七年级下册数学冀教版 第7章 相交线与平行线7.2 相交线7.2.1 相交角【教案】
冀教版七年级下册数学第七章 相交线与平行线含答案解析
冀教版七年级下册数学第七章相交线与平行线含答案一、单选题(共15题,共计45分)1、如图,能表示点B到直线AC的距离的线段是()A.BCB.BDC.BAD.AD2、如图,已知∠1 = ∠2 ,∠3 = 65° ,那么∠4 的度数是()A.65°B.95°C.105°D.115°3、如图,则下列判断错误的是()A.因为∠1=∠2,所以a∥bB.因为∠3=∠4,所以a∥bC.因为∠2=∠3,所以c∥dD.因为∠1=∠4,所以c∥d4、给出下列说法:(1)两条直线被第三条直线所截,同位角相等;(2)不相等的两个角不是同位角;(3)平面内的一条直线和两条平行线中的一条相交,则它与另一条也相交;(4)从直线外一点到这条直线的垂线段,叫做该点到直线的距离;(5)过一点作已知直线的平行线,有且只有一条。
其中真命题的有()A.0个B.1个C.2个D.3个5、下列说法正确是( )A.同旁内角互补B.在同一平面内,若a⊥b,b⊥c,则a⊥cC.对顶角相等D.一个角的补角一定是钝角6、如图,AB⊥AC,AD⊥BC,垂足为D,AB=3,AC=4,AD= ,BD= ,则点B到直线AD的距离为()A. B. C.3 D.47、已知∠AOB,P是任一点,过点P画一条直线与OA平行,则这样的直线()A.有且仅有一条B.有两条C.不存在D.有一条或不存在8、如果∠A和∠B是两平行直线中的同旁内角,且∠A比∠B的2倍少30º,则∠B的度数是()A.30ºB.70ºC.110ºD.30º或70º9、下列命题中,是真命题的是()A.内错角相等B.邻补角相等C.同旁内角相等两直线平行D.平行于同一直线的两直线平行10、下列结论正确的是()A.过一点有且只有一条直线与已知直线垂直B.过一点有且只有一条直线与已知直线平行C.在同一平面内,不相交的两条射线是平行线D.如果两条直线都与第三条直线平行,那么这两条直线互相平行11、如图,在边长为1的小正力形组成的网格中,点A,B,C部在格点上,若将线段AB沿BC方向平移,使点B与点C重合,则线段AB扫过的面积为()A.11B.10C.9D.812、一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,则∠DBC的度数为()A.10°B.15°C.18°D.30°13、如图,平面内直线,点分别在直线上,平分,并且满足,则关系正确的是()A. B. C. D.14、如图,△ABC≌△DEF,BC∥EF,AC∥DF,则∠C的对应角是()A.∠FB.∠AGFC.∠AEFD.∠D15、如图,分别为的,边的中点,将此三角形沿折叠,使点落在边上的点处.若,则等于()A. B. C. D.二、填空题(共10题,共计30分)16、下列说法:① ;②数轴上的点与实数成一一对应关系;③两条直线被第三条直线所截,同位角相等;④垂直于同一条直线的两条直线互相平行;⑤两个无理数的和还是无理数;⑥无理数都是无限小数,其中正确的个数有 ________17、如图所示,已知AB∥DC,AE平分∠BAD,CD与AE相交于点F,∠CFE=∠E.试说明AD∥BC.完成推理过程:∵AB∥DC(已知)∴∠1=∠CFE(________)∵AE平分∠BAD(已知)∴∠1=∠2 (角平分线的定义)∵∠CFE=∠E(已知)∴∠2=________(等量代换)∴AD∥BC (________)18、如图,有一条直的宽纸带,按图方式折叠,则∠α的度数等于________.19、在平面直角坐标系中,将点P(2,1)向下平移3个单位长度,再向左平移1个单位长度得到点Q,则点Q的坐标为________20、已知:如图,AB∥CD,∠A=∠D,试说明AC∥DE 成立的理由.(下面是彬彬同学进行的推理,请你将彬彬同学的推理过程补充完整.)解:∵AB∥CD (已知)∴∠A=________(两直线平行,内错角相等)又∵∠A=∠D(________ )∴∠________=∠________ (等量代换)∴AC∥DE(________ )21、如图,直线a⊥直线c,直线b⊥直线c,若∠1=70°,则∠2是________22、如图,∠E=50°,∠BAC=50°,∠D=110°,求∠ABD的度数.请完善解答过程,并在括号内填写相应的理论依据.解:∵∠E=50°,∠BAC=50°,(已知)∴∠E=________(等量代换)∴________∥________.(________)∴∠ABD+∠D=180°.(________)∴∠D=110°,(已知)∴∠ABD=70°.(等式的性质)23、如图,在6×4的正方形网格中,点A、B、C、D、E、F都在格点上.连接点A、B得线段AB.(1)连接C、D、E、F中的任意两点,共可得________ 条线段,在图中画出来;(2)在(1)中所连得的线段中,与AB平行的线段是________ ;(3)用三角尺或量角器度量、检验,AB及(1)中所连得的线段中,互相垂直的线段有几对?(请用“⊥”表示出来)________ .24、同一平面内的任意三条直线a、b、c,其交点的个数有________ .25、为纪念戍边英雄,某班设计了《致敬英雄》主题宣传板报,黑板是一块长为2a米,宽为a米的长方形,版面设计如图所示,将它分割成两块边长均为a米的正方形和正方形,分别以点为圆心,正方形边长为半径画弧.阴影部分用图画展示英雄形象,空白部分用文字宣传英雄事迹.阴影部分的面积为________平方米(用含a的代数式表示).三、解答题(共5题,共计25分)26、如图,已知,∠ ,求、、的度数.27、如图,△ABC中,∠ABC、∠ACB的平分线交于点F,过点F作DE∥BC分别交AB、AC于D、E,已知△ADE的周长为20cm,且BC=12cm,求△ABC的周长.28、已知:如图,∠1+∠2=180°,∠3=∠B.求证:∠AED=∠C.29、如图,∠1=60°,∠2=60°,∠3=80°,求∠4的度数.30、如图,直线AB、CD相交于点O,OE平分∠BOD,∠AOC=72°,OF⊥CD,垂足为O,求∠EOF的度数。
冀教版数学七年级下册第七章相交线与平行线复习课件
推论2:三角形的一个外角大于任何一个和它不 相邻的内角。
推论3:直角三角形的两锐角互余。 A
△ABC中:
2
∠1=∠2+∠3;
∠1>∠2,∠1>∠3。 3
41
B
C
D
这个结论以后可以直接运用。
证明一个命题的一般步骤:
(1)弄清题设和结论; (2)根据题意画出相应的图形; (3)根据题设和结论写出已知,求证; (4)分析证明思路,写出证明过程。
第七章 相交线与平行线 复习课件
知识结构
两条
邻补角、对顶角
对顶角相等
直线
相 交
相交 垂线及其性质
点到直线的距离
线
两条
直线
被第 三条
同位角、内错角、同旁内角
直线
平
所截
行
平行公理
线
平移
判定 性质
知多少
定义:对名称和术语的含义加以描述,作出明确 的规定,也就是给出它们的定义。 命题:判断一件事情的句子,叫做命题 每个命题都由条件和结论两部分组成。条件是已知事 项,结论是由已事项推断出的事项。
∴∠1>∠2,∠1>∠3(和大于部分)。
用文字表述为: 三角形的一个外角等于和它不相邻的两个内角的和。
三角形的一个外角大于任何一个和它不相邻的内角。
外角的内涵与外延
在这里,我们通过三角形内
角和定理直接推导出两个新定理。
A
像这样,由一个公理或定理直接
2
推出的定理,叫做这个公理或定
理的推论。
3
推论可以当作定理使用。 B
∴∠BDC=∠A+∠B+∠C(等式的性质)。
课堂练习
初一(七年级)下册数学相交线与平行线的知识点
开学已经有几天了,新的第一章知识掌握的怎么样了呢?这一单元主要是概念和性质定理一定要理解清楚,可以在这篇文章梳理一下,一定能帮到你!一、相交线1.邻补角与对顶角两直线相交所成的四个角中存在几种不同关系的角,它们的概念及性质如下表:注意点:⑴对顶角是成对出现的,对顶角是具有特殊位置关系的两个角;⑵如果∠α与∠β是对顶角,那么一定有∠α=∠β;反之如果∠α=∠β,那么∠α与∠β不一定是对顶角⑶如果∠α与∠β互为邻补角,则一定有∠α+∠β=180°;反之如果∠α+∠β=180°,则∠α与∠β不一定是邻补角。
⑶两直线相交形成的四个角中,每一个角的邻补角有两个,而对顶角只有一个。
2.垂线⑴定义:当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足。
符号语言记作:如图所示:AB⊥CD,垂足为O⑵垂线性质1:过一点有且只有一条直线与已知直线垂直(与平行公理相比较记)⑶垂线性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。
简称:垂线段最短。
3.垂线的画法:⑴过直线上一点画已知直线的垂线;⑵过直线外一点画已知直线的垂线。
注意:①画一条线段或射线的垂线,就是画它们所在直线的垂线;②过一点作线段的垂线,垂足可在线段上,也可以在线段的延长线上。
画法:⑴一靠:用三角尺一条直角边靠在已知直线上,⑵二移:移动三角尺使一点落在它的另一边直角边上,⑶三画:沿着这条直角边画线,不要画成给人的印象是线段的线。
4.点到直线的距离直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。
应该结合图形进行记忆。
如图,PO⊥AB,同P 到直线AB 的距离是PO 的长。
PO 是垂线段。
PO 是点P 到直线AB所有线段中最短的一条。
现实生活中开沟引水,牵牛喝水都是“垂线段最短”性质的应用。
5.如何理解“垂线”、“垂线段”、“两点间距离”、“点到直线的距离”这些相近而又相异的概念。
(精练)冀教版七年级下册数学第七章 相交线与平行线含答案
冀教版七年级下册数学第七章相交线与平行线含答案一、单选题(共15题,共计45分)1、如图,在ABC中,∠B=30°,若AB∥CD,CB平分∠ACD,则∠ACD的度数为()A.30°B.40°C.60°D.90°2、如图,在△ABC 中,∠BAC 和∠ABC 的平分线相交于点 O,过点 O 作EF∥AB 交 BC 于F,交AC于E,过点O作OD⊥BC于D,下列四个结论:① ∠AOB=90°+ ②AE+BF=EF;③当∠C=90°时,E,F 分别是 AC,BC的中点;④若 OD=a,CE+CF=2b,则S△CEF=ab其中正确的是( )A.①②B.③④C.①②④D.①③④3、如图所示,下列推理及所注理由正确的是()A.因为∠1=∠3,所以AB∥CD(两直线平行,内错角相等)B.因为AB∥CD,所以∠2=∠4(两直线平行,内错角相等) C.因为AD∥BC,所以∠3=∠4(两直线平行,内错角相等) D.因为∠2=∠4,所以AD∥BC (内错角相等,两直线平行)4、如图,已知∠1=36°,∠2=36°,∠3=140°,则∠4的度数等于()A.40°B.36°C.44°D.100°5、如图,在锐角△ABC中,∠BAC=45°,AB=2,∠BAC的平分线交BC于点D,M、N分别是AD和AB上的动点,则BM+MN的最小值是()A.1B.C.1.5D.6、如图所示,△ABC中AD⊥BC,AE是△ABD的角平分线,则下列线段中最短的是()A.ABB.AEC.ADD.AC7、如图,把一块含有45°角的直角三角板的两个锐角项点放在直尺的对边上,若,那么的度数是()A.20°B.25°C.60°D.65°8、如图,a∥b,∠1=130°,则∠2=()A.50°B.130°C.70°D.120°9、如图,点A的坐标为(1,0),点B在直线y=-x上运动,当线段AB最短时,点B的坐标为()A.(0,0)B.(,- )C.(,-)D.(- ,)10、下列四个命题中,是真命题的是()A.同位角相等B. 是的一个平方根C.若点在坐标轴上,则D.若,则11、如图,∠BAC=90°,AD⊥BC,垂足为D,则下面的结论中正确的个数为()①AB与AC互相垂直;②AD与AC互相垂直;③点C到AB的垂线段是线段AB;④线段AB的长度是点B到AC的距离;⑤线段AB是B点到AC的距离.A.2B.3C.4D.512、如图,已知AD//BC,∠B=32°,DB平分∠ADE,则∠DEC=()A.64°B.66°C.74°D.86°13、如图,在平行四边形中,,E为垂足.如果,则()A. B. C. D.14、如图,已知直线AB,线段CO⊥AB于点O,∠AOD= ∠BOD,∠COD的度数为()A.15°B.25°C.30°D.45°15、如图,△ABC中BD、CD平分∠ABC、∠ACB过D作直线平行于BC,交AB、AC于E、F,当∠A的位置及大小变化时,线段EF和BE+CF的大小关系是()A.EF=BE+CFB.EF>BE+CFC.EF<BE+CFD.不能确定二、填空题(共10题,共计30分)16、如图,一个宽度相等的纸条按如图所示方法折叠一下,则∠1=________度.17、如图,点B、E、C、F在一条直线上,AB∥DE,BE=CF,请添加一个条件________,使△ABC≌△DEF.18、如图,若直线,,,则的度数为________.19、若点向下平移4个单位后点的坐标是________.20、如图,直线AB,CD,EF相交于点O,且AB⊥CD,∠1与∠2的关系是________ .21、如图,已知∠1+∠2=180°,∠3=108°,则∠4=________22、已知等边三角形ABC的边长为6,有从点A出发每秒1个单位且垂直于AC 的直线m交三角形的边于P 和Q两点且由A向C平移,点G从点C出发每秒4个单位沿C→B→P→Q→C路线运动,如果直线m和点G同时出发,则点G回到点C的时间为________.23、如图所示,王师傅为了检验门框AB是否垂直于地面,在门框AB的上端A处用细线悬挂一铅锤,看门框AB是否与铅锤线重合.若门框AB垂直于地面,则AB 会重合于AE,否则AB与AE不重合.你能说出这里面的道理吗?________.24、如图,直线AB∥CD∥EF,那么∠α+∠β﹣∠γ=________度.25、已知:OA⊥OC,∠AOB:∠AOC=2:3.则∠BOC的度数为________.三、解答题(共5题,共计25分)26、如图,点D是AB上一点,DF交AC于点E,DE=FE,FC∥AB,AB=6,FC=4,求线段DB的长.27、如图,AB∥CD,BE和DE相交于E.证明:∠ABE=∠D+∠E28、如图,∠B=∠C,AB∥EF,求证:∠BGF=∠C.29、已知:如图,AD⊥BC,EF⊥BC,∠1=∠2.求证:∠DGC=∠BAC.30、写出每组直线的位置关系.参考答案一、单选题(共15题,共计45分)1、C2、C3、D4、A5、B6、C7、D8、B9、B10、C11、A12、A13、B14、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、28、29、30、。
冀教版七年级下册数学第7章 相交线与平行线 平行线的判定和性质的应用
知2-讲
解:CD∥EF,理由: ∵∠B=∠D, ∴AB∥CD(内错角相等,两直线平行). ∵∠CEF=∠A, ∴EF∥AB(同位角相等,两直线平行). ∴CD∥EF(平行于同一条直线的两条直线平行).
总结
知2-讲
找寻说明平行的方法: 1. 分析法:由结论往前推,要说明这个结论成立需要什么样 的条件,一直递推到已知条件为止;(如导引1) 2. 综合法:由已知条件一步一步往后推理,看这个已知条件 能推出什么结论, 一直推导出要说明的结论为止; (如导引2) 3. 两头凑:当遇到复杂问题的时候,我们常常将分析法和综 合法同时进行,即由两头向中间推,寻找到中间的结合点.
知2-练
2 【中考·枣庄】如图,将一副三角板和一张对边 平行的纸条按下列方式摆放,两个三角板的一 直角边重合,含30°角的直角三角板的斜边与 纸条一边重合,含45°角的三角板的一个顶点 在纸条的另一边上,则∠1的度数是( A ) A.15° B.22.5° C.30° D.45°
知识点 3 平行线的性质与判定的综合应用
总结
知3-讲
一个数学问题的构成含有四个要素:题目的条 件、解题的依据、解题的方法、题目的结论,如果 题目所含的四个要素解题者已经知道或者结论虽未 指明,但它是完全确定的,这样的问题就是封闭性 的数学问题.
知3-练
1 【中考·宿迁】如图,直线a,b被直线c,d所截, 若∠1=80°,∠2=100°,∠3=85°,则∠4 的度数是( B ) A.80° B.85° C.95° D.100°
易错点:画图考虑不周导致漏解.
解:画图如图①②③④所示.∠ABC与∠DEF相等或互补, 理由如下: 如图①,∵AB∥DE, ∴∠ABC=∠DPC. ∵BC∥EF,∴∠DEF=∠DPC. ∴∠ABC=∠DEF. 如图②,∵AB∥DE,∴∠ABC=∠EPC. ∵BC∥EF,∴∠EPC=∠DEF.∴∠ABC=∠DEF. 如图③,∵AB∥DE,∴∠ABC=∠BPE.∵BC∥EF, ∴∠DEF+∠BPE=180°.∴∠ABC+∠DEF=180°.
冀教版七年级下册数学第7章 相交线与平行线 基本事实和定理
2.“经过两点有且只有一条直线”属于( D ) A.命题 B.真命题 C.基本事实 D.以上都对
3.下列说法正确的是( C ) A.命题是定理,定理是命题 B.命题不一定是定理,定理不一定是命题 C.真命题可以是定理,假命题不可能为定理 D.定理可能是真命题,也可能是假命题
4.下列语句中属于定理的是( D ) A.在直线AB上任取一点E B.一个角的补角必大于这个角 C.含有两个未知数,并且含未知数的项的次数都是1 的方程组叫做二元一次方程组 D.同角的余角相等
7.可以作为说理的依据的是( D ) A.已知条件 B.基本事实 C.定理 D.以上三种都对
8.如图,C,D是线段AB上的两点,且AC=BD,将下面
AD=BC的说理过程在括号里填上依据.
解:因为AC=BD( 所以AC-CD=BD-C已D知(
), ),
所以AD=BC(
等式的).性质
线段差的定义
9.阅读下面命题及说理过程,在括号内填上推理的依据.
命题:如图所示,直线AB,CD相交于点O,
那么∠1=∠2.
理由:因为∠1+∠AOD=180°(
),
∠2+∠AOD=180°(
),平角定义
所以∠1=∠2(
平角定义 ).
同角的补角相等
10.如图,P是线段AB的中点,M为PB上任意一点,探究 2PM与AM-BM之间的大小关系,并说明理由.
解:2PM=AM-BM.理由:因为P是线段AB的中点, 所以AP=BP.所以AM-BM=AP+PM-(BP-PM) =AP+PM-(AP-PM)=2PM.
JJ版七年级下
第七章 相交线与平行线
7.1 命 题 第2课时 基本事实和定理
提示:点击 进入习题
冀教版七年级下册数学《相交线》PPT(第1课时)
或者MN⊥EF于O
或者AB⊥OE于O
M
F
E
E
A
O
B
N
垂线的画法 你能借助三角尺或量角器经过直线AB外的一点P画出AB 的垂线吗?.
P
Q
A
B
AQ
B
P
∴ PQ为所求
∴ PQ为所求
方法归纳 画垂线的方法可归纳为“一落、二过、三画” 1.一落:把三角尺的一条直角边落在已知直线上; 2.二过:让三角尺的另一条直角边经过已知的点; 3.三画:沿着直角边经过已知点画直线.
①在直线c的两侧 ②在直线a,b的之间
内错角
c
1 2
a
34
65
b
78
3 5
典例精析 例1 如图,直线DE截直线AB ,AC,构成8个角,指出所有的
同位角,内错角,同旁内角.
解:两条直线是AB,AC,截线是DE,
所以8个角中, 同位角:∠2与∠5,∠4与∠7,∠1
D
21 34
B
A
58
67 E C
与∠8, ∠6和∠3;
解析:过一点有且只有一条直线与已知直线垂直;过直 线外一点并过直线上一点不一定有一条直线与已知直线 垂直.故D错.故选D.
三 点到直线的距离
合作探究 问题 在灌溉时,要把河中的水引到农田P处,如何挖掘能使渠 道最短?
m
P.
P
C
B
A
E
Fm
知识要点 直线外的一点与直线上各点的连接的所有线段中,垂线 段最短.
情境引入
问题引入 在奥运会的跳远比赛中,裁判员在测量运动员的跳远
成绩时,拉紧的皮尺与起跳线有什么关系?这样做的依据 是什么?
冀教版七年级下册数学第七章 相交线与平行线含答案
冀教版七年级下册数学第七章相交线与平行线含答案一、单选题(共15题,共计45分)1、如图,点在的延长线上,能证明是()A. B. C. D.2、如图,在四边形ABCD中,对角线AC与BD相交于点E,若AC平分∠DAB,AB=AE,AC=AD.那么在下列四个结论中:(1)AC⊥BD;(2)BC=DE;(3)∠DBC =∠DAB;(4)△ABE是正三角形.其中一定正确的个数是()A.1个B.2个C.3个D.4个3、如图,将△ABC沿MN折叠,使MN∥BC,点A的对应点为点A',若∠A'=32°,∠B=112°,则∠A'NC的度数是()A.114°B.112°C.110°D.108°4、如图,∠AOB的一边OA为平面镜,∠AOB=37°36′,在OB上有一点E,从点E射出一束光线经OA上一点D反射,反射光线DC恰好与OB平行,则∠DEB 的度数是( )A.75°36′B.75°12′C.74°36′D.74°12′5、如图,直线a,b被直线c所截,下列条件能使a//b的是( )A.∠1=∠6B.∠2=∠6C.∠1=∠3D.∠5=∠76、如图,AB∥CD,CB平分∠ABD.若∠C=40°,则∠D的度数为()A.90°B.100°C.110°D.120°7、如图,直线,直线l与a,b分别相交于A,B两点,过点A作直线l 的垂线交直线b于点C,若,则的度数为()A. B. C. D.8、下列命题中,是真命题的是()①两条直线被第三条直线所截,同位角相等;②在同一平面内,垂直于同一直线的两条直线互相平行③三角形的三条高中,必有一条在三角形的内部④三角形的三个外角一定都是锐角A.①②B.②③C.①③D.③④9、如图,直线l∥m∥n,等边△ABC的顶点B、C分别在直线n和m上,边BC 与直线n所夹的角为25°,则∠α的度数为()A.25°B.45°C.35°D.30°10、如图,将宽度相等的纸条沿折叠一下,如果,那么的度数是()A.70°B.100°C.110°D.140°11、如图,直线AB交CD于O,OE⊥AB,且∠DOE=50°,则∠AOC等于()A.40°B.45°C.50°D.60°12、如图,直线a、b被c所截,若a∥b,∠1=45°,∠2=65°,则∠3的度数为()A.110°B.115°C.120°D.130°13、如图,点E在AB的延长线上,下列条件中能判断AD∥BC的是()A.∠1=∠2B.∠3=∠4C.∠C=∠CBED.∠C+∠ABC=180°14、下列说法中,正确的是()A.相交的两条直线叫做垂直B.经过一点可以画两条直线C.平角是一条直线D.两点之间的所有连线中,线段最短15、下列说法正确的有()①不相交的两条直线是平行线;②经过直线外一点,有且只有一条直线与这条直线平行;③两条直线被第三条直线所截,同旁内角互补;④在同一平面内,若直线a⊥b,b⊥c,则直线a与c不相交.A.1个B.2个C.3个D.4个二、填空题(共10题,共计30分)16、如图,把一块等腰直角三角板△ABC,∠C=90°,BC=5,AC=5.现将△ABC 沿CB方向平移到△A′B′C′的位置,若平移距离为x(0≤x≤5),△ABC与△A′B′C′的重叠部分的面积y,则y=________(用含x的代数式表示y).17、如图,平移△ABC可得到△DEF,若∠A=45°,∠C=65°,则∠E=________,∠EDF=________,∠DOB=________.18、如图,直线l1∥l2, AB⊥EF,∠1=20°,那么∠2= ________.19、如图,直线,∠1=120°,∠2=40°,则∠3的度数是________.20、如图,直线AB∥DE,直线MN交直线AB于点A,交DE于点H,CH⊥DE于点H,若∠MAB=145°,则∠NHC=________.21、如图,在△ABC中,∠ABC、∠ACB的平分线相交于F,过F作DE∥BC,交AB于D,交AC于E,那么下列结论:①△BDF、△CEF都是等腰三角形;②DE=DB+CE;③AD+DE+AE=AB+AC;④BF=CF.正确的有________.22、某商场重新装修后,准备在门前台阶上铺设地毯,已知这种地毯的批发价为每平方米40元,其台阶的尺寸如图所示,则购买地毯至少需要________元.23、如图,在⊙O中,弦AB∥CD,若∠ABC=40°,则∠BOD=________.24、如图,已知∠B=∠1,CD是△ABC的角平分线,求证:∠5=2∠4.请在下面横线上填出推理的依据:证明:∵∠B=∠1,(已知)∴DE∥BC.(________)∴∠2=∠3.(________)∵CD是△ABC的角平分线,(________)∴∠3=∠4.(________)∴∠4=∠2.(________)∵∠5=∠2+∠4,(________)∴∠5=2∠4.(________)25、如图,直线AB,CD,EF相交于点O,AB⊥CD,OG平分∠AOE,∠FOD=28°,则∠BOE=________ 度,∠AOG=________ 度.三、解答题(共5题,共计25分)26、如图,已知∠ABC=52°,∠ACB=60°,BO,CO分别是∠ABC和∠ACB的平分线,EF过点O,且平行于BC,求∠BOC的度数.27、如图,直线AB、CD被EF所截,∠1=∠2,∠CNF=∠BME.求证:AB∥CD,MP∥NQ.28、如图,已知,点在的右侧,的平分线相交于点.探索与之间的等量关系,并说明理由。
冀教版七年级下册第七章《相交线与平行线》教学案
课题7.1命题(第一课时)备课教师学习目标知识目标:了解命题、真命题和假命题的含义,能够区分命题的条件和结论能力目标:理解反例的作用,知道利用反例可以说明一个命题是错误的情感目标:了解基本事实、定理、说理的概念.初步了解说理的过程,培养说理能力.重点命题的含义,能够正确指出一个命题的题设和结论.难点理解举反例的教学思想.一、预习案1、你能说出偶数、单项式、两点间的距离分别是怎样定义的吗?2、下列语句中,不是命题的是( )A.两个钝角相等B.作角的平分线C.若a+b=b+c,则a=cD.三角形的内角和是180度。
二、探究案【合作探究】自学课本30页----31页学习流程一:新课探究总结:1.能够进行肯定或否定判断的语句,叫作( ) .2.命题分为( )和( ) .正确的命题叫 ( ),错误的命题叫( ).3.命题由( )和( ) 两部分组成.条件是已知事项,结论是由已知事项推出的事项.4.判断一个命题是假命题,只要举出一个( ) 即可.学习流程二:合作探究P31练习1题和2题,独立完成后小组交流.【解难答疑】5.“同角的补角相等”的条件是_____________________结论是__________________.6.下列句子哪些是命题?是命题的,指出是真命题,还是假命题?(1)a²一定大于0吗?(2)锐角越大,它的余角越小.三、训练案1.指出下列语句中,①直角大于锐角;②∠AOB是钝角?③如果∠1和∠2的和为90度,那么∠1与∠2互为余角;④零与任何数之积都是零是命题的是()A.①②③B.①②④C.①③④D.②③④2.已知四个命题:(1)如果一个数的相反数等于它本身,则这个数是0;(2)一个数的倒数等于它本身,则这个数是1;(3)一个数的平方等于它本身,则这个数是1或0;(4)如果一个数的绝对值等于它本身,则这个数是正数.其中真命题有()A.1个B.2个C.3个D.4个3.命题“经过两点之间所有的连线中,线段最短.”的条件是________________,结论是__ ______________.改写成:如果________________,那么________________.课题7.1命题(第二课时) 备课教师学习目标知识目标:了解基本事实、定理、说理的概念.能力目标:初步了解说理的过程,培养说理能力.情感目标:生活数学化,数学生活化,让学生感受到数学知识应用的广泛性.重点基本事实、定理、说理的概念.难点说理过程的推理依据一、预习案1.下列语句中,是命题的是()A.所有的直角都相等 B.在直线AB上任取一点CC.用量角器量角的度数 D.直角都相等吗?2.下列命题中,假命题是()A.大于的角是平角 B.整数和分数统称为有理数C.经过两点有且仅有一条直线 D.相等的角不都是直角二、探究案【合作探究】自学课本32页----33页.学习流程一:新课探究1、图1、图2中,直线AB和直线CD平行吗?请你先观察,再用推平行线的方法验证一下.2、如图3,两个大小相同的大圆,其中一个大圆内有10个小圆,另一个大圆内有2个小圆,你认为大圆内的10个小圆的周长之和与另一个大圆内的2个小圆的周长之和哪个大些?3.思考一下教材第32页“观察与思考”总结:a. 判断命题的真假需要_________________,这个过程就是说理.b. ______________________________________________的命题叫做基本事实.c. __________________________________________________________的命题叫做定理.4.观察相邻两个奇数的和:(1)相邻两个奇数的和与4之间有什么关系?请提出你的猜想.(2)通过说理,验证你的猜想正确与否.学习流程二:应用新知P33练习1题和2题,独立完成后小组交流.1、“a²>a”是真命题还是假命题?请说明理由。
七年级数学下册 第七章 相交线与平行线7.1 命题习题课件 冀教版
4.指出下列命题的条件和结论,并判断命题的真假,如果是假命题,请举出 反例. 如果等腰三角形的两条边长为5和7,那么这个等腰三角形的周长为17.
条件:等腰三角形的两条边长为5和7,结论:这个等腰三角 形的周长为17.假命题,腰长为7时,这个等腰三角形的周 长为19.
CONTENTS
4
命题
定义
表示判断的语句叫做命题.
七年级数学下册冀教版
第七章 相交线与平行线
7.1 命 题
1 2 3 4
CONTENTS
1
看一看:
小华与小刚正在津津有味地阅读《我们爱科学》.
这个黑客终于 被逮住了.
是的,现在的因特网 广泛运用于我们的生 活中,给我们带来了
方便,但…….
坐在旁边的两个人一边听着他们的谈话,一边也在悄悄地议论着.
(3) 如果一个整数的末尾数是5,那么这个数能被5整除.条件: 一个整数的末尾数是5;结论:这个数能被5整除.
3.判断下列命题的真假: (1)一个三角形如果有两个角互余,那么这个三角形是直角三角形; (2)如果│a│=│b│,那么a3=b3.[来
真命题 假命题,如|1|=|-1|,13≠(-1)3.
判断命题的真假
定义:在命题中,既有正确的命题,也有不正确的命题.我们把 正确的命题叫做真命题,把不正确的命题叫做假命题.
判断命题的真假
练一练:判断下列命题的真假,如果有假命题,请说明理由.
(1) 两个直角相等. 真命题
(2)相等的两个角是锐角. 假命题 (3) 同角的余角相等. 真命题
∠A=∠B=150°,∠A,∠B 是钝角.
命题的定义
问题2 比较下列语句,想一想它们之间有什么共同点?
(1) 两个直角相等. (2) 两个锐角之和是钝角. (3) 同角的余角相等. (4) 两个负数,绝对值大的反而小. (5) 负数与负数的差仍是负数.
七年级下册冀教版数学【授课课件】第1课时 相交线
探究新知
学生活动一【一起探究】 如图,在平面上任意画两条相交的直线,形成几
个角?这些角有什么位置关系?
探究新知
如图,在两条相交的直线所形成的4个角中,∠1 与∠3有怎样的位置关系?
如图 , 两条直线l1,l2相交于点O,形 成四个角,分别是∠1,∠2,∠3,∠4.∠1 和∠3具有公共顶点O,并且两边互为反 向延长线.我们把具有这种特殊位置关系 的两个角叫做对顶角.
探究新知 如图,观察∠3与∠5有什么位置特征? ①在直线EF两侧; ②在直线AB,CD之间.
探究新知 如图,图中的内错角还有哪些?
在形如“Z”的图形中有内错角,即∠4和∠6 也是内错角.
探究新知
如图,观察∠4与∠5有什么位置特征? ①在直线EF同侧; ②在直线AB,CD之间.
我们把具有∠4和∠5这样位置关系的一对角叫 做同旁内角.
探究新知 如图,图中的同旁内角还有哪些?
在形如“U”的图形中有同旁内角,即∠3和∠6也 是同旁内角.
探究新知
学生活动二【典例精讲】 例1 下面四个图形中,∠1与∠2是对顶角的图形的个 数是( B )
A.0个
B.1个
C.2个
D.3个
探究新知
是(2x-10)°和(110-x)°,则x= 40或80
.
回顾反思
1. 什么是对顶角? 2. 什么是同位角? 3. 什么是内错角? 4. 什么是同旁内角?
当堂训练
1.如图,下列各组角中,互为对顶角的是( A ) A.∠1与∠2 B.∠1与∠3 C.∠2与∠4 D.∠2与∠5
当堂训练
2.下列各图中∠1,∠2是邻补角吗?为什么?
探究新知
如图,两条直线被第三条直线所截,形成几个角? 答:形成八个角,分别是∠1,∠2, ∠3,∠4,∠5,∠6,∠7,∠8.
七年级下册数学相交线与平行线知识点归纳
七年级下册数学相交线与平行线知识点归纳相交线与平行线1、两条直线相交所成的四个角中,相邻的两个角叫做邻补角,特点是两个角共用一条边,另一条边互为反向延长线,性质是邻补角互补;相对的两个角叫做对顶角,特点是它们的两条边互为反向延长线。
性质是对顶角相等。
2、三线八角:对顶角(成正比),邻补角(优势互补),同位角,内错角,同旁内角。
3、两条直线被第三条直线所截:同位角f(在两条直线的同一旁,第三条直线的同一侧)内错角z(在两条直线内部,位于第三条直线两侧)同旁内角u(在两条直线内部,坐落于第三条直线同侧)4、两条直线相交所成的四个角中,如果有一个角为90度,则称这两条直线互相垂直。
其中一条直线叫做另外一条直线的垂线,他们的交点称为垂足。
5、横向三要素:横向关系,横向记号,像距6、垂直公理:过一点有且只有一条直线与已知直线垂直。
7、垂线段最长。
8、点到直线的距离:直线外一点到这条直线的垂线段的长度。
9、平行公理:经过直线外一点,存有且只有一条直线与这条直线平行。
推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
如果b//a,c//a,那么b//c10、平行线的认定:①同位角相等,两直线平行。
②内错角成正比,两直线平行。
③同旁内角互补,两直线平行。
11、推断:在同一平面内,如果两条直线都旋转轴同一条直线,那么这两条直线平行。
(一)正负数1.正数:大于0的数。
2.负数:小于0的数。
3.0即不是正数也不是负数。
4.正数大于0,负数小于0,正数大于负数。
(二)有理数1.有理数:由整数和分数组成的数。
包括:正整数、0、负整数,正分数、负分数。
可以写成两个整之比的形式。
(无理数是不能写成两个整数之比的形式,它写成小数形式,小数点后的数字是无限不循环的。
如:π)2.整数:正整数、0、正数整数,泛称整数。
3.分数:正分数、负分数。
(三)数轴1.数轴:用直线上的点表示数,这条直线叫做数轴。
(画一条直线,在直线上任取一点表示数0,这个零点叫做原点,规定直线上从原点向右或向上为正方向;选取适当的长度为单位长度,以便在数轴上取点。
冀教版七年级下册数学第7章 相交线与平行线 第7章 全章热门考点整合
11.如图所示,已知直线EF与直线AB,CD分别相 交于点K,H,且EG⊥AB于点G,∠CHF= 60°,∠E=30°,试说明AB∥CD.
解:因为EG⊥AB,∠E=30°, 所以∠EKG=60°, 所以∠AKF=∠EKG=60°, 所以∠AKF=∠CHF=60°, 所以AB∥CD.
考点 3 两个性质
概念4 平行线
6.在同一平面内,直线a与b满足下列条件,写出其对 应的位置关系. (1)a与b没有公共点,则a与b 平行; (2)a与b有且只有一个公共点,则a与b 相交.
概念5 平移 7.如图所示,将图中的“M”向右平移6格,再向上 平移1格,画出平移后的图形.
解: 画图略.
8.如图,将三角形ABC平移到三角形A′B′C′的位置 (点B′在AC边上),若∠B=55°,∠C=100°, 求∠AB′A′的度数.
性质1 垂线段的性质
12.如图,AB是一条河流,要铺设管道将河水引到C, D两个用水点,现有两种铺设管道的方案: 方案一:分别过点C,D作AB的垂线,垂足分别为 点E,F,沿CE,DF铺设管道; 方案二:连接CD交AB于点P,沿PC,PD铺设管道. 这两种铺设管道的方案哪一种更节省 材料?为什么?(忽略河流的宽度)
判定2 平行线
10.如图,已知BE∥DF,∠B=∠D,那么AD与 BC有何位置关系?请说明理由.
解:AD∥BC. 理由: 因为BE∥DF(已知), 所以∠EAG=∠D(两直线平行, 内错角相等). 又因为∠B=∠D(已知), 所以∠EAG=∠B(等量代换), 所以AD∥BC(同位角相等,两直线平行).
解:(3)∵EG平分∠AEF,FH平分∠EFD,
∴∠GEF=∠A1EF,∠EFH=∠EFD1.
2
2
第七章相交线与平行线复习课课件23张初中数学冀教版七年级下册
B
E
42 13
D
A F 5
C
典型例题
例5.如图所示,下列四组图形中,有一组中的两个图形经过平移其中一个 能得到另一个,这组图形是( D )
A
B
C
D
【当堂检测】
5.如图所示,△DEF经过平移得到△ABC, 那么∠C的对应角和ED的对应边
分别是( C )
二、知识结构
假命题 命 题
基本事实
真命题
定理
说理的根据
演
绎
说理的过程
推 理
定义
二、知识结构
两条直
平
线相交
面
内
两 条
两条直线
直
被第三条
线
的
直线所截
位
置
关
两
系
条
直
线
平
行
对顶角
对顶角相等
垂线及其性质
点到直线的距离
同位角、内错角、同旁内角
过直线外一点有且只有一条直线和已知直线平行
平行 平移
判定 性质
三、知识回顾
典型例题
例3. 如图所示,能表示点到直线(线段)的距离的线段有几条.
解:从图中可以看到共有5条, A到BC的垂线段AD, B到AC的垂线段BA, B到AD的垂线段BD, C到AB的垂线段CA, B C到AD的垂线段CD.
A DC
总结:点到直线的距离容易和两点之间的距离相混淆.当图形复杂不容易分析 出是哪条线段时,准确掌握概念,抓住垂直这个关键点,认真分析图形是关键.
平行线的性质
两直线平行,同位角相等 两直线平行,内错角相等
七年级数学下册 第七章 相交线与平行线 7.3 平行线 平行线在生活中的应用素材 (新版)冀教版
平行线在生活中的应用数学来源于生活,生活中处处有数学,用数学知识可以解决实际生活中的一些问题。
让我们看看生活中的平行线。
潜望镜与平行线例1 平面镜可以用来制作潜望镜,如图1 ,在管子的上下拐角处,各安装一个平面镜,两块平面镜互相平行放置。
光线经过镜子反射时,∠1=∠2,∠3=∠4,请解释为什么进入潜望镜的光线和离开潜望镜的光线是平行的?分析:要解释潜望镜所蕴涵的数学知识,应根据实际问题画出数学图形,如图2,用a表示进入光线,用b表示离开时的光线,只要说明直线a与直线b平行即可。
要说明a//b,只要说明∠5=∠6即可.根据∠1=∠2,∠3=∠4以及平角定义可以说明∠5=∠6。
解:如图2,根据两镜面平行,可知∠1=∠3,因为∠1=∠2,∠3=∠4,所以∠1+∠2=∠3+∠4,又由∠1+∠2+∠5=180°,∠3+∠4+∠6=180°,所以∠5=∠6.根据“内错角相等,两直线平行〞可知a//b.所以进入和离开潜望镜的光线互相平行。
图1 图2评注:利用平行线的知识解决实际问题,关键是从实际问题中画出相符合的数学图形,借助平行线的性质或判定进行说理.街道与平行线例2 如图3,一条街道的两个拐角∠ABD与∠BDE,∠BDE为150°,你用什么方法可以知道街道AB与街道DE是否图3 平行?分析:学习了平行线判别方法,我们可以将实际为转化数学问题解决,如图32可以将街道ABDE看成是直线AB和DE被直线BD所截,其中∠ABD和∠BDE是内错角,根据两直线平行的判别方法:“内错角相等,两直线平行〞可以测量∠ABD的度数,如果∠ABD=150°,那么AB//DE;如果∠ABD≠150°,那么AB不平行DE.解:测量ABD与EDB,观察是否相等,如果相等,那么根据“内错角相等,两直线平行〞可判断AB//DE。
评注:解决此问题,关键是从实际问题抽象出数学图形,然后根据平行线的识别方法进行判定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相交角
教学流程安排
课前准备
教学过程设计
系.
请把不同的位置关系画在练习本上.
展示部分同学画的
图,并教师点评.
总结出两条
直线的位置关系.
在同一平面内的两条直线,有两种位置关系:
(1)两条直线有一个公共点——相交; (2)两条直线没有公共点——平行. 今天我们学习相交线. 教师边讲边画. 活动2 对顶角
从图中我们可以看出,两条直线相交有四个角:∠1,∠2,∠3,∠4.
我们看∠1和∠3的顶点、两条边有什么关系?
学生观察后回答,教师点评.
感知对顶角.
对顶角的特点:①具有公共顶点;②两边互为反向延长线.
师生共同总结对顶角的特点.
总结对顶角的特点.
除了∠1和∠3是对顶角,还有其他的对顶角吗?
∠1和∠2是对顶角吗?
学生回答,教师点评. 加深对对顶角的认识.
请你比较∠1和∠3的大小,∠2和∠4的大小.
你发现什么结论? 可以说明理由吗? 学生回答,教师点评并给予鼓励. 感知对顶角相等.
请完成下面填空:
∠1+∠2=_______°, ∠3+∠2=_______°. 因为
__________________________________,所以,∠1=∠3.
学生完成,教师给予鼓励.
理解对顶角相等.
1
2 3
4
谁能说一下∠2=∠4的理由. 如果∠1=52°,你知道∠3的度数吗?
学生回答,教师鼓励. 应用对顶角
相等.
活动3 三条八角
如图,a ,b 被直线c 所截构成八个角. 在两直线a ,b 内的角是_______________; 在截线c 左侧的角是_________________; 在截线c 右侧的角是________________;
学生回答,教师点评.
体会两条直
线被第三条直线所截得的位置关系.
哪个角与∠3同在两直线a ,b 之内,又在截线c 的同一侧?
哪个角与∠3同在两直线a ,b 之内,但在截线c 的另一侧?
∠3在a 的下方,哪个角在直线b 的下方,又与在∠3截线c 的同一侧?
学生回答,教师点评并给予鼓励.
感受同位角、内错角、同旁内角.
我们说,∠3和∠5是同旁内角,∠3和∠6是内错角,∠3和∠7是同位角,你能说明同旁内角、内错角和同位角分别满足什么条件吗?
学生总结,教师点评并给予表扬. 总结同位角、内错角、同旁内角的特点.
∠1有同位角吗?有内错角吗?有同旁内角吗?
∠4有同位角吗?有内错角吗?有同旁内角吗?
每个角都有同位角吗?都有内错角吗?都有同旁内角吗? 学生回答,教师点评. 加深对同位角、内错角、同旁内角的理解.
活动4 回顾与反思
1 2 3 4
8
5
6 7
b
a
c
今天,我们学习相交线,两条直线相交构成四个角,有两对对顶角,两条直线被第三条直线所截,构成同位角、内错角、同旁内角. 请完成下面问题:
1.在图1中,指出对顶角.
2.在图2中,指出∠4的同位角、内错角、同旁内角.
学生回答,教师点评. 整理所学内容.
请完成P36做一做和P36练习1、2.
学生解答,教师巡视指导.
巩固对顶角、同位角、内错角、同旁内角的知识.
布置作业
课后习题(P37)A 组做在书上,B 组题做在作业本上.
2 1
3
4 图1
1 2 3 4
8 5 6 7
b
a
c
图2。