九年级(上)第三章 证明三练习
第3章 证明(三)
南苑中学教师备课笔记)证明:等腰梯形在同一底上的两个角相等.如图,已知在梯形ABCD中,AD//BC,AB=DC.求证:∠B.证明:夹在两条平行线间的平行线段相等.,AB、CD是l1、l之间的任意平行线段.求证:南苑中学教师备课笔记)若四边形ABCD是平行四边形,则∠A ABCD是平行四边形,则AB=______南苑中学教师备课笔记定理:三角形的中位线平行于第三边.且等于第三边的一半.ABC的中位线,1BC.,DE=2两地被池溏隔开,在没有任何测量工具的情况下,小明通过下面的中位线,因此:MN=“比赛的名次”.南苑中学教师备课笔记.前面我们已探讨过矩形的性质,矩形的四个角都是直角;矩形的对角线相ABCD,求证:AC=DB定理:矩形的四个角都是直角.矩形的对角线相等..如图,设矩形的对角线AC与的交点为E,那么BE有什么大小关系?为什么?推论:直角三角形斜边上的中线等于斜边的一半.直接应用:∵BE是Rt△ABC的AC上的中线,AC.(直角三角形斜边上的中线等于斜边的一半)南苑中学教师备课笔记2.如图:已知在菱形ABCD中,对角线AC求证:AC⊥BD,AC平分∠BAD和∠BCDBDABCD是边长为13cm的菱形,其中对角线的长度;(2)菱形ABCD推论:菱形的面积等于它的两条对角线长的积的一半.定理:四条边都相等的四边形是菱形.对角线互相垂直平分的四边形是菱形.P88,随堂练习1.南苑中学教师备课笔记想一想议一议依次连结正方形各边的中点得到的四边形是正方形.这个题是先证明了四边形A1B1C1D的四条边相等,即是菱形,然后又证明了这个四边形的一个角是直角,即有一个角为直角的菱形是正方形,从而得证四边用类比的方法,证明了连结平行四边形及特殊平行四边形各边中点得到的图形,那么大家能否得出一个一般性的结沦,即依次连结四边形各边小点所得的新四边形的形状与哪些线段有关?有怎样的关系?只要四边形的对角线互相垂直,那么连接这个四边形各边的中点所得到的图南苑中学教师备课笔记在命题的探索和证明过程中,蕴涵着一些数学思想方法.如:归纳、类比、ABC中,AB=AC D是BC的中点,DE本节课我们重点复习了本章所学的内容.在这一章里,不仅要理清特殊四边形之间的关系,还要会用几何推理来证明一些问题,而且还要体会数学思想方法南苑中学教师备课笔记。
北师大版九年级上册第三章《证明(三)》练习题(北师大版九年级上)
北师大版九年级上册第三章证明(三)练习题一、填空题1、如图,平行四边形ABCD ,对角线AC 、BD 交于点O ,请你写出图中三对一定相等的线段 。
2、在上题图中,若平行四边形ABCD 的周长为30cm ,且A O B ∆的周长比BOC ∆的周长小1cm ,那么AB= cm ,BC = cm 。
第1-2题图 第3题图第4题图 3、如图,将两块完全相同的含有30角的三角板一边重合拼在一起,可以得到一个四边形ABCD ,则四边形ABCD 是 (回答是什么四边形);若BC=10 cm ,则对角线BD = cm 。
4、如图平行四边形ABCD 中,AE 、AF 分别是BC 和CD 边上的高,若65EAF ∠=,则B ∠= 度,C ∠= 度。
5、如图,将两根等宽的纸条叠放在一起,重叠的部分(图中阴影部分)是一个四边形,对这个四边形的形状你认为最准确的一个描述是:这个四边形是 四边形。
第7题图 96、菱形ABCD 的面积是503cm 2,其中一条对角线的长是103 cm ,则菱形ABCD 的较小的内角为 ,菱形ABCD 的边长为 。
7、如图,矩形ABCD 中,BE ⊥AC 于E ,DF ⊥AC 于F ,若AE=1,EF =2,则FC = ,AB = 。
8、对角线 的四边形是正方形。
二、择题9、如图,平行四边形ABCD 中,AE=CF ,则图中的平行四边形的个数是( )个 A.2 B.3 C.4 D.510、若第1题的条件中,除原有条件外,再增加FA =FD ,则图中的等腰梯形个数是( )个A.2B.3C.4D.511、下列关于平行四边形的判定中正确的是( ) A. 一组对边相等,另一组对边平行的四边形是平行四边形 B.一组对边相等,一组对角相等的四边形是平行四边形 C.一组对边平行,一组对角相等的四边形是平行四边形OC AD BC AD BE FC A DB FECADBCA DBE FD.一组对边平行,一组邻角互补的四边形是平行四边形12、顺次连接对角线互相垂直且相等的四边形各边中点,得到一个四边形,对这个四边形的形状描述最准确的是( )A. 平行四边形B.矩形C.菱形D.正方形13、已知菱形ABCD 的面积为96cm 2,对角线AC 的长为16 cm ,则此菱形的边长为( )cm A.32 B.10 C.14 D.2014、正方形具有而菱形不一定具有的性质是( )A. 对角线互相平分B.对角线互相垂直C.对角线相等D. 每一条对角线平分一组对角 15、只用一把刻度尺检查一张四边形纸片是否是矩形,下列操作中最为恰当的是( ) A. 先测量两对角线是否互相平分,再测量对角线是否相等 B. 先测量两对角线是否互相平分,再测量是否有一个直角 C. 先测量两组对边是否相等,再测量对角线是否相等D. 先测量两组对边是否互相平行,再测量对角线是否相等16、如图,梯形ABCD 中,AD ∥BC ,90B C ∠+∠=,E 、F分别是AD 、BC 的中点,若AD=5cm ,BC=13cm ,那么EF=( )cmA.4B.5C.6.5D.9三、解答题17、按要求填图下面图中,表达了四边形、平行四边形、矩形、菱形、正方形之间的关系。
九年级上第三章第1-3练习
图6科学九年级(上)第三章练习一、选择题1.用10牛竖直向上的拉力,使放在水平地面上重力为8牛的物体竖直向上移动了2米,则拉力做功为( )A .36焦B .20焦C .16焦D .4焦2.如图所示,杠杆处于平衡状态,F的力臂是 ( )A. OFB. ODC. OCD. OA3.下列属于费力杠杆的是( )4.一个足球运动员用100N 的力踢一个重为5N 的足球,球离脚后在水平草地上向前滚动了30m .在足球滚动的过程中,运动员对足球做的功为( )A .3000JB .500JC .150JD .0J5.速度是表示物体运动快慢的物理量,它是用路程和时间的比值来定义的.初中物理经常用到这种定义物理量的方法,下列物理量中所采用的定义方法与速度不同的是( )A .密度B .压强 C. 功 D. 功率 6.如图所示,一根尺子,在中点支起,两边挂上砝码,恰好平衡,在下列情况中,仍能保持平衡的是( )A. 左右两边砝码组合向内移动一格B. 左右两边砝码组各减少一只C. 左右两边砝码组合减少一半砝码D. 左右两边砝码组各向外移动7.如图6为某种吊车的工作示意图。
利用伸缩撑杆可使吊臂绕O 点转动;伸缩撑杆为圆弧状,伸缩时对吊臂的支持力始终与吊臂垂直。
下列关于这个吊车的有关说法正确的是( )A .吊臂是一个省力杠杆B .使用这种吊车,好处是可以少做功C .匀速顶起吊臂的过程中,伸缩撑杆的支持力大小保持不变D .匀速顶起吊臂的过程中,伸缩撑杆的支持力渐渐变小 8.甲、乙两人进行爬竿比赛,甲从某一位置匀速爬到竿顶是9秒,乙从同一位置匀速爬到竿顶用时10秒,甲、乙两人体重之比是5:6,则他们爬竿的功率之比这P 甲:P 乙是( )A.5:6B.6:5C.15:8D.25:279、如图所示,水平地面上的物体,在水平恒定的拉力F 的作用下,沿ABC 方向做直线运动,已知AB=BC ,设AB 段是光滑的,拉力F 做功为W 1;BC 段是粗糙的,拉力F 做功为W 2,则: ( ) A .W 1=W 2 B .W 1>W 2 C .W 1<W 2 D .不能确定10.每个钩码的重力为0.5N ,杠杆在水平位置平衡,则弹簧秤的读数 ( )A.等于2NB.大于2NC.小于2ND.等于1牛11.一根轻质杠杆,在左右两端分别挂上200N 和300N 的重物时,杠杆恰好平衡。
北师大版九年级数学上第三章证明(三)菱形的性质定理
回顾与思考
证明命题的一般步骤:
(1)理解题意:分清命题的条件(已知),结论 (求证); (2)根据题意,画出图形; (3)结合图形,用符号语言写出“已知” 和“求证”; (4)分析题意,探索证明思路(由“因”导 “果”,执“果”索“因”.); (5)依据思路,运用数学符号和数学语言 条理清晰地写出证明过程; (6)检查表达过程是否正确,完善.
我思,我进步2
菱形的判定
定理:对角线互相垂直的平行四边形是菱形. 已知:如图,在□ABCD中,对角线AC⊥BD. D 求证:四边形ABCD是菱形. 分析:要证明□ABCD是菱形, O A 就要证明有一组邻边相等即可. 证明: ∵四边形ABCD是平行四边形. B ∴AO=CO. ∵AC⊥BD, ∴ DA=DC.(线段垂直平分线上的点到线段两 端点的距离相等) ∴四边形ABCD是菱形.
例题解析
菱形性质的应用
A
已知:如图,四边形ABCD是边长为13cm的菱 形,其中对角线BD长10cm. 求:(1).对角线AC的长度; (2).菱形ABCD的面积. 解:(1)∵四边形ABCD是菱形, B 1 1 0 ∴∠AED=90 ,DE BD 10 5cm .
AE
C
学以致用 已知,AD是△ABC的角平分 线,DE∥AC交AB于点E, DF∥AB交AC于点F。 求证:四边形AEDF是菱形。
B E
A
F
C 证明: D ∵DE∥AC,DF∥AB, ∴四边形AEDF是平行四边形 ∴∠ADE=∠DAF. ∵DE∥AC, ∵AD是△ABC的角平分线, ∴∠DAE=∠DAF. ∴∠DAE=∠ADE. ∴AE=ED. ∴平行四边形AEDF是菱形.
九年级数学(上) 第三章证明(三)
2.特殊的 平行四边形-菱形
九年级数学上册第三章证明(三)测试题及答案(C)
北九上第三章证明(三)水平测试(C )一、耐心填一填(每小题5分,共25分)1. 如图,EF 过平行四边形ABCD 的对角线的交点O ,交AD 于点E ,交BC 于点F ,已知AB = 4,BC = 5,OE = 1.5,那么四边形EFCD 的周长是_______。
2. 在Rt ⊿ABC 中,∠C =︒90,周长为cm )325(+;斜边上的中线CD =cm 2,则Rt ⊿ABC 的面积为_______。
3. 如图所示,在△ABC 中,M 是BC 的中点,AN 平分∠BAC ,AN ⊥BN 于N 点,且AB =10,AC =16,则MN =_______。
4. 如图,过矩形ABCD 的四个顶点作对角线AC 、BD 的平行线,分别相交于E 、F 、G 、H四点,则四边形EFGH 为_______。
5. 如图,在Rt ⊿ABC 中,∠C =︒90,AC = AB ,AB = 30,矩形DEFG 的一边DE 在AB 上,顶点G 、F 分别在AC 、BC 上,若DG :GF = 1:4,则矩形DEFG 的面积是二、精心选一选(每小题5分,共25分)1. 如图,在平行四边形ABCD 中,对角线AC 、BD 相交于点O ,若BD 、AC 的和为cm 18,CD :DA =2:3,⊿AOB 的周长为cm 13 那么BC 的长是 ( )A .cm 6B .cm 9C .cm 3D .cm 122. 如图 有一矩形纸片ABCD AB =10 AD =6 将纸片折叠,使AD 边落在AB 边上,折痕为AE ,再将△AED 以DE 为折痕向右折叠,AE 与BC 交于点F ,则△CEF 的面积为( )A .4B .6C .8D .103. 如图,在等腰梯形ABCD 中,AB ∥CD ,AD =BC = A CM ,∠A =60°,BD 平分∠ABC ,则这个梯形的周长是( )A .4A CMB . 5A CMC .6A CMD . 7A CM4. 如图:矩形花园ABCD 中,a AB =,b AD =,花园中建有一条矩形道路L MPQ 及一 条平行四边形道路RSTK 。
2013-2014学年北师大版九年级数学(上册)《第三章 证明(三)检测题(1)》单元检测题(含答案详解)
第三章 证明(三)检测题【本试卷满分100分,测试时间90分钟】一、 选择题(每小题3分,共30分)1.如图,在平行四边形ABCD 中,对角线AC 、BD 相交于点 O ,若BD 、AC的和为18 cm ,CD ︰DA=2︰3,△AOB 的周长为13 cm ,那么BC 的长是( )A.6 cmB.9 cmC.3 cmD.12 cm2. 一个等腰梯形的两底之差为12,高为6,则等腰梯形的锐角为( ) A.30° B. 45° C. 60° D. 75°3.下列判定正确的是( ) A.对角线互相垂直的四边形是菱形 B.两角相等的四边形是等腰梯形C.四边相等且有一个角是直角的四边形是正方形D.两条对角线相等且互相垂直的四边形是正方形 4.如图,梯形中,∥,∠∠90°,分别是的中点,若cm ,cm ,那么( )cm.A.4B.5C.6.5D.95.直角梯形的两个直角顶点到对腰中点的距离( ) A.相等 B.不相等 C.可能相等也可能不相等 D.无法比较6.正方形具备而菱形不具备的性质是( ) A.对角线互相平分 B.对角线互相垂直 C.对角线相等D.每条对角线平分一组对角7.从菱形的钝角顶点,向对角的两条边作垂线,垂足恰好是该边的中点,则菱形的内角中钝角的度数是( )A.150°B. 135°C. 120°D. 100°8.顺次连接一个四边形的各边中点,得到了一个矩形,则下列四边形满足条件的是( ) ①平行四边形; ②菱形; ③等腰梯形; ④对角线互相垂直的四边形. A.①③B.②③C.③④D.②④9.在平行四边形、菱形、矩形、正方形中,能够找到一个点,使该点到各顶点距离相等的图形是( )A.平行四边形和菱形B.菱形和矩形C.矩形和正方形D.菱形和正方形10.矩形的边长为10 cm 和15 cm ,其中一个内角的角平分线分长边为两部分,这两部分的长分别为( ) A.6 cm 和9 cmB. 5 cm 和10 cmDC. 4 cm 和11 cmD. 7 cm 和8 cm二、 填空题(每小题3分,共24分)11.已知菱形的周长为40 cm ,一条对角线长为16 cm ,则这个菱形的面积是 .12.如图,EF 过平行四边形ABCD 的对角线的交点O ,交AD 于点E ,交BC 于点F ,已知AB = 4,BC = 5,OE = 1.5,那么四边形EFCD 的周长是 .13.已知:如图,平行四边形ABCD 中,AB = 12,AB 边上的高为3,BC 边上的高为6,则平行四边形ABCD 的周长为 .14.在矩形ABCD 中,对角线AC 、BD 交于点O ,若∠,则∠OAB= .15.已知菱形一个内角为120°,且平分这个内角的一条对角线长为8 cm ,则这个菱形的周长为 .16.如图,把两个大小完全相同的矩形拼成“L”型图案,则∠________ ,∠________.17.边长为的正方形,在一个角剪掉一个边长为的正方形,则所剩余图形的周长为 .18.顺次连接四边形各边中点,所得的图形是 .顺次连接对角线_______ 的四边形的各边中点所得的图形是矩形.顺次连接对角线 的四边形的各边中点所得的四边形是菱形.顺次连接对角线 的四边形的各边中点所得的四边形是正方形. 三、 解答题(共46分) 19.(7分)如图,在四边形中,,⊥,⊥,垂足为,,求证:四边形是平行四边形.20.(7分)如图,在△中,∠,⊥于,平分∠,交于,交于,⊥于,求证:四边形是菱形.21.(7分)如图,已知正方形,过作∥,∠30,交于点,求证:22.(8分)辨析纠错 已知:如图,△中,是∠的平分线,∥,∥.求证:四边形是菱形.对于这道题,小明是这样证明的:证明:∵平分∠,∴ ∠1=∠2(角平分线的定义).∵∥,∴ ∠2=∠3(两直线平行,内错角相等).∴∠1=∠3(等量代换). ∴(等角对等边).同理可证, ∴ 四边形是菱形(菱形定义). 老师说小明的证明过程有错误,你能看出来吗?(1)请你帮小明指出他的错误是什么?(先在解答过程中划出来,再说明他错误的原因) (2)请你帮小明做出正确的解答.23.(8分)如图,在平行四边形中,,E 为中点,求∠的度数.24.(9分)如图,在△中,∠0°,BC 的垂直平分线DE 交BC 于D ,交AB 于E ,F 在DE 上,且.⑴求证:四边形是平行四边形;⑵当∠B 满足什么条件时,四边形ACEF 是菱形?并说明理由.A B C D E F 1 2 3第三章证明(三)检测题参考答案一、选择题1.A 解析:因为cm ,所以cm. 因为△的周长为13 cm,所以cm.又因为,所以cm.2.B 解析:如图,梯形ABCD中,高则所以∠,故选B.3.C4.A 解析:如图,作EG∥AB,EH∥DC ,因为∠∠,所以∠.因为四边形和四边形都是平行四边形,所以.又因为cm ,cm ,所以cm ,,根据直角三角形斜边上的中线等于斜边的一半,得cm.5.A 解析:如图,直角梯形中,是的中点,设是的中点,连接,则E是梯形的中位线,所以∥,即⊥.又,所以是的中垂线,所以.6.C7.C 解析:如图,菱形中⊥连接,因为,所以是的中垂线,所以.所以三角形是等边三角形,所以∠,从而∠.第2题答图第4题答图BACEF第5题答图第7题答图8.D 9.C 10.B二、填空题11.解析:如图,菱形ABCD的周长为40 cm ,cm,则cm ,cm,又OA⊥OB,所以cm.所以菱形的面积为.12.12 解析:由平行四边形可得,∠∠OCB.又∠∠,所以△≌△,所以,,所以四边形的周长.13.36 解析:由平行四边形的面积公式,得,即,解得,所以平行四边形的周长为.14.40°15.32 cm 解析:由菱形有一个内角为120°,可知菱形有一个内角是60°,由题意可知菱形的边长为8 cm ,从而周长为(cm).16.90°,45°解析:通过证明△FGA≌△ABC可得.17.18.平行四边形,互相垂直,相等,互相垂直且相等三、简答题19. 证明:因为DE⊥AC,BF⊥AC ,所以∠∠.因为,所以.又因为,所以△ADE≌△CBF,所以∠∠,所以AD∥BC.又因为,所以四边形ABCD是平行四边形.20. 证明:∵平分∠,∴.∵,∴∥.∴∠∠.又∠∠,∴∠∠,得,∴.又∥,得四边形是平行四边形.C又,∴四边形是菱形.21. 证明:连结交于点,作于,∵∠,∴∵⊥,⊥,∴G ∥又∥,∴四边形D是平行四边形,∴.又,∴,∴∠.又∠∠∠,∴∠∠E,∴22. 解:⑴小明错用了菱形的定义.⑵改正:∵∥,∥,∴四边形是平行四边形.∵平分∠,∴∠1=∠2.又∵∠3=∠2,∴∠1=∠3.∴,∴平行四边形是菱形.23. 解法1:∵为中点,∴21BC.∵,∴∴∠∠,∠∠.∵四边形是平行四边形,∴.又,∴,∴∴. 解法2:如图,设F为AD的中点,连接EF.因为,所以又因为∥,所以四边形是菱形.所以∠∠同理,∠∠所以∠∠24.(1)证明:由题意知,∴∥,∴ .∵ ,∴.又∵ ,∴ △≌△,∴, ∴ 四边形ACEF 是平行四边形 . (2)解:当∠时,四边形是菱形 .理由如下:∵ AB 21.∵ 垂直平分,∴又∵,∴ 四边形是菱形.。
教科版九年级物理上册第三章第三节电路的连接练习含答案
3.3电路的连接练习一、选择题1、在参观人民检察院未成年人法治教育基地时,小明发现,在一处地面上有“沉迷网络”“交友不慎”两个圆形模块。
用脚踩其中任何一个模块,与模块连接的电视上就会播放相应的教育短片。
下列有关分析正确的是()A.两个模块相当于开关,彼此串联B.两个模块相当于开关,彼此并联C.两个模块相当于电源,彼此并联D.两个模块相当于电源,彼此串联2、下列电路图中,哪个是串联电路()3、如图所示的电路中,使两盏灯都有电流流过的操作是()A. 只闭合开关S1B. 只闭合开关S2、S3C. 只闭合开关S2D. 开关S1、S2、S3都闭合4、关于如图电路的判断,正确的是()A.只闭合开关S1时,灯泡L1、L3并联B.只闭合开关S2时,灯泡L2、L3并联C.只闭合开关S2、S3时,灯泡L2、L3串联D.闭合所有开关时,灯泡L1、L2并联,L3短路5、如图3-3-5所示,要使灯泡L1和L2组成并联电路,应()图3-3-5A.只闭合S2B.只闭合S3C.只闭合S1和S3D.只闭合S2和S36、如图所示,开关S闭合时,灯泡L1、L2组成并联电路的是()7、如图所示为某宾馆的房卡,进入房间后只有把房卡插入槽中,房间内的灯和插座才会有电。
关于房卡和房间内用电器的连接,下列说法中错误的是( B )A. 房卡相当于一个开关B. 房卡实际上是一个用电器C. 房卡插入槽内时一定是接在干路上D. 房间内的电灯和插座是并联的8、小华用如图所示电路进行如下操作,下列说法正确的是(B )A. 直接将A、B连接,闭合开关后电路短路B. 测量电流时,应将电流表“+”接在A点,“-”接在B点C. 在A、B间接电压表,闭合开关后电压表无示数D. 在A 、B 间接另一灯泡,两灯泡是并联的9、某档案馆的保密室进出门有下列要求:甲、乙两资料员必须同时用各自的钥匙(S 甲、S 乙分别表示甲、乙两资料员的钥匙)使灯亮才能进入保密室;而馆长只要用自己的钥匙(S 馆长表示馆长的钥匙)使灯亮就可以进入保密室。
初三数学上学期第三章证明(三)试题
1-3】(2004、重庆北碚,10分)如图1-已知四边形ABCD是等腰梯形,AB=DC,AD PB=PC.求证:PA=PD..已知:如图 l -3-6,E 是□MABCD 的对角线上的两点,A E =CF .求证:(1)△ABE ≌△CDF ;(2)BE ∥DF ..如图1-3-8,已知等腰梯形ABCD ,AD ∥为梯形内一点,且 EA=ED ,求证:EB=EC.在梯形ABCD中,AB∥CD,E、F、G、BC、CD、DA边上的中点,当梯形___________条件时,四边形EWIH是菱形.-3-13,边长为3的正方形ABCD.已知:如图1-3-l5,在矩形ABCD中,点边上,且BE=CF,AF、DE交于点AM=DM。
年新课标中考题一网打尽★★★)在备用图中,画出满足上述条件的图形,记为图⑵试用刻度尺在图1-3-17⑴⑵中量得AQ的长度,估计AQ、B Q间的关系,并填入下表.由上表可猜测AQ、BQ间的关系是______________.2)上述问)中的猜测AQ,BQ间的关系成立吗?3】(2005、温州,8分)如图1-3-ABCD是平行四边形,对角线AC、BD过点O画直线EF,分别交AD、BC于点OE=OF.【回顾4】(2005、南充,3分)如图1-3-21是边长为1的菱形ABCD对角线AC上一个动点绕正方形ABCDFC=HB:EC,顺次连结四边形ABCD各要使四边形EFGH为矩形,90°D、33【备考7】如图l-3-28,在□ABCD中,E为DC边的中点,AE交BD于点O.若SΔDOE= 9,则SΔAOB等于()A.18 B.27 C.36 D.45【备考10】如图l-3-30,在□ABCD中,AB=10AD=6,E是AD的中点,在AB上取一点F,使△CBF∽△CDE,则BF的长是()A.5 B.8.2 C.6.4 D.1.8【备考14】(动手操作题)在给定的锐角三角形中,求作一个正方形DEFG,使D、E落在F、G分别落在AC、AB边上,作法如下:第一步:画一个有三个顶点落在△ABC15】(探究题)如图l-3-35,矩形ABCDAC与BD的交点,过O点的直线EF与的延长线分别交于E、F.(l)求证:△BOE≌△)当EF与AC满足什么条件时,四边形。
湘教版数学九年级上册第三章3.4《相似三角形的判定》解答题专项练习+解析
湘教版九年级数学上册第三章3.4《相似三角形的判定》解答题专项练习+解析一.解答题(共12小题)1.如图,在△ABC中,AB=AC,∠A=36°,BD为角平分线,DE⊥AB,垂足为E.(1)写出图中一对全等三角形和一对相似比不为1的相似三角形;(2)选择(1)中一对加以证明.2.如图,在正方形ABCD中,E、F分别是边AD、CD上的点,,连接EF并延长交BC的延长线于点G.(1)求证:△ABE∽△DEF;(2)若正方形的边长为4,求BG的长.3.如图,已知△ABC中,AB=,AC=,BC=6,点M为AB的中点,在线段AC上取点N,使△AMN与△ABC相似,求MN的长.4.如图,△ABC中,AB=AC,BE⊥AC于E,D是BC中点,连接AD与BE交于点F,求证:△AFE∽△BCE.5.已知:如图,△ABC中,∠BAC=90°,AB=AC=1,点D是BC边上的一个动点(不与B,C 点重合),∠ADE=45°.求证:△ABD∽△DCE.6.如图,在8×8的正方形网格中,△CAB和△DEF的顶点都在边长为1的小正方形的顶点上,AC与网格上的直线相交于点M.(1)填空:AC= ,AB= .(2)求∠ACB的值和tan∠1的值;(3)判断△CAB和△DEF是否相似?并说明理由.7.如图,在△ABC中,D、E分别是边AB、AC的中点,F为CA延长线上一点,∠F=∠C.(1)若BC=8,求FD的长;(2)若AB=AC,求证:△ADE∽△DFE.8.如图:方格纸中的每个小正方形边长均为1,△ABC和△DEF的顶点都在方格纸的格点上.①判断△ABC和△DEF是否相似,并说明理由;②点P1,P2,P3,D,F都是△DEF边上的5个格点,请在这5个格点中选取3个点作为三角形的顶点,使构成的三角形与△ABC相似.(写出一个即可,并在图中连接相应线段,不必说明理由)9.如图,已知△ABC中CE⊥AB于E,BF⊥AC于F,求证:△AEF∽△ACB.10.如图,点D在等边△ABC的BC边上,△ADE为等边三角形,DE与AC交于点F.(1)证明:△ABD∽△DCF;(2)除了△ABD∽△DCF外,请写出图中其他所有的相似三角形.11.如图,在等边△ABC中,点D、E分别是边BC、AC上的点,且BD=CE,连接BE、AD,相交于点F.(1)求证:△ABD≌△BCE;(2)图中共有对相似三角形(全等除外).并请你任选其中一对加以证明.你选择的是.12.如图,△ABC和△ADE中,∠BAD=∠CAE,∠ABC=∠ADE.(1)写出图中两对相似三角形(不得添加字母和线).(2)请选择其中的一对三角形,说明其相似的理由.湖南省澧县张公庙镇中学2015-2016学年湘教版九年级数学上册第三章3.4《相似三角形的判定》解答题专项练习+解析参考答案与解析一.解答题(共12小题)1.解:(1)△ADE≌△BDE,△ABC∽△BCD;(2)证明:∵AB=AC,∠A=36°,∴∠ABC=∠C=72°,∵BD为角平分线,∴∠ABD=∠ABC=36°=∠A,在△ADE和△BDE中∵,∴△ADE≌△BDE(AAS);证明:∵AB=AC,∠A=36°,∴∠ABC=∠C=72°,∵BD为角平分线,∴∠DBC=∠ABC=36°=∠A,∵∠C=∠C,∴△ABC∽△BCD.2.(1)证明:∵ABCD为正方形,∴AD=AB=DC=BC,∠A=∠D=90°,∵AE=ED,∴,∵DF=DC,∴,∴,∴△ABE∽△DEF;(2)解:∵ABCD为正方形,∴ED∥BG,∴,又∵DF=DC,正方形的边长为4,∴ED=2,CG=6,∴BG=BC+CG=10.3.解:①图1,作MN∥BC交AC于点N,则△AMN∽△ABC,有,∵M为AB中点,AB=,∴AM=,∵BC=6,∴MN=3;②图2,作∠ANM=∠B,则△ANM∽△ABC,有,∵M为AB中点,AB=,∴AM=,∵BC=6,AC=,∴MN=,∴MN的长为3或.4.证明:∵AB=AC,D是BC中点,∴AD⊥BC,∴∠ADC=90°,∴∠FAE+∠AFE=90°,∵BE⊥AC,∴∠BEC=90°,∴∠CBE+∠BFD=90°,∵∠AFE=∠BFD,∴∠FAD=∠CBE,∴△AFE∽△BCE.5.证明:∵∠BAC=90°,AB=AC=1,∴△ABC为等腰直角三角形,∴∠B=∠C=45°,∴∠1+∠2=180°﹣∠B=135°,∵∠ADE=45°,∴∠2+∠3=135°,∴∠1=∠3,∵∠B=∠C,∴△ABD∽△DCE.6.解:(1)如图,由勾股定理,得AC==2.AB==2故答案是:2,2;(2)如图所示,BC==2.又由(1)知,AC=2,AB=2,∴AC2+BC2=AB2=40,∴∠ACB=90°.tan∠1==.综上所述,∠ACB的值是90°和tan∠1的值是;(3)△CAB和△DEF相似.理由如下:如图,DE=DF==,EF==.则===2,所以△CAB∽△DEF.7.解:(1)∵D、E分别是边AB、AC的中点,∴,DE∥BC.∴∠AED=∠C.∵∠F=∠C,∴∠AED=∠F,∴FD==4;(2)∵AB=AC,DE∥BC.∴∠B=∠C=∠AED=∠ADE,∵∠AED=∠F,∴∠ADE=∠F,又∵∠AED=∠AED,∴△ADE∽△DFE.8.解:①△ABC和△DEF相似.理由如下:∵根据图示知:AB=2,AC=,BC=5,ED=4,DF=2,EF=2,∴===,∴△ABC∽△DEF;②△ACB∽△DP3P2.理由如下:∵由①知,△ABC∽△DEF,∴∠D=∠A.连接DP2P3,DP3=,DP2=,P2P3=.∵==,∴△ACB∽△DP3P2.9.证明:∵CE⊥AB,BF⊥AC,∴∠AEC=∠AFB=90°.∵∠A是公共角,∴△ABF∽△ACE.∴,∴,又∠A是公共角,∴△AEF∽△ACB.10.(1)证明:∵△ABC,△ADE为等边三角形,∴∠B=∠C=∠3=60°,∴∠1+∠2=∠DFC+∠2,∴∠1=∠DFC,∴△ABD∽△DCF;(2)解:∵∠C=∠E,∠AFE=∠DFC,∴△AEF∽△DCF,∴△ABD∽△AEF,故除了△ABD∽△DCF外,图中相似三角形还有:△AEF∽△DCF,△ABD∽△AEF,△ABC∽△ADE,△ADF∽△ACD.11.(1)证明:∵△ABC是等边三角形,∴AC=BA,∠ABD=∠C=60°,在△ABD和△BCE中,∴△ABD≌△BCE(SAS);(2)4对,分别是△BDF∽△BEC,△DBF∽△DAB,△AFE∽△ACD,△AFE∽△BAE,选择证明△AEF∽△BEA,∵△ABC是等边三角形,∴AC=BA,∠C=∠BAE=60°,AC=BC,∵BD=CE,∴AE=CD,∴△ACD≌△BAE(SAS),∴∠DAC=∠ABE,又∵∠AEF=∠BEA,∴△AEF∽△BEA.12.(1)解:△ABC∽△ADE,△ABD∽△ACE;(2)△ABD∽△ACE.证明:由(1)知△ABC∽△ADE,∴=,∴AB×AE=AC×AD,∴=,∵∠BAD=∠CAE,∴△ABD∽△ACE.初中数学试卷。
北师大版九年级数学第三章 证明(三)
北师大版九年级上册单元测试第三章 证明(三)(说明:本试题总分150分,考试时间为90分钟) 班级: 姓名: 成绩:一、选择题:(每小题4分,共40分)1、已知平行四边形ABCD 中,∠B=4∠A ,则∠C=( )A 、18°B 、36°C 、36°D 、144°2、下列四边形中,对角线相等且互相垂直平分的是( )A 、平行四边形B 、正方形C 、等腰梯形D 、矩形3、如图.若要使平行四边形ABCD 成为菱形.则需要添加的条件是( )A 、AB=CDB 、AD=BC C 、AB=BCD 、AC=BD4、如图,在△ABC 中,EF ∥BC ,=,S 四边形BCFE =8,则S △ABC =( )A 、9B 、10C 、12D 、135、如图,矩形ABCD 中,E 为CD 的中点,连接AE 并延长交BC 的延长线于点F ,连接BD 、DF ,则图中全等的直角三角形共有( )A 、3对B 、4对C 、5对D 、6对6、顺次连接矩形四边中点所得的四边形一定是( )A 、正方形B 、矩形C 、菱形D 、等腰梯形7、如图,正方形ABCD 的两边BC ,AB 分别在平面直角坐标系的x 轴、y 轴的正半轴上,正方形A′B′C′D′与正方形ABCD 是以AC 的中点O′为中心的位似图形,已知AC=3,若点A′的坐标为(1,2),则正方形A′B′C′D′与正方形ABCD 的相似比是( )A 、16B 、13C 、12D 、238、如图,点A 是直线l 外一点,在l 上取两点B 、C ,分别以A 、C 为圆心,BC 、AB 长为半径画弧,两弧交于点D ,分别连接AB 、AD 、CD ,则四边形ABCD 一定是( )A 、平行四边形B 、矩形C 、菱形D 、梯形第3题图第4题图 第5题图 第7题图 第8题图 第9题图9、如图,E、F分别是正方形ABCD的边BC、CD上的点,BE=CF,连接AE、BF.将△ABE 绕正方形的对角线交点O按顺时针方向旋转到△BCF,则旋转角是()A、45°B、120°C、60°D、90°10、如图,在▱ABCD中,AE,CF分别是∠BAD和∠BCD的平分线,添加一个条件,仍无法判断四边形AECF为菱形的是()A、AE=AFB、EF⊥ACC、.∠B=60°D、AC是∠EAF的平分线二、填空题:(每小题5分,共30分)11、平行四边形ABCD中,已知∠A+∠C=60°,则∠A=度,∠B= 度。
九年级(上)第三章单元试卷
DECC 'BFAP OFEDCA2013-2014学年(上)平和正兴学校九年级数学第三章《证明三》单元试卷说明:1.请将班级、姓名、座号写在密封线内,在右边方框内填上座位号。
2. 做选择题时,请将答案填入前面表格内,否则不给分.....。
一、选择题:1. 下列命题中,真命题是 ( )A .两条对角线垂直的四边形是菱形B .对角线垂直且相等的四边形是正方形C .两条对角线相等的四边形是矩形D .两条对角线相等的平行四边形是矩形2. 下列给出的条件中,能判断四边形ABCD 是平行四边形的是 ( )A. AB ∥CD ,AD = BC ; B . ∠B = ∠C ;∠A = ∠D , C . AB =AD , CB = CD ; D . AB = CD , AD = BC3. 在等腰梯形ABCD 中,AB ∥CD ,DC = 3 cm ,∠A=60°,BD 平分∠ABC ,则这个梯形的周长是………………………………………………… ( )A. 21 cm ;B. 18 cm ;C. 15cm ;D. 12 cm ;4. 顺次连接矩形四条边的中点,所得到的四边形一定是 ( )A .矩形B .菱形C .正方形D .平行四边形5. 直角三角形ABC 中,∠ACB =︒90,∠A =︒30,AC =cm 3,则AB 边上的中线长为A cm 1B cm 2C cm 5.1D cm 36. 矩形纸片ABCD 中, AD = 4cm , AB = 10cm , 按如图方式折叠,使点B 与点D 重合, 折痕为EF,则DE =( )cm ; A 、5.8 B 、6 C 、5 D 、87. 菱形具有而矩形不一定具有的性质是 ( )A .对角线互相垂直B .对角线相等C .对角线互相平分D .对角互补8. 等边三角形一边上高长为cm 32,那么这个等边三角形的中位线长为( )A cm 3B cm 5.2C cm 2D cm 49. 如左下图所示,周长为68的矩形ABCD 被分成7个全等的矩形,则矩形ABCD 的面积为( ) A. 98B. 196C. 280D. 28410. 如图右下图,在矩形ABCD 中,AB=3,AD=4,P 是AD 上的动点,PE ⊥AC 于E ,PF ⊥BD 于F ,则PE+PF 的值为 ( )A.513 B.25 C.2 D.512二、填空题:(本大题共10个小题;每小题3分,共30分)11. 在ABCD 中,已知∠ABC=60°,则∠BCD=____________。
第三章证明三测试题
九江县城门中学九年级数学证明三测试卷一、选择题(本大题共8小题,每小题3分,满分24分)1、 (2010年遵义)下列命题中,真命题是 C .两条对角线相等的四边形是矩形2、 (2008黄冈市)如图,已知梯形 ABCD点,/ BCD=60,贝U 下列说法不准确的是(A .梯形ABCD 是轴对称图形 C .梯形ABCD 是中心对称图形 3、 (2007江西)如图,将矩形ABCD 纸片沿对角线BD 折叠,使点C 落在C 处,BC 交AD 于E ,若 DBC 22.5° ,则在不添加任何辅助线的情 况下,图中45。
的角(虚线也视为角的边)有( ) A . 6个 B . 5个 C . 4个 4、 (2008年江西)如图,在口ABCD 中, 则下列结论不准确的是() A . S A AFD 2S A EFB 5、 (2010江西)如图,已知矩形纸片点G 是BC 上的一点,/ BEG = 60o. 点B 落在纸片上的点H 处,连接AH ,则与/ BEG 数为( )A . 4B . 3C . 2D . 16、 (2011江苏泰州)四边形 ABCD 中,对角线AC 、BD 相交于点件:①AB / CD , AD // BC ;②AB=CD , AD=BC ;③AO=CO , BO=DO ; ®AB / CD ,AD=BC .其中一定能判定这个四边形是平行四边形的条件有A . 1组B . 2组C . 3组7、 (2011江苏无锡)菱形具有而矩形不一定具有的性质是 A .对角线互相垂直 B .对角线相等C .对角线互相平分D .对角互补& (2011山东滨州)如图,在一张△ ABC 纸片中,/ C=90 ,DE 是中位线,现把纸片沿中位线DE 剪开,计划拼出以下四个图形: ①邻边不等的矩形;②等腰梯形;③有一个角为锐角的菱形:④正方形 .那么以上图形一定能被拼成的个数为() A.1 B.2 C.3 二、填空题(本大题8小题,每小题3分,满分24分) 9、 (2010山东德州)在四边形 ABCD 中,点E ,F ,G ,H 分别是边AB ,BC ,CD ,DA 的中点,如果四边形EFGH 为菱形,那么四边形ABCD 是 _________ (只要写出一种即可). 10、 (2010年怀化市)如图5,在直角梯形 ABCD 中, AB // CD , AD 丄 CD , AB=1cm , AD=6cm , CD=9cm ,贝U BC= _________ cm . 11、 (2011山东烟台)如图,三个边长均为 2的正方形重叠在一 起,01、02是其中两个正方形的中心,则阴影部分的面积是 12、 (2010山东青岛市)把一张矩形纸片(矩形 点D 重合,折痕为 EF.若AB = 3 cm , 是 ________________ . cm . 13、 (2010湖北孝感)已知正方形 ABCD 以 是 ■ 14、 (2009年江西)如图,一活动菱形衣架中,菱形的边长均为 距离 AB BC 16cm ,则/1 ____________ 度. 15、 (2011年江西)将完全相同的平行四边形和完全相 同的菱形镶嵌成如图所示的图案.设菱形中较小角为 x 度,平行四边形中较大角为y 度,则y 与x 的关系 式是 .( )D .两条对角线相等的平行四边形是矩形 中, AD // BC , AB=CD=ADAC, BD 相交于 O )B . BC=2ADD . AC 平分/ DCB D . 3个E 是BC 的中点,且/AEC=/ DCE ,C .四边形AECD 是等腰梯形 D . ABCD ,点现沿直线E0,给出下列四组条 ,/ B=60°D.4 ABCD 按如图方式折叠,使顶点 B 和 BC = 5 cm ,则重叠部分△ DEF 的面积 CD 为边作等边△ CDE 贝AED 的度数 16cm ,若墙上钉子间的 16、(2010四川宜宾3) B A122. CI VC-- D(第 3 题) D C ^DF2AEB ADC(第8题图)D C19、(2008年江西)如图:在平面直角坐标系中,有 A (0, 1),B ( 1,0),C ( 1, 0)如图,点P 是正方形ABCD 的对角线BD 上一点,PE 丄BC 于点E ,PF 丄CD 于点F ,连接EF 给出 下列五个结论:①AP =EF ;②AP 丄EF ;③A APD 定是等腰三角形; ④/P FE=/BAP ;⑤ PD= V 2EC .其中准确结论的序号是 ___________________ .三点坐标. (1)若点D 与A B, C 三点构成平行四边形,请写出所有符合条件的点 D 的坐标; “y 2 - (2)选择(1)中符合条件的一点D ,求直线BD 的解析式. 1 B 2 1 O 1 -A C --- ' - '~~► X 1 2 x 三、(本大题3小题,每小题6分,共18分) 17、(2011四川凉山)如图,E 、F 是平行四边形ABCD 勺对角线上的点,CE=AF 猜想:BE 与 DF 有怎样的位置 关系和数量关系?并对你的猜想加以证明.猜想证明 D18、(2011四川南充市)如图,四边形 ABCD 是等腰梯形, 且 BE=CF,连接 DE,AF. 求证:DE=AF.请你AD // BC,点 E,F 在 BC 上,四、(本大题共3小题,每小题8分,共16分) 20、(10分)已知四边形ABCD 勺对角线AC 与BD 交于点0,给出下列四个论断 ① OA = OC ② AB = CD ③/ BAB / DCB ④ AD / BC 请你从中选择两个论断作为条件,以“四边形ABCD 为平行四边形”作为结论,完成下列各题: ① 构造一个真.命题.,画图并给出证明; ② 构造一个假•命•题,举反例加以说明.21、(2008年江西)如图,把矩形纸片ABCD 沿EF 折叠,使点B 落在边AD 上的点B 处, 点A 落在点A 处;(1) 求证:BE BF ;(2) 设AE a AB b, BF c ,试猜想a ,b, c 之间的一种关系,并给予证明.23、(2011山东临沂)如图1,将三角板放在正方形 ABCD 上,使三角板的直角顶点 E 与正方形ABCD 的顶点A 重合,三角板的一边交 CD 于点F ,另一边交CB 的延 长线于点G . (1) 求证:EF = EG (2) 如图2,移动三角板,使顶点E 始终在正方形ABCD 勺对角线AC 上,其他条 件不变.(1)中的结论是否仍然成立?若成立,情给予证明;若不成立,请说明理五、(本大题共两小题、每小题 9分,共18分)22、(2006年江西)如图,在梯形纸片 ABCD 中,AD // BC , AD > CD ,将纸片沿过点D 的直线折叠,使点C 落在AD 上的点C '处,折痕DE 交BC 于点E,连结C ' (1) 求证:四边形CDC '是菱形;(2) 若BC = CD + AD ,试判断四边形ABED 的形状,并加以证明.六、(本大题两小题,每小题10分、共20分).AI'B24. ( 2010莱芜)在口 ABCD 中,AC 、BD 交于点0,过点0作直线EF 、GH ,分 别交平行四边形的四条边于 E 、G 、F 、H 四点,连结EG 、GF 、FH 、HE. (1) (2)(3) (4)理由.如图①,试判断四边形 EGFH 的形状,并说明理由; 如图②,当EF 丄GH 时,四边形EGFH 的形状是_ 如图③,在(2) 如图④,在(3) 的条件下,若 的条件下,若 AC=BD ,四边形EGFH 的形状是 ______________ ; AC 丄BD ,试判断四边形EGFH 的形状,并说明 D B F C 图① B F C 图② (第23题图)DHCF C B T F C 图③ 图④ 25、(湖北荆洲)将两块全等的含30°角的三角尺如图1摆放在一起,设较短直角边长 为3.(1)四边形ABCD 是平行四边形吗?说出你的结论和理由。
九年级数学上册 第三章 证明三同步练习 试题
轧东卡州北占业市传业学校一、填空题1.如图,ABCD,那么AB=_____,______=AD,∠A=________,________=∠D,假设此时∠B+∠D=128°,那么∠B=_______度,∠C=_______度.2.如果一个平行四边形的周长为80 cm,且相邻两边之比为1∶3,那么长边=______cm,短边=______cm.3.如下左图,ABCD,∠C的平分线交AB于点E,交D A延长线于点F,且AE=3 cm,E B=5 cm,那么ABCD 的周长为__________.4.如上中图,ABCD,AB>BC,AC⊥AD,且AB∶BC=2∶1,那么DC∶AD=__________,∠DCA=__________度,∠D=∠B=__________度,∠DAB=∠BCD=__________度.5.如上右图,ABCD的对角线AC,BD交于点O,那么图中全等三角形有__________对.二、选择题1. ABCD中,∠A∶∠D=3∶6,那么∠C的度数是A.60°B.120C.90°D.150°2.在ABCD中,∠A∶∠B∶∠C∶∠D的可能情况是A.2∶7∶2∶7B.2∶2∶7∶7C.2∶7∶7∶2D.2∶3∶4∶53.如下左图,从等腰△ABC底边上任意一点D,作DE ∥AC交AB于E,DF∥AB交AC于F ,那么AEDF的周长A.等于三角形周长B.是三角形周长的一半C.等于三角形腰长D.是腰长的2倍4.如上右图,ABCD中,BC∶AB=1∶2,M为AB的中点,连结MD、M C,那么∠DMC等于A.30°B.60°C.90°D.45°5.以不共线的三点为顶点,可以作平行四边形A.一个B.两个C.三个D.四个6.平行四边形具有,但一般四边形不具有的性质是A.不稳定性B.内角和等于360°C.对角线互相平分面D.外角和等于360°7.如下左图,在ABCD中,DB=DC,∠C=70°,AE⊥BD于E,那么∠D A E等于A.20°B.25°C.30°D.35°三、解答题1.:如上右图ABCD的周长是20 cm,△ADC的周长是16 cm.求:对角线AC的长.2.求证:平行四边形的对角线互相平分.§证明(三)3.如以下列图, ABCD中,BD 是ABCD的对角线,AE⊥BD于E,CF⊥BD于F.〔1〕在图中补全图形;〔2〕求证:AE=CF.一、判断题1.一组对边平行,另一组对边相等的四边形是平行四边形( )2.两组对边分别相等的四边形是平行四边形( )3.对角线相等的四边形是平行四边形( )4.有两组对角分别相等的四边形是平行四边形( )5.对角线互相垂直的四边形是平行四边形( )6.邻边互相垂直的四边形是平行四边形( )7.如果一条对角线将四边形分成两个全等三角形,那么这个四边形是平行四边形( )8.对角线互相平分的四边形是平行四边形( )9.一组对边平行,一组对角相等的四边形是平行四边形( )二、填空题1.如果一个四边形的每对相邻内角都互补,那么这个四边形是__________.2.延长△ABC的中线AD到E,使AE=2AD,那么四边形ABEC是__________.3.如果一个四边形以其对角线交点为中心,在平面内旋转180°,与原四边形重合,那么这个四边形是__________。
九年级数学证明(三)定理解读专题辅导
九年级数学证明(三)定理解读王松超课本中的定理是相关知识性质的直接体现,只有学好这些定理,才能灵活准确地运用定理解题。
课本习题是学习这些定理最好的试金石,下面以北师大版教材《数学》九年级上册第三章第一节“平行四边形”中的随堂练习或习题为例解读该节中的定理。
定理1:平行四边形的对边相等。
例1. (习题3.1第1题)如图,平行四边形ABCD的对角线AC,BD相交于点O,过点O的直线与AD,BC分别相交于点E,F。
求证:OE=OF。
分析:证明线段或角相等,一个重要的方法是证包含对应线段或角的两个三角形全等。
该题要证OE=OF,可证ΔBOF≌ΔDOE,由定理1容易证得。
证明:在平行四边形ABCD中,∠BAO=∠DCO,∠ABO=∠CDO,由定理1知AB=CD,故ΔABO≌ΔCDO。
所以BO=DO,易知∠OBF=∠ODE,∠BOF=∠DOE,可知ΔBOF≌ΔDOE。
故OE=OF。
评注:除了上面的方法,灵活运用定理1还可证得ΔAOD≌ΔCOB,依然能得到BO=DO 这一关键条件。
只要牢固掌握平行四边形的性质,在平行四边形中就很容易找到全等三角形。
定理2:平行四边形的对角相等。
P随堂练习第2题)证明:夹在两条平行线间的平行线段相等。
例2. (76分析:要证明这个命题可用定理1证明,也可用定理2证明,先将已知条件转化到平行四边形中,再利用三角形全等即可证得。
证明:如上图,直线AD∥BC,AB∥DC,可知四边形ABCD是平行四边形。
连接BD,则∠ADB=∠CBD,由定理2知∠BAD=∠DCB,BD=BD,故ΔBAD≌ΔDCB,所以AB=CD。
命题得证。
评注:证明这个命题要注意平行线间所夹的是“平行线段”这一条件。
解答问题一定要抓住关键条件来拓展思路。
定理3:同一底上的两个角相等的梯形是等腰梯形。
例3. (习题3.1第2题)证明:等腰梯形的两条对角线相等。
分析:由定理3可知等腰梯形的两个底角相等,再利用三角形全等即可证得。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级上第三单元检测试卷 姓名
一.选择题(每小题2分,共12分)
1.一个等腰梯形的两底之差为12,高为6,则等腰梯形的两底的一个锐角为 ( ) A ︒30 B ︒45 C ︒60 D ︒75
2.在Rt ⊿ABC 中,∠ACB =︒90,∠A =︒30,AC =cm 3,则AB 边上的中线为 ( ) A cm 1 B cm 2 C cm 5.1 D
cm 3
3.等边三角形一边上高线长为cm 32,那么这个等边三角形的中位线长为 ( ) A cm 3 B cm 5.2 C cm 2 D cm 4
4.下列判定正确的是 ( ) A 对角线互相垂直的四边形是菱形 B 两角相等的四边形是梯形 C 四边相等且有一个角是直角的四边形是正方形 D 两条对角线相等且互相垂直的四边形是正方形
5.顺次连结等腰梯形各边中点得到的四边形是 ( ) A 矩形 B 菱形 C 正方形 D 平行四边形
6.直角梯形的两个直角顶点到对腰中点的距离 ( ) A 相等 B 不相等 C 可能相等也可能不相等 D 互相垂直 二.填空题:(每小题3分,共24分)
7.已知菱形的周长为cm 40,一条对角线长为cm 16,则这个菱形的面积为 ;
8.如图:EF 过平行四边形ABCD 的对角线交点O ,交AD 于E ,交 BC 于F ,已知AB =4,BC =5,OE =5.1,那么四边形EFCD 的周长
为 ;
9.已知,如图:平行四边形ABCD 中,AB =12,AB 边上
的高为3,BC 边上的高为6,则平行四边形ABCD 的
周长为 ; 10.⊿ABC 中,AB = AC =13,∠BAC 的平分线AD 交
BC 于D ,则D 点到AB 的距离为 ;
11.如图,在Rt ⊿ABC 中,∠C =︒90,AC = BC ,AB =30,
矩形DEFG 的一边在AB 上,顶点G 、F 分别在AC 、BC 上,
D 、
E 在AB 上,若DG :G
F =1:4,则矩形DEF
G 的面积
为 ;
12.在⊿ABC 和⊿ADC 中:下列论断:①AB = AD ; ②∠BAC =∠DAC ;③BC = DC ,把其中两个论断作为条件,另一个论断作为结论,写出一
个真命题是: ;
13.如图,在⊿ABC 中,∠C =︒90,∠B =︒15,AB 的 垂直平分线交AB 于D ,交BC 于D ,DB =10,
那么AC = ;
B
14.在⊿ABC 中,∠C =︒90,周长为cm )325(+,斜边上的中线CD =cm 2,则Rt ⊿ABC 的面积为 ; 三.(6分)
15.作图题:已知三个村庄的位置如图,三村联合打一口井,向三个村庄供水,使水井到三个村庄的距离相等,水井的位置设在何处?请用尺规画出水井位置,不写作法,保留痕迹。
A ∙
B ∙
C ∙
四.解答证明题: 16.(8分)在平行四边形ABCD 中,BC = 2AB ,E 为BC 中点,求∠AED 的度数; 17.(10分)如图,四边形ABCD 中,AD = BC ,AE ⊥BD ,CF ⊥BD ,垂足为E 、F ,BE = DF ,求证:四边形ABCD 是平行四边形;
B D
B D
18.如图:在⊿ABC 中,∠BAC = 90,AD ⊥BC 于D ,CE 平分∠ACB ,交AD 于G ,交AB 于E ,EF ⊥BC 于F ,求证:四边形AEFG 是菱形;
19.(10分)如图,以正方形ABCD 的对角线AC
为一边,延长AB 到E ,使AE = AC ,以AE 为一边作菱形AEFC ,若菱形的面积为29,求正方形边长;
B C F
20.(10分)如图AD 是⊿ABC 边BC 边上的高线,E 、F 、G 分别是AB 、BC 、AC 的中点,求证:四边形EDGF 是等腰梯形;
21.如图,AC 、BD 是矩形ABCD 的对角线,AH ⊥BD 于H ,CG ⊥BD 于G ,AE 为∠BAD 的平分线,交GC 的延长线于E ,求证:BD = CE ;
C
参考答案:
一选择题(每小题2分,共12分)
1.B ;2.A ;3.C ;4.C ;5.B ;6.A ; 二.填空题:(每小题3分,共24分) 7.2
96cm ;8.12;9.36;10.13
60
;11.100;12.①,③⇒②或①,②⇒③; 13.5;14.4
33-
; 三.15.有铅笔作图痕迹,有点O 为所作点为水井的结论。
四.16.
证1:∵ E 为BC 中点,
∴BE = EC =
2
1
BC , ∵BC = 2AB
∴AB = BE = EC = DC
∴∠BAE =∠BEA ,∠CED =∠CDE ∵四边形ABCD 是平行四边形 ∴∠B +∠C =︒180
∴∠BAE +∠BEA+∠CED +∠CDE +∠B +∠C =︒360 ∴2(∠BEA +∠CED )+︒180=︒360 ∴∠BEA +∠CED =︒90
∴∠AED =-︒180(∠BEA +∠CED )=︒=︒-︒9090180 其他证法正确的也给分。
17.证:∵BE = DF ,EF = EF ,
∴BE + EF = DF + EF ∴BF = ED ∵AD = BC ,AE ⊥BD ,CF ⊥BD , ∴⊿AED ≌⊿CFB ∴AD = BC
∴∠ADB =∠CBD ∴AD ∥BC
∴四边形ABCD 是平行四边形 18.证:
∵CE 平分∠ACB ,EA ⊥CA ,EF ⊥BC ∴AE = FE
∵∠1 =∠2
∴⊿AEC ≌⊿FEC ∴AC = FC ∵CG = CG
D
B
C D
F
B
D
∴⊿ACG ≌⊿FCG ∴∠5 =∠7 =∠B ∴GF ∥AE
∵AD ⊥BC ,EF ⊥BC ∴AG ∥EF ∴
∵AG =GF (或AE = EF )
∴四边形AGFE 是菱形(一组邻边相等的平行四边形是菱形) 用其他方法证明也可。
19.解:设正方形的边长为x
∵AC 为正方形ABCD 的对角线 ∴AC =x 2
∴29222
==⋅=⋅=x x x CB AE S AEFC 菱形
∴92
=x
∴3±=x 舍去3-=x
答:正方形的边长为3。
20.证:∵F 、G 、E 分别为AB 、AC 、BC 的中点, ∴FG ∥BC ,FE ∥GC ∴EF = GC =
2
1AC ∵在Rt ⊿ADC 中,
∵DG 为斜边AC 边上的中线 ∴DG =
2
1AC ∴EF = DG ∵FG ∥BC
∴FG ∥DE 且FG ≠DE
∴四边形EDGF 是等腰梯形。
(其他证法合理也给分) 21.证:∵矩形ABCD 的对角线AC 、BD
∴AC = BD
且有:AB = DC ,∠BAD =∠CDA =︒90 AD = AD
∴⊿BAD ≌⊿CDA ∴∠1 =∠4 ∵AH ⊥BD
F
C
∴∠2 +∠3 =︒90,而∠1 +∠2 =︒90 ∴∠3 =∠1 =∠4 ∵AE 平分∠BAD ∴∠3 +∠5 =∠6 +∠4 ∴∠5 =∠6
∵AH ⊥BD ,EG ⊥BD ∴AH ∥GE ∴∠5 =∠E ∴∠E =∠6
∴AC = CE = BD ∴BD = CE。