对Z轴的惯性矩:对Y轴的惯性矩:截面对任意一对互相垂直轴的惯性矩之和,等于截面对该二轴交点的极惯性矩。

极惯性矩常用计算公式:矩形对于中线(垂直于h边的中轴线)的惯性矩:三角形:圆形对于坐标轴的惯性矩:圆形对于圆心的惯性矩:环形对于圆心的惯性矩:,需要明确因为坐标系不同计算公式也不尽相同。

结构构件惯性矩Ix结构设计和计算过程中,构件惯性矩Ix为截面各微元面积与各微元至与X 轴线平行或重合的中和轴距离二次方乘积的积分。

主要用来计算弯矩作用下绕X 轴的截面抗弯刚度。

结构构件惯性矩Iy结构设计和计算过程中,构件惯性矩Iy为截面各微元面积与各微元至与Y 轴线平行或重合的中和轴距离二次方乘积的积分。

主要用来计算弯矩作用下绕Y 轴的截面抗弯刚度。

静矩静矩(面积X面内轴一次)把微元面积与各微元至截面上指定轴线距离乘积的积分称为截面的对指定轴的静矩Sx=∫ydA。

静矩就是面积矩,是构件的一个重要的截面特性,是截面或截面上某一部分的面积乘以此面积的形心到整个截面的型心轴之间的距离得来的,是用来计算应力的。

注意:惯性矩是乘以距离的二次方,静矩是乘以距离的一次方,惯性矩和面积矩(静矩)是有区别的。

分类截面惯性矩截面惯性矩(I=截面面积X截面轴向长度的二次方)截面惯性矩:the area moment of inertiacharacterized an object's ability to resist bending and is required to calculate displacement.截面各微元面积与各微元至截面某一指定轴线距离二次方乘积的积分Ix= y^2dF.截面极惯性矩截面极惯性矩(Ip=面积X垂直轴二次)。

(完整版)惯性矩的计算方法及常用截面惯性矩计算公式

(完整版)惯性矩的计算方法及常用截面惯性矩计算公式

(完整版)惯性矩的计算⽅法及常⽤截⾯惯性矩计算公式惯性矩的计算⽅法及常⽤截⾯惯性矩计算公式截⾯图形的⼏何性质⼀.重点及难点:(⼀).截⾯静矩和形⼼1.静矩的定义式如图1所⽰任意有限平⾯图形,取其单元如⾯积dA ,定义它对任意轴的⼀次矩为它对该轴的静矩,即ydA dSx xdAdS y == 整个图形对y 、z 轴的静矩分别为 ??==A Ay ydA Sx xdA S (I-1) 2.形⼼与静矩关系图I-1 设平⾯图形形⼼C 的坐标为C C z y , 则 0 AS y x = , A S x y = (I-2)推论1 如果y 轴通过形⼼(即0=x ),则静矩0=y S ;同理,如果x 轴通过形⼼(即0=y ),则静矩0=Sx ;反之也成⽴。

推论2 如果x 、y 轴均为图形的对称轴,则其交点即为图形形⼼;如果y 轴为图形对称轴,则图形形⼼必在此轴上。

3.组合图形的静矩和形⼼设截⾯图形由⼏个⾯积分别为n A A A A ??321,,的简单图形组成,且⼀直各族图形的形⼼坐标分别为??332211,,,y x y x y x ;;,则图形对y 轴和x 轴的静矩分别为∑∑∑∑========n i n i ii xi x n i ii n i yi y y A S S x A S 1111S (I-3)截⾯图形的形⼼坐标为∑∑===n i i n i i iAx A x 11, ∑∑===n i in i i i A y A y 11 (I-4) 4.静矩的特征(1) 界⾯图形的静矩是对某⼀坐标轴所定义的,故静矩与坐标轴有关。

(2) 静矩有的单位为3m 。

(3) 静矩的数值可正可负,也可为零。

图形对任意形⼼轴的静矩必定为零,反之,若图形对某⼀轴的静矩为零,则该轴必通过图形的形⼼。

(4) 若已知图形的形⼼坐标。

则可由式(I-1)求图形对坐标轴的静矩。

若已知图形对坐标轴的静矩,则可由式(I-2)求图形的形⼼坐标。

惯性矩计算公式

惯性矩计算公式

惯性矩计算公式(总1页)
--本页仅作为文档封面,使用时请直接删除即可--
--内页可以根据需求调整合适字体及大小--
惯性矩计算公式:
矩形:b*h^3/12
三角形:b*h^3/36
圆形:π*d^4/64
环形:π*D^4*(1-α^4)/64;α=d/D
^3表示3次
截面抵抗矩(W)就是截面对其形心轴惯性矩与截面上最远点至形心轴距离的比值1)找出达到极限弯矩时截面的中和轴。

它是与弯矩主轴平行的截面面积平行线,该中和轴两边的面积相等。

在双轴对称截面中,这条轴是主轴。

2)分别求两侧面积对中和轴的面积矩,面积矩之和即为塑性截面模量。

矩形截面抵抗矩W=bh^2/6 圆形截面的抵抗矩W=^3/32 圆环截面抵抗矩:W=π(R4-
r4)/(32R)
2。

极惯性矩常用计算公式

极惯性矩常用计算公式

极惯性矩常用计算公式:Ip=∫Aρ^2dA矩形对于中线(垂直于h边的中轴线)的惯性矩:b*h^3/12三角形:b*h^3/36圆形对于圆心的惯性矩:π*d^4/64环形对于圆心的惯性矩:π*D^4*(1-α^4)/64;α=d/D§16-1 静矩和形心平面图形的几何性质一般与杆件横截面的几何形状和尺寸有关,下面介绍的几何性质表征量在杆件应力与变形的分析与计算中占有举足轻重的作用。

静矩:平面图形面积对某坐标轴的一次矩,如图Ⅰ-1所示。

定义式:,(Ⅰ-1)量纲为长度的三次方。

由此可得薄板重心的坐标为同理有所以形心坐标,(Ⅰ-2)或,由式(Ⅰ-2)得知,若某坐标轴通过形心,则图形对该轴的静矩等于零,即,;,则;反之,若图形对某一轴的静矩等于零,则该轴必然通过图形的形心。

静矩与所选坐标轴有关,其值可能为正,负或零。

如一个平面图形是由几个简单平面图形组成,称为组合平面图形。

设第i块分图形的面积为,形心坐标为,则其静矩和形心坐标分别为,(Ⅰ-3),(Ⅰ-4)【例I-1】求图Ⅰ-2所示半圆形的及形心位置。

【解】由对称性,,。

现取平行于轴的狭长条作为微面积所以读者自己也可用极坐标求解。

【例I-2】确定形心位置,如图Ⅰ-3所示。

【解】将图形看作由两个矩形Ⅰ和Ⅱ组成,在图示坐标下每个矩形的面积及形心位置分别为矩形Ⅰ:mm2mm,mm矩形Ⅱ:mm2mm,mm整个图形形心的坐标为§16-2 惯性矩和惯性半径惯性矩:平面图形对某坐标轴的二次矩,如图Ⅰ-4所示。

,(Ⅰ-5)量纲为长度的四次方,恒为正。

相应定义,(Ⅰ-6)为图形对轴和对轴的惯性半径。

组合图形的惯性矩设,(Ⅰ-7)若以表示微面积到坐标原点的距离,则定义图形对坐标原点的极惯性矩(Ⅰ-8)因为所以极惯性矩与(轴)惯性矩有关系(Ⅰ-9)式(Ⅰ-9)表明,图形对任意两个互相垂直轴的(轴)惯性矩之和,等于它对该两轴交点的极惯性矩。

下式(Ⅰ-10)定义为图形对一对正交轴、轴的惯性积。

惯性矩总结(含常用惯性矩公式)

惯性矩总结(含常用惯性矩公式)

惯性矩是一个物理量,通常被用作描述一个物体抵抗扭动,扭转的能力。

惯性矩的国际单位为(m^4)。

工程构件典型截面几何性质的计算2.1面积矩1.面积矩的定义图2-2.1任意截面的几何图形如图2-31所示为一任意截面的几何图形(以下简称图形)。

定义:积分和分别定义为该图形对z轴和y轴的面积矩或静矩,用符号S z和S y,来表示,如式(2—2.1)(2—2.1)面积矩的数值可正、可负,也可为零。

面积矩的量纲是长度的三次方,其常用单位为m3或mm3。

2.面积矩与形心平面图形的形心坐标公式如式(2—2.2)(2—2.2)或改写成,如式(2—2.3)(2—2.3)面积矩的几何意义:图形的形心相对于指定的坐标轴之间距离的远近程度。

图形形心相对于某一坐标距离愈远,对该轴的面积矩绝对值愈大。

图形对通过其形心的轴的面积矩等于零;反之,图形对某一轴的面积矩等于零,该轴一定通过图形形心。

3.组合截面面积矩和形心的计算组合截面对某一轴的面积矩等于其各简单图形对该轴面积矩的代数和。

如式(2—2.4)(2—2.4)式中,A和y i、z i分别代表各简单图形的面积和形心坐标。

组合平面图形的形心位置由式(2—2.5)确定。

(2—2.5)2.2极惯性矩、惯性矩和惯性积1.极惯性矩任意平面图形如图2-31所示,其面积为A。

定义:积分称为图形对O点的极惯性矩,用符号I P,表示,如式(2—2.6)(2—2.6)极惯性矩是相对于指定的点而言的,即同一图形对不同的点的极惯性矩一般是不同的。

极惯性矩恒为正,其量纲是长度的4次方,常用单位为m4或mm4。

(1)圆截面对其圆心的极惯性矩,如式(2—7)(2—2.7)(2)对于外径为D、内径为d的空心圆截面对圆心的极惯性矩,如式(2—2.8)(2—2.8)式中,d/D为空心圆截面内、外径的比值。

2.惯性矩在如图6-1所示中,定义积分,如式(2—2.9)(2—2.9)称为图形对z轴和y轴的惯性矩。

惯性矩是对一定的轴而言的,同一图形对不同的轴的惯性矩一般不同。

惯性矩的定义和计算公式

惯性矩的定义和计算公式

惯性矩的定义和计算公式惯性矩的定义●区域惯性矩-典型截面I●区域惯性矩,一个区域的惯性矩或典型截面轮廓的第二个区域惯性矩●面积惯性矩或面积惯性矩-也称为面积二阶矩-I,是用于预测梁的挠度、弯曲和应力的形状特性。

●面积惯性矩-英制单位●inches4●面积惯性矩-公制单位●mm4●cm4●m4●单位转换● 1 cm4 = 10-8 m4 = 104 mm4● 1 in4 = 4.16x105 mm4 = 41.6 cm4●示例-惯性单位面积矩之间的转换●9240 cm4 can be converted to mm4 by multiplying with 104●(9240 cm4) 104 = 9.24 107 mm4●区域惯性矩(一个区域或第二个区域的惯性矩)●●绕x轴弯曲可表示为●I x = ∫ y2 dA (1)●其中●I x =与x轴相关的惯性矩面积(m4, mm4, inches4)●y =从x轴到元件dA的垂直距离(m, mm, inches)●dA =基元面积(m2, mm2, inches2)●绕y轴弯曲的惯性矩可以表示为●I y = ∫ x2 dA (2)●其中●I x =与y轴相关的惯性矩面积(m4, mm4, inches4)●x =从轴y 到元件dA的垂直距离(m, mm, inches)●典型截面I的面积惯性矩●典型截面II的面积惯性矩●实心方形截面●●实心方形截面的面积惯性矩可计算为●I x = a4 / 12 (2)●其中● a = 边长(mm, m, in..)●I y = a4 / 12 (2b)●实心矩形截面●●矩形截面惯性矩的面积可计算为●I x = b h3 / 12 (3)●其中● b = 宽●h = 高●I y = b3 h / 12 (3b)●实心圆形截面●●实心圆柱截面的面积惯性矩可计算为●I x = π r4 / 4●= π d4 / 64 (4)●其中●r =半径● d = 直径●I y = π r4 / 4●= π d4 / 64 (4b)●中空圆柱截面●空心圆柱截面的面积惯性矩可计算为●I x = π (d o4 - d i4) / 64 (5)●其中●d o = 外圆直径●d i = 内圆直径●I y = π (d o4 - d i4) / 64 (5b)●方形截面-对角力矩●●矩形截面的对角线面积惯性矩可计算为●I x = I y = a4 / 12 (6)●矩形截面-通过重心的任何线上的面积力矩●●通过重心在线计算的矩形截面和力矩面积可计算为●I x = (b h / 12) (h2 cos2 a + b2 sin2 a) (7)●对称形状●●对称形状截面的面积惯性矩可计算为●I x = (a h3 / 12) + (b / 12) (H3 - h3) (8)●I y = (a3 h / 12) + (b3 / 12) (H - h) (8b)●不对称形状●●非对称形状截面的面积惯性矩可计算为●I x = (1 / 3) (B y b3 - B1 h b3 + b y t3 - b1 h t3) (9)●典型截面II的面积惯性矩●区域惯性矩vs.极惯性矩vs.惯性矩●“面积惯性矩”是一种形状特性,用于预测梁的挠度、弯曲和应力●“极惯性矩”是衡量梁抗扭能力的一个指标,计算受扭矩作用的梁的扭曲度时需要用到它●“转动惯量”是测量物体在旋转方向上变化的阻力。

惯性矩公式

惯性矩公式

惯性矩公式
惯性矩是物体在外力作用下移动时所受到的移动惯性的一种度量,它是物体在外力作用下移动时,受到外力所产生的转矩的一种度量。

惯性矩的概念由牛顿在他的第一定律中提出,即物体在外力作用下移动时,其外力所产生的转矩与物体的惯性矩成正比。

惯性矩的计算可以用惯性矩公式来求解。

惯性矩公式的形式如下:T=I*α,其中T为外力所产生的转矩,I为物体的惯性矩,α为物体的角加速度。

由此可见,惯性矩公式可以用来计算物体在外力作用下移动时受到的外力所产生的转矩。

惯性矩公式中的惯性矩I可以用物体质量m和物体半径r来表示,即I=m*r^2,其中m为物体的质量,r为物体的半径。

因此,可以根据物体的质量和半径来计算物体的惯性矩。

由于惯性矩公式可以用来计算物体在外力作用下移动时所受到的外力所产生的转矩,因此它在物理学、机械工程等领域都有着广泛的应用。

例如,在机械工程中,可以用惯性矩公式来计算机械设备运行时所受到的转矩,以便正确设计机械设备的结构。

此外,惯性矩公式还可以用于计算飞行器的飞行动力学性能,以及航天器的姿态控制等。

总之,惯性矩公式是一种重要的物理知识,在物理学、机械工程和
航天导航等领域都有着重要的应用,是研究物体在外力作用下移动的重要工具。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x xC b y yC a
I x y dA ( yC a) dA
2
y
x
yC
b
xC
dA
yC
2
A O
C
a
y
xC
A
A
y dA 2a yC dA a
A 2 C A
2
dA
A
x
I xC
即:
0
a2 A
2
I x I xC a A
§A.3 平行轴定理
整个图形 A 对x 轴的惯性矩
整个图形 A 对 y 轴的惯性矩
I x y 2dA
A
I y x dA
2 A
单位:m4

其值:+
二、惯性矩与极惯性矩的关系
若 x 、 y 轴为一对正交坐标轴
y
x
dA
y
x
I p 2dA ( x 2 y 2 )dA
A
A

A O
x dA y dA
200 yC
7 4
I xC I

xC
I 6.01 10 mm
xC
30
I
xC1
C
200 157.5
I
xC
I
xC 1
a A1
2 1
a1 57.5 xC a2 57.5 xC2
30
II
200 30 3 57.52 200 30 mm 4 12 2.03 107 mm 4
2 2 A A
即: 性质 :
Ip I y I x
平面图形对任意一点的极惯性矩等于该图形对通过 该点的任意一对相互垂直的坐标轴的惯性矩之和
§A.2 惯性矩 惯性积 惯性半径
常用图形的惯性矩:
1.矩形截面
3 bh 2 2 y bdy I x y dA h 2 A 12
2 Ix I A a x 2 2 C C2
30 200 3 57.52 200 30 mm 4 3.98 107 mm 4 12
例2 求 I x 和 I y C C 解:
200 yC
7 4
I xC I
xC
I 6.01 10 mm
xC
3.环形截面
d D
( D 4 d 4 ) D 4 1 4 (1 ) I x I y Ip 64 64 2
特别指出: 惯 性 矩——对某一轴而言 极 惯 性 矩——对某一点而言
三、惯性半径
在力学计算中,有时把惯性矩写成
I x A i x2
即:
I y A i y2
30
I
xC1
C
200 157.5
I yC I yC I yC
a1 57.5 xC a2 57.5 xC2
30
II
30 200 3 200 30 3 12 12 2.05 107 mm 4
ix
Ix ——图形对 x 轴的惯性半径 A
iy
单位:m
Iy A
——图形对 y 轴的惯性半径
三、惯性半径
试问:
即: 注意:
2 2 A yC I x y 2dA A i x
A
?
i x yC
i x yC
?
i y xC
四、平行移轴公式
一、定理推导 二、应用
一、定理推导
惯性矩总结(含常用惯性矩公式)
第五章 平面图形的几何性质
5.1 静矩和形心 5.2惯性矩、极惯性矩 、平行移轴公式

平面图形的几何性质是影响构件承载能力的重要 因素之一。如何确定平面图形的几何性质的量值, 是本章讨论的内容。本章主要介绍了形心、静矩、 惯性矩、惯性积等几何量,学习时要掌握其基本 的概念和计算方法,同时要掌握平行移轴公式及 其应用。
惯性矩 惯性半径
一、惯性矩 二、惯性矩与极惯性矩的关系 三、惯性半径
四、平行移轴公式
1、惯性矩、极惯性矩的概念和计算方法; 2、平行移轴公式。

平行移轴公式的应用。
一、惯性矩
1.惯性矩 定义: y2dA——微面积dA对 x 轴的惯性矩
y
x
dA
y
x
A
x2dA——微面积dA对 y 轴的惯性矩 O
一、定理推导
同理
I x I xC a A
2
I y I yC b A I xy I xC yC abA
2
——惯性矩和惯性积的平行轴定理
显然:
I x I xC
I y I yC
性质4:在平面图形对所有相互平行的坐标轴的惯性矩
中,以对形心轴的惯性矩为最小。
二、应用
解: 例 求 I xC和 I yC
y
h2
dy dA y
y
x
h __ 2
C
hb 3 Iy 12
h __ 2
h
3 bh y 2 bdy 3
I x1 y 2dA
A
O
b __ 2 b __ 2
x1
0
常用图形的惯性矩:
2.圆形截面
y
I x I y Ip
由对称性
D
4
32
4
O
x
D 1 I x I y Ip 2 64
相关文档
最新文档