6.3实数导学案

合集下载

人教版七年级下册数学6.3 第1课时 实数导学案

人教版七年级下册数学6.3 第1课时 实数导学案

第六章 实数. . . 332,1.414,2,9,,2,273 小数两种,其中 是无理数.3. 和 统称为实数.三、自学自测 1.判断正误:(1)无理数都是开方开不尽的数;( ) (2)不带根号的数都是有理数;( ) (3)带根号的数都是无理数;( ) (4)实数包括有限小数和无限小数.( )2.和数轴上的点一一对应的数是( ) A.有理数 B.无理数 C.整数 D.实数 四、我的疑惑__________________一、要点探究探究点1:实数的概念和分类问题1: 5327119,,,,254911问题2:是否所有的数都具有问题1问题3:将错误!未找到引用源。

把这样的数称为什么?问题4:实数怎样分类?请你利用定义给实数分类.问题5:实数还可以怎样分类?例1.将下列各数分别填入下列相应的括号内:,93,7,π,5-,83-错误!未找到引用源。

,0,25无理数:{ } 有理数: } 正实数:{ } 负实数:{ }方法总结对每个数都要进行判断,分类标准不同结果不同.探究点2:实数与数轴上的问题1:如何在数轴上表示一个无理数?问题2:典例精析例2.如图所示,数轴上A,B两点表示的数分别为-1和3,点B关于点A的对称点为C,求点C所表示的实数.方法总结:本题主要考查了实数与数轴之间的对应关系,其中利用了:当点C为点B关于点A的对称点时,点C到点A的距离等于点B到点A的距离;两点之间的距离为两数差的绝对值.例3.如图所示,数轴上A,B两点表示的数分别为和5.1,则A,B两点之间表示整数的点共有( )A.6个 B.5个 C.4个 D.3个探究点3:实数的大小比较知识要点:实数的大小比较与有理数规定的大小一样,数轴上右边的点表示的实数比左边的点表示的实数大.典例精析例4.在数轴上表示下列各点,比较它们的大小,并用“<”连接它们.2,2,5,3教学备注配套PPT讲授3.探究点2新知讲授(见幻灯片13-21)4.课堂小结例5.估计51位于( )A.0~1之间B.1~2之间C.2~3之间D.3~4之间二、课堂小结 无理数的概念 实数的概念实数的分类按定义分: 按正负性分: 实数的数轴表示实数的大小比较1.下列说法正确的是( ) A.a 一定是正实数 B.2217是有理数 C.22是有理数 D.数轴上任一点都对应一个有理数2.有一个数值转换器,原理如下,当输x=81时,输出的y 是 ( ) A.9 B.3 C.3 D.±33.判断快枪手——看谁最快最准!(1)实数不是有理数就是无理数; ( ) (2)无理数都是无限不循环小数; ( ) (3)带根号的数都是无理数; ( ) (4)无理数都是无限小数; ( )当堂检测教学备注 配套PPT 讲授 5.当堂检测 (见幻灯片22-27)(5)无理数一定都带根号. ( )4.把下列各数填入相应的括号内:有理数:{ }; 无理数:{ }; 整数:{ }; 负数:{ }; 分数:{ }; 实数:{ }. 5. 与6的大小.1、只要心中有希望存摘,旧有幸福存摘。

SX-7-022第六章6.3实数第二课时导学案附教学反思

SX-7-022第六章6.3实数第二课时导学案附教学反思

O
2 3 2 (2) 2 2 3
(3)
2
5
5
1. 应用:提升学生解决问题的能力。 如图,平面上有四个点,它们的坐标分别是 A ( 2 ,
2
, C ( 5, 2 ) , D ( 2, 2 ) .(1)顺次连接 A、B、C、D 围成的四边形是什 么图形?(2)这个四边形的面积是多少? (3)将这个四边形向上平移 2 2 个单位长度, 四边形的四个顶点的坐标变为多少?
2
2)
, B ( 5,
2
2)
(4)
a
2 a
1
2
3
4
5
(5)(-2)3×
(4)
2

3
(4) (
3
1 2
)
2
9
.
2.化简:进一步体会数形结合的思想。 (1) 已知实数 a、 b、 c 在数轴上的位置如下,
c
b
O
2
a
教 与 学 反 思
化简
a b a b
c a
总结: 实数范围内的运算方法及运算顺序与在有理数范围 内都是一样的 例 3、用精确度计算实数(结果保留两位小数) (1) 5 + 、 (2) 3 2 、
学 案 整 理
总结: 在实数运算中,当遇到无理数并且需要求出结果的 近似值时,可以按照所要求的精确度用相应的近似有限小数 去代替无理数,再进行计算 6.3 第二课时 实数的有关性质 实数运算 【拓展延伸】 1.计算: (1)2
2
-3
2

(2)
学 习 过 程
2
3 2 2

人教版数学七年级下册--6.3 《实数》导学案

人教版数学七年级下册--6.3 《实数》导学案

【学习目标】 了解无理数和实数的概念,会对实数按照一定的标准进行分类;体会数轴上的点与实数是一一对应的;了解实数范围内相反数和绝对值的意义。

【课前预习】1、任何一个有理数都可以写成 ;反过来,任何有限小数或无限循环小数也都是 。

2、什么叫无理数?2、33是什么样的数?3、 和 统称为实数。

4、类比有理数的分类,把实数进行分类:实数练习:下列数中,哪些是有理数,哪些是无理数?1.34,7-,3π,0,3.2222·····,-39,815、每个有理数都可以用数轴上的点来表示,2是否也可以用数轴上的点来表示呢?无理数是否都可以用数轴上的点来表示呢?练习:请将数轴上的各点与下列实数对应起来:2,-1.5,5,π ,36、相反数和绝对值的意义是否适合于实数吗?a =练习:求下列各数的相反数和绝对值:2.5, -7, 5π-, 0, 32, 3, -2 , 364-, π-3教学设计:教学目标 1.知识与技能:了解无理数和实数的概念;了解分类的标准与分类结果的相关性;了解实数范围内相反数和绝对值的意义。

2.过程与方法:让学生能根据计算结果进行探索分类,互相合作交流,培养他们的合作精神和探索能力。

了解实数与数轴上的点的一一对应关系,初步体验数形结合思想。

3.情感态度与价值观:理解无理数的实际意义,感受数学的发展历程,强化学生学习数学的积极性,通过对实数分类的学习,让学生体验分类的思想,训练多角度的思维能力,让学生体验类比的思想,培养类比的能力。

教学重点与难点教学重点:实数的意义和实数的分类。

教学难点:体会数轴上的点与实数是一一对应的。

教学过程(一)回顾与思考1、什么是有理数?如何分类?2、什么是无限不循环小数?你能举例说明吗?(二)合作交流,解读探究活动一探究:使用计算器计算,把下列有理数写成小数的形式,你有什么发现?3 , 35- ,478 ,911 ,119 ,59我们发现,上面的有理数都可以写成有限小数或者无限循环小数的形式,即 3 3.0= ,30.65-=- ,47 5.8758= ,90.8111=&& ,11 1.29=& ,50.59=& 归纳:任何一个有理数都可以写成有限小数或无限循环小数的形式。

人教版七年级下册数学 6.3 实数 导学案(两课时 含答案)

人教版七年级下册数学 6.3  实数  导学案(两课时 含答案)

6.3 实数 导学案 第1课时 实数课前预习:要点感知1 无限__________小数叫做无理数,__________和__________统称为实数. 预习练习1-1 下列说法:①有理数都是有限小数;②有限小数都是有理数;③无理数都是无限小数;④无限小数都是无理数,正确的是( )A.①②B.①③C.②③D.③④1-2 实数-2,0.3,17,2,-π中,无理数的个数是( )A.2B.3C.4D.5 要点感知2 实数可以按照定义和正负性两个标准分类如下:⎧⎧⎫⎪⎪⎪⎨⎬⎪⎪⎪⎪⎭⎨⎩⎪⎧⎫⎪⎪⎨⎬⎪⎪⎭⎩⎩正有理数零负有理数实数正无理数负无理数 ⎧⎧⎧⎪⎪⎨⎪⎨⎩⎪⎪⎩⎪⎪⎨⎪⎧⎧⎪⎪⎨⎪⎨⎩⎪⎪⎪⎩⎩正整数正有理数正分数正无理数实数负整数负有理数负分数负无理数预习练习2-1 给出四个数-1,0,0.5,7,其中为无理数的是( ) A.-1 B.0 C.0.5 D.7要点感知3 __________和数轴上的点是一一对应的,反过来,数轴上的每一个点必定表示一个__________.预习练习3-1 和数轴上的点一一对应的是( )A.整数B.有理数C.无理数D.实数 3-2 如图,在数轴上点A 表示的数可能是( )A.1.5B.-1.5C.-2.6D.2.6当堂练习:知识点1 实数的有关概念1.下列各数中是无理数的是( )A.2B.-2C.0D.1 32.下列各数中,3.141 59,-38,0.131 131 113…,-π,25,-17,无理数的个数有( )A.1个B.2个C.3个D.4个3.写出一个比-2大的负无理数__________.知识点2 实数的分类4.下列说法正确的是( )A.实数包括有理数、无理数和零B.有理数包括正有理数和负有理数C.无限不循环小数和无限循环小数都是无理数D.无论是有理数还是无理数都是实数5.实数可分为正实数,零和__________.正实数又可分为__________和__________,负实数又可分为__________和__________.6.把下列各数填在相应的表示集合的大括号内.-6,π,-23,-|-3|,227,-0.4,1.6,6,0,1.101 001 000 1…整数:{ ,…},负分数:{ ,…},无理数:{ ,…}.知识点3 实数与数轴上的点一一对应7.下列结论正确的是( )A.数轴上任一点都表示唯一的有理数B.数轴上任一点都表示唯一的无理数C.两个无理数之和一定是无理数D.数轴上任意两点之间还有无数个点8.若将三个数-3,7,17表示在数轴上,其中能被如图所示的墨迹覆盖的数是__________.9.如图,直径为1个单位长度的圆从原点沿数轴向右滚动一周(不滑动),圆上的一点由原点到达点O′,点O′所对应的数值是__________.课后作业:10.下列实数是无理数的是( )A.-2B.13C.4D.511.下列各数:2π,0,9,0.23&,227,0.303 003…(相邻两个3之间多一个0),1-2中,无理数的个数为( )A.2个B.3个C.4个D.5个12.有下列说法:①带根号的数是无理数;②不带根号的数一定是有理数;③负数没有立方根;④-17是17的平方根.其中正确的有( )A.0个B.1个C.2个D.3个 13.若a 为实数,则下列式子中一定是负数的是( )A.-a 2B.-(a+1)2C.-2aD.-(a 2+1) 14.如图,在数轴上表示实数15的点可能是( )A.点PB.点QC.点MD.点N 15.下列说法中,正确的是( ) A.2,3,4都是无理数B.无理数包括正无理数、负无理数和零C.实数分为正实数和负实数两类D.绝对值最小的实数是016.有一个数值转换器,原理如下:当输入的x 为64时,输出的y 是( )8121817.在下列各数中,选择合适的数填入相应的集合中.-15392π,3.14,3270,-5.123 450.253 有理数集合:{ ,…}无理数集合:{ ,…} 正实数集合:{ ,…} 负实数集合:{ ,…}18.有六个数:0.142 7,(-0.5)3,3.141 6,227,-2π,0.102 002 000 2…,若无理数的个数为x,整数的个数为y,非负数的个数为z,求x+y+z 的值.挑战自我19.小明知道了2是无理数,那么在数轴上是否能找到距原点距离为2的点呢?小颖在数轴上用尺规作图的方法作出了在数轴上到原点距离等于2的点,如图.小颖作图说明了什么?参考答案课前预习要点感知1不循环有理数无理数预习练习1-1 C1-2 A要点感知2 有理数有限小数或无限循环小数无理数无限不循环小数正实数零负实数预习练习2-1 D要点感知3实数实数预习练习3-1 D3-2 C当堂训练1.A2.B3.答案不唯一,如:34.D5.负实数正有理数正无理数负有理数负无理数6.-6,-|-3|,0 -23,-0.4 6 1.101 001 000 1…7.D 79.π课后作业10.D 11.B 12.B 13.D 14.C 15.D 16.B17.-152π,-5.123 45…,-22π-15…18.由题意得无理数有2个,所以x=2;整数有0个,所以y=0,非负数有4个,所以z=4,所以x+y+z=2+0+4=6.19.①每一个无理数都可以用数轴上的一个点表示出来,也就是数轴上的点有些表示有理数,有些表示无理数;②到原点距离等于某一个数的实数有两个.第2课时实数的运算课前预习:要点感知1 实数a的相反数是__________;一个正实数的绝对值是它__________;一个负实数的绝对值是它的__________;0的绝对值是__________.即:|a|=0.aaa⎧⎪⎪⎨⎪⎪⎩>=<,当时;,当时;,当时预习练习1-1( )221-2的绝对值是( )C.2D.-2要点感知2 正实数__________0,负实数__________0.两个负实数,绝对值大的实数__________.预习练习2-1 在实数0,,-2中,最小的是( )要点感知3 实数之间不仅可以进行加、减、乘、除(除数不为0)、乘方运算,而且__________可以进行开平方运算,__________可以进行开立方运算.预习练习3-1 计算364+(-16)的结果是( )A.4B.0C.8D.12当堂练习:知识点1 实数的性质1. -34的倒数是( )A.43B.34C.-34D.-432.无理数-5的绝对值是( )A.-5B.5C.5D.-53.下列各组数中互为相反数的一组是( )A.-|-2|与38-B.-4与-()24-C.-32与|32-|D.-2与2知识点2 实数的大小比较4.在-3,0,4,6这四个数中,最大的数是( )A.-3B.0C.4D.65.如图,在数轴上点A,B对应的实数分别为a,b,则有( )A.a+b>0B.a-b>0C.ab>0D.ab>06.2a,则实数a在数轴上的对应点一定在( )A.原点左侧B.原点右侧C.原点或原点左侧D.原点或原点右侧7.比较大小:;填“>”或“<”).知识点3 实数的运算8.计算:=( )9.计算:=__________.的相反数是__________,绝对值是__________.11.计算:(1)(2(3)12.计算:(1)π精确到0.01);保留两位小数). 课后作业:13.( )14.若|a|=a,则实数a在数轴上的对应点一定在( )A.原点左侧B.原点右侧C.原点或原点左侧D.原点或原点右侧15.比较2的大小,正确的是( )16.如图,数轴上的点A,B分别对应实数a,b,下列结论正确的是( )A.a>bB.|a|>|b|C.-a<bD.a+b<017.下列等式一定成立的是( )945339±3 ()29-=918.如果0<x<1,那么1xx,x2中,最大的数是( )A.xB.1xx D.x219.点A在数轴上和原点相距3个单位,点B5A,B两点之间的距离是__________.20.若(x1,y1)※(x2,y2)=x1x2+y1y2,则23)※2321.计算:3232;33-1|.22.某居民生活小区需要建一个大型的球形储水罐,需储水13.5立方米,那么这个球罐的半径r为多少米?(球的体积V=43πr3,π取3.14,结果精确到0.1米)23.如图所示,某计算装置有一数据入口A和一运算结果的出口B,下表给出的是小红输入A 0 1 4 9 16 25 36B -1 0 1 2 3 4 5若小红输入的数为49a,你能用a表示输出结果吗?24.1<2,我们把1叫的小数部分.利用上面的知识,你能确定下列无理数的整数部分和小数部分吗?.挑战自我25.阅读下列材料:如果一个数的n(n是大于1的整数)次方等于a,这个数就叫做a的n 次方根,即x n=a,则x叫做a的n次方根.如:24=16,(-2)4=16,则2,-2是16的4次方根,或者说16的4次方根是2和-2;再如(-2)5=-32,则-2叫做-32的5次方根,或者说-32的5次方根是-2.回答问题:(1)64的6次方根是__________,-243的5次方根是__________,0的10次方根是__________;(2)归纳一个数的n次方根的情况.参考答案课前预习要点感知1 -a 本身相反数 0 a 0 -a预习练习1-1 C1-2 A要点感知2 大于小于反而小预习练习2-1 A要点感知3 正数以及0 任意一个实数预习练习3-1 B当堂训练1.D2.B3.C4.C5.A6.C7.(1)< (2)> (3)>8.C 9.111.(1)原式(2)原式=2+0-12=32.(3)原式12.(1)π≈3.142-1.414+1.732≈3.46;(2)原式≈2.236-1.414+0.9≈1.72.课后作业13.C 14.D 15.C 16.C 17.B 18.B 19.或20.-221.(1)原式;(2)原式22.把V=13.5,π=3.14代入V=43πr3,得13.5=43×3.14r3,r≈1.5(米).所以球罐的半径r约为1.5米.23.-1=6;若小红输入的数字为a≥0).24.(1)因为343;(2)因为9<10的整数部分是925.(1)±2 -3 0(2)当n为偶数时,一个正数的n次方根有两个,它们互为相反数;当n为奇数时,一个数的n次方根只有一个.负数没有偶次方根.0的n次方根是0.。

人教版七年级下册数学导学案设计:6.3 实数(无答案)

人教版七年级下册数学导学案设计:6.3 实数(无答案)

6.3 实数导教案一.成功目标:1. 了解实数的概念,会对实数进行分类、会说出一个实数的相反数和绝对值与倒数;2. 了解实数和数数轴上的点的一一对应关系,初步感受数学中的对应和一一对应的关系.二.成功学习:自主预习教材,并独立完成下列问题.1. 有理数和无理数统称为 .2. 实数的两种分类:有理数 有限小数或无限不循环小数实数正无理数无理数 无限不循环小数正有理数正实数实数 零负有理数负实数3.实数与数轴上的点是 .4. 如果a 是实数,那么a 就是在数轴上表示数a 的点到 .5.直角坐标系中的每一个点都表示一个唯一的 ,因此所有的有序实数对与直角坐标系中所有点 .三.典型例题:例1.下列各数哪些是有理数?哪些是无理数?哪些是正数?哪些是负数?,0.27,0, 5.151151115π-gL (相邻两个5之间依次多1个1),220.101001,,73-g g练习:把下列各数写入相应的集合内:12-,0.26,7π,0.10,5.12,,0.1040040004…(相邻两个4之间0的个数逐次加1),(1)有理数集合:{…}; (2)无理数集合:{…}; (3)正实数集合:{…}; (4)负实数集合:{…}.例2. 求下列各数的相反数和绝对值:(1)2 (2-练习:写出下列各数的相反数与绝对值:.π-例3.自主完成例4.例5.四.课堂小结:本节课我的收获有哪些?五.成功检测:1.下列说法正确的是( ).①实数都是无理数;②无理数都是实数;③的点,右边的点表示的数总比左边的点表示的数大;⑤无理数的相反数仍然是无理数.A.①③⑤B.②④⑤C.②③④D.①③④2.下列各数327-,3π ,0,39,2-40,121,4,0.020020002 …(每两个2之间多一个0)中无理数有( ).A. 6个B. 5个C. 4个D.3个3.551在哪两个整数之间( ).A.1与2B.2与3C.3与4D.4与5327- ).A.3B.-3C.13D.-13 5.数轴上A ,B 两点表示的数分别为-13,点B 关于点A 的对称点为C ,则点C 所表示的数为( ). A. 23- B. 13-23-+ D. 13+6.-5的绝对值是______,2的相反数是______.7.若,a b 都是无理数,且2a b +=,则,a b 的值可以是______(填上一组满足条件值即可).8.已知,a b 是实数,且62+a +(b-2)2=0,则a =_____,b =______.9.求下列各数的相反数和绝对值:5.4,8,-5,37-,3.14π-,23 1.10.先化简,再求值: (44222++-+a a a a +a a a 22+)(a-a 4),其中a=2-3.11.在直角坐标系中描出下列各点A(1, 2) ; B(3,-1) ; C(-2,-3) .六. 布置作业:.。

6.3实数

6.3实数

《6.3实数》导学案一. 探究新知6.3 实数(一)一、学前准备1、填空:(有理数的两种分类)有理数 有理数一、把下列有理数写成小数的形式,你有什么发现? 3= ,31= , 35- = ,478 = ,911 = ,119 =3、你能将0.353535…化成分数吗?二、探索思考1、探究一、归纳: 任何一个有理数都可以写成_______小数或________小数的形式。

反过来,任何______小数或____________小数也都是有理数观察 通过前面的探讨和学习,我们知道,很多数的_____根和______根都是____________小数, ____________小数又叫无理数, 3.14159265π= 也是无理数结论: _______和_______统称为实数2、把实数分类练习一、1、把下列各数分别填入相应的集合里:2273.141,,,,,1.414,0.020202,378π---正有理数{ }负有理数{ } 正无理数{ } 负无理数{ }实数探究二、每个有理数都可以用数轴上的点来表示,无理数是否也可以用数轴上的点来表示呢? 想一想:怎样在数轴上表示出π,2归纳: ①每一个无理数都可以用数轴上的__________表示出来,这就是说,数轴上的点有些表示__________,有些表示__________;当从有理数扩充到实数以后,实数与数轴上的点就是__________的,即每一个实数都可以用数轴上的__________来表示;反过来,数轴上的__________都是表示一个实数② 与有理数一样,对于数轴上的任意两个点,右边的点所表示的实数总比左边的点表示的实数______③ 当数从有理数扩充到实数以后,有理数关于相反数和绝对值的意义同样适合于实数数a 的相反数是______,这里a 表示任意____________。

一个正实数的绝对值是______;一个负实数的绝对值是它的______;0的绝对值是______ 练习二、 1、 3-的相反数是 ,绝对值 ;绝对值等于5的数是 ,7-的平方是2、2= ;=-π ;=0 ;=-364 ;6.3 实数(二)一、学前准备1、当数从有理数扩充到实数以后, (1)数a 的相反数是 ;(2)一个正实数的绝对值是它 ;一个负实数的绝对值是它的 ;0的绝对值是 。

人教版七年级下册 第六章实数 6.3实数(1) 学案 导学案

人教版七年级下册 第六章实数 6.3实数(1) 学案 导学案

第六章实数6.3实数(1)学案学习目标理解无理数和实数概念,学习重点掌握实数与数轴上的点的一一对应关系学习难点熟练运用无理数与有理数的性质一、 新知探究1.所有的数都可以写成有限小数或无限循环小数的形式吗? ......414.12= ;......14159265.3=π;1.010010001…(两个1之间依次多一个0)2.新知:无限不循环小数叫无理数。

归纳:①②③注意:带根号的数不一定是无理数有理数和无理数统称实数。

3.实数的分类:① 按定义分:有理数 0 有限小数或 无限循环小数实数正无理数无理数 负无理数②按大小分:实数负无理数是负无理数—是正无理数,如:373二、范例学习巩固练习巩固练习:13.142,,38-, 32, 0.3737737773, 0,2π0.205, 7-, 15--().有理数有( ) 无理数有( ) 正实数有( ) 负实数有( )三、巩固练习观察思考在实数范围内研究相反数、倒数、绝对值1.13的相反数是()倒数()是绝对值是()2.2-的相反数是()倒数()是绝对值是()3. a是一个实数,它的相反数是()绝对值是()如果0a≠,则它的倒数是()一个正实数的绝对值是(它本身)一个负实数的绝对值是(它的相反数)0的绝对值是 (0)巩固练习求下列各数的相反数、倒数、绝对值:33(1)7 (2) 5 (3) (4)27π+(5)3π-31(6)10-评价反思总结本节课主要学习内容:1.通过实际问题,使学生认识到数的扩充的必要性.2.掌握无理数、实数的定义,能对实数按要求进行分类.3. 会用所学定义正确判断所给数的属性.4.了解实数范围内,相反数、倒数、绝对值的意义.四、课堂小结课堂小结这节课我们学习了什么?1无理数:无限不循环小数。

2实数的分类:定义法和大小法。

3实数与数轴的关系:一一对应。

人教版七年级数学下册 6.3 实数(第二课时) 导学案

人教版七年级数学下册  6.3 实数(第二课时) 导学案

人教版七年级数学下册导学案 第六章 实数 6.3 实数(第二课时)【学习目标】1、进一步理解实数及相关概念,理解实数的相反数、绝对值的意义。

2、会按要求用近似有限小数代替无理数,进行实数计算。

【课前预习】1.对于有理数x 、y ,当x ≥y 时,规定x ※y =y x ;而当x <y 时,规定x ※y =y -x ,那么4※(-2)=_______;如果[(-1)※1]※m=36,则m 的值为______.2.比较大小:________3-(用“>”,“<”或“=”填空). 3.在下列各数中,无理数有_______个.13,62π--(相邻两个5之间的7的个数逐次加1).4_____,1-12π的绝对值是 __.5.若4<5,则满足条件的整数 a 分别是_________________.6.如图,数轴上表示1的对应点分别为A B 、,点B 是AC 的中点,O 为原点.则线段长度:AB =__________,AC =__________,OC =____________7.[x )表示小于x 的最大整数,如[2.3)=2,[-4)=-5,则下列判断:①[385-)= 8-;②[x )–x 有最大值是0;③[x ) –x 有最小值是-1;④x 1-≤[x )<x ,其中正确的是__________ (填编号). 8.观察下面两行数: 2,4,8,16,32,64…①5,7,11,19,35,67…②根据你发现的规律,取每行的第8个数,并求出它们的和_______(要求写出最后的计算结果).9.如图所示,在数轴上点A所表示的数为a,则a的值为____________________.【学习探究】自主学习阅读课本,完成下列问题1.当数从有理数扩充到实数以后,有理数关于相反数和绝对值的意义同样适合于实数。

2的相反数是,-π的相反数是,0的相反数是;= ,∣-π∣= ,∣0∣= .3.数a的相反数是,这里的a表示任意一个。

人教版数学七年级下册--6.3实数(2)导学案

人教版数学七年级下册--6.3实数(2)导学案

课题:6.3实数 课型:预习展示课 课时:2 【学习目标】 1、了解实数范围内,相反数、倒数、绝对值的意义。

2、了解实数的运算。

【预习导学】 自学课本54—56页内容,完成下列要求:
1、当数从有理数扩充到实数后,有理数关于相反数和绝对值的意义同样适合于实数吗? 2的相反数是 , -π的相反数是 ,0的相反数是 ;
|2|= ,|-π|= ,|0|= , 小结:实数a 的相反数是____,这里a 表示任意 _。

一个正实数的绝对值
是 ;一个负实数的绝对值是它的 ;0的绝对值是 。

2、实数的运算:有理数的运算法则及运算性质在进行实数的运算中,同样适用。

【学以致用】
1、写出下列各数的相反数:
(1) 6- (2)
14.33
-π (3) 364--
2、3-的相反数是 ,绝对值 。

3、绝对值等于5 的数是 , 7-的平方是
4、已知一个数的绝对值是3,则这个数是 。

5、32-的相反数是_________ ,绝对值是___________。

6、计算下列各式的值:
(1)3)35(-+
(2)5253+
(3))3212(2)35(-
--
【课堂小结】
我的收获有:
【巩固提升】
1、若|a |=3,则a = 。

2、计算:
|8|3-= |3
2|-= |7.13|-= |24.1|-
= |14.3|-π=。

人教版七年级数学下导学案:6.3实数(1)

人教版七年级数学下导学案:6.3实数(1)

课题:6.3实数(1)课型:新授课 总第22节 时间:星期二【学习目标】1. 了解无理数和实数的概念2.对实数按照一定的标准进行分类;知道实数和数轴上的点的关系.估算无理数的大小3.了解实数范围内相反数和绝对值的意义【学习重点】正确理解实数的概念【学习难点】理解实数的概念; 体会数轴上的点与实数是一一对应的.预 习 篇1、什么是有理数?如何分类?2、2是这样的数么?探究:使用计算器计算,把下列有理数写成小数的形式,你有什么发现?3 , 35- , 478 , 911 , 119 , 59我们发现,上面的有理数都可以写成有限小数或者无限循环小数的形式。

归纳: 任何一个有理数都可以写成有限小数或无限循环小数的形式。

反过来,任何有限小数或无限循环小数也都是有理数.学 习 篇 讨论:2是不是有理数呢?为什么?归纳:2不是整数,不是有限小数,也不是无限循环小数,所以2不是有理数.2是无限不循环小数定义:无限不循环小数又叫无理数, 3.14159265π=也是无理数结论: 有理数和无理数统称为实数学生举例:有理数 无理数实数分类:1.填空: 在-19,3.878787…,π2,6,16,1.414,327,67-,34-这些数中, 有理数是 ___________________________________ ;无理数是_____________________________________ ;2.判断对错:对的画“√”,错的画“×”.(1)无理数都是无限小数.( ) (2)无限小数都是无理数.( ) (3)25是无理数。

( ) (4)15是无理数。

( )(5)带根号的数都是无理数. ( )(6)有理数都是实数.( )每个有理数都可以用数轴上的点来表示。

无理数是否也可以用数轴上的点来表示呢? 探究:课本54页①事实上,每一个无理数都可以用数轴上的__________表示出来,这就是说,数轴上的点有些表示__________,有些表示__________当从有理数扩充到实数以后,实数与数轴上的点就是__________的,即每一个实数都可以用数轴上的__________来表示;反过来,数轴上的__________都是表示一个实数②与有理数一样,对于数轴上的任意两个点,右边的点所表示的实数总比左边的点表示的实数______讨论: 当数从有理数扩充到实数以后,有理数关于相反数和绝对值的意义同样适合于实数吗?总结 数a 的相反数是______,这里a 表示任意____________。

人教版数学七年级下册- 6.3《实数》导学案(2)

人教版数学七年级下册- 6.3《实数》导学案(2)
五、课堂小结:(2分钟)
了解实数范围内,相反数、倒数、绝对值的意义。
6、课后巩固:(3分钟)
P56 3题、4题
7、学习反思:
学法指导
复习提问,巩固所学知识
学生阅读教材,自主完成本内容
学生独立完成,小组交流、讨论
小组交流、讨论、共同完成,实现生生互助的教学模式
学生总结,互相补充,培养分析归纳能力
【教学反思】
名人名言或名人故事:知之为知之,不知为不知,是知也。
精讲精练
例2、计算下列各式的值:
解:⑴

⑴ ⑵
总结 实数范围内的运算方法及运算顺序与在有理数范围内都是一样的
例3、计算:
(精确到0.01) · (结果保留3个有效数字)
3、释疑点拨:(3分钟)
总结 在实数运算中,当遇到无理数并且需要求出结果的近似值时,可以按照所要求的精确度用相应的近似有限小数去代替无理数,再进行计算
2、用字母表示有理数的加法交换律和结合律
3、有理数的混合运算顺序
二、自主学习内容、指导、检测:(15分钟)
独立阅读,自习教材
总结 当数从有理数扩充到实数以后,
1、数a的相反数是;
2、一个正实数的绝对值是它;一个负实数的绝对值是它的;0的绝对值是。
3、实数之间不仅可以进行加、减、乘、除(除数不为0)、乘方运算,而且正数及0可以进行开方运算,任意一个实数可以进行开立方运算。在进行实数的运算时,有理数的运算法则及运算性质等同样适用。
《6.3实数》导学案(2)
【学习目标】
1.了解实数范围内,相反数、倒数、绝对值的意义。
2.自主、合作、交流
3.会按要求用近似有限小数代替无理数,再进行计算。
【重 点】

6.3.2实数第一课导学案

6.3.2实数第一课导学案

6.3实数(第一课时)主备人:景修参 审核:七年级数学组 2016.3.5目 标 1、了解实数的意义,能对实数按要求进行分类。

2、了解数轴上的点与实数一一对应,能用数轴上的点来表示无理数。

学法指导 启发引导自主学习(自学课本53-54页)1.回顾有理数的分类方法?2.使用计算器计算,把下列有理数写成小数的形式,你有什么发现? 25 , 35- ,427 ,911 ,119, 3、归纳: 任何一个有理数都可以写成_______小数或________小数的形式。

反过来,任何______小数或____________小数也都是有理数观察 通过前面的探讨和学习,我们知道,很多数的_____根和______根都是____________小数, ____________小数又叫无理数, 3.14159265π= 也是无理数结论: _______和_______统称为实数实数和数轴上的点是有理数关于相反数和绝对值的意义同样适用于4、试一试 把实数分类自学检测:(一)、判断下列说法是否正确:1.实数不是有理数就是无理数。

( )2.无限小数都是无理数。

( )3.无理数都是无限小数。

( )4.带根号的数都是无理数。

( )5.两个无理数之和一定是无理数。

( )6.所有的有理数都可以在数轴上表示,反过来,数轴上所有点都表示有理数。

( ) 交流展示1、把下列各数分别填入相应的集合里:2273.141,,,,,1.414,0.020202,378π--- 有理数{ }无理数{ }负无理数{ }正实数{ }2、如图,( )A.点PB.点QC.点MD.点N3、5最接近的整数是4、比较实数的大小:(1)1415.3,π (2)732.1,3 (3)225,35--课堂小结(给我点时间我一定行)你对同学有哪些温馨的提示?_____________________________________ 你还需要老师为你解决哪些问题?_____________________________ 当堂训练1、下列实数中是无理数的为( )A. 0B. 3.5-2、有六个数:0.142 7,(-0.5)3,3.141 6,227,-2π,0.102 002 000 2…,若无理数的个数为x,整数的个数为y,非负数的个数为z,求x+y+z 的值.3、将下列各数按从小到大排列,并用“”连接起来。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

6.3 实数
1.问题:
(1)我们知道有理数包括整数和分数,同学们能把下列分数写成小数的形式?它们有什么特征? 25=__________ , 53-=__________ , 427=___________ , 911=__________ , 11
9=__________, 特征:____________________________________________________________________
(2)3可以看成是3.0吗?整数能写成小数的形式吗?
答:____________________________________
通过问题(1)、(2)可归纳:
有理数都可以化成 或 .
反过来,任何_________________或_____________________也都是有理数.
问题(3)我们学过的数是否都具有问题(1)、(2)中数的特征?举例说明.
π=3.1415926...,0.1313313331...
思考:它们都是________________小数. 它们还是有理数?
归纳:
无理数:无限不循环.....
小数叫做无理数 实数:有理数和无理数统称为实数
例 下列各数中,哪些是有理数,哪些是无理数?是有理数的打“√”,无理数的打“×” ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 归纳:
常见的无理数的三种形式:1.π及含π的一些数;
2.开方开不尽的数,例如2,34...;
3.有规律但不循环的数,如1.010 010 001...,0.1313313331... 练习1.(1)下列各数:π,71-,()23-,3.14 ,2,0 中,有理数的个数有( )
A.2个
B.3个
C.4个
D.5个
(2)在0,0.1010010001... ,3,38, 31-,39-,2
π中,无理数分别 是__________________________________________________________________

327-7
2232 131331333.0364
8-
1600.430.2 39
问题(4)你还记得有理数的分类吗?分类的基本原则是什么?
(二分法)按定义分: (三分法)按正负性分
分类原则:不重不漏
(2)你能对我们学过的数进行合理的分类吗?
二分法:按定义分
⎪⎪⎪⎪⎪⎩
⎪⎪⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧无限不循环小数数有限小数或无限循环小实数___________________________________________________________________ 三分法:按正负性分
⎪⎪⎪⎩
⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧______________________________
_______________________实数
练习2.把下列各数填入相应的集合内.
(1)有理数集合:{ …};
(2)无理数集合:{ …};
(3)正实数集合:{ …};
(4)负实数集合:{ …}.
⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧_______________________________________________有理数⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧_______
__________________________________________有理数39215,4,,,27,0.15,7.5,π0.13313331 (173)
---,
练习3
1.判断下列说法是否正确,说明理由.
(1)无理数是无限小数,无限小数就是无理数.( )
(2) 无理数包括正无理数,0,负无理数.( )
(3)带根号的数都是无理数,不带根号的数都是有理数( )
2.把下列各数分别填在相应的集合中.
722,3.14159265,7,-8,32,0.6,0,36,3
π, (1)有理数集合:{ ...}
(2)无理数集合:{ ...}
(一)实数的相反数、倒数和绝对值:
相反数:实数a 的相反数是-a ;
倒数:当 a ≠0时,实数a 的倒数是a
1; 绝对值:正数的绝对值等于本身;0的绝对值是0;负数的绝对值等于它的相反数.
1.2的相反数是 ,-π的相反数是 ,0的相反数是 ;
2.∣2∣= ,∣-π∣= ,∣0∣= .
3.数a 的相反数是 ,这里的a 表示任意一个 . 一个正实数的绝对值是 ;一个负实数的绝对值是 ;0的绝对值是 .
4.例:(1)分别写出-6,π-3.14的相反数: ,
(2)已知一个数的绝对值3,这个数是
5.下列各组数中互为相反数的一组是( )
A .2--与38-
B .-4与-2(-4)
C .32-与32-
D .-2与12
6. |2-5| =________,|3-π|=________.
(二)实数的运算:
例1 计算
(1)5352- ; (2)5165÷
⨯ ;(3)()
322+-
例2 近似计算:
(1)5π+(精确到0.01); (2)33322+(保留三个有效数字)
(三)实数的大小比较:(类比有理数的大小比较)
①在数轴上表示的两个实数,右边的数总比左边的大. ②在实数范围内有: 正数大于零,负数小于零,正数大于负数. 两个正数,绝对值大的数较大. 两个负数,绝对值大的数反而小. 例如:26> ,26-<-
归纳:如果a > b > 0 ,则b a >
巩固练习:
1. 比较下列各组是里两个数的大小:
(1)3 ,π ; (2)56--, ;
(3)-2,-3
2. 比较327-与31
的大小。

相关文档
最新文档