碱金属元素性质总结讲解-共13页

合集下载

碱金属元素知识点总结

碱金属元素知识点总结

碱金属元素知识点总结碱金属元素是指周期表中第一族元素,包括锂(Li)、钠(Na)、钾(K)、铷(Rb)、铯(Cs)和钫(Fr)。

这些元素具有相似的化学性质,如低密度、低熔点、高电导率等特点。

以下是对碱金属元素的一些重要知识点进行总结。

1. 物理性质:碱金属元素在室温下大多为银白色金属,具有低密度和低熔点。

它们是非常活泼的金属,可以用刀片切割,并且能够导电和导热。

2. 原子结构:碱金属元素的原子结构特点是外层电子数为1,在元素周期表中处于第1A族。

这使得碱金属元素容易失去外层电子,形成带正电荷的离子。

3. 化学反应:碱金属元素与非金属元素反应时,倾向于失去一个电子形成带正电荷的离子。

与水反应时,会产生氢气并生成碱性溶液。

例如钠与水反应的化学方程式为2Na + 2H2O → 2NaOH + H2。

4. 反应性:碱金属元素的反应性逐渐增加,从锂到钫依次增强。

这是由于原子半径的增加和电子层的扩展导致外层电子离子化能的降低。

5. 合金:碱金属元素可以与其他金属形成合金。

合金通常具有更好的机械性能和导电性能。

例如,钠钾合金(NaK)被广泛用作热传导介质和储热材料。

6. 应用:碱金属元素在许多领域有广泛的应用。

锂广泛用于电池、合金和药物制剂;钠用于制备肥皂、玻璃和金属处理;钾广泛用于农业肥料和肥皂;铷和铯用于原子钟和激光技术;钫由于其放射性特性,目前尚无实际应用。

7. 危险性:碱金属元素具有一定的危险性。

由于其与水反应放出氢气,可能引发爆炸。

此外,碱金属元素的化合物有毒,对人体和环境有一定危害。

8. 用途举例:锂可用于制造锂离子电池,是电动汽车和便携式电子设备的重要能源;钠在化工工业中用于制备氢氧化钠和制备其他化合物;钾广泛用于农业肥料,促进作物生长;铷和铯在激光技术和通信领域有应用;钫目前主要用于科学研究。

9. 碱金属离子:碱金属元素失去一个外层电子后会形成带正电荷的离子。

这些离子在溶液中具有很高的电导率,被广泛应用于化学分析和电化学研究中。

元素周期律碱土金属元素性质总结

元素周期律碱土金属元素性质总结

元素周期律碱土金属元素性质总结碱土金属是周期表中的第2A族元素,包括铍(Be)、镁(Mg)、钙(Ca)、锶(Sr)、钡(Ba)和镭(Ra)。

这些金属具有许多相似的性质,下面我将对碱土金属元素的性质进行总结。

1.物理性质:-颜色:碱土金属通常呈银白色,具有良好的光泽。

- 密度和硬度:碱土金属的密度和硬度较高,镁的密度为 1.7g/cm³,钡的密度为3.6g/cm³。

-熔点和沸点:这些元素具有相对较低的熔点和沸点,钙的熔点为842℃,镁的熔点为650℃。

2.化学性质:-金属性质:碱土金属是良好的导电体和热导体,具有良好的延展性和可塑性。

-活泼性:碱土金属的活性较高,但低于碱金属,它们与非金属形成离子化合物。

例如,钙与氧反应生成氧化钙。

-反应性:碱土金属在水中反应产生氢气和相应的碱土氢氧化物。

这个反应的活跃程度依次递增,镁的反应较慢,而镭的反应最活跃。

-氧化态:这些元素的氧化态通常为+2,但镁有时也可以呈现+1的氧化态。

3.化合物性质:-氧化物:碱土金属形成不同稳定度的氧化物。

例如,镁氧化物(MgO)是一种具有高熔点和良好导电性的离子化合物。

-氢氧化物:碱土金属的氢氧化物也称为碱土金属氢氧化物。

这些氢氧化物是碱性的,并且可溶于水。

例如,氢氧化钙(Ca(OH)2)是一种常见的碱土金属氢氧化物。

-硫化物:碱土金属形成硫化物,例如,硫化镁(MgS)和硫化钙(CaS)。

4.应用:-镁是碱土金属中用途最广泛的元素之一,主要用于制造轻质合金,如航空领域中的铝合金。

-钙是人体骨骼和牙齿的主要成分,因此在医药和食品工业中广泛使用。

-钡主要用于制造玻璃和釉料,还用于医学检查中的造影剂。

-镭用于癌症治疗以及一些辐射检测和探测领域。

需要注意的是,虽然碱土金属具有许多有用的应用,但它们也有一些缺点。

例如,钙在水中溶解度较低,容易形成沉淀,而镁和钡的化合物对环境和人体健康有一定的危害性。

总结起来,碱土金属元素在物理性质和化学性质方面具有许多相似之处。

〈碱金属元素〉精品PPT教学课件

〈碱金属元素〉精品PPT教学课件

日期:
演讲者:蒝味的薇笑巨蟹
沾取另一种待测 物灼烧观察焰色
存放
例: K (K+ ): 紫色 (透过蓝色钴玻璃) Na (Na+) 黄色 Li (Li+) : 紫红色 Ca ( Ca2+) 砖红色 Ba (Ba2+) : 黄绿色 Cu(Cu2+) 绿色
2020/12/6Fra bibliotek2应用 : A , 鉴定 K ,Na 等元素 B,节日燃放的焰火
肥料
农家肥 化肥 (氮肥 , 磷肥 , 钾肥 , 复合肥)
草木灰: 有效成分 K2CO3 (主要) , KCl , K2SO4 .
2020/12/6
3
感谢你的阅览
Thank you for reading
温馨提示:本文内容皆为可修改式文档,下载后,可根据读者的需求 作修改、删除以及打印,感谢各位小主的阅览和下载
2020/12/6
1
3、焰色反应:
定义: 多种金属及它们的化合物在灼烧时使火焰呈现 特殊的颜色
用品: 铂丝 (或铁丝) ,酒精灯 ,火柴 ,蓝色钴玻璃 , 盐酸, 待 检物 (溶液或固体)
步骤: 点燃酒精灯
沾取待测物灼 烧观察焰色
用盐酸洗净铂 丝 ,灼烧至原色
灼烧铂丝至原色
用盐酸洗净铂 丝 ,灼烧至原色
第三节 碱金属元素
1、碱金属的物理性质及变化规律 ( Li→Cs )
①色状: 银白色金属 (Cs 略带金色光泽) ②硬度: 柔软 ,有展性(大→小) ③密度: 小→大 (Li ,Na , K <1 ; Rb, Cs >1 ) ④熔、沸点: 高 → 低 , ⑤导性: 热 、电的良导体
2、化学性质:
都是活泼的金属,从Li到Cs金属性增强, 铯是最活泼的金属 K,Rb ,Cs 等和O2反应一般生成过氧化物 或 超氧化物 。碱 金属的氢氧化物 都是强碱 ,碱性逐渐增强 ,CsOH 的碱性最 强。

高中化学碱金属知识点总结

高中化学碱金属知识点总结

高中化学碱金属知识点总结
碱金属是指在元素周期表中ⅠA族除氢(H)外的六个金属元素,即锂(Li)、钠(Na)、钾(K)、铷(Rb)、铯(Cs)、钫(Fr)。

碱金属位于ⅠA族,其周期律性质主要表现为:
①自上而下,密度呈减小趋势(但钾反常),一般地说,随着原子序数的增加,单质的密度增
大.但从Na到K出现了“反常”现象,根据密度公式ρ=m/V,Na到K的相对原子质量增大所起的作用小于原子体积增大所起的作用,因此K的密度比钠的密度小.
②自上而下,熔点、沸点逐渐降低.
③自上而下,碱金属元素随着核电荷数增多,原子半径增大,失电子能力逐渐增强,金属性
逐渐增强(元素金属性强弱可以从其单质与水或酸反应置换出氢的难易程度,或它们的最高价氧化物的水化物——氢氧化物的碱性强弱来推断).
④碱金属都能与氧气反应, 从锂到铯反应越来越剧烈,生成物为氧化物(锂)、过氧化物(钠)、
超氧化钾、比超氧化物更复杂的氧化物(铷、铯).
⑤碱金属都能与水反应,生成氢氧化物和氢气.从锂到铯与水反应越来越剧烈.。

碱金属

碱金属

(一)、碱金属元素性质的相似性
1、原子最外层均为1个电子 相 似 性 2、化合物中均显+1价,无气态氢化物, 但能形成属离子化合物的氢化物如NaH, 3、氧化物对应水化物为可溶性强碱, 典型的活泼金属元素有强还原性 4、均呈银白色(铯略带金色光泽),质软
(二)、递变性
Li 电子层数 原子半径 (离子) 单质熔沸点 单质密度
金属的物理性质
1.金属的熔点、沸点高 。 除汞是液体外,金属都是固体, 都有较高 的熔点和沸点. 2.金属不透明,大多数金属呈银白色金属光泽.(整块金属 的金属光泽与粉末状的金属光泽是不同的.如金属银块 是银白色金属光泽,而银粉是黑色粉末.) 3.金属有导电、导热性。如银和铜的导电、导热性最好, 依次为铝.所以铜和铝常作电线.(自由电子) 4.金属有良好的延展性和可塑性.金属可抽成丝,压成片, 可铸、可冲压、可轧制等.金的延展性最好.(层状结 构)
相互 转化
Na2CO3
CO2+H2O 或NaOH
NaHCO3
1. 加热固体,产生能使澄清石灰水变 浑浊的无色气体的是碳酸氢钠。 鉴别 2. 加水溶解,加入氯化钡或CaCl2溶液, 方法 产生白色沉淀的是碳酸钠 3.加入相同浓度的盐酸,反应剧烈的是 碳酸氢钠。 热稳定性规律: 正盐 > 酸式盐 > 碳酸
(1.79-1.40)
再假定1.40g物质全是氧化物
(设为R2O)
R2O→2ROH
2R+16
△m
18
1.40
(1.79-1.40)
求出R=24.3 既然1.40g物质是R和R2O的混合物,则 R的原子量应介于24.3—61之间。题中已 指明R是碱金属,原子量介于24.3—61之 间的碱 金属只有钾,其原子量为39

高中人教版化学必修二专题02 碱金属元素结构与性质(教师版)

高中人教版化学必修二专题02  碱金属元素结构与性质(教师版)

专题02 碱金属元素结构与性质一、碱金属元素的原子结构特点二、碱金属元素的性质1、碱金属单质物理性质变化规律随着原子序数的递增,碱金属单质的密度逐渐增大(钾反常),熔、沸点逐渐降低。

2、碱金属的原子结构与化学性质的关系(1)相似性原子都容易失去最外层的一个电子,化学性质活泼,它们的单质都具有较强的还原性,它们都能与氧气等非金属单质及水反应。

碱金属与水反应的通式为2R+2H2O===2ROH+H2↑(R表示碱金属元素)。

(2)递变性随着原子序数的递增,原子半径逐渐增大,原子核对最外层电子的引力逐渐减小,碱金属元素的原子失电子能力逐渐增强,金属性逐渐增强,单质还原性增强。

①与O2的反应越来越剧烈,产物更加复杂,如Li与O2反应只能生成Li2O,Na与O2反应还可以生成Na2O2,而K与O2反应能够生成KO2等。

②与H2O的反应越来越剧烈,如K与H2O反应可能会发生轻微爆炸,Rb、Cs遇水发生剧烈爆炸。

③最高价氧化物对应水化物的碱性逐渐增强,CsOH的碱性最强。

3、元素金属性强弱可以从单质与水(或酸)反应置换出氢的难易程度,或其最高价氧化物对应的水化物——氢氧化物的碱性强弱来判断。

【例1】下列各组比较中不正确的是()A.锂与水反应不如钠与水反应剧烈B.还原性:K>Na>Li,故K可以从NaCl溶液中置换出金属钠C.熔、沸点:Li>Na>KD.碱性:LiOH<NaOH<KOH【答案】B【解析】A、锂的活泼性比钠弱,与水反应不如钠剧烈;B、还原性,K>Na>Li,但K不能置换出NaCl溶液中的Na ,而是先与H 2O 反应;C 、碱金属元素从Li 到Cs ,熔、沸点逐渐降低,即Li >Na >K >Rb >Cs ;D 、从Li 到Cs ,碱金属元素的金属性逐渐增强,对应最高价氧化物的水化物的碱性依次增强,即碱性:LiOH <NaOH <KOH <RbOH <CsOH 。

碱金属的化学性质递变探究(1)碱金属与O 2反应①已知1.4 g 锂在空气中加热充分反应,可生成3.0 g 氧化物,该反应的化学方程式是 4Li +O 2=====△2Li 2O 。

碱金属的性质

碱金属的性质

碱金属的性质碱金属的化学性质:1、都是银白色的金属、密度小、熔点和沸点都比较低、标准状况下有很高的反应活性。

2、它们易失去价电子形成带一个单位正电荷的阳离子。

3、它们一般质地较为柔软,可以用刀切开,露出银白色的剖面;由于能和空气中的氧气反应,剖面暴露于空气中将很快失去光泽。

4、由于碱金属化学性质都很活泼,贮存时一般将它们放在矿物油中,或封于稀有气体中保存,以防止其与空气或水发生反应。

5、在自然界中,碱金属元素只有化合态,不能以稳定单质形式存在。

碱金属都能和水发生激烈的反应,生成碱性的氢氧化物,其反应能力与剧烈程度随着原子序数的增大而越强。

扩展资料碱金属在自然界的矿物是多种多样的,常见的种类如下:1、锂:锂辉石、锂云母、透锂长石2、钠:食盐(氯化钠)、天然碱(碳酸钠)、芒硝(十水硫酸钠)、智利硝石(硝酸钠)3、钾:硝石(硝酸钾)、钾石盐(氯化钾)、光卤石、钾镁矾、明矾石(十二水硫酸铝钾)4、铷:红云母、铷铯矿5、铯:铷铯矿、铯榴石碱金属应用:纯钠可用于制作钠灯,一种十分高效的光源;还可以用来抛光其它金属的表面。

钠化合物也有十分广泛的用途,比如常见的食盐就是氯化钠;常用的肥皂是钠的脂肪酸盐。

钾是植物重要的营养元素,因此钾的化合物常被用做化肥。

氢氧化钾是一种强碱,被用来控制各种体系的pH值。

铷和铯常用于制作原子钟。

铯原子钟极其精确,如果一台铯原子钟从8千万年前的恐龙时代开始运行到今天,它的偏差不会超过4秒。

因此铯原子被用来定义“秒”单位。

铯常添加在石油工业所用的钻井液中。

铷离子常用于制作紫色焰火。

钫没有商业应用,由于钫的原子结构相对简单,因而在光谱学实验中有广泛应用。

钫的光谱学研究可以提供和能级、次原子粒子间的耦合常数相关的信息。

科学家研究激光束缚的钫-210粒子发射的光,获得了原子能级跃迁的准确数据,和量子论的预测相近。

高一化学 《碱金属元素》知识点详解

高一化学 《碱金属元素》知识点详解

第三节碱金属元素新课指南1.掌握碱金属的物理性质和化学性质,并能运用原子结构的初步知识来理解它们性质上的异同及其递变规律.2.掌握利用焰色反应检验金属钠和钾以及它们的离子的操作技能.3.通过学习碱金属性质的递变规律,进行辩证唯物主义教育.本节重点:碱金属元素的性质以及跟原子结构的关系.本节难点:碱金属元素的性质以及跟原子结构的关系.教材解读精华要义相关链接1.钠的原子结构钠原子核内有11个质子,核外有11个电子,分三层排布,最外层有1个电子,其原子结构示意图为:钠原子容易失去最外层的电子,形成8电子的稳定结构,表现出很强的还原性.2.钠的典型化学反应钠是活泼的金属单质,化学性质非常活泼,能够与多种物质反应.钠单质的化学性质主要表现为还原性.知识详解知识点1 碱金属的原子结构从下表可以看出,锂、钠、钾、铷、铯的原子最外电子层的电子数是相同的,都是1个电子.这个电子对原子半径的大小是有影响的,一旦失去这个电子变成离子,离子半径就显著地比原子半径小了.例如,钠原子的半径是1.86×10-10m,钠离子的半径则为0.97×10-10m.碱金属的原子结构锂钠钾铷碱金属项目元素符号Li Na K Rb Cs 电子层结构Ⅰ相同点:最外电子层上都只有1个电子Ⅱ递变规律(从锂到铯):核电荷数逐渐增大;电子层数逐渐增多;原子半径逐渐增大.知识点2 碱金属的物理性质碱金属元素在自然界里都以化合态存在,它们的金属由人工制得.下表列出了碱金属的主要物理性质.碱金属的主要物理性质小结①相似性:碱金属除铯略带金色光泽外,其余都呈银白色.碱金属都比较柔软,有延展性,它们的密度都比较小(Li、Na、K的密度小于1 g/cm3,Rb、Cs的密度大于1 g/cm3),熔点较低(Li大于100℃,其余小于100℃),铯在气温稍高的时候,就呈液态.它们的导热、导电的性能都很强.碱金属,特别是锂、钠、钾,是金属中比较轻的.②递变规律(从Li→Cs):密度呈增大趋势(但K<Na);熔、沸点逐渐降低.思维拓展1.在实验室里怎样保存锂、钠、钾?点拨锂、钠、钾是活泼的金属,极易氧化变质甚至引起燃烧,它们又都能与水、水溶液等反应产生氢气,是易燃易爆的物质,存放它们要保证不与空气、水分接触,又因为它们的密度小:锂0.534g/cm3,钠0.97g/cm3,钾0.86g/cm3,所以锂只能保存在液体石蜡或封存在固体石蜡中,而钠、钾应保存在煤油中.(煤油密度为0.8g/cm3)2.自然界里最软的金属元素是什么?它有哪些特征?点拨铯是自然界中最软的金属.铯具有活泼的化学性质,它本来披着一件漂亮的略带金色的“外衣”,可是一与空气接触,马上就换成了灰蓝色,甚至不到一分钟就自动地燃烧起来,发出玫瑰般的紫红色或蓝色的光辉,把它投到水里,会立即发生强烈的化学反应,着火燃烧,有时还会引起爆炸.即使把它放在冰上,也会燃烧起来.正因为它这么地“不老实”,平时人们就把它“关”在煤油里,以免与空气、水接触.最有意思的是,铯的熔点很低,很容易就能变成液体.一般的金属只有在熊熊的炉火中才能熔化,可是铯却十分特别,熔点只有28.40℃,除了水银之外,它就是熔点最低的金属了.人体的正常温度是37℃,所以把铯放到手心里,它就会像冰块掉进热锅里那样很快地化成液体,当然,是不可以把它直接放到手心里的.知识点3 碱金属的化学性质(重点、难点)我们知道,钠的化学性质很活泼.它的原子的最外电子层是1个电子,在化学反应中容易失去最外层电子.锂、钾、铷、铯等原子的最外电子层都是1个电子,都容易失去最外层电子,因此它们的化学性质都很活泼.失去电子是氧化反应,所以碱金属是强还原剂.Ⅰ跟非金属的反应碱金属都像钠一样能跟氧气起反应.锂跟氧气起反应,生成氧化锂:4Li+O2=2Li2O钾、铷等跟氧气起反应,生成比过氧化物更复杂的氧化物.碱金属能够跟大多数的非金属起反应,表现出很强的金属性.实验2-8:钾与氧气的反应实验目的:通过钾的性质实验与钠的性质实验相比较,认识碱金属的通性.实验原理:碱金属单质都具有银白色光泽,并具有密度小、硬度小、熔点低、导电性强的特点,是典型的轻金属.碱金属的化学性质都很活泼,表现出很强的金属性、还原性.钾的化学性质比钠还活泼,钾在空气里燃烧时火焰呈浅紫色,生成物是黄色的过氧化钾(K2O2)和橙黄色的超氧化钾(KO2)的混合物.实验用品:小刀、镊子、酒精灯、石棉网、铁架台、钾、滤纸.实验步骤:(1)观察钾的外观时,采用与钠的性质实验同样的操作方法.(2)从钾块上切取绿豆大小一粒,用滤纸吸于煤油后,放在石棉网上,然后用酒精灯加热,钾熔化,燃烧时火焰呈紫色,生成物呈黄色.(如图2-17所示)实验现象:钾熔化为闪亮的液球(与钠相同),钾球很快就剧烈燃烧起来(比钠燃烧更容易、更剧烈),燃烧时有火焰(与钠燃烧相同),火焰呈紫色(与钠燃烧不同).实验结论:在加热的条件下,钾在空气中燃烧且比钠更易燃烧.钾比钠更活泼,金属性更强.【注意】①取用钾要用镊子,切忌用手接触钾,以防手被腐蚀.②所取用的钾粒比黄豆粒略小就有很好的实验效果,过大的钾粒在燃烧时易发生爆炸.③在实验室里钾是保存在煤油中的,钾和煤油都易着火,所以实验过程中要加强防火.④切下的未用的钾要及时放回煤油中去.⑤实验用品中的小刀、镊子、石棉网和滤纸都必须干燥无水.⑥为了观察到应有的实验现象,待燃烧的钾要用滤纸吸干煤油.用过的滤纸要妥善处理,防止其燃烧失火.⑦盛放燃烧着的钾块的石棉网要无破损且干燥,要在铁圈上放平.Ⅱ跟水的反应碱金属都能跟水起反应。

高一碱金属单质知识点总结

高一碱金属单质知识点总结

高一碱金属单质知识点总结碱金属单质的性质1. 物理性质碱金属单质是银白色的金属,有着良好的导电性能和导热性能。

它们的密度通常比较小,且具有低熔点和沸点。

其中,锂是最轻的金属,而钫是最重的碱金属,密度逐渐增大。

碱金属单质的硬度较低,可以轻松地被切割或挤压成各种形状。

2. 化学性质碱金属单质具有极强的还原性,容易失去外层电子形成+1价阳离子。

在水中能够剧烈反应产生氢气,生成的氢氧化物溶液碱性很强。

与氧气反应时能够生成较为强烈的火焰。

碱金属在空气中主要与氧气和水分发生反应。

它们在空气中氧化迅速,因此必须保存在惰性气体(如氩气)的环境中。

与水的反应也非常迅速而剧烈,放出大量氢气,并产生氢氧化物。

碱金属单质的应用1. 碱金属离子电池碱金属的化学性质使得它们在电池中有着重要的应用。

锂电池是目前最为常见的充电电池,应用广泛于移动电话、笔记本电脑、相机等各种电子设备中。

随着节能环保意识增强,锂电池的应用将更加广泛。

2. 合金制品碱金属与其他金属可以形成各种合金,这些合金具有较高的强度、耐腐蚀性和其他特殊性质。

钠、钾等碱金属与铝、钛、镁等金属结合制成的合金在航空航天、汽车制造等领域有广泛的应用。

碱金属的实验1. 钠与水反应可以进行给学生进行实验,在实验室中将一小块钠放入水中,钠表面会出现白色的氢氧化钠,并且放出氢气,同时伴有剧烈的火花。

学生可以通过这样的实验观察到钠对水的化学性质。

2. 钾的燃烧反应将一小块钾投入烧杯中,用锡纸盖住燃烧的钾,点燃锡纸,产生的钾燃烧会发出红色的火焰,学生可以通过这个实验观察到碱金属在氧气中的性质。

总结碱金属单质是一类具有特殊性质的金属元素,它们在化学和应用领域具有重要的地位。

通过对碱金属单质的性质、应用以及相关实验的了解,有助于加深对此类元素的认识,同时也为相关实验教学提供了一定的参考。

碱金属元素知识点整理

碱金属元素知识点整理

第五讲碱金属元素1.复习重点碱金属元素得原子结构及物理性质比较,碱金属得化学性质,焰色反应实验得操作步骤;原子得核外电子排布碱金属元素相似性递变性2.难点聚焦(1)碱金属元素单质得化学性质:1)相似性:碱金属元素在结构上得相似性,决定了锂、钠、钾、铷、铯在性质上得相似性,碱金属都就是强还原剂,性质活泼。

具体表现在都能与、、水、稀酸溶液反应,生成含(为碱金属)得离子化合物;她们得氧化物对应水化物均就是强碱;2)递变性:随着原子序数得增加,电子层数递增,原子半径渐大,失电子渐易,还原性渐强,又决定了她们在性质上得递变性。

具体表现为:①与反应越来越剧烈,产物越来越复杂,②与反应越来越剧烈,③随着核电荷数得增强,其最高价氧化物对应得水化物得碱性增强:;(2)实验就是如何保存锂、钠、钾:均就是活泼得金属,极易氧化变质甚至引起燃烧,它们又都能与水、水溶液、醇溶液等发生反应产生氢气,就是易燃易爆物质,存放它们要保证不与空气、水分接触;又因为它们得密度小,所以锂只能保存在液体石蜡或封存在固体石蜡中,而将钠、钾保存在煤油中;(3)碱金属得制取:金属与主要就是用电解熔融氯化物得方法制取;金属因为易溶于盐不易分离,且电解时有副反应发生,故一般采用热还原法用从熔融中把置换出来(不就是普通得置换,而就是采用置换加抽取得方法,属于反应平衡);铷与铯一般也采用活泼金属还原法制取。

(4).焰色反应操作得注意事项有哪些?(1)所用火焰本身得颜色要浅,以免干扰观察.(2)蘸取待测物得金属丝本身在火焰上灼烧时应无颜色,同时熔点要高,不易被氧化.用铂丝效果最好,也可用铁丝、镍丝、钨丝等来代替铂丝.但不能用铜丝,因为它在灼烧时有绿色火焰产生.(3)金属丝在使用前要用稀盐酸将其表面得氧化物洗净,然后在火焰上灼烧至无色,以除去能起焰色反应得少量杂质.(4)观察钾得焰色时,要透过蓝色得钴玻璃片,因为钾中常混有钠得化合物杂质,蓝色钴玻璃可以滤去黄色火焰,以瞧清钾得紫色火焰.3.例题精讲例1已知相对原子质量:6、9,23,39,85。

新版高中化学讲义:碱金属元素

新版高中化学讲义:碱金属元素

一、碱金属元素概述 1. 定义碱金属元素为第ⅠA 族(除氢)的元素。

包括锂(Li)、钠(Na)、钾(K)、铷(Rb)、铯(Cs),钫(Fr),其中钫为放射性元素。

2. 相似性碱金属元素原子的最外层都有_____个电子,很容易_______,最高正价为_____价,最高价氧化物对应的水化物均为_____碱,是典型的活泼金属元素。

3. 递变性随着核电荷数的增加,碱金属元素原子的电子层数逐渐_______,原子半径逐渐______。

【答案】1 失去 +1 强 增多 增大二、碱金属元素的物理性质 碱金属 颜色状态密度/g·cm -3 熔点/Ⅰ 沸点/Ⅰ 锂 银白色柔软0.534 180.5 1347 钠 0.97 97.81 882.9 钾 0.86 63.65 774 铷 1.532 38.89 688 铯 略带金色光泽 1.87928.40678.41. 相似性第30讲 碱金属元素知识导航知识精讲碱金属单质都有______色的金属光泽(但____略带金色光泽)、硬度小、有延展性,密度小、熔沸点较低,导电、导热性良好,液态钠钾合金可做原子反应堆的导热剂。

2. 递变性随着核电荷数的增加,单质的熔点和沸点逐渐______,密度逐渐______,(但ρK ___ρNa ),且Li 、Na 、K 的密度_____1,Rb 、Cs 的密度_____1。

【答案】银白 铯 降低 增大 < < >三、碱金属与氧气的反应碱金属现象及产物化学方程式Li 不如Na 剧烈,生成Li 2O 4Li + O 2 =====△2Li 2O Na 剧烈燃烧,生成Na 2O 2 2Na + O 2 =====△Na 2O 2 K 燃烧比Na 剧烈,生成复杂的氧化物 K + O 2 =====△KO 2(超氧化钾)Rb 燃烧反应更剧烈,生成更复杂的氧化物Cs燃烧反应更剧烈,生成更复杂的氧化物【实验结论】随着核电荷数的增加,碱金属与O 2反应越来越_____,产物越来越_________。

碱金属元素的性质

碱金属元素的性质

∙碱金属元素的性质:
(1)失电子能力依次增强,金属性依次增强
(2)单质性质同:均为强还原性,银白色,均具轻、软,与水或酸反应置换出氢依
次变易,还原性依次增强,密度趋向增大,熔沸点降低,硬度减小
(3)化合物性质
同:氢氧化物都是强碱;异:氢氧化物的碱性依次增强。

注:①Li比煤油轻,故不能保存在煤油中,而封存在石蜡中。

②Rb,Cs比水重,故与水反应时,应沉在水底。

③与O2反应时,Li为Li2O;Na可为Na2O,Na2O2;K,Rb,Cs的反应生成物更复杂。

∙卤族元素的性质:
(1)相似性:
①卤素原子最外层有7个电子,易得1个电子形成稳定结构,因此卤素的负价
为-1价。

其最高价氧化物及水化物的化学式通式分别为X2O7和HXO4(F除外)
②卤族元素的单质均为双原子分子(X2);均能与H2化合:H2+X2=2HX;均能与
水反应,其通式(除F 2外)为:H2O+X2HX+HXO;与碱溶液反应逐渐减小。

(2)递变性:
①原子序数增大,原子的电子层数增加,原子半径增大,元素的非金属性减弱。

②单质的颜色逐渐加深从淡黄绿色→黄绿色→深红棕色→紫黑色,状态从气→气
→液→固,溶沸点逐渐升高;得电子能力逐渐减弱,单质的氧化性逐渐减弱,与氢气化合由易到难,与水反应的程度逐渐减弱。

③阴离子的还原性逐渐增强.氢化物的稳定性逐渐减弱。

④最高正价含氧酸的酸性逐渐减弱(氟没有含氧酸)。

碱金属的性质

碱金属的性质

碱金属的化学性质1. 代表物——Na (1)单质① 存在:化合态,NaCl 为主,其次有342,NaNO SO Na② 保存:煤油中③ 制取:电解熔融态NaOH 或NaCl ④ 性质物性:银白色、质软、比水轻、熔点低。

化性:与非金属反应:S Na S Na 22=+(爆炸)与氧反应:O Na O Na 2224常温+(白色)2222O Na O Na 点燃+(淡黄)与水反应:↑+=+22222H NaOH O H Na (轻—浮,热—球、氢—游、烈—声)与酸反应:+++↑=+Na H H Na 2222(剧烈,发生爆炸)与盐溶液作用:先跟水作用,生成NaOH 和2H ,NaOH 再跟盐作用生成难溶性碱,不能置换出盐中的金属元素。

⑤ 用途:做电光源透雾力强,用于航海;做还原剂冶炼金属(K ),钠钾合金做导热剂(2)化合物① 氧化物O Na 2:白色固体,溶于水生成NaOH ,不稳定继续跟2O 作用生成22O Na (淡黄色) 22O Na :淡黄色固体↑+=+2222422O NaOH O H O Na (漂白剂)232222222O CO Na CO O Na +=+(供氧剂)② 碱:NaOH :白色固体,易潮解,俗名苛性钠、烧碱③ 盐类:NaCl (食盐):存在海水中32CO Na :俗名苏打、纯碱。

稳定,加热难分解,晶体OH CO Na 23210•易风化。

3NaHCO :俗名小苏打,不稳定,加热C ︒150分解,溶解度小于32CO Na ,向饱和32CO Na 溶液中通入2CO 可见沉淀析出。

2.碱金属元素Fr Cs Rb K Na Li 、、、、、,代表物——Na (1)原子结构:同:最外层均为1个电子。

异:电子层数依次增加,原子半径依次增大。

(2)存在:均以化合态形式存在。

(3)元素性质:同:均为活泼金属,还原性强,容易失去1个电子成为1+价阳离子,无负价。

异:还原性依次增强。

高一化学碱金属知识点总结

高一化学碱金属知识点总结

高一化学碱金属知识点总结随着现代科学技术的不断发展,化学作为一门基础科学,对于我们的生活和社会产生了重要影响。

而在高中化学学习的过程中,碱金属是一个非常重要的知识点。

在这篇文章中,我们将总结高一化学中关于碱金属的知识。

1. 碱金属的特性碱金属是指周期表中第一组的元素,包括锂(Li)、钠(Na)、钾(K)、铷(Rb)、铯(Cs)和钫(Fr)。

这些元素在自然界中大多以化合物形式存在,具有许多共同的特性。

首先,碱金属是活泼的金属。

它们容易失去电子,形成带正电荷的离子,也就是阳离子。

这是因为它们的外层电子结构只有一个s电子,而这个电子很容易被移走。

其次,碱金属是非常活泼的金属。

它们与非金属反应非常迅速,甚至可以与空气中的水分和氧气反应起火。

这种反应非常强烈,有时甚至会爆炸。

另外,碱金属的密度相对较低,而且具有较低的熔点和沸点。

这使得它们在实际应用中有一定的用途,例如在制造合金和电池中广泛应用。

2. 碱金属与水的反应碱金属与水反应是我们学习化学时经常遇到的一个实验。

这个实验可以帮助我们了解碱金属的活泼性和与水反应的产物。

当碱金属与水反应时,会发生放出氢气的反应。

这是因为碱金属的离子与水分子结合形成了氢氧化物,并释放出氢气。

例如,钠与水反应的方程式可以表示为:2Na + 2H2O -> 2NaOH + H2↑在这个反应中,钠离子与水分子结合形成了钠氢氧化物(NaOH),并释放出氢气。

需要注意的是,碱金属与水反应是一个剧烈的放热反应,反应过程中会产生大量的热量。

因此,在进行实验时应该小心操作,以免发生意外。

3. 碱金属与非金属的反应除了与水反应外,碱金属还与非金属元素发生反应。

这些反应也非常活泼,产生的产物具有一定的特点。

例如,碱金属与卤素的反应非常剧烈,会产生相应的盐。

以钠和氯为例,它们的反应可以表示为:2Na + Cl2 -> 2NaCl在这个反应中,钠与氯发生了置换反应,生成了氯化钠。

另外一个例子是碱金属与氧气的反应。

元素及其化合物—碱金属

元素及其化合物—碱金属

元素及其化合物—碱金属碱金属是指位于第一族元素的一组金属元素,包括锂(Li)、钠(Na)、钾(K)、铷(Rb)、铯(Cs)和钫(Fr)。

碱金属的物理性质都有一些共同的特点。

首先,它们都是银白色的金属,具有良好的导电性和热导性。

其次,碱金属具有低的密度和熔点,以及较低的硬度和强度。

它们在常温下都是固体,但随着族别的增加,其熔点和沸点逐渐降低。

此外,碱金属在空气中容易氧化,在水中能够与水反应,产生氢气和碱性溶液。

碱金属的化学性质主要体现在它们的电子结构上。

碱金属的原子都只有一个价电子,容易失去这个价电子,形成带有+1电荷的阳离子。

这种稳定的+1价状态使碱金属具有良好的还原性,能够与非金属元素反应,形成离子化合物。

碱金属与氧气反应会产生氧化物,例如氧化钠(Na2O)和氧化钾(K2O)。

此外,碱金属还与水反应形成碱性氢氧化物,例如氢氧化钠(NaOH)和氢氧化钾(KOH)。

碱金属的氢氧化物具有强碱性,能够中和酸溶液并与酸反应。

这也是碱金属得名的原因。

碱金属在生活和工业中有广泛的应用。

锂是一种轻质金属,具有良好的电化学性能,广泛用于电池制造。

钠和钾是常见的金属元素,在冶金、玻璃制造和肥料生产中有重要的应用。

铷和铯是相对较稀有的金属,主要用于科学研究以及激光和光学设备中。

钫是一种人工合成的放射性元素,其化合物用于研究核反应和放射性同位素的应用。

虽然碱金属具有许多实用的应用,但它们也具有一些危险性。

由于碱金属的高反应性,与水等物质接触时容易发生剧烈的反应,产生氢气和溶液的腐蚀性。

此外,碱金属的离子在体内具有毒性,摄入过多会对人体健康产生危害。

总的来说,碱金属是一组具有共同性质的金属元素,具有良好的导电性和热导性,容易与非金属反应,形成离子化合物。

它们在生活和工业中有着广泛的应用,但也需要注意它们的危险性。

对于学习化学的人来说,碱金属是一个重要的研究对象,能够帮助我们深入了解元素和化合物的性质及其应用。

(完整版)碱金属元素知识点整理.docx

(完整版)碱金属元素知识点整理.docx

第五讲碱金属元素1.复习重点碱金属元素的原子结构及物理性质比较,碱金属的化学性质,焰色反应实验的操作步骤;原子的核外电子排布碱金属元素相似性递变性2.难点聚焦( 1)碱金属元素单质的化学性质:1)相似性:碱金属元素在结构上的相似性,决定了锂、钠、钾、铷、铯在性质上的相似性,碱金属都是强还原剂,性质活泼。

具体表现在都能与O2、Cl 2、水、稀酸溶液反应,生成含R ( R 为碱金属)的离子化合物;他们的氧化物对应水化物均是强碱;2)递变性:随着原子序数的增加,电子层数递增,原子半径渐大,失电子渐易,还原性渐强,又决定了他们在性质上的递变性。

具体表现为:①与O2反应越来越剧烈,产物越来越复杂,②与 H 2O 反应越来越剧烈,③随着核电荷数的增强,其最高价氧化物对应的水化物的碱性增强:CsOH RbOH KOH NaOH LiOH ;( 2)实验是如何保存锂、钠、钾:均是活泼的金属,极易氧化变质甚至引起燃烧,它们又都能与水、水溶液、醇溶液等发生反应产生氢气,是易燃易爆物质,存放它们要保证不与空气、水分接触;又因为它们的密度小,所以锂只能保存在液体石蜡或封存在固体石蜡中,而将钠、钾保存在煤油中;法用( 3)碱金属的制取:金属Li 和 Na 主要是用电解熔融氯化物的方法制取;金属K 因为易溶于盐不易分离,且电解时有副反应发生,故一般采用热还原Na 从熔融 KCl 中把 K 置换出来(不是普通的置换,而是采用置换加抽取的方法,属于反应平衡);铷和铯一般也采用活泼金属还原法制取。

(4).焰色反应操作的注意事项有哪些?(1) 所用火焰本身的颜色要浅,以免干扰观察.(2)蘸取待测物的金属丝本身在火焰上灼烧时应无颜色,同时熔点要高,不易被氧化.用铂丝效果最好,也可用铁丝、镍丝、钨丝等来代替铂丝.但不能用铜丝,因为它在灼烧时有绿色火焰产生.(3)金属丝在使用前要用稀盐酸将其表面的氧化物洗净,然后在火焰上灼烧至无色,以除去能起焰色反应的少量杂质.(4)观察钾的焰色时,要透过蓝色的钴玻璃片,因为钾中常混有钠的化合物杂质,蓝色钴玻璃可以滤去黄色火焰,以看清钾的紫色火焰.3.例题精讲例1已知相对原子质量:Li6.9,Na 23, K 39,Rb 85。

锂、钠、钾等碱金属元素的性质和应用

锂、钠、钾等碱金属元素的性质和应用
锂:最轻的金属元素,与水反应缓慢,与其它碱金属元素相比更活泼 钠:位于锂之后,与水反应剧烈,呈现强烈的金属光泽 钾:比钠更活泼,与水反应更为剧烈,与空气接触易氧化 总结:锂、钠、钾的化学性质表现出明显的递变性,钾最为活泼,钠次之,锂最不活泼
锂、钠、钾的具 体应用
锂在电池制造中的应用
锂离子电池:高 能量密度、长寿 命和低自放电率
添加标题
添加标题
碱金属元素与氧气反应生成氧化物
碱金属元素具有较高的电导率
碱金属元素的应 用
工业应用
电池:碱金属元素是电池制造中的重要原料,如锂离子电池。 化工:碱金属元素在化工生产中用作催化剂和溶剂等。 航空航天:某些碱金属元素如锂、钠、钾等在航空航天领域有重要应用。 电子:碱金属元素在电子工业中用于制造电子器件和集成电路等。
钾在农业和食品加工领域的应用
钾肥:提高农作物产量和品质 食品添加剂:改善食品口感和保鲜 农业领域:促进植物生长、提高抗逆性 食品加工领域:提高食品加工效率和品质
碱金属元素的安 全使用和防护
工业安全
碱金属元素的安全使用:遵循操作规程,穿戴防护用品 储存和运输:保持干燥、通风良好,远离火源和酸类物质 应急处理:使用干砂、二氧化碳灭火器等,避免用水或泡沫灭火器
碱金属元素原子半径随核电 荷数增加而增大
物理性质
碱金属元素都是银白色的金属,具有较低的熔点和沸点 碱金属元素具有较大的密度,其中锂的密度最小 碱金属元素具有较小的硬度,容易切割和加工 碱金属元素具有较强的导电性和导热性
化学性质
碱金属元素具有强还原性
碱金属元素与水反应生成氢氧化物 和氢气添加Leabharlann 题添加标题添加标题
添加标题
锂、钠、钾的原子半径逐渐增大, 电子云密度逐渐减小。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

元素周期律碱金属元素性质总结I.元素周期律1.周期表位置IA族(第1纵列),在2、3、4、5、6、7周期上均有分布。

元素分别为锂(Li)-3,钠(Na)-11,钾(K)-19,铷(Rb)-37,铯(Cs)-55,钫(Fr)-87。

2.碱金属的氢氧化物都是易溶于水, 苛性最强的碱, 所以把它们被称为为碱金属。

3.碱金属的单质活泼,在自然状态下只以盐类存在,钾、钠是海洋中的常量元素,其余的则属于轻稀有金属元素,在地壳中的含量十分稀少。

钫在地壳中极稀少,一般通过核反应制取。

4.保存方法:锂密封于石蜡油中,钠。

钾密封于煤油中,其余密封保存,隔绝空气。

II.物理性质II.1物理性质通性(相似性)1.碱金属单质皆为具金属光泽的银白色金属(铯略带金黄色),但暴露在空气中会因氧气的氧化作用生成氧化物膜使光泽度下降,呈现灰色。

常温下均为固态。

2.碱金属熔沸点均比较低。

摩氏硬度小于2,质软。

.导电、导热性、延展性都极佳。

3.碱金属单质的密度小于2g/cm3,是典型轻金属,锂、钠、钾能浮在水上。

4.碱金属单质的晶体结构均为体心立方堆积,堆积密度小。

II-2.物理性质递变性随着周期的递增,卤族元素单质的物理递变性有:1.金属光泽逐渐增强。

2.熔沸点逐渐降低。

3.密度逐渐增大。

钾的密度具有反常减小的现象。

II.3.物理性质特性1.铯略带有金色光泽,钫根据测定可能为红色,且具有放射性。

2.液态钠可以做核反应堆的传热介质。

3.锂密度比没有小,能浮在煤油中。

4.钾的密度具有反常现象。

钾的密度反常变化的原因:根据公式:ρ=A r/V原子,可知相对原子质量的增大使密度增加,而电子层的增加又使原子体积增大使得密度减小。

即单质的密度由相对原子质量和原子体积两个因素决定。

对钾来说,核对最外层引力较小,体积增大的效应大于相对原子质量增加产生的影响,结果钾的密度反而比钠小。

II.5焰色反应1.碱金属离子及其挥发性化合物在无色火焰中燃烧时会显现出独特的颜色,这可以用来鉴定碱金属离子的存在,锂、铷、铯也是这样被化学家发现的。

2.电子跃迁可以解释焰色反应,碱金属离子的吸收光谱落在可见光区,因而出现了标志性颜色。

III.化学性质III-1.原子化学性质III-1.1.原子化学性质通性1.最外层均有1个电子2.单质均为单原子分子,化学性质活泼。

3.在化学反应中易失1个电子形成离子。

4.与典型的非金属形成离子化合物。

III-1.2.原子化学性质递变性1.原子半径逐渐增大,相对原子质量逐渐增大。

原子核对外层电子的引力逐渐减弱。

2.电子层逐渐增多,原子序数(核电荷数、质子数、核外电子数)逐渐增大。

3.金属性性随周期数递增而增强。

III-1.3原子化学性质特性1.铷和钫对光线特别敏感,在极其微弱的光线照射下也会放出电子。

把它们喷镀到银片上,即可制成“光电管”——受光照,便产生电流,光线越强,电流越大。

2.钫的所有同位素均具有放射性。

III-2.氧化还原性质1.单质都有还原性(相似性)原因:最外层都有1个电子,决定了在化学反应中易失电子,从而表现出还原性,还原性自上而下增强,金属性自上而下增强原因:碱金属位于第一主族,越往下走电子层数依次增加,原子核对最外层电子的束缚力越来越小,所以越容易失电子。

2.离子具有弱氧化性。

III.3与氧气的反应Li:在室温下缓慢氧化与点燃条件下均只生成氧化锂。

Na:在室温下迅速氧化生成氧化钠,点燃条件下生成过氧化钠,氧化钠和氧气在加热条件下生成过氧化钠,氧化钠暴露在空气中会生成过氧化钠,这是工业制取过氧化钠的方式,而工业制取氧化钠一般用钠和亚硝酸钠。

反应过氧化钠与氧气在加压情况下反应或在490℃下加热可得超氧化钠。

用氧气与钠的液氨溶液反应也会得到超氧化钠。

K:钾在室温下迅速氧化生成氧化钾,充足的氧气中点燃生成超氧化钾。

Rb:铷在室温下与氧气接触燃烧,产物由氧气充足程度决定,在充足氧气中剧烈燃烧超氧化铷,用氧气与铷的液氨溶液反应生成臭氧化铷。

Cs:与铷大致相同,反应更剧烈。

碱金属与氧气反应,普通氧化物不一定是最稳定的氧化物,从生成热的热量大小上可以判断氧化物稳定性。

注释:1.过氧化钠是以钠离子和过氧根离子结合的,而过氧根离子里,两个氧原子是以共价键结合的,碱金属的过氧化物中养的氧化数都是-1。

2.超氧化钾是钾离子和超氧根离子结合的,氧原子氧化数为-1/2。

3.超氧根离子具有顺磁性,氧分子之所以有顺磁性是因为氧分子里有两个未成对电子,超氧根离子里只有一个未成对电子,因此顺磁性比氧分子小。

4.氧原子之间的距离:过氧根离子>超氧根离子>氧分子。

5.常温时,超氧化物的晶体呈四面体结构,高温时呈立方体结构(与氯化钠相似)。

6.反应生成氧化物时,碱金属的电子转移给氧分子,氧分子获得一个电子成为超氧根离子,氧分子获得两个电子成为过氧根离子,氧原子获得两个电子成为氧离子。

此反应可比较碱金属的还原性氧化物的性质:普通氧化物碱金属中,只有锂可以直接生成氧化物,其它碱金属单质的氧化物可以被继续氧化4Li+O₂=2Li2O碱金属的正常氧化物是反磁性物质,都能与水反应生成对应的氢氧化物反应通式:M2O+H2O=MOH过氧化物所有碱金属都能形成过氧化物,除锂外,其它碱金属可以直接化合得到过氧化物。

反应通式:2M+O₂=M2O₂过氧化物中的氧元素以过氧阴离子的形式存在,过氧根离子的键级为1。

过氧化物是强碱(质子碱),能与水反应生成碱性更弱的氢氧化物和过氧化氢,由于反应大量放热,生成的过氧化氢会迅速分解产生氧气。

反应通式:2M2O₂+2H2O=4MOH+O₂2H2O₂=2H2O+O₂过氧化物可与酸性氧化物反应生成对应的正盐,若与之反应的酸性氧化物有较强还原性,则有被氧化的可能反应通式:2M2O₂+2CO₂=2M2CO₃+O₂M2O₂+SO₂=2M2SO₄过氧化物在熔融状态下可与某些铂系元素形成含氧酸盐反应通式:Ru+3M2O₂=M2RuO₄+2M2O过氧化物中常见的是过氧化钠(Na2O₂)和过氧化钾(K2O₂),它们可用于漂白,熔矿,生氧。

超氧化物除锂外,所有碱金属元素都有对应的超氧化物,钾铷铯能在空气中直接化合得到超氧化物。

反应通式:M+O₂=MO₂超氧化物中存在超氧离子,分子轨道表明超氧离子存在一个σ键和一个3电子π键,键级为3/2,有顺磁性。

超氧化物能与水反应生成对应氢氧化物,氧气和过氧化氢,反应大量放热,过氧化氢分解反应通式:2MO₂+2H2O=2MOH+H2O₂+O₂2H2O₂=2H2O+O₂超氧化物能与酸性氧化物反应,类似过氧化物,其中,超氧化钾与二氧化碳的反应被应用于急救空气背包中反应通式:4MO₂+2CO₂=2M2CO₃+3O₂超氧化钾是最为常见的超氧化物臭氧化物除锂外,干燥的碱金属氢氧化物固体与臭氧反应,产物在液氨中重结晶可得到臭氧化物晶体反应通式:6MOH+4O₃=4MO₃+2MOH·H2O+O₂臭氧化物在放置过程中缓慢分解反应通式:2MO₃=2MO₂+O₂臭氧化物中存在臭氧离子,V型结构,键级为1/3,极不稳定,具有顺磁性臭氧化物的其他性质与超氧化物类似。

III.4碱金属与水反应反应通式:2X+2H2O=2XOH+H2共同现象:剧烈反应,放出热量,生成可燃气体(氢气),反应后向水中滴加酚酞变红。

独有现象:Li:接触到水时发出嘶嘶声,金属熔化成小球在水面上快速移动。

反应速度较慢。

Na:接触到水时发出嘶嘶声,金属熔化成小球在水面上快速移动。

反应速度快,可以发生轻微爆炸。

K:接触到水产生紫色火焰,金属熔化并溅射。

Rb:接触到水迅速跳起,金属熔化喷出。

Cs:火球腾空而起。

III.5与卤素反应反应通式:2X+Y2=2XY反应现象:1.碱金属与卤素反应生成相应的盐,如:2Na+Cl2=点燃2NaCl2.由于所有的碱金属的卤素盐的粉末都是白色,所以会产生白色的烟(与F2和Cl2反应)。

3.由于碱金属的化学性质的活泼程度由上到下递增而卤素相反,所以导致反应条件不尽相同,如最活泼的碱金属Cs(不考虑Fr)和最活泼的卤素单质F2相遇便立即发生极其猛烈的爆炸,而Li置于Cl2中只会在Li的表层形成LiCl的外层,难以有明显反应,所以必须点燃才能有明显反应;Br2和I2是不能进行比较的因为它们是液体或固体,所以可以使反应的接触程度变大,使反应易于进行。

4.对于Br2和I2(I2当然要粉末),因为B r2是液体所以由于上述原因可以与所有碱金属猛烈反应,并有橙红色的雾生成(液溴由于反应放热气化在上空再次液化导致的),I2也大致相同,产生的是紫色的烟(常况下I2不能液化,也就是说I2常况下不存在液体的形式,所以直接成为固体)只是反应难度不同罢了。

III.6与氮气反应Li:6Li+N2=2Li3NNa:高温、隔绝空气的条件下2Na+3N2=2NaN3(叠氮化钠)反应无法生成Na3N(极不稳定)。

其他碱金属与氮气几乎不反应III.7与氢气反应反应通式:2X+H2=高温2XH碱金属单质在氢气流中加热就可获得对应的氢化物1.碱金属的氢化物均为气态,H显-1价。

2.碱金属氢化物中以氢化锂(LiH)最为稳定,850℃分解。

氢化物不是很稳定。

3.碱金属氢化物属于离子型氢化物,熔沸点高,晶体结构为氯化钠型,碱金属氢化物中存在氢负离子,电解溶于氯化锂的氢化锂可以在阳极得到氢气,这可以证明氢负离子的存在。

4.碱金属氢化物与水剧烈反应放出氢气MH+H2O=MOH+H₂III.8与其他非金属反应与硫反应:2R+S=R2S,反应爆炸与磷反应:3R+P==R3PIII.9氢氧化物碱金属元素的氢氧化物常温下为白色固体,可溶或易溶于水,溶于水放出大量热,在空气中会发生潮解并吸收酸性气体;除氢氧化锂外其余的碱金属氢氧化物都属于强碱,在水中完全电离。

2MOH+CO₂=M2CO₃+H2O2MOH+2Al+2H2O=2MAlO₂+3H₂2MOH+Al2O₃=2MAlO₂+H2O3MOH+FeCl₃=Fe(OH)₃+3MCl碱金属氢氧化物中以氢氧化钠和氢氧化钾最为常见,可用作干燥剂。

III.10盐类碱金属的盐类大多为离子晶体,而且大部分可溶于水,其中不溶的盐类有1.锂盐:氟化锂、碳酸锂、磷酸锂2.钠盐:醋酸铀酰锌钠、六羟基合锡(Ⅳ)酸钠、三钛酸钠、铋酸钠、六羟基合锑酸钠3.钾盐:六硝基合钴酸钾、高氯酸钾、四苯基硼酸钾、高铼酸钾4.铷盐及铯盐:与钾盐一样,但溶解度更小。

卤化盐:碱金属卤化物中常见的是氯化钠和氯化钾,它们大量存在于海水中,电解饱和氯化钠可以得到氯气,氢气和氢氧化钠,这是工业制取氢氧化钠和氯气的方法。

阳极:2Cl--2e=Cl₂↑阴极:2H++2e=H₂↑总反应:2NaCl+2H2O=通电2NaOH+H₂↑+Cl₂↑硫酸盐:碱金属硫酸盐中以硫酸钠最为常见,十水合硫酸钠俗称芒硝,用于相变储热,无水硫酸钠俗称元明粉,用于玻璃、陶瓷工业及制取其它盐类。

相关文档
最新文档