世界范围内土壤重金属样品的化学计量学认识-2010

合集下载

土壤重金属标准样品

土壤重金属标准样品

土壤重金属标准样品1.样品描述土壤重金属标准样品是一种用于校准和验证土壤重金属分析方法的物质。

该样品应具有代表性,能够反映实际土壤中重金属的含量范围和分布特征。

2.采样地点采样地点应选择具有代表性的地区,综合考虑土壤类型、地形、气候、土地利用方式等因素。

采样点应分散,避免在某一特定地点过度采样。

3.采样时间采样时间应根据气候、季节和土壤变化情况选择。

在土壤稳定时期进行采样,以减少气候和土壤变化对样品代表性的影响。

4.样品制备样品制备包括样品采集、运输、储存、破碎、混匀和干燥等过程。

在样品制备过程中,应保持样品原有的理化性质,避免交叉污染和样品损失。

5.化学分析化学分析是测定样品中重金属含量的过程。

应选择合适的分析方法,确保方法的准确性和可靠性。

在分析过程中,应控制实验条件,减少误差和干扰因素。

6.数据处理与评估数据处理包括数据整理、统计分析和误差处理等过程。

数据处理应遵循科学、规范的原则,确保数据的准确性和可靠性。

评估包括对样品代表性的评估和对分析方法的验证和评价。

评估结果可用于改进和优化分析方法。

7.标准参考值标准参考值是指土壤中重金属含量的正常范围值。

根据实际情况和相关标准,确定标准参考值。

在确定标准参考值时,应考虑不同地区、不同土壤类型和不同土地利用方式的影响。

8.质量控制质量控制是保证样品质量和数据准确性的重要措施。

通过建立质量控制体系,实施质量控制措施,对整个样品制备和分析过程进行监控和管理。

质量控制措施包括对样品的标识、记录、审核和分析等过程进行控制和管理。

9.精度与偏差精度是指测量结果的可靠性和一致性,偏差是指测量结果与真实值之间的差异。

在分析过程中,应通过实验和控制实验条件等方式,减小精度和偏差的影响。

同时,应对分析结果进行评估和验证,以确保其准确性和可靠性。

土壤重金属分析方法

土壤重金属分析方法

土壤重金属分析方法
土壤重金属分析方法可分为两种:化学分析和光谱分析。

化学分析方法:
1. 湿法消解法:将土壤样品与酸或碱等化学试剂混合,加热处理,待样品中的有机物和无机物溶解后,采用各种分析方法进行测定。

2. 烧结分析法:将土壤样品经高温烧结,将烧结物与稀酸或氯化物混合后进行测定。

3. 气象化学分析法:采用X射线荧光分析、原子吸收光谱分析等化学分析方法进行测定。

光谱分析方法:
1. 偏振荧光光谱法:用激光或者白光照射土壤样品,测量样品的荧光光谱,通过分析荧光光谱图来确定土壤中重金属的含量。

2. 近红外光谱法:利用近红外光谱的特征波峰和波谷来测定土壤中重金属的含量。

3. 原子发射光谱法:通过利用电极火花发射或离子源等方法将土壤样品中的重金属元素原子化,再将原子发射光谱图进行分析,可以精确测定土壤中重金属元素的含量。

土壤重金属污染研究回顾与展望_基于webofscience数据库的文献计量分析

土壤重金属污染研究回顾与展望_基于webofscience数据库的文献计量分析
选用普通检索方式,以“ soil heavy metal* pollut*” or“ soil heavy metal* contaminat*”作 为 主 题 检 索 词 , 在 WOS 三大引文数据库中进行检索, 获取了相关文 献,通过科学计量指标,对论文进行量化分析。 核心期 刊 分 析 使 用 ISI Web of Knowledge 中 的 权 威 期 刊 引 证报告 JCR( Journal Citation Reports) [14]。 对检索出的 文献用 ISI 自带的结果分析软件进行分析, 部分数据 项用 SPSS 统计软件进行分析。
environmentalscienceno6june2010重金属对土壤的污染主要来源于工业废渣废气中重金属的扩散沉降累积含重金属废水灌溉农田以及含重金属农药磷肥的大量施用并且外来重金属多富集在土壤的表层重金属以其在土壤中难降解毒性强具有积累效应等特征受到科学家们的广泛关注文献计量学bibliometrics的概念是英国情报学家普里查德apritchardl969年提出的将其定义为是把数学和统计学应用于图书和其它交流媒介的一门学科文献计量学以其显著的客观性定量化模型化的宏观研究优势已被不少学科采用农业方面我国学者在林业园艺农作物植物保护学科农业经济环境科学与资源利用等方面进行过文献计量分析与研究512但在土壤学科方面还未见相关研究为了准确掌握全球土壤重金属污染研究的现状和前沿动态保持科技竞争力本文对isiwebscience数据库收录的有关土壤重金属污染文献进行了计量研究以期对相关领域的研究人员提供参考数据来源和方法scisciencecitationindex是美国科学情报研isiinstitutescientificinformation出版的期刊文献检索工具所收录的文献覆盖了全世界最重要和最有影响力的研究成果成为世界公认的自然科学领域最为重要的评价工具并于1997年利用互联网的开放环境socialsciencescitationindexahcihumanitiescitationindex创建了网络版的多学科引文数据库web以下简称wos13本文数据来源是isiwebsciesciencecitationindexexpanded引文数据库在分析土壤重金属污染文献总体产出趋势时数据采集时间跨度为所有年份其余分析的数据采自1990008年数据库更新的时间是009年11选用普通检索方式以soilheavymetalpollutsoilheavymetalcontaminat作为主题检索词在wos三大引文数据库中进行检索获取了相关文献通过科学计量指标对论文进行量化分析核心期刊分析使用isiwebknowledge中的权威期刊引证报告jcrjournalcitationreports14对检索出的文献用isi自带的结果分析软件进行分析部分数据项用spss统计软件进行分析研究结果分析21土壤重金属污染文献产出趋势及整体分析通过检索wos引文数据库中收录的所有年份里的土壤重金属污染相关文献共6856最早的相关报道是

土壤7种重金属质控样

土壤7种重金属质控样

土壤7种重金属质控样
土壤中的重金属是指相对密度大于5g/cm3的金属元素,包括铅(Pb)、镉(Cd)、汞(Hg)、铬(Cr)、铜(Cu)、锌(Zn)和镍(Ni)等。

这些重金属对土壤和环境都有一定的影响,因此需要进行质控样的监测和分析。

首先,对于土壤中的重金属质控样,需要考虑样品的采集和保存。

采集样品时应该避免使用含有重金属的工具和容器,并且要选择代表性的样品点进行采集,避免受到外界污染。

采集后,样品需要妥善保存,避免受到空气、湿气等因素的影响。

其次,针对重金属质控样的分析方法,可以采用常见的原子吸收光谱法、电感耦合等离子体质谱法等进行分析。

这些方法可以准确测定土壤中的重金属含量,确保分析结果的准确性。

此外,需要注意的是,质控样的选择应该考虑到不同土壤类型和地区的特点,以及可能存在的污染源。

同时,对于不同重金属元素,可能需要采用不同的分析方法和标准。

因此,在选择和分析质控样时需要进行充分的考虑和实验验证。

最后,对于土壤中的重金属质控样,监测和分析的结果应该及时报告,并且需要根据相关的环境标准和法规进行评估和处理。

在实际工作中,还需要考虑到样品数量、分析周期、成本等因素,以便进行合理的质控和管理。

总的来说,对于土壤中的重金属质控样,需要综合考虑采集、分析、监测和评估等多个方面的因素,以确保质控样的准确性和可靠性,保障环境和人类健康的安全。

化学计量学在环境测试中的应用

化学计量学在环境测试中的应用

化学计量学在环境测试中的应用化学计量学是研究化学反应量关系的一门学科,它应用于环境测试中,可以帮助科学家们准确测定化学物质的含量,从而评估环境污染的程度和影响。

本文将从化学计量学的概念入手,探讨化学计量学在环境测试中的应用。

一、化学计量学的概念化学计量学是一门研究化学反应量关系的学科,主要包括化学反应中化学物质的组成、反应的速率和平衡等方面的内容。

在化学计量学中,有一个重要的概念——化学计量,指的是化学反应中一种物质所需要的最小量。

化学计量学在环境测试中应用广泛。

例如,在分析水体中有害物质浓度时,化学计量学可帮助准确计算出这些物质所需的最小量,从而评估其含量水平。

此外,化学计量学还可应用于空气和土壤等环境因素的测试。

二、化学计量学在水环境测试中的应用水是人类生命不可或缺的资源之一,但是在现代化的社会环境下,水污染已成为一个全球性问题。

因此,水环境测试是非常必要的。

化学计量学在水环境测试中的应用非常广泛,以下我们结合几个例子进行探讨。

1. 氮和磷的浓度测定氮和磷是造成水体富营养化的主要因素之一。

在水体中,化学计量学可帮助科学家们计算出氮和磷的最小量,并针对其不同形态进行测定,如硝态氮、铵态氮和总氮等。

此外,化学计量学还可通过磷酸氢二铵测定法计算出磷的含量,从而帮助科学家们准确测定水体中氮和磷的浓度,进而评估水体富营养化的程度。

2. 有机物浓度测定有机物污染是水体污染的主要因素之一,如废水中的有机物通过生化反应产生的化学需氧量(COD)等参数就是评估有机物浓度的指标。

在实验室中,化学计量学可帮助科学家们通过光度法、滴定法等方法来测定废水中COD的浓度,并据此评估水体的污染程度。

三、化学计量学在土壤测试中的应用除了水环境测试外,化学计量学在土壤测试中也有广泛的应用。

下面我们以土壤中重金属的检测为例进行探讨。

1. 重金属的浓度测定重金属是影响土壤质量的主要因素之一。

在土壤测试中,化学计量学可帮助科学家们测定土壤中不同形态的重金属,如可溶态、易交换态、难交换态和残余态等。

化学计量学方法在土壤化学研究中的应用

化学计量学方法在土壤化学研究中的应用

化学计量学方法在土壤化学研究中的应用引言土壤化学是现代农业、生态学以及环境科学的重要组成部分,对于土壤化学研究的深入,需要运用现代化学计量学方法,以获得更准确的数据和分析结果。

化学计量学方法在土壤化学研究中有着广泛的应用,从而推动了土壤化学的发展。

本文将介绍化学计量学方法在土壤化学研究中的应用及其实际意义。

一、分析化学在土壤化学中的应用分析化学是库仑科学的基础,它为土壤化学研究提供了一系列有用的技术手段。

在土壤化学中,分析化学常常用于测定土壤样品中的物质含量与性质,以确定土壤中的主要化学特征,例如,pH值、有机质含量、矿质含量、离子交换能力等。

这些数据能够提供土壤的化学性质和生命活性,为土壤利用和改善提供了基础数据。

二、元素分析在土壤化学研究中的应用土壤的矿物质成分对于植物的生长和土壤的肥力有着重要的影响。

因此,元素分析在土壤化学研究中具有非常重要的作用。

元素分析可以揭示土壤中各类有机和无机成分的元素组成,显示出土壤元素的分布规律以及影响其分布的各种因素。

这些数据可以提高人们对土壤的认识和理解,同时也可以对土壤的利用和改善提供重要的参考价值。

例如,元素分析可以确定土壤中铁、铜、锌、锰和钾等关键微量元素的含量,这对于确定植物健康所需的养分必不可少。

三、计量学方法在土壤化学中的应用除了分析化学和元素分析,计量学方法也在土壤化学研究中得到广泛应用。

计量学方法主要包括实验设计、分类分析、回归分析和聚类分析等方法。

这些方法能够输入大量的数据并以一种系统的方式进行处理,以充分地揭示种类、分布和影响根系的关键因素及其相互关系。

例如,通过回归分析法,可以建立植物生长与土壤pH值、水分含量之间的关系模型,以了解土壤因素如何影响植物的健康状况;通过聚类分析,可以把具有相似特征的土壤样品分成一组,以评估不同类型土壤的生产潜力和适宜种植作物。

四、信号处理在土壤化学研究中的应用信号处理技术在土壤化学研究中的应用也越来越广泛,它的主要目的是检测/分析土壤的光谱信号。

土壌中の重金属汚染物质の许容浓度境界の再评価

土壌中の重金属汚染物质の许容浓度境界の再评価

土壌中の重金属汚染物質の許容濃度境界の再評価土壌中的重金属污染物质的容许浓度边界的再评价随着全球人口持续增长和工业化程度的不断提高,排放出的废水和废气中含有的重金属元素越来越多,这就导致一些污染物质进入地表水和土壤中,而重金属在生态环境中的积累和转化常常会引发诸如土壤酸化、生物毒性等严重后果。

国际上对于土壤中重金属污染物质容许浓度边界的评价体系等也在逐步发展,不断提高。

本篇文章着眼于土壤中的重金属污染物质的容许浓度边界,探讨其再评价的重要性和必要性。

一、容许浓度边界再评价的必要性土壤中的重金属污染物质是因为森林开采、工业化、矿业等多个原因导致的。

这些污染物质的存在不仅给土壤生态环境造成了很大的压力,也需要对这些污染物质进行测试并制定适当的衡量标准,以监测和管理它们的逐渐增加。

这些标准通常被称为容许浓度边界。

容许浓度边界是指在一定范围内,重金属污染物质的浓度达到一定阈值时,会对生态环境产生明显的不良影响的阈值。

因此,对容许浓度边界进行再评价是必要的,以便提高土壤及其它资源的保护水平,以及维护人类健康生活的良好环境。

二、当前容许浓度边界的标准在我国,国家土壤污染防治条例已于2018年开始实行,规定了土壤质量标准及其下限值。

同时,有关部门也制定了一些重金属污染物质在土壤中的容许浓度边界。

例如,对于重金属污染物质铅和镉,我国规定其容许浓度边界分别为200mg/kg和0.3mg/kg,而美国则对于铅的容许浓度边界则规定为400mg/kg。

然而,不同的地方会有不同的土壤质量标准。

在我国,这些标准通常被省级或地市级部门制定。

三、再评价需要考虑的因素1.监测方法土壤中的重金属污染物质的容许浓度边界是由一系列监测方法和测试技术来决定的。

但各种技术的适用范围和精度不同,存在差异。

因此,在进行容许浓度边界的重新评价时,需要考虑新加入的监测方法以及这些方法的可靠性,以保证所评估的容许浓度边界更科学严谨。

2.环境因素不同环境条件下的土壤中可能含有不同种类和浓度的重金属污染物质,因此在进行容许浓度边界的评价时,需要考虑到不同的环境因素。

高精度化学计量学在土壤污染检测中的应用研究

高精度化学计量学在土壤污染检测中的应用研究

高精度化学计量学在土壤污染检测中的应用研究随着经济的发展和工业的扩张,土壤污染问题越来越引人注目。

土壤污染对环境的影响不容忽视,它会影响农作物生长,甚至影响生态平衡,进而对人类健康造成威胁。

因此,如何对土壤进行快速、准确的污染检测成为土壤污染研究领域中的一个热门话题。

高精度化学计量学作为一种准确、标准化的分析半定量方法,已经被广泛应用于土壤污染检测中。

本文将从高精度化学计量学的理论基础、实验方法以及在土壤污染检测领域中的应用等方面进行探讨,以期能对读者以及相关从业人员提供参考。

一、高精度化学计量学的理论基础化学计量学是一门综合性的科学,它涵盖了化学、数学、统计学等多学科的知识,并且它是一种可视化的量化分析方法。

高精度化学计量学就是在化学计量学的基础上,通过引入更为先进的数学手段和模型算法对分析过程进行了升级。

高精度化学计量学的主要理论基础有:化学计量学、多元统计学、人工神经网络、偏最小二乘法等。

其中化学计量学是其最基础的理论支撑,多元统计学主要用于分析和解释多个变量之间的关系。

人工神经网络则强调神经元之间的连接,利用模拟神经网络的方式模拟人类大脑的思考过程。

偏最小二乘法则是回归分析方法中加入了多元统计分析的一种改进方法,可以避免多重共线性等常见问题。

二、高精度化学计量学的实验方法高精度化学计量学实验的关键是数据预处理和建模。

数据预处理包含了将原始数据转换为干净的、可用的数据,在处理数据的过程中去除极端值,避免假象。

数据建模包含了建立模型,对模型进行训练和预测,从而实现对样品分析和检测的目的。

因此,高精度化学计量学的实验方法主要包括以下三个步骤:首先,确定被检测物质的种类和含量。

针对不同的检测物质,需要选择不同的试剂和仪器。

其次,采集样品并进行数据采集与处理。

数据采集是对样品进行测量和分析的过程,数据处理则是对采集到的数据进行预处理、特征提取和数据降维等操作。

其中,特征提取可以通过PCA(主成分分析), PLS(偏最小二乘法), ICA(独立成分分析)等方式来降低数据维度。

土壤重金属含量测定方法

土壤重金属含量测定方法

土壤重金属含量测定方法土壤里的重金属含量可是个很重要的事儿呢。

那咋测定呢?有一种方法叫原子吸收光谱法。

这个方法就像是给土壤里的重金属元素照镜子一样。

原子吸收光谱仪就像是一个超级厉害的眼睛,它能专门识别不同的重金属原子。

当把处理好的土壤样品放进仪器里,那些重金属原子就会像小明星一样被仪器捕捉到,然后根据吸收的光的特征,就能知道每种重金属的含量啦。

这个方法可准确着呢,就像神枪手打靶,一瞄一个准。

还有电感耦合等离子体质谱法(ICP - MS)。

这方法听起来就很高级吧。

它就像是一个超级侦探,能把土壤里的各种微量元素,特别是重金属元素,找得清清楚楚。

它是通过把土壤样品变成等离子体,然后根据不同重金属离子的质量和电荷比来确定它们的种类和含量。

这个方法超级灵敏,哪怕土壤里只有一丁点儿的重金属,它也能发现。

就像小蚂蚁那么小的东西,它都能看到。

比色法也是个老方法啦。

就像我们画画调色一样有趣呢。

比色法是利用重金属离子和一些特定的试剂发生反应,产生有颜色的化合物。

然后根据颜色的深浅来判断重金属的含量。

颜色越深,说明重金属含量越高。

不过这个方法相对来说没有前面那两个那么精确,但它简单呀,就像我们做小手工一样,不需要太多复杂的仪器,在一些简单的检测场景下还是很有用的。

另外,还有X射线荧光光谱法。

这个方法就像是给土壤拍X光片。

X射线照到土壤上,土壤里的重金属元素就会发出自己独特的荧光。

通过检测这些荧光的能量和强度,就能知道有哪些重金属,以及它们的含量是多少。

这方法可以直接对土壤进行检测,不需要对样品进行太多复杂的处理,就像我们看一个东西,一眼就能看出个大概一样。

土壤重金属含量的测定方法各有各的好,就像我们的小伙伴们,每个人都有自己的特长。

这些方法在保护土壤健康,保障我们的生活环境方面都起着超级重要的作用呢。

重金属元素在土壤中的化学行为公开课获奖课件百校联赛一等奖课件

重金属元素在土壤中的化学行为公开课获奖课件百校联赛一等奖课件

中国不同母质发育土壤Cd含量
中国某些土壤Cd背景值
新信息:
中国地质调查局在桂林召开会议(马生明等,2023),用土壤中元素旳全量,以 大宗农作物(水稻、小麦、玉米)为研究对象以绿色或无公害食品卫生原则为鉴 定基准。将中国区域土壤地球化学评价原则划分为三级,其中:
一级(镉含量<0.15 X 10-6 ):反应旳是化学元素自然背景含量情况;以大宗农 作物旳绿色食品卫生原则作为鉴别原则,基本无超标现象。
因为镉矿物水解,土壤中稳定存在旳镉化物应该只有如下三中 Cd3(PO4)2 CdS 土壤-Cd
(1)、土壤Cd3(PO4)2稳定性与土壤中磷酸盐浓度和pH有关. (2)、土壤-Cd旳活度大约为10-7mol/L。
土壤-Cd -------- Cd2+,log K0 = -7.00 在pH不小于7.5时,取决于CO2(g)浓度,其Cd活度被CdCO3 所控制。在CO2浓度为0.003大气压时,每增长1个pH单位,则 Cd2+活度将降低100倍(Street et al. , 1978).
稳定常数:用离子平衡法测定旳Cd-腐殖酸络合物旳稳定常数logK值在4.67 – 7.84. 配位数:各腐殖酸-Cd旳配位数在1.2 – 1.7之间,推测Cd-腐殖酸络合物为1:1 和1:2型混合物. 络合位:未解离羧基和酚羟基可能是Cd-腐殖酸络合物旳主要络合位. Cd-腐殖酸络合物稳定性质:随腐殖酸芳构化程度增长而增长. 应用:施用泥炭等芳构化程度较高旳有机物质,对降低重金属元素对作物旳危 害可能是有益旳.
(三)土壤溶液中镉旳化学形态
非石灰性土壤溶液中镉主要形态为Cd2+, CdCl+和CdSO40
石灰性土壤溶液中镉主要形态为Cd2+, CdCl+,CdHCO3+,CdSO40

本科毕设论文--土壤重金属检测方法的研究

本科毕设论文--土壤重金属检测方法的研究
1.2.5
含重金属废弃物种类繁多,不同种类其危害方式和污染程度都不一样。污染的范围一般以废弃堆为中心向四周扩散。通过对武汉市垃圾堆放场、杭州某铬渣堆存区、城市生活垃圾场及车辆废弃场附近土壤中的重金属污染的研究,这些区域的重金属Cd、Hg、Cr、Cu、Zn、Ni、Pb、As、Sb、V、Co、Mn的含量高于当地土壤背景值,重金属在土壤中的含量和形态分布特征受其垃圾中释放率的影响,且随距离的加大重金属的含量而降低。
本科毕业设计(论文)
土壤中重金属离子检测方法的研究
刘茜
大学毕业设计(论文)任务书
学院:环境与化学工程学院系级教学单位:应用化学


学生
姓名
专业
班级
材料化学


题目名称
土壤中重金属离子检测方法的研究
题目性质
1.理工类:工程设计();工程技术实验研究型(√);
理论研究型();计算机软件型();综合型()
铅污染主要来源于汽油燃烧产生的废气,含铅涂料,采矿、冶炼、铸造等工业生产活动等。铅及其化合物是一种不可降解的环境污染物,性质稳定,可通过废水、废气、废渣大量流入环境,产生污染,危害人体健康。铅对机体的损伤呈多系统性、多器官性,包括对骨髓造血系统、神经系统、消化系统及其他系统的毒害作用。作为中枢神经系统毒物,铅对儿童健康和智能的危害更为严重。
近年来,随着工业、农业和交通运输业的迅速发展,通过各种途径进入土壤环境中的有害重金属(如Zn、Cu、Pb、Cd、Cr等)不断增加,对农产品造成日益严重的污染和危害,生活水平的提高也促使人们更加关注果品和农产品的卫生质量问题[2]。不仅是重金属在生物体内的积累效应会对人类的健康造成潜在地威胁,重金属超标还会造成环境污染[3]。
Keywords:Soil heavy metals; Flame atomic absorption spectrophotometry; Inductively coupled plasma mass spectrometry; Detection limits

土壤中重金属Pb、Cu的污染分析评价

土壤中重金属Pb、Cu的污染分析评价

土壤中重金属Cu、Pb的污染分析评价1、实验目的与要求(1)了解重金属Cu、Pb对生物的危害。

(2)了解土壤中Cu、Pb的污染及其迁移影响因素。

(3)掌握土壤消解Cu、Pb及其前处理技术。

(4)掌握原子吸收分析土壤中重金属元素的方法。

(5)掌握土壤中Cu、Pb污染评价方法。

2、实验方案2.1.土壤样品的采集与制备:2.1.1土壤样品的采集为保证此次实验的严谨性和代表性,本次实验采集了7个区域的土壤样品,土壤样品均来自广工周边的区域,共99个样品,这些区域分别是①教学区②生活区③运动场周边④行政楼假山⑤公路周边⑥中心湖⑦建筑翻土。

为了解土壤中污染物的含量分布,在了解污染源、污染方式以及污染历史和现状的基础上,全面考虑土壤类型、成土母质、地形、植被和农作物等情况后布设采样点。

采样点的布设方式有对角线法、梅花形法、棋盘式法和蛇形法等。

2.1.2土壤样品的制备从所研究的区域采集土壤,倒在塑料薄膜上,晒至半干状态,将土块压碎,除去杂质残梗,铺成薄层,在阴凉处慢慢风干。

风干土壤用有机玻璃或者木棒压碎后,过2mm尼龙筛,去掉2mm以上的沙砾和植物残体。

将上述风干细土反复按照四分法齐取,最后留下100g的土壤,再进一步磨细,通过100目筛,装入瓶中。

取20-30g土壤,装入瓶中,在103-105摄氏度条件下烘干4-5h,恒重。

2.2土壤样品的消解与测定2.21消解过程流程图0.5g土壤样品加到PVC烧杯→加2mlH2O,搅拌→加入10mL浓HCl在电热板上加热→(快干时)加入15mL浓HNO3加热→(快干时)加入5mL浓HF加热→(快干时)加入5mLHClO4加热→(快干时)取下冷却→加入1mL浓HNO3.→移入50mL比色管并定容。

2.22样品的测定样品需静置15min,然后将测定样品的装置插入到比色管中,中途不能摇晃样品,否则会出现测试误差,记录电脑得出的数据。

3、实验结果与数据处理3.1实验结果表1 实验数据记录表科一科二组别样品重量(g)Cu浓度(μg/L)Pb浓度(μg/L)样品重量(gCu浓度(μg/L)Pb浓度(μg/L)第一组广工站0.53 100.98 856.39 实(1-2)-30.53 11599.9865.98实(2-3)-40.57 163.81 1190.76 实(1-2)-50.50 3471.23 1058.56 农田1 0.50 253.87 769.18 外环7 0.58 3645.02 299.17第二组实(1-2)-50.57 322.07 5501.01 J(1-2)-40.51 2913.97 573.88东8 0.55 367.57 475.41 J(1-2)-20.55 4405.08 750.60 中南2 0.50 169.92 219.92 公11 0.55 922.88 798.37第三组农田3 0.50 672.40 648.80 中南1 0.53 658.56 379.63 中心湖2 0.56 352.29 633.90 东4 0.53 813.94 811.76 教6 0.59 1972.60 218.46 南商3 0.52 543.99 510.98第四组图2 0.57 1377.15 486.19 行山2 0.51 5736.15 503.60 实(2-3)-30.64 986.08 532.10 工(1-2)-10.52 3362.87 566.63公13 0.50 609.13 335.02 中南4 0.51 98.04 238.57第五组实(2-3)-10.50 96.03 133.70 农田2 0.50 98.04 238.57教2 0.51 525.82 115.62 南商1 0.50 222.95 192.60东2 0.51 797.15 199.74 外环4 0.50 192.60 1078.50第六组教师公寓0.51 141.06 597.70 外环6 0.55 168.98 664.28 体育1 0.51 115.62 525.82 东14 0.57 81.52 368.59 实(1-2)-20.51 199.74 797.15 体4 0.53 188.57 537.07第七组图1 0.54 135.76 282.25 公10 0.51 103.11 91.60 公4 0.53 223.69 517.39 外环2 0.50 181.46 688.68 中心湖1 0.51 36.59 590.17 行山5 0.54 200.26 442.46第八组东1 0.50 85.36 511.40 教5 0.50 131.22 263.50 二饭0.53 124.55 654.67 教1 0.52 169.56 433.45 实(1-2)-40.51 171.02 536.05 公14 0.50 188.47 378.903.2数据处理表3 不同小组Pb、Cu含量处理表科一科二组别样品Cu含量(mg/kg)Pb含量(mg/kg)样品Cu含量(mg/kg)Pb含量(mg/kg)第一组广工站9.53 80.79 实(1-2)-31094.33 81.7实(2-3)-4 14.37 104.45 实(1-2)-5347.12 105.86 农田1 25.39 76.92 外环7 314.23 25.79第二组实(1-2)-5 28.25 48.25 J(1-2)-4 285.68 56.26 东8 33.42 43.22 J(1-2)-2 400.46 68.24 中南2 16.99 21.99 公11 83.90 72.58第三组农田3 67.24 64.88 中南1 62.13 35.81 中心湖2 31.45 56.60 东4 76.79 76.58 教6 167.17 18.51 南商3 52.31 49.13第四组图2 120.80 42.65 行山2 279.57 58.33 实(2-3)-3 77.04 41.57 工(1-2)-1552.51 48.51 公13 60.91 33.50 中南4 328.28 55.31第五组实(2-3)-1 9.60 13.37 农田2 9.80 23.86 教2 22.86 16.35 南商1 22.30 36.29 东2 12.20 9.92 外环4 19.26 107.85第六组教师公寓13.83 58.60 外环6 15.36 60.39 体育1 11.34 51.55 东14 7.15 32.33 实(1-2)-2 19.58 78.15 体4 17.79 50.67第七组图1 12.57 26.13 公10 10.11 8.98 公4 21.10 48.81 外环2 18.15 68.87 中心湖1 3.59 57.86 行山5 18.54 40.97第八组东1 8.54 51.14 教5 13.12 26.35 二饭11.75 61.76 教1 16.30 41.68 实(1-2)-4 16.77 52.55 公14 18.85 37.89表4 不同区域Cu、Pb含量统计表科一科二第一批区域Cu含量(mg/kg)Pb含量(mg/kg)区域Cu含量(mg/kg)Pb含量(mg/kg)公4 21.10 48.81 教1 13.12 26.35 公13 60.91 33.50 公11 83.90 72.58公10 17.79 50.67公14 18.85 37.89第二批广工站9.53 80.79 教5 13.12 26.35 农田1 25.39 76.92教6 167.17 18.51图2 120.80 42.65教2 22.86 16.35教师公寓13.83 58.60二饭11.75 61.76第三批中南2 16.99 21.99 中南1 62.13 35.81 农田3 67.24 64.88 南商3 52.31 49.13 体育1 11.34 51.55 中南4 328.28 55.31农田2 9.80 23.86南商1 22.30 36.09体4 17.79 50.67第四批东8 33.42 43.22 行山5 18.54 40.97 东2 12.20 9.92 东4 7.15 32.33 东1 8.54 51.14 行山2 279.57 58.33东14 15.36 60.39外环2 18.15 68.87第五批实(2-3)-4 14.37 104.45 外环4 19.26 107.85 实(1-2)-5 28.25 48.25 外环7 314.23 25.79 实(2-3)-1 9.60 13.37 实(1-2)-31094.33 81.70实(2-3)-3 77.04 41.57 实(1-2)-5347.12 105.86 实(1-2)-2 19.58 78.15 外环6 15.36 60.39 实(1-2)-4 16.77 52.55第六批工(1-2)-4285.68 56.26工(1-2)-2400.46 68.24工(1-2)-1552.51 48.513.3第一批区域土壤中Cu、Pb含量大学城广工第一批区域包括中环西路公路(沿公路采样)和教学1号楼周边土壤中Cu、Pb的平均含量见图1。

土壤中不同重金属元素含量的测定及分布研究

土壤中不同重金属元素含量的测定及分布研究

目录1 引言 (1)1.1 研究背景及意义 (2)1.2 国内外研究概况 (3)1.3 研究内容及路线 (5)2 研究区域概况 (5)2.1 自然环境概况 (5)2.2 社会经济概况 (6)2.3 现场周边概况 (7)3 材料与方法 (7)3.1 仪器与试剂 (7)3.2 标准曲线的测定 (8)3.3 土壤样品的采集与制备 (8)3.4 土壤样品预处理 (9)3.5 土壤样品重金属含量测定 (10)3.6 准确度、精密度、检出限的测定 (10)4 结果与讨论 (10)4.1 标准曲线测定结果 (10)4.2 土壤样品中重金属含量测定结果 (13)4.3 准确度和精密度测定结果 (19)4.4 土壤样品中重金属元素的空间分布 (19)结论 (23)致谢 (24)参考文献 (25)1 引言土壤是决定土地功能和生态系统服务的包含物理、化学和生物成分的异质混合物。

土壤可以提供营养,为生物提供栖息地和支持。

它也可以是有机化合物和无机化合物的大型汇合场所,包括重金属和类金属。

自然和人为改变过程都可以导致重金属释放到生态系统中。

作为一种特殊的污染物,重金属原是指密度大于4.0g/cm3的约60种元素或密度大于5.0g/cm3的45种元素[1],如镉、铅、锌、铜等,它被普遍应用于工业生产中。

由于未能进行合理的处理,它们最后将通过各种渠道被排放进环境里并大量积累于土壤中。

土壤中的重金属污染由于高毒性、隐蔽性、持久性和生物积累而在世界许多地方成为严重的问题。

重金属污染不仅造成农业土壤成分、结构和功能的变化,而且还抑制作物根系生长,甚至减少作物产量。

此外,土壤重金属污染会直接或间接地通过食物链对人类健康产生有害影响。

因此,土壤重金属的生物危害性质的污染问题引起了社会的关注。

研究并建立一个正确、高效的分析方法,寻找并发现重金属元素在土壤中的分布、迁移转化规律,对人类健康和其它生物正常生长具有极其重要的意义[2]。

1.1 研究背景及意义1.1.1 土壤重金属的研究背景随着近几十年来工业化和城市化的快速发展,土壤重金属污染加剧,生态环境质量也大幅度下降。

土壤中重金属

土壤中重金属

实验题目土壤中重金属含量测定与污染评价一、实验目的与要求1、了解土壤的组成,了解土壤中重金属Cu对生物的危害及其迁移影响因素。

2、了解Cu, Pb, Cr, Cd, Zn ,Tl污染的GB标准。

3、掌握土壤消解及其前处理技术和原子吸收分析土壤中金属元素的方法。

4、掌握土壤中Cu的污染评价方法。

掌握土壤中其它重金属的污染评价方法。

二、实验方案1、实验原理用盐酸-硝酸-氢氟酸-高氯酸混合酸体系消解土壤样品,使待测元素全部进入试液,同时所有的Cu都被氧化。

在消解液中加入氯化铵溶液(消除共存金属离子的干扰)后定容,喷入原子吸收分光光度计原子化器的富燃性空气-乙炔火焰中进行原子化,产生的铜基态原子蒸汽对铜和铅空心阴极灯发射的特征波长进行选择性吸收,测定其吸光度,用标准曲线法定量。

2、实验试剂。

大学城各采样点土壤、盐酸GR、硝酸GR、氢氟酸GR、高氯酸GR、蒸馏水、(1+5)HNO32、实验仪器:原子吸收分光光度计、铜空心阴极灯、烧杯50ml(聚四氟乙烯)、移液管(1,2,5,10mL),滴管、50ml比色管,量筒及实验室常用仪器等。

3、实验步骤(土壤样品已经制备好,直接用就可以了)。

(1)土壤样品的消解。

分别称取0.5g左右的三种土壤样品与50mL聚四氟乙烯烧杯中,用移液管量取2mL的水湿润,加入10mL的盐酸,在电热板上加热到溶液接近干燥,然后加入10 mL硝酸,继续加热到溶解物近干,用滴管加入5mL 氟化氢并加热分解去除硅化物,接近近干后加入5mL高氯酸加热至消解物不再冒白烟时,取下冷却。

(2)冷却完毕后,将残留物洗至50mL比色管,后加入2mL浓硝酸,并定容至标线,摇匀,静置.(3)由于溶液比较浑浊,干过滤后所得清液,用原子吸收分光光度计测其Cu 的浓度。

(Cu标准曲线的配制:实验室已配置好,直接测就好)(4)样品测定①(开机过程):开风机----压缩机----电脑----气瓶----电源主机;②通过电脑打开桌面上的WFX210控制软件,进入方法编辑-创建新的方法;③修改参数(仪器条件,测量条件,工作曲线参数,火焰条件)仪器条件和参数④样品清单的设定和输入----仪器自动波长---点火(准备过程)⑤先用空白调节吸光度为0,然后从浓度低到高依次测定标准系列。

土壤中重金属离子(锌、铜、铅、镉)检测方法综述--刘茜

土壤中重金属离子(锌、铜、铅、镉)检测方法综述--刘茜

土壤中重金属离子(锌、铜、铅、镉)检测方法综述2010级材料化学刘茜摘要:重金属超标会造成环境污染,同时重金属在生物体内的积累效应会对人类的健康造成潜在地威胁。

本文主要从应用新型的科技成果对重金属的检测方法做一综述,以期为建立灵敏度高、更准确、更快速的检测方法提供参考。

关键词:土壤;重金属;检测方法;方法比较重金属是在工业生产和生物学效应方面均具有重要意义的一大类元素,这一类元素在化学概念上,一般指比重大于5的金属,约有45种,如铜、铅、锌、铁、钴、镍、锰、镉、汞、钨、钼、金、银等。

近年来,随着工业、农业和交通运输业的迅速发展,通过各种途径进入土壤环境中的有害重金属(如Zn、Cu、Pb、Cd、Cr 等)不断增加,对农产品造成日益严重的污染和危害,生活水平的提高也促使人们更加关注果品和农产品的卫生质量问题。

土壤环境直接影响植物的生长发育和质量,当重金属积累到一定程度就会对土壤造成污染,影响果树和农产品的生长发育和品质,再通过食物链对人体健康造成危害。

因此,对土壤重金属含量进行监测和评价具有一定的现实意义。

我们选择土壤中的锌、铜、铅、镉离子作为研究对象,对其检测方法做出总结。

本文综述了近几十年来检测重金属的不同方法,以期为研制出灵敏度更高、准确度更好、速度更快的检测方法提供参考。

1、样品前处理在样品中,重金属一般以化合态形式存在。

因此。

在检测时需要对样品进行前处理,使重金属以离子状态存在于试液中才能进行客观准确地分析。

此外,样品的前处理是为了去除干扰因素,保留完整的被测组分,或使被测组分浓缩。

传统的方法主要有湿法消化和干法灰化。

湿法消化是在适量的样品中加入硝酸、高氯酸、硫酸等氧化性强酸,结合加热来破坏有机物。

由于高氯酸湿法消解便于普及,已被广泛采用。

但在消化过程中,该法易产生大量的有害气体,存在爆炸的潜在危险;同时,在消解过程中要消耗大量的酸而可能引起较大的空白值。

干法灰化是在高温灼烧下使有机物氧化分解,剩余的无机物供测定。

《土壤和沉积物 汞、砷、硒、铋、锑的测定 微波酸溶-氢化物发生原子荧光光谱法》(征求意见稿)编制说明

《土壤和沉积物 汞、砷、硒、铋、锑的测定 微波酸溶-氢化物发生原子荧光光谱法》(征求意见稿)编制说明

附件三:《土壤和沉积物 汞、砷、硒、铋、锑的测定 微波酸溶/氢化物发生原子荧光光谱法》(征求意见稿)编 制 说 明《土壤和沉积物 汞、砷、硒、铋、锑的测定 微波酸溶/氢化物发生原子荧光光谱法》标准编制组2010年9月项目名称:土壤和沉积物 汞、砷、硒、铋、锑的测定 微波酸溶/氢化物发生原子荧光光谱法项目统一编号:1070项目承担单位:宁波市环境监测中心编制组主要成员:孙骏 陈元 肖国起 蒋蕾蕾 罗宏德 赵建平 潘双叶 标准所技术管理负责人:周羽化、黄翠芳标准处项目负责人:何俊目 录1项目背景 (1)1.1 任务来源 (1)1.2 工作过程 (1)2标准制修订的必要性分析 (1)2.1 被测对象的环境危害 (1)2.2 相关环保标准和环保工作的需要 (2)3国内外相关分析方法研究 (3)3.1 主要国家、地区及国际组织相关分析方法研究 (3)3.2 国内相关分析方法研究 (3)4标准制修订的基本原则和技术路线 (4)4.1 标准制修订的基本原则 (4)4.2 标准制修订的技术路线 (4)5方法研究报告 (6)5.1 方法研究的目标 (6)5.2 方法原理 (6)5.3 试剂和材料 (6)5.4 仪器和设备 (6)5.5 样品 (7)5.6 分析步骤 (8)5.7 结果计算与表示 (9)6方法验证 (9)6.1 方法验证方案 (9)6.2 方法验证过程 (10)7与开题报告的差异说明 (10)8对实施本标准的建议 (11)9参考文献 (11)附件一:方法验证报告 (13)《土壤和沉积物 汞、砷、硒、铋、锑的测定微波酸溶/氢化物发生原子荧光光谱法》编制说明1项目背景1.1任务来源2008年2月,国家环境保护部公布的“环办函[2008]44号”《关于开展2008年度国家环境保护标准制修订项目工作的通知》,下达了《土壤、沉积物 汞、砷、硒、铋、锑的测定 微波酸溶/氢化物发生原子荧光光谱法》国家环境保护标准制定计划,项目统一编号为1070,本标准制定任务的承担单位为宁波市环境监测中心。

土壤中重金属全量测定方法

土壤中重金属全量测定方法

版本1:土壤中铜锌镉铬镍铅六中重金属全量一次消解.用氢氟酸-高氯酸-硝酸消解法,物质检测值和标准值吻合性很好,方便可行.具体方法: 准确称取克土壤样品过筛于四氟坩埚中,加7毫升硝酸+3毫升高氯酸+10毫升氢氟酸加盖,放置过夜不过夜效果同,上高温档加热数显的控制温度300~350度1小时,去盖,加热到近干,冷却到常温,然后再加3毫升硝酸+2毫升高氯酸+5毫升氢氟酸,高温档继续加热到完全排除各种酸,既高氯酸白烟冒尽,加1毫升1+1盐酸溶解残渣,完全转移到25毫升容量瓶中,加毫升的100g/L的氯化铵溶液,定容,然后检测,含量低用石墨炉,注意定容完尽快检测锌,且锌估计需要适当的稀释.其实放置几天没有问题,相对比较稳定拉.版本2:1)称量样品放入PTFE聚四氟乙烯烧杯中先称量样品,后称量标样,用少量去离子水润湿;2)缓缓加入和如果在开始加热蒸发前先把样品在混合酸中静置几个小时,酸溶效果会更好一些,加盖后在电热板上200℃下蒸发蒸发至样品近消化完后打开坩埚盖至形成粘稠状结晶为止2~3小时;3)视情况而定,若有未消化完的样品则需要重新加入HF和HClO,每次加入都需要蒸4发至尽干;若消化完全则直接进行下一步;4)加入,蒸发至近干,以除尽残留的HF;5)加入的5mol/L HNO,微热至溶液清亮为止;检查溶液中有无被分解的物料;如有,3蒸发至近干,执行步骤4此时可以酌情减半加酸;6)待清亮的溶液冷却后,转入容量瓶,用去离子水定容至50mL此时所得溶液中硝酸含量为1mol/L,然后立即转移到新聚丙烯瓶中储存;附:现在一般做法是,砷汞用1+1的王水在沸水煮2小时,加固定剂含5g/l重铬酸钾的5%硝酸溶液,在50毫升比色管中,固定,然后用原子荧光光谱仪测定砷汞.1 土壤消化王水+HClO4法称取风干土壤过100目筛0.1 g精确到0.0001 g于消化管中,加数滴水湿润,再或加入配好的王水4~5mL,盖上小漏斗置于通风橱中浸泡加入3 ml HCl和1 ml HNO3过夜;第二天放入消化炉中,80~90℃消解30 min、100~110℃消解30 min、120~130℃消解1 h,取下置于通风处冷却;加入1 ml HClO于100~110℃条件下继续消解304min,120~130℃消解1 h;冷却,转移至20mL容量瓶中,定容,过滤至样品存储瓶中待测;注:最高温度不可超过130℃;消化管底部只残留少许浅黄色或白色固体残渣时,说明消化已完全;如果还有较多土壤色固体存在,说明消化未完全,应继续120~130℃消化直至完全;2植物消化HNO3+H2O2法称取待测植物1~2g具体根据该植物对重金属吸收能力的强弱而定于消化管中,加入5ml HNO3,盖上小漏斗置于通风橱中浸泡过夜;第二天放入消化炉中,80~90℃消解30 min、100~110℃消解30 min、120~130℃消解1 h,取下置于通风处冷却;加入1 ml H2O2,于100~110℃条件下继续消解30 min,120~130℃消解1 h;冷却,转移至20mL容量瓶中,定容,过滤至样品存储瓶中待测;注:植物消化完全为透明液体,无残留;植物消化前是否需要干燥根据实验要求而定;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Chemometric interpretation of heavy metal patterns in soils worldwideBiljana Škrbic´*,Nataša Ðurišic ´-Mladenovic ´Faculty of Technology,University of Novi Sad,Bulevar cara Lazara 1,21000Novi Sad,Serbiaa r t i c l e i n f o Article history:Received 22February 2010Received in revised form 6June 2010Accepted 7June 2010Available online 2July 2010Keywords:Heavy metals SoilSoil metal index Box–CoxPrincipal component analysisa b s t r a c tPrincipal component analysis (PCA)was applied on data sets containing levels of six heavy metals (Pb,Cu,Zn,Cd,Ni,Cr)in soils from different parts of the world in order to investigate the information captured in the global heavy metal patterns.Data used in this study consisted of the heavy metal contents deter-mined in 23soil samples from and around the Novi Sad city area in the Vojvodina Province,northern part of Serbia,together with those from the city of Banja Luka,the second largest city in Bosnia and Herzego-vina,and the ones reported previously in the relevant literature in order to evaluate heavy metal distri-bution pattern in soils of different land-use types,as well as spatial and temporal differences in the patterns.The chemometric analysis was applied on the following input data sets:the overall set with all data gathered in this study containing 264samples,and two sub sets obtained after dividing the over-all set in accordance to the soil metal index,SMI,calculated here,i.e.the set of unpolluted soils having SMIs <100%,and the set of polluted soils with SMIs >100%.Additionally,univariate descriptive statistics and the Spearman’s non-parametric rank correlation coefficients were calculated for these three sets.A Box–Cox transformation was used as a data pretreatment before the statistical methods applied.Accord-ing to the results,it was seen that anthropogenic and background sources had different impact on the data variability in the case of polluted and unpolluted soils.The sample discrimination regarding the land-use types was more evident for the unpolluted soils than for the polluted ing linear discrim-inant analysis,content of Cu was determined as a variable with a major discriminant capacity.The correct classification of 73.3%was achieved for predefined land-use types.Classification of the samples in accor-dance to the pollution level expressed as SMI was necessary in order to avoid the ‘‘masking”effect of the polluted soil patterns over the non-polluted ones.Ó2010Elsevier Ltd.All rights reserved.1.IntroductionAs heavy metals are non-biodegradable and accumulative in nature,the elevated metal emissions and their deposition over time can lead to anomalous enrichment and the contamination of the surface environment.Soil surface receives deposits from more or less remote sources (vehicle emissions,industrial dis-charges,domestic heating,waste incineration and other anthropo-genic activities)through atmospheric transport as well as from local human activities (Thornton,1991).If the soil is dedicated to agricultural activities,the application of commercial fertilizers,sewage sludge and pesticides,which usually may contain a wide variety of heavy metals as impurities,have to be considered also as pollution sources (Gimeno-García et al.,1996).The ecological importance of heavy metals in soils is closely related to human health due to their high ecological transference potential (Mor-ton-Bermea et al.,2008).Although the severity of pollution depends not only on the total heavy metal content,but also on the proportion of their mobile and bioavailable forms,the total content of heavy metal has been used to evaluate the anthropogenic impact (Morton-Bermea et al.,2008).Furthermore,anthropogenically altered soils provide an integrated record of numerous processes over time and record the net effects of human activities over long periods.Many scientific activities have been devoted to the determina-tion of sources,types and degree of the heavy metal pollution insoils (Manta et al.,2002;Škrbic ´and C ˇupic ´,2004;Cos ßkun et al.,2006;Lee et al.,2006;Christoforidis and Stamatis,2009;Franco-Uría et al.,2009).Their content and the impact upon ecosystems are influenced by many factors such as parent material,climate and anthropogenic activities such as industry,agriculture and transportation.Due to heterogeneity of the soil and often acciden-tal nature of contaminating processes,concentrations of heavy metals can vary remarkably over short distances.Therefore,the high variability of the heavy metals soil concentrations obtained at various sampling sites requires a careful evaluation and inter-pretation to decide which of contributions,pedogenic or anthropo-genic,are of crucial importance for the main distribution patterns0045-6535/$-see front matter Ó2010Elsevier Ltd.All rights reserved.doi:10.1016/j.chemosphere.2010.06.010*Corresponding author.Tel.:+381214853746;fax:+38121450413.E-mail address:biljana@tf.uns.ac.rs (B.Škrbic ´).found in the samples.Accordingly,these tasks have to be ad-dressed by using multivariate statistical procedures typical for chemometrics.In this work,six heavy metals(Pb,Cu,Zn,Cd,Ni,Cr)were ana-lyzed in surface soils collected in and around the Novi Sad city area in the Vojvodina Province,the northern part of Serbia,and in the city of Banja Luka,the second largest city in Bosnia and Herzegovi-na.The determined contents were compared with heavy metal burden of soils worldwide reported in literature by principal com-ponent analysis(PCA).PCA as the multivariate analytical tool re-duces a set of original variables and extracts a small number of latent factors(principal components,PCs)for analyzing relation-ships between the observed variables and samples.It has been widely used to deliver more information on links among sampling sites,pollutant concentrations,correlation patterns,and latent fac-tors responsible for the data-set structure in the environmental studies(Golobocˇanin et al.,2004;Škrbic´et al.,2005;Škrbic´and Ðurišic´-Mladenovic´,2007;Škrbic´et al.,in press,2009).The aim of this work is also to clarify the general distribution patterns or similarities of heavy metals occurring in soils collected at various sites worldwide with different contribution of potential sources. In other words,the present study uses the chemometric approach to examine the heavy metal soil burden worldwide and to capture the heavy metal-soil distribution patterns and differences amongst various land-use types.In order to extract as much as possible information from the data set,univariate methods and linear dis-criminant analysis were also applied and the obtained results were compared with the ones obtained by PCA.2.Materials and methods2.1.Determination of heavy metalsTwenty-one surface soil samples were collected from various sites of urban and rural areas in the city of Novi Sad,Serbia,and the nearby villages,in2009.Novi Sad arose on the left bank of the river Danube,and it is the second largest economic and cultural centre in Republic of Serbia.Novi Sad is the capital of the Autono-mous Province of Vojvodina,located in the northern part of Serbia. Together with the outskirts settlements it has about300000 inhabitants in total.The city is located between19°510of the east longitude and45°200of the north latitude.Within the city area there are numerous industrial plants and also an oil refinery.Novi Sad is the centre of the most fertile agriculture region in Serbia.It is the seat of the wheat exchange(Official Web Site of the City of Novi Sad).Two more samples were obtained from the city of Banja Luka, the second largest city in Bosnia and Herzegovina.The Banja Luka’s population accounts for250000.The city is located at44°470of the north latitude and17°110of the east longitude.Banja Luka’s down-town is at163m above sea level,surrounded by hills.Due to many of its green surfaces–parks and tree-lined roads,Banja Luka is also known as the city of greenery.Banja Luka used to be a strong eco-nomic center with a developed industry(Official Web Site of the City of Banja Luka).Most of the samples from Novi Sad and Banja Luka were col-lected from grassland areas either public or private.All samples were collected away from nearby roads in order to avoid direct im-pact of the vehicle emission of the soil quality.The only exception was a sample collected next to the road with high traffic intensity in Banja Luka,representing in this way a soil under a direct influ-ence of vehicles emission.At each area of sampling four sub-sam-ples were taken within a rectangular of approximately20Â50m (or in the case of the soil with direct influence of vehicle emission in Banja Luka,four sub-samples were taken at20m distance be-tween each other along the road)and then mixed up to give bulk sample.Samples were collected with plastic tools and stored in plastic bags atÀ4°C prior to analysis.All samples were air dried, sieved through2-mm sieve and ground.Metal contents in the soils were analyzed after a microwave as-sisted digestion of the samples(Luo et al.,2007)using CEM MDS 2100microwave oven.The procedure was based on Methods 3050B(US EPA,1996)and3051A(US EPA,1998).Aliquot of0.5g of each sample was measured and then digested with mix of 7mL of HNO3and2mL of H2O2.As recommended by the US EPA Method3051A,the temperature of samples raised to170°C in less than5.5min and remained between170and180°C for the balance of the10min irradiation period.After digestion,solutions werefil-tered through Whatman No.1filter papers and volumes were adjusted to50mL using double deionized water(Milli-Q 18.2M X cmÀ1resistivity).Further dilutions of the digested sam-ples were made for analyzing the metals presented in quantities exceeding the upper calibration point by20%,like it was the case for Zn and Pb.Triplicate soil samples were provided as a part of the quality control procedure.The same procedure(reagents without soil sam-ples)was applied for the blank analysis.Precaution measures were used during the analysis to prevent contamination from air,glass-ware and reagents,which were all of Suprapur quality(Merck, Germany).Concentrations of Cd,Cu,Cr,Ni,Pb and Zn were measured by graphite furnace atomic absorption spectrometry using a Varian AAS240/GTA120instrument with deuterium lamp background correction.The wavelengths(in nm)used for the determination of Cd,Cu,Cr,Ni,Pb,and Zn were:228.8,324.8,357.9,232.0, 283.3,and213.9,respectively.Each recording was repeated three times.Quantification of metal content was done using calibration curves.Calibration standards were prepared in the same acid ma-trix used for the soil samples.The repeatability of measurement was checked by the analysis of Cd,Cu,Cr,Ni,Pb and Zn in six par-allel aliquots of one soil samples after the microwave digestion applying the described analytical procedure.The analytical preci-sion,measured as relative standard deviation,was routinely be-tween5%and6%,and never higher than10%.The analytical detection limits(3Âstandard deviation of the baseline noise/sen-sitivity)for each element were:0.006l g LÀ1for Cd,0.04l g LÀ1 for Cu,0.05l g LÀ1for Cr,0.2l g LÀ1for Ni,0.06l g LÀ1for Pb and 0.004l g LÀ1for Zn.As a part of quality control process,the certified material NIST SRM2711(US Department of Commerce,National Institute of Standards and Technology,Gaithersburg,MD20899)was ana-lyzed in the same way as samples to check the accuracy of the pro-cedure.Certified values,measured concentrations,and recoveries are shown in detail in Appendix A,Table S1.Recoveries ranged from72%for Pb to107%for Ni.It is evident that the concentrations of heavy metals determined agreed well with the reported certified values,confirming the accuracy of the procedure applied.2.2.Data setsStatistical characterization of the heavy metal contents in soils was performed on data set consisted of the heavy element contents in23soils analyzed in this study and those previously reported in the literature.The sources of the used data with short description of the soils are given in Table1.Only those studies comparable with each other regarding the analyzed heavy metals were taken into consideration.As it was found that Zn,Cu,Cr,Cd,Pb and Ni were the most frequently analyzed metals in soils,the contents of these six metals were taken into account here.In total,18stud-ies have been considered;the results for190samples were taken from this study and two other studies(Bojinova et al.,1996;MantaB.Škrbic´,N.Ðurišic´-Mladenovic´/Chemosphere80(2010)1360–13691361et al.,2002),while the rest of15studies provided the results for74 samples.Thus,size of the created data set,so-called the‘‘all”data set,was264(cases)Â6(variables).The uneven number of the samples from different studies have not been considered as a lim-itation,as we tried to gather as much as possible data about the occurence of the chosen metals in soils worldwide to elicit infor-mation on global metal patterns and to identify dominant sources. In fact,more data gathered,the more reliable statistical results could be obtained.The similar approach was previously applied for the assessment of the distribution pattern of organochlorine compounds(Škrbic´andÐurišic´-Mladenovic´,2007)and polycyclic aromatic hydrocarbons(Škrbic´et al.,2009)in soils from different countries.Details on the soil sampling,preparation and analytical proce-dure available in the cited literature are summarized in Table S2 (Appendix A).In the majority of chosen studies,composite samples of the surface soils(most often the uppermost5–30cm,see Table S2in Appendix A)were prepared from several sub-samples collected at the investigated sites according to the predefined sam-pling blocks(grid)of various dimensions.Only Maiz et al.(2000) analyzed individual samples taken randomly from the studied sites in Spain.All the samples were dried,sieved through a2.0-mm sieve and ground before the digestion.Final soil granulation was indicated only in few studies(see Table S2in Appendix A).Soil samples were digested most often by aqua regia or concentrated nitric acid used alone or in mixture with hydrogen peroxide or per-chloric acid;the exception was the study of Maiz et al.(2000),who used more vigorous acid mixture with hydrofluoric acid.Broad spectrum of acid digestion methods for determination of heavy metals found in the selected studies was not surprising as various nationally and internationally recognized methodological stan-dards have been applied worldwide despite the obvious need for the harmonization and standardization(European Soil Bureau-Sci-entific Committee,1999).Previously,it was found that aqua regia gives results for the Cd,Cu,Ni and Zn contents in soil close to the ones obtained by the hydrofluoric acid digestion,while the latter more efficiently recovers Cr than the former,since Cr is bound in soil stable minerals(Bojinova et al.,1996;Chen and Ma,2001). Considering Pb,Bojinova et al.(1996)found that aqua regia was less efficient than hydrofluoric acid for its recovery from unpol-luted soil,in which Pb is presented in stable minerals,not attacked by former.On the other hand,these two digestion methods gave similar results concerning the Pb presence in polluted soils because the anthropogenic Pb is mostly connected with soil organic matter destroyed during both types of acid digestion,leaving the‘‘total”content of Pb in the extract(Bojinova et al.,1996).As can be seen from Table S2,the analytical procedures used for the heavy metal content determination were based on atomic absorption spectrom-etry withflame(FAAS)or graphite furnace(GFAAS),or inductively coupled plasma with atomic emission(ICP-AES)or mass spectrom-etry(ICP-MS)detector.Besides differences in the instrumental lim-its of detection,Bojinova et al.(1996)found a good correlation between the results on heavy metal contents in soils obtained by ICP-AES and GFAAS/FAAS.Thus,considering all the said,it was less expected that differences in digestion or analytical techniques used in the cited studies(Table S2)would influence the statistical re-Table1Description of the soil samples incorporated in the data sets of heavy metal contents investigated in this study.Reference Country,city or region,and period ofsampling a SMI classification b(number of samples)cLand-use type(number of samples)c Total numberof samplesThis study Serbia,Novi Sad,Bosnia andHertzegovina,Banja Luka,after2000Above(2),below(21)Agricultural(1),urban(9),rural(6),recreational(5),roadside(1),industrial(1)23Bojinova et al.(1996)Bulgaria,Plovdiv-Pazadjik plain,before2000Above(53),below(47)Agricultural(100)100Fränzle et al.(1995)Russia,Ostaskov,before2000Below(3)Agricultural(2),woodland(1)3Fränzle et al.(1995)Germany,Borhoveder,before2000Below(4)Agricultural(2),woodland(1),recreational(1)4Fränzle et al.(1995)Germany,Stolberg,before2000Above(5)Agricultural(3),woodland(1),recreational(1)5Fränzle et al.(1995)Russia,Chelyabinsk,before2000Above(1),below(6)Agricultural(4),woodland(2),recreational(1)7Fränzle et al.(1995)Russia,Karabash,before2000Above(4)Agricultural(1),woodland(1),recreational(2)4Kastori et al.(2002)Serbia,Vojvodina Province,after2000Below(1)Agricultural(1)1Škrbic´and Cˇupic´(2004)Serbia,Novi Sad,after2000Below(5)Urban(5)5Franco-Uría et al.(2009)Spain,A Pastoriza,Galicia,after2000Below(1)Grassland(1)1Dragovic´et al.(2008)Serbia,Zlatibor mountain,after2000Above(1)Grassland(1)1Ubavic´et al.(1993)Serbia,Vojvodina Province,before2000Below(1)Agricultural(1)1Christoforidis andStamatis(2009)Greece,Kavala,after2000Above(5),below(3)Roadside(8)8 Cosßkun et al.(2006)Turkey,Thrace region,after2000Below(1)Unclassified(1)1Luo et al.(2007)China,Guanting reservoir,Beijing,after2000Below(1)Agricultural(1)1 Overesch et al.(2007)Germany,Worlity,Stechley,Sandan,Rogatz,Stechby,after2000Above(12)Agricultural(2),grassland(8),unclassified(2)12Maiz et al.(2000)Spain,Gipuzkoa,before2000Above(13)Industrial(9),roadside(4)13Manta et al.(2002)Italy,Palermo,after2000Above(45),below(22)Recreational(67)67Gramatica et al.(2006)Italy,Piedmont,Aosta Valey,after2000Above(2)Unclassified(2)2 Salonen and Korkka-Niemi(2007)Finland,Turku,after2000Below(1)Urban(1)1 Lee et al.(2006)China,Hong Kong,after2000Below(3)Urban(2),recreational(1)3Li et al.(2004)China,Hong Kong,after2000Below(1)Urban(1)1a Period of sampling is defined as‘‘before‘‘or‘‘after‘‘2000,with2000taken arbitrary as a year when the usage of leaded gasoline within EU was ceased in accordance to the implementation of the Directive98/70/EC.b SMI classification was based on the calculated soil metal index(SMI)values relative to the Dutch reference values for unpolluted soils;soils with the SMI values above 100%were classified as‘‘above”,and those with SMI<100%as‘‘below”.c Number of samples belonging to the particular soil class.1362 B.Škrbic´,N.Ðurišic´-Mladenovic´/Chemosphere80(2010)1360–1369sults,even in the case of data obtained by hydrofluoric acid taken from the study of Maiz et al.(2000),representing$5%of total number of the samples analyzed.All reported data were expressed in mg of metal per kg of dried soil sample.Only in very few cases,mainly for Cd,the reported contents were below the limit of detection(LOD).For these data, half of the limit of detection,LOD/2,was used in statistical analysis.In order to evaluate a difference in the heavy metal distribution pattern depending on the soil pollution level,the input data set was divided into two sub sets in accordance to the soil metal index, SMI(Škrbic´and Cˇupic´,2004).The SMI reflects the whole soil metal burden of the localities under investigation.For the calculation of SMI for each soil sample,the relative values of metal contents with regard to the Dutch soil standard critical values that represent the maximum metal content in the non-polluted soils(Dutch stan-dards,2000),were calculatedfirst.These values were then summed up and divided with number of metals investigated in this study for which the Dutch limits were used.The following equa-tion was used for the SMI calculation:SMI¼1nX niÀ1100ÁV iL iwhere n is a number of metals(in this study n=6);V,in mg kgÀ1,is a content of a metal reported for a particular soil sample;and L,in mg kgÀ1,is the Dutch reference content of a metal in the unpolluted soil,i.e.for Zn140mg kgÀ1,for Cu36mg kgÀ1,for Cr100mg kgÀ1,for Pb85mg kgÀ1,for Ni35mg kgÀ1,and for Cd0.8mg kgÀ1(Dutch standards,2000).Hence,it could be accepted that SMI values above 100%pointed out the polluted soils,as they contained all six metals in the levels above the Dutch reference value,or only several metals but in excessively high contents in relation to the reference;contrary, the samples with SMIs below100%indicated the unpolluted soils.By applying this criterion,the so-called‘‘all”data set of264soil samples was divided into two sub sets with a different levels of the heavy metals pollution.The‘‘above”sub set contained144 (or54.5%)samples that could be regarded as polluted soils(SMI> 100%),while the second sub set named‘‘below”consisted of120 (or45.5%)non-polluted soil samples(SMI<100%).In order to elucidate the relationships between different land-use types,the samples in both sub sets‘‘above”and‘‘below”were categorized in following way:‘‘urban”,‘‘agricultural”,‘‘industrial”, etc.(see Table1).All264samples were also categorized in relation to the geographical origin,i.e.the country where the sampling had been performed(Table1).In this way,it has been tried to reveal the spatial similarities or differences in the heavy metal soil pat-terns.Furthermore,in order to examine whether heavy metal soil patterns changed after the implementation of the Directive98/70/ EC that ceased the usage of leaded gasoline within the EU after the 1990s,the samples were divided into two categories depending on whether they were sampled before or after2000(Table1).Never-theless,all these categories represent a rough simplification of the original descriptions in the cited studies,as the effort was made to classify all the data in as few as possible categories of the land-use types,as well as of the spatial and temporal groups.2.3.Exploratory statistical analysesDescriptive statistical parameters such as mean value,median, minimum,maximum values and relative standard deviation were calculated to describe the heavy metal contents in all the samples.It is well known that classical statistical methods are not sensi-tive to deviations from normal distribution.Since the geochemical variables often do not follow normal distribution,it is advisable that such skewed data are transformed before any subsequent sta-tistical analysis to a more symmetric distribution(Reimann and Filzmoser,2000;Templ et al.2008),to improve the statistical re-sults.In many cases the log-transformation can be successfully used to approach symmetry.However,according to the Templ et al.(2008),a more universal choice is the Box–Cox transforma-tion(Box and Cox,1964),which brings the data(majority)as close as possible to normality(Filzmoser et al.,2009).In this study,the Box–Cox transformation of the‘‘raw”(analytical)data was also used prior the statistical analyses.The Shapiro–Wilk’s test was used as a measure of departure from normality for the Box–Cox transformed data on the heavy metal contents in soils.The Shapiro–Wilk’s test is highly recom-mended as it has the most power for testing normality against all classes of alternative distributions(Madansky,1988).A null hypothesis on normal distribution of the Box–Cox transformed data was accepted if probability value(P)is higher than0.05; otherwise,the null hypothesis was rejected.Furthermore,exploratory data analysis(EDA)plots were con-structed providing deeper insight into the‘‘raw”(non-trans-formed)and the Box–Cox transformed variables distribution.The EDA-plots combine in one graphical display one-dimensional scat-ter plot,histogram,probability density plot,and boxplot.The sam-ples are clearly visible in the one-dimensional scatter plot;outliers areflagged by the boxplot;and the form of the distribution is visu-alized by histogram and density trace(Reimann and Filzmoser, 2000).In order to quantitatively analyze the relationship among heavy metal contents of soils,the Spearman’s non-parametric rank corre-lation coefficient was calculated.The non-parametric correlation coefficient is a common parameter used to quantify the relation between the pairs of variables when the presumption about nor-mality is violated.Definition of the Spearman’s non-parametric correlation coefficient could be found in standard textbook of sta-tistics(Massart et al.,1997).The principal of PCA is to characterize each sample(named also as object or case)not by analyzing every variable(heavy metal content),but projecting the data in a much smaller sub set of new variables called principal components.These new variables are linear combinations of the initial variables,but highlight the variance within a data set and remove the redundancies.Succes-sive principal components arranged in decreasing order of eigen-values account for decreasing amounts of variance.The relevant portion of information is carried out by thefirst principal compo-nents(PCs).The coefficients between the old and new variables are called the loadings.They explain how the new PCs are com-posed from the original variables(Héberger et al.,2005).The PCs are orthogonal(independent),in other words uncorrelated.Further on,they are ordered in such a way that the variance of thefirst PC (PC1)is the greatest,the variance of the second PC(PC2)is second-greatest,and so on,whereas that of the last one is the smallest.The solution is obtained by an eigenvalue calculation.A basic assump-tion in the use of PCA is that the score and loading vectors corre-sponding to the largest eigenvalues contain the most useful information relating to a specific problem and that the remaining ones constitute mainly noise,i.e.for a practical problem it is suffi-cient to retain only a few components accounting for a large per-centage of the total variance(Héberger et al.,1999).In this work, the input data matrix was created by putting the soil samples into the rows and the Box–Cox transformed heavy metal contents in the columns.The matrix wasfirstly mean-centered(column means subtracted from each matrix element);then each matrix element was divided by the standard deviation of the respective column and the established matrix was submitted to PCA.The number of PCs extracted from the variables was determined by Kaiser’s rule (Kaiser and Rice,1974).This criterion retains only PCs with eigen-values that exceed one.The algorithm of PCA can be found in the standard textbooks(Vandeginste et al.,1998).B.Škrbic´,N.Ðurišic´-Mladenovic´/Chemosphere80(2010)1360–13691363Linear discriminant analysis(LDA)was further used to inspect the correctness of the land-use types predefined and obtained to be most important by PCA.LDA,similarly to PCA,can be considered as a dimension reduction method.In the method of LDA a linear function of the variables is to be sought,which maximizes the ratio of between–class variance and minimizes the ratio of within-class variance.Finally,a percentage of correct classification is given (Héberger et al.,2003).The description of the LDA algorithm can be found elsewhere(Vandeginste et al.,1998).All statistical data analyses were done with R software(R Devel-opment Core Team;).3.Results and discussion3.1.Heavy metal contentsThe heavy metal contents determined in this study are pre-sented in Table2.The range of the concentrations was from 0.75mg kgÀ1found for Cd to401mg kgÀ1for Zn.According to the mean and median concentrations of all samples analyzed here (Table2),the metal abundance could be ordered as follows: Zn>Pb$Ni>Cu>Cr>Cd.Considering the calculated values of relative standard deviation,RSD,of the metal levels(Table2),Zn and Pb showed the highest variability in the investigated samples, being approximately64%and49%,respectively.The variability of the rest of obtained metal contents was from about25%(for Cr) to38%(for Cu).Comparison of the results with those found in literature for the heavy metals in the Serbian soils(Ubavic´et al.,1993;Kastori et al., 2002;Škrbic´and Cˇupic´,2004;Crnkovic´et al.,2006;Dragovic´et al., 2008;Marjanovic´et al.,2009)is also given in Table2.The soils investigated here were less loaded with heavy metals than those from Belgrade(Crnkovic´et al.,2006;Marjanovic´et al.,2009),the capitol of Serbia that is the only Serbian city with population over 1million.Although all soils in the region probably bear some im-print of human activities and no longer reflect purely natural con-ditions,regional soils provide a baseline against which potentially more intense human activity in urban areas can be judged(Cannon and Horton,2009).Comparison with the average metal contents reported for the samples of regional soils in the Vojvodina Province by Ubavic´et al.(1993),showed that all metals analyzed in this study occurred in similar or higher levels;for instance,the con-tents found were higher that the average of the Vojvodina arable soils(Ubavic´et al.,1993)from1.5times for Cr,2times for Cu and Pb,3.5times for Cd,up to6and10times for Ni and Zn,respec-tively.Moreover,higher concentrations of Cd and Pb could be seen comparing the results with the2001soil metal burden in Novi Sad (Škrbic´and Cˇupic´,2004).For the rest of the analyzed metals,sim-ilar contents were found for soils sampled in2009(this study)and those from2001.The increase of some heavy metal contents over the years could be also seen for Belgrade soils(Crnkovic´et al., 2006;Marjanovic´et al.,2009).It is interesting to note that the soils collected from the Belgrade city area(Crnkovic´et al.,2006;Marja-novic´et al.,2009)and at the Zlatibor mountain in the central part of Serbia(Dragovic´et al.,2008)had markedly higher contents of Ni and Cr than those found in this study.The both groups of authors explained the elevated levels of Ni as a natural enrichment by weathering and pedogenesis processes;most probably,the same reason was behind the high contents of Cr at these two locations.When compliance with national limits(Serbian regulation, 1994)for heavy metals in soils is considered,none of the samples (Table2)exceeded the limit values set to be300mg kgÀ1for Zn, 100mg kgÀ1for each of Cu,Cr and Pb,50mg kgÀ1for Ni,and 3mg kgÀ1for Cd.However,considering the Dutch standard refer-ence values for unpolluted soil(Dutch standards,2000)mentioned before,a great part of the soil samples collected throughout the Novi Sad area and also from Banja Luka seemed to be polluted with Cd as the contents exceeded the respective limit.Interestingly,the Pb contents were higher than the Dutch reference value for the non-polluted soil only for two samples of the Novi Sad soil despite the fact that leaded gasoline is still allowed to be used in Serbia. According to the SMI values calculated for soils analyzed in this study,21samples had values below100%,while only two samples showed SMI higher than100%.Thus,majority of the samples(21 out of23)were grouped into the‘‘below”data set formed for the subsequent statistical analyses.The remaining two samples be-longed to the‘‘above”group were the soil sampled next to the high traffic road in Banja Luka and the one from the suburban settle-ment in the vicinity of Novi Sad.3.2.Univariate characterization of data setsThe descriptive statistics of the data sets consisting from the original values of six heavy metals(Zn,Cu,Cr,Pb,Ni,Cd)in264 samples(‘‘all”data set)and also for two later sub sets(‘‘above”and‘‘below”)were summarized in Table3.For both the‘‘all”and ‘‘above”data sets,the order of heavy metals based on their abun-dance was:Zn>Pb>Cu>Cr>Ni>Cd.In the‘‘below”data set the rank order was slightly different,e.g.Zn>Pb>Cr>Cu>Ni>Cd. Hence,it could be said that the general pattern observed in theTable2The results of the total heavy metal contents(in mg kgÀ1)in23soil samples analyzed in this study in comparison to the mean values previously published for the Serbian soils.Element This study,2009A Novi Sad,2001A Belgrade,2003–2004ABelgrade,2008AVojvodinaagricultural soils,1991AVojvodina agriculturalsoils-field trials,2002AZlatibormountain,2008AMean Median Min Max RSD,%a b c d e fZn11085.661.340164.5085.45118174.210.6270.321.8 Cu22.419.78.3645.738.4730.8628.346.310.8222.58.64 Cr 3.57 3.48 2.08 5.4324.8832.1 2.4182.346.3 Pb29.425.812.374.748.8310.7555.5298.614.8130.041.5 Ni25.825.216.645.627.1768 4.2636.2320 Cd 1.66 1.730.75 2.7829.140.15 1.80.480.37 1.42 A Year of sampling;if it was not originally stated in the cited literature it was taken as a year of the literature publishing.aŠkrbic´and Cˇupic´(2004).b Crnkovic´et al.(2006).c Marjanovic´et al.(2009).d Ubavic´et al.(1993).e Kastori et al.(2002).f Dragovic´et al.(2008).1364 B.Škrbic´,N.Ðurišic´-Mladenovic´/Chemosphere80(2010)1360–1369。

相关文档
最新文档