平行线间的距离公式
高中数学《第三章直线与方程3.3直线的交点坐标与距离公式3.3.4两条平行直线间的距离》261PPT课件
小结
1.平面内一点P(x0,y0) 到直线Ax+By+C=0 的距离公式是 d Ax0 By0 C
A2 B2
当A=0或B=0时,公式仍然成立.
2.两条平行线Ax+By+C1=0与Ax+By+C2=0
的距离是
d
C1 - C2 A2 B2ຫໍສະໝຸດ 两平行线间的 距离处处相等
在l2上任取一点,例如P(3,0)
P到l1的距离等于l1与l2的距离
2 3 7 0 8 14 14 53
d
22 (7)2
53 53
直线到直线的距离转化为点到直线的距离
任意两条平行直线都可以写成如下形式:
y
l1
l1 :Ax+By+C1=0
l2
l2 :Ax+By+C2= 0
注意: 运用此公式时直线方程要化成一般式,并 且X、Y项的系数要对应相等.
l1 :2x+3y+6=0 l2 :4x+6y+18=0
两条平行直线间的距离:
两条平行直线间的距离是指夹在两条平行直
线间的公垂线段的长.
y
P l1
两条平行线 l1:Ax+By+C1=0与
l2
Q
o
x
l2: Ax+By+C2=0的距离是
x y6 2 0
练习:两平行线3x+4y=10和6x+8y=0的距离是_2___.
题型一:公式应用
例1 已知直线 l1 : 2x 7y 8 0 和
与 l2 : 6x 21y 1 0,l1与l2是否平行?若平 行,求l1与l2的距离.
例3 已知直线l1 :2x-7y-8=0,l2 :6x-21y-1=0, 求直线l1 与l2 间的距离。
解析几何中的基本公式
高三数学解题公式、结论大全(解析几何)1、 两点间距离:若)y ,x (B ),y ,x (A 2211,则212212)()(y y x x AB -+-=特别地:x //AB 轴,则=AB 。
y //AB 轴,则=AB 。
2、 平行线间距离:若0C By Ax :l ,0C By Ax :l 2211=++=++,则:2221BA C C d +-=注意:x ,y 对应项系数应相等。
3、 点到直线的距离:0C By Ax :l ),y ,x (P =++ ,则P 到l 的距离为:22BA CBy Ax d +++=4、 直线与圆锥曲线相交的弦长公式:⎩⎨⎧=+=0)y ,x (F b kx y 消y :02=++c bx ax ,务必注意.0>∆若l 与曲线交于A ),(),,(2211y x B y x , 则:2122))(1(x x k AB -+=5、 若A ),(),,(2211y x B y x ,P (x ,y )。
P 在直线AB 上,且P 分有向线段AB 所成的比为λ,则⎪⎪⎩⎪⎪⎨⎧λ+λ+=λ+λ+=112121y y y x x x ,特别地:λ=1时,P 为AB 中点且⎪⎪⎩⎪⎪⎨⎧+=+=222121y y y x x x 变形后:y y y y x x x x --=λ--=λ2121或6、 若直线l 1的斜率为k 1,直线l 2的斜率为k 2,则l 1到l 2的角为),0(,π∈αα适用范围:k 1,k 2都存在且k 1k 2≠-1 , 21121tan k k k k +-=α若l 1与l 2的夹角为θ,则=θtan 21211k k k k +-,]2,0(π∈θ注意:(1)l 1到l 2的角,指从l 1按逆时针方向旋转到l 2所成的角,范围),0(π l 1到l 2的夹角:指 l 1、l 2相交所成的锐角或直角。
(2)l 1⊥l 2时,夹角、到角=2π。
初中数学-新材料阅读题
新版材料阅读题一、填空题1.两条平行线间的距离公式一般地;两条平行线l 1:Ax +By +C 1=0和l 2:Ax +By +C 2=0间的距离公式d =12√A 2+B 2如:求:两条平行线x +3y −4=0和2x +6y −9=0的距离.解:将两方程中x,y 的系数化成对应相等的形式,得2x +6y −8=0和2x +6y −9=0 因此,d =√22+62=√1020两条平行线l 1:3x +4y =10和l 2:6x +8y −10=0的距离是____________.二、解答题2.已知点P ,Q 为平面直角坐标系xOy 中不重合的两点,以点P 为圆心且经过点Q 作⊙P ,则称点Q 为⊙P 的“关联点”,⊙P 为点Q 的“关联圆”.(1)已知⊙O 的半径为1,在点E (1,1),F (﹣12,√32),M (0,-1)中,⊙O 的“关联点”为______;(2)若点P (2,0),点Q (3,n ),⊙Q 为点P 的“关联圆”,且⊙Q 的半径为√5,求n 的值;(3)已知点D (0,2),点H (m ,2),⊙D 是点H 的“关联圆”,直线y =﹣43x+4与x 轴,y 轴分别交于点A ,B .若线段AB 上存在⊙D 的“关联点”,求m 的取值范围.3.阅读下列材料,并完成填空.你能比较20132014和20142013的大小吗?为了解决这个问题,先把问题一般化,比较n n+1和(n+1)n(n≥1,且n为整数)的大小.然后从分析n=1,n=2,n=3⋯的简单情形入手,从中发现规律,经过归纳、猜想得出结论.(1)通过计算(可用计算器)比较下列(1)-(7)组两数的大小:(在横线上填上" > "" =“或”<")(1)1221;(2)2332;(3)3443;(4)4554;(5)5665;(6)6776;(7)7887;(2)归纳第(1)问的结果,可以猜想出n n+1和(n+1)n的大小关系;(3)根据以上结论,可以得出20132014和20142013的大小关系.4.在一个三角形中,如果一个角是另一个角的2倍,我们称这种三角形为倍角三角形.如图1,倍角△ABC中,∠A=2∠B,∠A、∠B、∠C的对边分别记为a,b,c,倍角三角形的三边a,b,c有什么关系呢?让我们一起来探索.(1)我们先从特殊的倍角三角形入手研究.请你结合图形填空:(2)如图4,对于一般的倍角△ABC,若∠CAB=2∠CBA,∠CAB、∠CBA、∠C的对边分别记为a,b,c,a,b,c,三边有什么关系呢?请你作出猜测,并结合图4给出的辅助线提示加以证明;(3)请你运用(2)中的结论解决下列问题:若一个倍角三角形的两边长为5,6,求第三边长.(直接写出结论即可)5.阅读理解题在平面直角坐标系xOy 中,点P (x 0,y 0)到直线Ax+By+C=0(A 2+B 2≠0)的距离公式为:d=00√A 2+B 2,例如,求点P (1,3)到直线4x+3y ﹣3=0的距离. 解:由直线4x+3y ﹣3=0知:A=4,B=3,C=﹣3 所以P (1,3)到直线4x+3y ﹣3=0的距离为:d=√42+32=2根据以上材料,解决下列问题:(1)求点P 1(0,0)到直线3x ﹣4y ﹣5=0的距离. (2)若点P 2(1,0)到直线x+y+C=0的距离为,求实数C 的值.6.若x 1,x 2是一元二次方程ax 2+bx +c =0(a ≠0)的两根,则有x 1+x 2=−ba ,x 1⋅x 2=ca ,由上式可知,一元二次方程的两根和、两根积是由方程的系数确定的,我们把这个关系称为一元二次方程根与系数的关系.若α,β是方程x 2−x −1=0的两根,记S 1=α+β,S 2=α2+β2,…,S n =αn +βn ,(1)S 1=________;S 2=________;S 3=________;S 4=________;(直接写出结果) (2)当n 为不小于3的整数时,由(1)猜想S n ,S n−1,S n−2有何关系? (3)利用(2)中猜想求(1+√52)7+(1−√52)7的值.。
点到直线的距离、两条平行线间的距离题型全归纳
点到直线的距离、两条平行线间的距离题型全归纳【知识梳理】点到直线的距离与两条平行线间的距离题型一、点到直线的距离【例1】 求点P (3,-2)到下列直线的距离: (1)y =34x +14;(2)y =6;(3)x =4.【类题通法】应用点到直线的距离公式应注意的三个问题(1)直线方程应为一般式,若给出其他形式应化为一般式. (2)点P 在直线l 上时,点到直线的距离为0,公式仍然适用.(3)直线方程Ax +By +C =0中,A =0或B =0公式也成立,但由于直线是特殊直线(与坐标轴垂直),故也可用数形结合求解.【对点训练】1.已知点A (a,2)(a >0)到直线l :x -y +3=0的距离为1,则a =( ) A .2 B .2- 2 C .2-1D .2+12.点P(2,4)到直线l:3x+4y-7=0的距离是________.题型二、两平行线间的距离【例2】求与直线l:5x-12y+6=0平行且到l的距离为2的直线方程.【类题通法】求两平行线间的距离,一般是直接利用两平行线间的距离公式,当直线l1:y=kx+b1,l2:y=kx+b2,且b1≠b2时,d=|b1-b2|k2+1;当直线l1:Ax+By+C1=0,l2:Ax+By+C2=0且C1≠C2时,d=|C1-C2|A2+B2.但必须注意两直线方程中x,y的系数对应相等.【对点训练】3.两直线3x+y-3=0和6x+my-1=0平行,则它们之间的距离为________.题型三、距离的综合应用【例3】求经过点P(1,2),且使A(2,3),B(0,-5)到它的距离相等的直线l的方程.【类题通法】解这类题目常用的方法是待定系数法,即根据题意设出方程,然后由题意列方程求参数.也可以综合应用直线的有关知识,充分发挥几何图形的直观性,判断直线l的特征,然后由已知条件写出l的方程.【对点训练】4.求经过两直线l1:x-3y-4=0与l2:4x+3y-6=0的交点,且和点A(-3,1)的距离为5的直线l的方程.5. 已知A(-2,0),B(2,-2),C(0,5),过点M(-4,2)且平行于AB的直线l将△ABC分成两部分,求此两部分面积的比.题型四距离最值问题例4.已知P,Q分别为直线3x+4y-12=0与6x+8y+6=0上任一点,则|PQ|的最小值为()A.B.C.3 D.6例5.已知x+y-3=0,则的最小值为.例6.已知直线l1过A(3,0),直线l2过B(0,4),且l1∥l2,用d表示l1与l2间的距离,则d的取值范围是.【练习反馈】1.原点到直线x+2y-5=0的距离为()A.1B. 3C.2 D. 52.已知直线l1:x+y+1=0,l2:x+y-1=0,则l1,l2之间的距离为()A.1 B. 2C. 3 D.23.直线4x-3y+5=0与直线8x-6y+5=0的距离为________.4.若点(2,k)到直线5x-12y+6=0的距离是4,则k的值是________.5.已知△ABC三个顶点坐标A(-1,3),B(-3,0),C(1,2),求△ABC的面积S.点到直线的距离、两条平行线间的距离题型全归纳参考答案【例1】[解] (1)185.(2) 8.(3) 1.【对点训练】 1.选C 2.答案:3【例2】设所求直线的方程为5x -12y +C =0, 由两平行直线间的距离公式得2=|C -6|52+-2,解得C =32,或C =-20.故所求直线的方程为5x -12y +32=0,或5x -12y -20=0. 【对点训练】 3.104【例3】[解]当直线斜率不存在时,即x =1,显然符合题意.当直线斜率存在时,设所求直线的斜率为k ,则直线方程为y -2=k (x -1).由条件得|2k -3-k +2|k 2+1=|5-k +2|k 2+1,解得k =4,故所求直线方程为x =1或4x -y -2=0. 【对点训练】4.x =2或4x -3y -10=0. 5.两部分的面积之比为. 例4.答案:C 例5.答案:例6.答案:(0,5] 【练习反馈】1.选D 2.选B 3.12 4.答案:-3或1735.解:由直线方程的两点式得直线BC 的方程为 y2-0=x +31+3,即x -2y +3=0.由两点间距离公式得|BC |=-3-2+-2=25,点A 到BC 的距离为d ,即为BC 边上的高,d =|-1-2×3+3|12+-2=455,所以S =12|BC |·d =12×25×455=4, 即△ABC 的面积为4.。
点到直线的距离两条平行直线间的距离
2.对两平行直线间的距离公式的理解 (1)求两平行线间的距离可以转化为求点到直线的距离,也可 以利用公式. (2)利用公式求平行线间的距离时,两直线方程必须是一般式, 且 x,y 的系数对应相等. (3)当两直线都与 x 轴(或 y 轴)垂直时, 可利用数形结合来解决.
典例剖析 题型一 点到直线的距离 【例 1】 求点 P0(-1,2)到下列直线的距离: (1)2x+y-10=0;(2)x=2;(3)y-1=0. 思路点拨: 利用点到直线的距离公式, 对于特殊直线也可数形 结合.
题型二 两条平行线间的距离 【例 2】 求与直线 2x-y-1=0 平行,且与直线 2x-y-1 距 离为 2 的直线方程.
思路点拨:本题可从两方面考虑: ①可利用两点间的距离公式求解; ②可利用两直线的距离公式求解.
解: 法一: 由已知, 可设所求的直线方程为 2x-y+C=0(C≠-1), |C--1| |C+1| 则它到直线 2x-y-1=0 的距离 d= 2 =2, 2= 5 2 +-1 ∴|C+1|=2 5,C=± 2 5-1, ∴所求直线的方程为 2x-y+2 5-1=0 或 2x-y-2 5-1= 0.
【答案】B
3.在过点 A(2,1)的所有直线中,距离原点最远的直线方程为 ____________.
【答案】2x+y-5=0
4.若直线 l 与直线 l1:5x-12y+6=0 平行,且 l 与 l1 的距离 为 2,则 l 的方程为____________.
【答案】5x-12y+32=0 或 5x-12y-20=0
要点阐释 1.应用点到直线的距离公式应注意的问题 (1)直线方程应为一般式, 若给出其他形式, 应先化成一般式再 用公式.例如求 P(x0,y0)到直线 y=kx+b 的距离,应先把直线方 |kx0-y0+b| 程化为 kx-y+b=0,得 d= . 2 k +1 (2)点 P 在直线 l 上时,点到直线的距离为零,公式仍然适用, 故应用公式时不必判定点 P 与直线 l 的位置关系. (3)直线方程 Ax+By+C=0 中 A=0 或 B=0 时,公式也成立, 也可以用下列方法求点到直线的距离: ①P(x0,y0)到 x=a 的距离 d=|a-x0|; ②P(x0,y0)到 y=b 的距离 d=|b-y0|.
两条平行线间的距离公式
l2 o Qx
d
|
A
0
B
(
C1 B
)
C2
|
| C2
C1 |
A2 B2
A2 B2
第8页/共15页
应用新知
y
l1:Ax+By+C1=0
d
l2:Ax+By+C2=0
o
x
注意:
两条直
两条平行直线间的距离: 线中的
d | C2 C1 | A2 B2
A、B要 统一。
第9页/共15页
归结公式
求下列两条平行直线间的距离:
第2页/共15页
知识复习
两条平行直线间的距离:
提问:l1与l2平行吗? 为什么?
l1的斜率为k1
2 7
l2的斜率为k2
2 7
yl1:2x-7y+8=0
P M
Q
N
o
x
l2: 2x-7y-4=0
两平行线间的
距离处处相等
第3页/共15页
探究新知
两条平行直线间的距离:
1、在l2上任取一 点,例如M(2,0)
距离是_____1_3 ;
2.两平行线3x-2y-1=0和6x-4y+2=0的 距离是___2_1.313
第12页/共15页
作业: 必做题:教材 P110 9、10 选做题: 教材P110 B组 9
第13页/共您的观赏!
第15页/共15页
yl1:2x-7y+8=0
2、M到l1的距离 等于l1与l2的距离
M
o
x
l2: 2x-7y-4=0
平行直线间的距离转化为点到直线的距离
第4页/共15页
平行线的距离公式
平行线的距离公式
平面上平行线间的距离公式为:d=|C1-C2|/√(A²+B²)。
设两条直线方程为Ax+By+C1=0,Ax+By+C2=0则其距离公式
d=|C1-C2|/√(A²+B²)。
几何中,在同一平面内,永不相交(也永不重合)的两条直线叫做平行线。
平行线一定要在同一平面内定义,不适用于立体几何,比如异面直线,不相交,也不平行。
基本定义:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
如若a∥b,b∥c,则a∥c。
平行线的定义包括三个基本特征:一是在同一平面内,二是两条直线,三是不相交。
在同一平面内,两条直线的位置关系只有两种:平行和相交。
高一数学必修二两条平行线间的距离公式
择恰当的点,最好选 择坐标为整数的点。
l1: 2x-7y-8=0
3、利用点到直线的距离公式求解。
应用新知
求下列两条平行直线间的距离:
(1)2x+3y-8=0
2x+3y+18=0
d | 2 4 7 0 18 | 26 13 2 13
22 32
13
(2)3x+4y=10
3x+4y=0
点到直线的距离
P0(x0,y0)到直线l:Ax+By+C=0的距离:
d | Ax0 By0 C | A2 B2
练习
d |12 (5) 5 7 3 | 22
12、. 求求点点BA((-d-52,,d73|))3到到|2直直(线2线2121322(2)x2x1+1+)24554y21y+0+|333==7005的3的51|3距距离离9..
22 (7)2
53
所以平行线l1与l2的距离为
12 53 53
应用新知
例1、已知直线l1:2x-7y-8=0与l2:6x-21y-1=0试
判断l1与l2平行吗?若平行,求l1与l2的距
离。
y
分析:
l2:6x-21y-1=0
Байду номын сангаас
1、判断两线平行应 分别求出它们的斜率。 2、在一条直线上选 o
d
x
A
16
距离是_____1_3 ;
2.两平行线3x-2y-1=0和6x-4y+2=0的 距离是___2_1.313
作业: 必做题:教材 P110 9、10 选做题: 教材P110 B组 9
直角坐标系的8大公式
直角坐标系的8大公式直角坐标系是数学中常用的坐标系之一,广泛应用于几何、物理和工程等领域。
在直角坐标系中,我们通过坐标对点进行唯一标识和定位。
本文将介绍直角坐标系中的8大公式,这些公式在解决几何和代数问题时非常有用。
一、坐标距离公式在直角坐标系中,我们可以通过两点的坐标计算它们之间的距离。
假设点A的坐标为(x₁, y₁),点B的坐标为(x₂, y₂),那么点A和点B之间的距离可以由以下公式求得:d = √((x₂ - x₁)² + (y₂ - y₁)²)这个公式被称为坐标距离公式,可以通过计算两点之间的直线距离来确定它们之间的距离。
二、中点公式在直角坐标系中,我们可以通过两点的坐标计算它们的中点坐标。
假设点A的坐标为(x₁, y₁),点B的坐标为(x₂, y₂),那么这两点的中点坐标可以由以下公式求得:M = ((x₁ + x₂) / 2, (y₁ + y₂) / 2)这个公式被称为中点公式,可以通过计算两点坐标的平均值来确定它们的中点坐标。
三、斜率公式在直角坐标系中,我们可以通过两点的坐标计算它们之间的斜率。
假设点A的坐标为(x₁, y₁),点B的坐标为(x₂, y₂),那么这两点之间的斜率可以由以下公式求得:m = (y₂ - y₁) / (x₂ - x₁)这个公式被称为斜率公式,可以用于计算两点之间直线的斜率。
斜率表示直线的倾斜程度。
四、线性方程公式在直角坐标系中,我们可以通过直线的斜率和一点的坐标来确定直线的方程。
假设直线的斜率为m,一点的坐标为(x₁, y₁),那么直线的方程可以由以下公式给出:y - y₁ = m(x - x₁)这个公式被称为线性方程公式,可以用于描述直线在直角坐标系中的方程。
五、平行线公式在直角坐标系中,我们可以通过两条平行线的斜率来确定它们之间的关系。
假设平行线L₁的斜率为m₁,平行线L₂的斜率为m₂,那么这两条平行线之间的关系可以由以下公式给出:m₁ = m₂这个公式表示两条平行线的斜率相等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
的距离公式
点到直线的距离公式 一般地,点 P(x0,y0) 到直线 l:Ax+By+C=0
的距离 d 的公式是
d | Ax0 By0 C | A2 B2
在使用该公式前,须将直线方程化为一般 式A.=0或B=0时,此公式也成立.
求平行线 2x–7y+8=0 和 2x–7y–6=0 的距离. 解:在直线 2x–7y–6=0 上任取一点,如P(3,0) ,
求平行线 x+3y–4=0 和 2x+6y–9=0 的距离. 解:将两方程中 x、y的系数化成对应相等的形式,得
2x+6y–8=0 和 2x+6y–9=0 因此, d | 8 9 | 10 .
22 62 20
求平行线 2x+3y+4=0 和 4x+6y–5=0 的距离.
求与直线3x–4y–20=0平行且距离为3的直线方程. 解:根据题意,可设所求直线方程为3x–4y+m=0,
则两条平行线的距离就是
点 P(3,0) 到直线2x–7y+8=0的距离.
因此,
y
d | 23708| 22 (7)2
–4
14 53 . 53ຫໍສະໝຸດ 2 1 O 12 3 x求平行线 2x+3y+4=0 和 4x+6y–5=0 的距离.
y P l1 怎样求任意两条平行线的距离呢?
Q l2
Ax0 By0 C1
PQ C1 C2 A2 B2
两条平行线的距离公式 一般地,两条平行线l1:Ax+By+C1=0 和l2:
Ax+By+C2=0 间的距离 d 的公式是
d | C1 C2 | A2 B2
用两平行线间距离公式须将方程中x、y的系数 化为对应相同的形式。
所以PP ′⊥l,点P和P ′到直线l 的距离相等.
设P ′(a,b)
b 0 ( 5) 1
则 a4 4
5a 4b 21 5 4 21
解之
a b
6 8
52 42
52 42
所有对称点为P ′(–6,–8).
还其他 思路吗?
求点A(1,1)关于直线l:x+y–3=0的对称点A ′的坐 标.
由| 20 m | 3 解得 m 5或m 35.
32 42
故直线方程为3x–4y–5=0或3x–4y–35=0.
求与平行线2x+3y–3=0和2x+3y–9=0平行且等距离 的直线方程.
求点P(4,0)关于直线l:5x+4y+21=0的对称点P ′的
坐标.
解:因为点P和P ′关于直线l 对称,
O
x 任意两条平行直线可写成如下形式:
l1 :Ax+By+C1=0
l2 :Ax+By+C2=0
在直线 l1上任取一点Px0, y0 ,过点P作直线 l2的垂线,垂足为Q.
则点P到直线l2的距离为:
PQ
Ax0 By0 C2 A2 B2
点P在直线l1上, Ax0 By0 C1 0
点到直线距离公式:
d Ax0 By0 C A2 B2
用该公式时应先将直线方程化为一般式.
两平行直线间的距离公式:
d C2 C1 A2 B2
用该公式时应先将两平行线的x,y的系数整理 为对应相等的形式。
今天你学了哪些知识? 哪些你认为值得注意?