一元二次方程知识点总结及典型习题(1)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元二次方程
一、本章知识结构框图
二、具体内容 (一)、一元二次方程的概念
1.理解并掌握一元二次方程的意义
未知数个数为1,未知数的最高次数为2,整式方程,可化为一般形式; 2.正确识别一元二次方程中的各项及各项的系数
(1)明确只有当二次项系数0≠a 时,整式方程02
=++c bx ax 才是一元二次方程。
(2)各项的确定(包括各项的系数及各项的未知数). (3)熟练整理方程的过程
3.一元二次方程的解的定义与检验一元二次方程的解 4.列出实际问题的一元二次方程
(二)、一元二次方程的解法
1.明确一元二次方程是以降次为目的,以配方法、开平方法、公式法、因式分解法等方法为手段,从而把一元二次方程转化为一元一次方程求解;
2.根据方程系数的特点,熟练地选用配方法、开平方法、公式法、因式分解法等方法解一元二次方程; 3.体会不同解法的相互的联系; 4.值得注意的几个问题:
(1)开平方法:对于形如n x =2
或)0()(2
≠=+a n b ax 的一元二次方程,即一元二次方程的一边是含有未
知数的一次式的平方,而另一边是一个非负数,可用开平方法求解. 形如n x =2
的方程的解法:
实际问题
数学问题
)0(02≠=++a c bx ax
设未知数,列方程
实际问题的答案
数学问题的解
a
ac
b b x 242-±-=
解 方 程
降 次
开平方法
配方法
公式法 分解因式法
检 验
当0>n 时,n x ±=; 当0=n 时,021==x x ; 当0 (2)配方法:通过配方的方法把一元二次方程转化为n m x =+2)(的方程,再运用开平方法求解。 配方法的一般步骤: ①移项:把一元二次方程中含有未知数的项移到方程的左边,常数项移到方程的右边; ②“系数化1”:根据等式的性质把二次项的系数化为1; ③配方:将方程两边分别加上一次项系数一半的平方,把方程变形为n m x =+2)(的形式; ④求解:若0≥n 时,方程的解为n m x ±-=,若0 (3)公式法:一元二次方程)0(02 ≠=++a c bx ax 的根a ac b b x 242-±-= 当042 >-ac b 时,方程有两个实数根,且这两个实数根不相等; 当042 =-ac b 时,方程有两个实数根,且这两个实数根相等,写为a b x x 221- ==; 当042 <-ac b 时,方程无实数根. 公式法的一般步骤:①把一元二次方程化为一般式;②确定c b a ,,的值;③代入ac b 42 -中计算其值,判断方程是否有实数根;④若042 ≥-ac b 代入求根公式求值,否则,原方程无实数根。 (因为这样可以减少计算量。另外,求根公式对于任何一个一元二次方程都适用,其中也包括不完全的一元二次方程。) (4)因式分解法: ①因式分解法解一元二次方程的依据:如果两个因式的积等于0,那么这两个因式至少有一个为0,即:若0=ab ,则00==b a 或; ②因式分解法的一般步骤: 若方程的右边不是零,则先移项,使方程的右边为零;把方程的左边分解因式;令每一个因式都为零,得到两个一元一次方程;解出这两个一元一次方程的解可得到原方程的两个解。 (5)选用适当方法解一元二次方程 ①对于无理系数的一元二次方程,可选用因式分解法,较之别的方法可能要简便的多,只不过应注意二次根式的化简问题。 ②方程若含有未知数的因式,选用因式分解较简便,若整理为一般式再解就较为麻烦。 (6)解含有字母系数的方程 (1)含有字母系数的方程,注意讨论含未知数最高项系数,以确定方程的类型; (2)对于字母系数的一元二次方程一般用因式分解法解,不能用因式分解的可选用别的方法,此时一定 (三)、根的判别式 1.了解一元二次方程根的判别式概念,能用判别式判定根的情况,并会用判别式求一元二次方程中符合题意的参数取值范围。 (1)∆=ac b 42 - (2)根的判别式定理及其逆定理:对于一元二次方程02 =++c bx ax (0≠a ) ①当⎩ ⎨⎧≥∆≠时00a ⇔方程有实数根; (当⎩⎨ ⎧>∆≠时00a ⇔方程有两个不相等的实数根;当⎩⎨⎧=∆≠时 00 a ⇔方程有两个相等的实数根; ) ②当⎩ ⎨⎧<∆≠时00a ⇔方程无实数根; 从左到右为根的判别式定理;从右到左为根的判别式逆定理。 (四)相关练习 (一) 一元二次方程的概念 1.一元二次方程的项与各项系数 把下列方程化为一元二次方程的一般形式,再写出二次项,一次项,常数项: (1)x x 3252 =- (2)015622 =--x x (3)5)2(7)1(3-+=+y y y (4) m m m m m m 57)2())((2-=-+-+ (5)22)3(4)15(-=-a a 2.应用一元二次方程的定义求待定系数或其它字母的值 (1) m 为何值时,关于x 的方程m x m x m m 4)3()2(2 =+--是一元二次方程。(2-=m ) (2)若分式01 8 72=---x x x ,则=x (8=x )