2019年中考数学试卷分类汇编 科学计数法
2019年中考数学专题复习科学计数法专项练习
科学计数法真题专项练习(一)一、选择题1.(2018 湖南益阳)2017年底我国高速公路已开通里程数达13.5万公里,居世界第一,将数据135000用科学计数法表示正确的是()A.1.35×106B.1.35×105C.13.5×104D.135×103【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数【解答】解:135000=1.35×105故选:B.2.(2018 柳州中考)世界人口约7000000000人,用科学记数法可表示为()A.9×107B.7×1010C.7×109D.0.7×109【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:7000000000=7×109.故选:C.3.(2018 吉林长春)长春市奥林匹克公园即将于2018年年底建成,它的总投资额约为2500000000元,2500000000这个数用科学记数法表示为()A.0.25×1010B.2.5×1010C.2.5×109D.25×108【分析】利用科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:2500000000用科学记数法表示为 2.5×109.故选:C.4.(2018 眉山市)据相关报道,开展精准扶贫工作以来,我国约有65000000人摆脱贫困,将65000000用科学记数法表示为()107106 D. 6.5×A. 65×106B. 0.65×108 C. 6.5×【答案】D【解析】分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n1 / 5的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.详解:65000000=6.5×107,故选:D.5.(2018 山东莱芜)经中国旅游研究院综合测算,今年“五一”假日期间全国接待国内游客1.47亿人次,1.47亿用科学记数法表示为()A.14.7×107B.1.47×107C.1.47×108D.0.147×109【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解: 1.47亿用科学记数法表示为 1.47×108,故选:C.6.(2018 十堰市中考)北京时间6月5日21时07分,中国成功将风云二号H气象卫星送入预定的高度36000km的地球同步轨道,将36000km用科学记数法表示为.【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:36000km=3.6×104km.故答案为: 3.6×104km.7.(2018 云南昆明)共享单车进入昆明市已两年,为市民的低碳出行带来了方便,据报道,昆明市共享单车投放量已达到240000辆,数字240000用科学记数法表示为.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将240000用科学记数法表示为: 2.4×105.故答案为 2.4×105.8.(2018 辽宁葫芦岛)据旅游业数据显示,2018年上半年我国出境旅游超过129 000 000人次,将数据129 000 000用科学记数法表示为.【解答】解:129000000=1.29×108.故答案为: 1.29×108.9.(2016 安徽)2016年3月份我省农产品实现出口额8362万美元,其中8362万用科学记2 / 53 / 5数法表示为()A.8.362×107B.83.62×106C.0.8362×108D.8.362×108【解答】解:8362万=83620000=8.362×107,故选择 A . 10.(2016甘肃省天水市) 1.58×106米的百万分之一大约是()A .初中学生小丽的身高B .教室黑板的长度C .教室中课桌的宽度D .三层楼房的高度【解答】解:1.58×106米的百万分之一= 1.58×106×6110=1.58米,这和一位初中学生的身高相近,故选择A .11.. (2016广东省广州市)据统计,2015年广州地铁日均客运量约为 6 590 000.将6 590000用科学记数法表示为()A .6.59×104B .659×104C .65.9×105D .6.59×106【解答】解: 6 590 000=6.59×106,故选择D .12.(2016 广东茂名)2015年茂名市生产总值约2450忆元,将2450....用科学记数法表示为()A .0.245×104B .2.45×103C .24.5×102D .2.45×1011【解答】解:2450=2.45×1000=2.45×103,故选择B.13.(2016 贵州省毕节市)2016年5月下旬,中国大数据博览会在贵阳举行,参加此次大会的人数约有89000人,将89000用科学计数法表示为()A. 89×103B. 8.9×104C. 8.9×103D. 0.89×105【解答】解:89 000=8.9×104,故选择 B. 14.(2016河南省)某种细胞的直径是0.00000095米,将0.00000095用科学记数法表示为()(A )7105.9(B )8105.9(C )71095.0(D )51095【解答】解:∵0.00000095 =9.5×0.0000001=9.5×10-7,故选择 A.15.(2016湖北省黄石市)地球的平均半径约为 6 371 000米,该数字用科学记数法可表示为()A .0.6371×107B .6.371×106C .6.371×107D .6.371×103【解答】解: 6 371 000=6.371×106,故选择B .16.(2016湖北宜昌)把0.22410写成科学记数法的形式,正确的是()4 / 5A.2.2310B. 2.2410 C. 2.2510D. 2.2610【解答】解:将0.22410化为2200,用科学记数法表示为: 2.2310,故选择 A .【牛刀小试】1.(2018 广东一模)广东省进出口总额在“十二五”末达到71400亿元,将数据71400亿用科学记数法表示为()A .7.1400×1012B .0.7140×1012C .71.400×1011D .7.140×1011【解答】解:71400亿用科学记数法表示为7.140×1012,故选:A .2.去年12月24日全国大约有1230000人参加研究生招生考试,1230000这个数用科学记数法表示为()A .1.23×106B .1.23×107C .0.123×107D .12.3×105【解答】解:1230000这个数用科学记数法表示为 1.23×106.故选:A .3.(2018 山东济南)数据130000可用科学记数法表示为()A .13×104B .1.3×105C .0.13×106D .1.3×104【解答】解:130000用科学记数法可表示为: 1.3×105,故选:B .4.北京故宫的占地面积达到720 000平方米,这个数据用科学记数法表示为()A .0.72×106平方米B .7.2×106平方米C .72×104平方米D .7.2×105平方米【解答】解:720 000=7.2×105平方米.故选:D .5.(2018 湖南邵阳模拟)2015年重庆力帆足球队再次征战中国足球超级联赛,重庆球迷热情高涨,球市异常火爆,第二轮比赛主场对阵卫冕冠军广州恒大淘宝队,重庆奥体中心涌现48500多名球迷支持家乡球队,将48500用科学记数法表示为.【解答】解:48500=4.85×105.故答案为: 4.85×1056.(2018 四川内江)目前世界上进行高超音速武器飞行试验最多的国家是中国,最成功的也是中国,至今中国已经成功进行了七次DF﹣ZF高超音速飞行试验,DF﹣ZF高超音速飞行器速度可达5﹣10马赫,射程可达12000千米.其中12000用科学记数法表示为.【解答】解:12000=1.2×104.故答案为: 1.2×104.7.(2018 安徽十校联考)在今年的春节黄金周中,全国零售和餐饮企业实现销售额约9260亿元,同比增长10.2%,这里的数字“9260亿”用科学记数法表示为.【解答】解:9260亿用科学记数法表示为9.26×1011,故答案为:9.26×1011.5 / 5。
2019年中考数学真专题01数与式-分类汇编含答案解析
专题01 数与式1.(2019·宿迁)2019的相反数是A.12019B.-2019 C.12019D.2019【答案】B【解析】2019的相反数是-2019.故选B.2.(2019·潍坊)2019的倒数的相反数是A.-2019 B.12019C.12019D.2019【答案】B【解析】2019的倒数是12019,12019的相反数为12019,所以2019的倒数的相反数是12019,故选B.3.(2019?邵阳)下列各数中,属于无理数的是A.13B.1.414 C.2D.4【答案】C【解析】4=2是有理数;2是无理数,故选C.4.(2019?黄石)若式子12xx在实数范围内有意义,则x的取值范围是A.x≥1且x≠2B.x≤1C.x>1且x≠2D.x<1【答案】A【解析】依题意,得x-1≥0且x-200,解得x≥1且x≠2.故选A.5.(2019?河南)下列计算正确的是A.2a+3a=6a B.(-3a)2=6a2C.(x-y)2=x2-y2D.32222【答案】D【解析】2a+3a=5a,A错误;(-3a)2=9a2,B错误;(x-y)2=x2-2xy+y2,C错误;32222,D正确,故选D.6.(2019·安徽)2019年“五一”假日期间,某省银联网络交易总金额接近161亿元,其中161亿用科学记数法表示为A .1.61×109B .1.61×1010C .1.61×1011D .1.61×1012【答案】B【解析】161亿=16100000000=1.61×1010.故选B .7.(2019?河南)成人每天维生素D 的摄入量约为0.0000046克.数据“0.0000046”用科学记数法表示为A .46×10-7B .4.6×10-7C .4.6×10-6D .0.46×10-5【答案】C【解析】0.0000046=4.6×10-6.故选C .8.(2019·安徽)在-2,-1,0,1这四个数中,最小的数是A .-2B .-1C .0D .1【答案】A 【解析】在2、1、0、1这四个数中,大小顺序为:2101,所以最小的数是2,故选A .9.(2019·重庆A 卷)下列各数中,比1小的数是A .2B .1C .0D .-2【答案】D【解析】根据负数小于0,0小于正数,且负数的绝对值越大,本身就越小,即可确定-2最小,故选D .10.(2019·安徽)已知三个实数a ,b ,c 满足a-2b+c=0,a+2b+c<0,则A .b>0,b 2-ac ≤0B .b<0,b 2-ac ≤0C .b>0,b 2-ac ≥0D .b<0,b 2-ac ≥0【答案】D【解析】∵a-2b+c=0,∴a+c=2b ,∴a+2b+c=4b<0,∴b<0,∴a 2+2ac+c 2=4b 2,即22224aac cb,∴b 2-ac=22222220444a c aac caac c ac,故选D .11.(2019?北京)如果m+n=1,那么代数式22221()()m n mn mmnm的值为A .-3B .-1C .1D .3【答案】D【解析】原式=2()m n m n m mn ·(m+n )(m -n )=3()m m mn ·(m+n )(m -n )=3(m+n ),当m+n=1时,原式=3.故选D .12.(2019?河北)如图,若x 为正整数,则表示22(2)1441x xxx 的值的点落在A .段①B .段②C .段③D .段④【答案】B【解析】∵2222(2)1(2)111441(2)111x x x xxx xx x x ,又∵x 为正整数,∴12≤x<1,故表示22(2)1441x xxx 的值的点落在②,故选B .13.(2019·重庆A 卷)估计1(2362)3的值应在A .4和5之间B .5和6之间C .6和7之间D .7和8之间【答案】C【解析】1(2362)3=2+623=2+24,又因为4<24<5,所以6<2+24<7,故选C .14.(2019?北京)在数轴上,点A ,B 在原点O 的两侧,分别表示数a ,2,将点A 向右平移1个单位长度,得到点C ,若CO=BO ,则a 的值为A .-3 B .-2C .-1D .1【答案】A 【解析】∵点C 在原点的左侧,且CO=BO ,∴点C 表示的数为-2,∴a=-2-1=-3.故选A .15.(2019·滨州)下列各数中,负数是A .(2)B .2C .22D .02【答案】B 【解析】A 、22,故此选项错误;B 、22,故此选项正确;C 、224,故此选项错误;D 、021,故此选项错误,故选B .16.(2019?山西)下列二次根式是最简二次根式的是A.12B.127C.8D.3【答案】D【解析】A、1222,故A不符合题意;B、1222177,故B不符合题意;C、822,故C不符合题意;D、3是最简二次根式,故D符合题意.故选D.17.(2019?广东)实数a、b在数轴上的对应点的位置如图所示,下列式子成立的是A.a>b B.|a|<|b| C.a+b>0 D.ab<0【答案】D【解析】由图可得:-2<a<-1,0<b<1,∴a<b,故A错误;|a|>|b|,故B错误;a+b<0,故C错误;ab<0,故D正确,故选D.18.(2019·金华)某地一周前四天每天的最高气温与最低气温如右表,则这四天中温差最大的是星期一二三四最高气温10 °C 12 °C 11 °C 9 °C最低气温 3 °C 0 °C -2 °C -3 °C A.星期一B.星期二C.星期三D.星期四【答案】C【解析】星期一温差:10-3=7 °C;星期二温差:12-0=12 °C;星期三温差:11-(-2)=13 °C;星期四温差:9-(-3)=12 °C,综上,周三的温差最大,故选C.19.(2019·温州)计算:(-3)×5的结果是A.-15 B.15 C.-2 D.2【答案】A【解析】(-3)×5=-15,故选A .20.(2019·济宁)下列计算正确的是A .2(3)3B .3355C .36=6D .0.360.6【答案】D 【解析】A .2(3)3,故此选项错误;B .3355,故此选项错误;C .366,故此选项错误;D .0.360.6,正确.故选D .21.(2019·南京)面积为4的正方形的边长是A .4的平方根B .4的算术平方根C .4开平方的结果D .4的立方根【答案】B 【解析】面积为4的正方形的边长是4,即为4的算术平方根,故选B .22.(2019·南京)下列整数中,与1013最接近的是A .4B .5C .6D .7【答案】C 【解析】∵9<13<16,∴3<13<4,∴与13最接近的是4,∴与10-13最接近的是6.故选C .23.(2019·天津)估计33的值在A .2和3之间B .3和4之间C .4和5之间D .5和6之间【答案】D【解析】∵25<33<36,∴5<33<6.故选D .24.(2019·临沂)下列计算错误的是A .3243a b ab a bB .2326mnm nC .523aaaD .2221455xyxyxy【答案】C 【解析】选项A ,单项式×单项式,323243a babaa b ba b ,选项正确;选项B ,积的乘方,2326mnm n ,选项正确;选项C ,同底数幂的除法,525(2)7aa a a ,选项错误;选项D ,合并同类项,2222215145555xyxyxyxyxy ,选项正确,故选C .25.(2019·滨州)若8mx y 与36n x y 的和是单项式,则3m n 的平方根为A .4B .8C .±4D .±8【答案】D【解析】由8mx y 与36nx y 的和是单项式,得31m n,.333164m n,64的平方根为8.故选D .26.(2019·南充)下列各式计算正确的是A .2(2)(2)a a aB .235()x x C .623xx xD .23x xx【答案】D【解析】A 、x+x 2,无法计算,故此选项错误;B 、(x 2)3=x 6,故此选项错误;C 、x 6÷x 2=x 4,故此选项错误;D 、x ·x 2=x 3,故此选项正确,故选D .27.(2019·天津)计算2211a a a 的结果是A .2B .22aC .1D .41a a 【答案】A 【解析】原式=222(1)211a a a a ,故选A .28.(2019·安徽)计算182的结果是__________.【答案】3 【解析】182=9=3,故答案为:3.29.(2019?绍兴)因式分解:x 2-1=__________.【答案】(x+1)(x-1)【解析】原式=(x+1)(x-1).故答案为:(x+1)(x-1).30.(2019?黄冈)分解因式3x 2-27y 2=__________.【答案】3(x+3y )(x -3y )【解析】原式=3(x 2-9y 2)=3(x+3y )(x-3y ),故答案为:3(x+3y )(x-3y ).31.(2019?哈尔滨)把多项式a 3-6a 2b+9ab 2分解因式的结果是__________.【答案】a (a -3b )2【解析】a 3-6a 2b+9ab 2=a (a 2-6ab+9b 2)=a (a -3b )2.故答案为:a (a -3b )2.32.(2019?衡阳)273=__________.【答案】23【解析】原式=33323.故答案为:23.33.(2019?镇江)氢原子的半径约为0.00000000005 m ,用科学记数法把0.00000000005表示为__________.【答案】5×10-11【解析】用科学记数法把0.00000000005表示为5×10-11.故答案为:5×10-11.34.(2019·重庆A 卷)计算:011(π3)()2=__________.【答案】3【解析】原式=1+2=3,故答案为:3.35.(2019·德州)33x x ,则x 的取值范围是__________.【答案】3x 【解析】根据绝对值的意义得,30x,∴3x ,故答案为:3x .36.(2019·聊城)计算:115()324=__________.【答案】23【解析】原式=542()653,故答案为:-23.37.(2019·宿迁)实数4的算术平方根为__________.【答案】2 【解析】∵224,∴4的算术平方根是2.故答案为:2.38.(2019·临沂)一般地,如果40xa a,则称x 为a 的四次方根,一个正数a 的四次方根有两个.它们互为相反数,记为4a ,若4410m,则m __________.【答案】10【解析】∵4410m,∴4410m,∴10m,故答案为:10.39.(2019·连云港)64的立方根是__________.【答案】4【解析】∵43=64,∴64的立方根是4,故答案为:4.40.(2019·嘉兴)数轴上有两个实数a,b,且a>0,b<0,a+b<0,则四个数a,b,-a,-b的大小关系为__________(用“<”号连接).【答案】b a a b【解析】∵a>0,b<0,a+b<0,∴四个数a,b,-a,-b在数轴上的分布为:∴b<-a<a<-b.故答案为:b<-a<a<-b.41.(2019·天津)计算(31)(31)的结果等于__________.【答案】2【解析】原式=3-1=2.故答案为:2.42.(2019·天津)计算5x x的结果等于__________.【答案】6x【解析】56x x x,故答案为:6x.43.(2019·南充)计算:2111xx x__________.【答案】x+1【解析】2111xx x=2111xx x211xx111x xx1x,故答案为:x+1.44.(2019·宿迁)计算:11()π1|13| 2.【解析】原式21313.45.(2019·扬州)计算或化简:(1)08(3π)4cos45;(2)2111aa a.【解析】(1)08(3π)4cos45=22-1-4×22=22-1-22=-1.(2)2111aa a=2111aa a =211aa =(1)(1)1a a a =a+1.46.(2019·济宁)计算:16sin 6012()|32018|2.【解析】原式362312018320192.47.(2019·重庆A 卷)计算:(1)2()(2)x y y xy ;(2)2949()22a a aaa.【解析】(1)原式=22222xxy yxyy =2x .(2)原式=222949()222aa a a aaa 2269229aa a aa2(3)22(3)(3)a a a aa33a a.48.(2019?武汉)计算:(2x 2)3-x 2·x 4.【解析】(2x 2)3-x 2·x 4=8x 6-x6=7x 6.49.(2019?湖州)化简:(a+b )2-b (2a+b ).【解析】原式=a 2+2ab+b 2-2ab -b 2=a 2.50.(2019?益阳)化简:2244(4)2xxxx.【解析】原式=2(2)2(2)(2)x x xxx=242x x.51.(2019?河南)先化简,再求值:2212(1)244x x x xxx,其中x=3.【解析】原式=212(2)()22(2)x x x xxxx =322x x x=3x,当x=3时,原式=33=3.52.(2019?安顺)先化简2221(1)369x xxx ,再从不等式组24324x xx 的整数解中选一个合适的x的值代入求值.【解析】原式232(3)3(1)(1)x x xx x =31x x ,解不等式组24324x xx ①②得-2<x<4,∴其整数解为-1,0,1,2,3,∵要使原分式有意义,∴x 可取0,2.2019年全国中考数学真题分类汇编11 ∴当x=0时,原式=-3,(或当x=2时,原式=13).53.(2019·安徽)观察以下等式:第1个等式:211=111,第2个等式:311=226,第3个等式:211=5315,第4个等式:211=7428,第5个等式:211=9545,……按照以上规律,解决下列问题:(1)写出第6个等式:__________;(2)写出你猜想的第n 个等式:(用含n 的等式表示),并证明.【解析】(1)第6个等式:211=11666.(2)21121(21)n nn n .证明:∵右边112112(21)(21)21n n n n n n n 左边,∴等式成立.。
2019年北京中考数学试题(解析版)
{解析}本题考查了反比例函数表达式的求法,确定关于x轴的对称点的坐标是解题的关键.∵点A(a,b)在双曲线 上,∴k1=ab.∵点A与点B关于x轴对称,∴B(a,-b).∵点B在双曲线 上,∴k2=-ab.∴k1+k2=0.
{分值}2
{章节:[1-26-1]反比例函数的图像和性质}
{考点:反比例函数的解析式}
{分值}2
{章节:[1-11-1]与三角形有关的线段}
{考点:三角形的面积}
{考点:准确数与近似数}
{类别:常考题}
{难度:2-简单}
{题目}11.(2019年北京)在如图所示的几何体中,其三视图中有矩形的是.(写出所有正确答案的序号)
{答案}①②
{解析}本题考查了几何体的三视图.①中长方体的主视图、俯视图和左视图都是矩形,②中圆柱的主视图和左视图都是矩形,③中圆锥的三视图都不是矩形.
{分值}2
{章节:[1-18-2-3] 正方形}
{考点:平行四边形边的性质}
{考点:平行四边形对角线的性质}
{考点:矩形的判定}
{考点:菱形的判定}
{考点:正方形的判定}
{类别:高度原创}{类别:易错题}
{难度:4-较高难度}
{
{题目}17.(2019年北京)计算: .
{解析}本题考查了实数的运算,掌握绝对值的性质、零指数幂、特殊角的三角函数值及负指数幂是解题才能正确解答.
{分值}2
{章节:[1-18-2-2]菱形}
{考点:菱形的性质}
{考点:二元一次方程组的应用}
{类别:常考题}
{难度:3-中等难度}
{题目}15.(2019年北京)小天想要计算一组数据92,90,94,86,99,85的方差 ,在计算平均数的过程中,将这组数据中的每一个数都减去90,得到一组新数据2,0,4,-4,9,-5.记这组新数据的方差为 ,则 .(填“>”,“=”或“<”)
2019年中考数学试卷(含答案)
8.A
解析:A 【解析】 分析:根据点 A(a+2,4)和 B(3,2a+2)到 x 轴的距离相等,得到 4=|2a+2|,即可 解答. 详解:∵点 A(a+2,4)和 B(3,2a+2)到 x 轴的距离相等, ∴4=|2a+2|,a+2≠3, 解得:a=−3, 故选 A. 点睛:考查点的坐标的相关知识;用到的知识点为:到 x 轴和 y 轴的距离相等的点的横纵 坐标相等或互为相反数.
会差 8 元,如果购买 5 块方形和 3 块圆形巧克力,他带的钱会剩下 8 元.若他只购买 8 块方
形巧克力,则他会剩下( )元
A.8
B.16
C.24
D.32
5.下列图形是轴对称图形的有( )
A.2 个
B.3 个
C.4 个
D.5 个
6.肥皂泡的泡壁厚度大约是 0.0007mm,0.0007 用科学记数法表示为( )
A.0.7×10﹣3
B.7×10﹣3
C.7×10﹣4
D.7×10﹣5
7.函数 y 2x 1 中的自变量 x 的取值范围是( )
2019年中考数学试题(及答案)
2019年中考数学试题(及答案)一、选择题1.“厉行勤俭节约,反对铺张浪费”势在必行,最新统计数据显示,中国每年浪费食物总量折合粮食大约是230000000人一年的口粮,将230000000用科学记数法表示为( ) A.2.3×109 B.0.23×109 C.2.3×108 D.23×1072.预计到2025年,中国5G用户将超过460 000 000,将460 000 000用科学计数法表示为()A.94.610⨯D.94.610⨯C.84610⨯B.7⨯0.46103.下列命题正确的是()A.有一个角是直角的平行四边形是矩形B.四条边相等的四边形是矩形C.有一组邻边相等的平行四边形是矩形D.对角线相等的四边形是矩形4.如图,将▱ABCD沿对角线AC折叠,使点B落在B′处,若∠1=∠2=44°,则∠B为()A.66°B.104°C.114°D.124°5.如图,在△ABC中,AC=BC,有一动点P从点A出发,沿A→C→B→A匀速运动.则CP的长度s与时间t之间的函数关系用图象描述大致是()A.B.C.D.6.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D.若AC5BC=2,则sin∠ACD的值为()A .5B .25C .5D .237.在某篮球邀请赛中,参赛的每两个队之间都要比赛一场,共比赛36场,设有x 个队参赛,根据题意,可列方程为()A .()11362x x -=B .()11362x x +=C .()136x x -=D .()136x x += 8.不等式组213312x x +⎧⎨+≥-⎩<的解集在数轴上表示正确的是( ) A .B .C .D .9.一副直角三角板如图放置,点C 在FD 的延长线上,AB//CF ,∠F=∠ACB=90°,则∠DBC 的度数为( )A .10°B .15°C .18°D .30°10.下面的几何体中,主视图为圆的是( )A .B .C .D .11.把一副三角板如图(1)放置,其中∠ACB =∠DEC =90°,∠A =45°,∠D =30°,斜边AB =4,CD =5.把三角板DCE 绕着点C 顺时针旋转15°得到△D 1CE 1(如图2),此时AB 与CD 1交于点O ,则线段AD 1的长度为( )A .13B .5C .22D .412.下列由阴影构成的图形既是轴对称图形,又是中心对称图形的是( ) A . B .C .D .二、填空题13.已知62x =+,那么222x x -的值是_____.14.当直线()223y k x k =-+-经过第二、三、四象限时,则k 的取值范围是_____.15.某品牌旗舰店平日将某商品按进价提高40%后标价,在某次电商购物节中,为促销该商品,按标价8折销售,售价为2240元,则这种商品的进价是______元.16.关于x 的一元二次方程(a +1)x 2-2x +3=0有实数根,则整数a 的最大值是_____.17.如图,把三角形纸片折叠,使点B ,点C 都与点A 重合,折痕分别为,DE FG ,若15,2C AE EG ︒∠===厘米,ABC △则的边BC 的长为__________厘米。
广东省深圳市2019年中考数学真题试题(含解析)
广东省深圳市2019年中考数学试题一、选择题(每小题3分,共12小题,满分36分) 1.51-的绝对值是( ) A. -5 B.51 C. 5 D.51-【答案】B【解析】考点绝对值.2.下列图形是轴对称图形的是( )【答案】A【考点】轴对称图形与中心对称图形3.预计到2025年,中国5G 用户将超过460 000 000,将460 000 000用科学计数法表示为( ) A.4.6×109B.46×107C.4.6×108D.0.46×109【答案】C【考点】科学计数法4.下列哪个图形是正方体的展开图( )【答案】B【考点】立体图形的展开.5.这组数据20,21,22,23,23的中位数和众数分别是( ) A.20,23 B.21,23 C.21,22 D.22,23 【答案】D【解析】中位数:先把数据按从小到大排列顺序20,21,22,23,23,则中间的那一个就是中位数. 众数是出现次数最多的那个数就是众数,即是23.故选D6.下列运算正确的是( )A.422a a a =+B.1243a a a =⋅ C.1243)(a a = D.22)(ab ab =【答案】C【解析】整式运算,A.2222a a a =+; B 743a a a =⋅ ;D 222)(b a ab =.故选C7.如图,已知AB l =1,AC 为角平分线,下列说法错误的是( ) A.∠1=∠4 B.∠1=∠5 C.∠2=∠3 D.∠1=∠3【答案】B【解析】两直线平行,同位角相等,即∠2=∠3.故选B. 8.如图,已知AB=AC ,AB=5,BC=3,以AB 两点为圆心,大于21AB 的长为半径画圆,两弧相交于点M,N ,连接MN 与AC 相较于点D ,则△BDC 的周长为( )A.8B.10C.11D.13【答案】A【解析】尺规作图,因为MN 是线段AB 的垂直平分线,则AD=BD ,又因为AB=AC=5,BC=3,所以△BDC 的周长为8.9.已知)0(2≠++=a c bx ax y 的图象如图,则b ax y +=和xcy =的图象为( )【答案】C【解析】根据)0(2≠++=a c bx ax y 的图象可知抛物线开口向下,则0<a ,抛物线与y 轴交点在负半轴,故c <0,对称轴在y 轴的右边,则b >0. 10.下列命题正确的是( ) A.矩形对角线互相垂直 B.方程x x 142=的解为14=x C.六边形内角和为540°D.一条斜边和一条直角边分别相等的两个直角三角形全等 【答案】D【解析】矩形的对角线互相平分且相等,故A 错;方程x x 142=的解为14=x 或0=x ,故B 错;六边形内角和为720°,故C 错.故选D 11.定义一种新运算:⎰-=⋅-abn n n b a dx x n 1,例如:⎰-=⋅k hh k xdx 222,若⎰-=--m522mdx x ,则m=( )A. -2B. 52- C. 2 D.52【答案】B 【解析】⎰-=-=-=----m51122511)5(mmm m m dx x ,则m=52-,故选B.12.已知菱形ABCD ,E,F 是动点,边长为4,BE=AF ,∠BAD=120°,则下列结论正确的有几个( ) ①△BEC≌△AFC ; ②△ECF 为等边三角形 ③∠AGE=∠AFC ④若AF=1,则31=GE GF A. 1 B. 2 C. 3 D. 4【答案】D【解析】在四边形ABCD 是菱形,因为∠BAD=120°,则∠B=∠DAC=60°,则AC=BC ,且BE=AF ,故可得△BEC≌△AFC ;因为△BEC≌△AFC ,所以FC=EC ,∠FCA=∠ECB ,所以△ECF 为等边三角形;因为∠AGE=180°-∠B AC-∠AEG;∠AFC=180°-∠FAC -∠ACF,则根据等式性质可得∠AGE=∠AFC ;因为AF=1,则AE=3,所以根据相似可得31=GE GF . 二、填空题(每小题3分,共4小题,满分12分) 13.分解因式:=-a ab 2. 【答案】)1)(1(-+b b a【解析】)1)(1()1(22-+=-=-b b a b a a ab14.现有8张同样的卡片,分别标有数字:1,1,2,2,2,3,4,5,将这些卡片放在一个不透明的盒子里,搅匀后从中随机地抽取一张,抽到标有数字2的卡片的概率是 . 【答案】83 【解析】全部共有8张卡片,标有数字2的卡片有3张,随机抽取一张,故抽到2概率为83. 15.如图在正方形ABCD 中,BE=1,将BC 沿CE 翻折,使点B 对应点刚好落在对角线AC 上,将AD 沿AF 翻折,使点D 对应点落在对角线AC 上,求EF= .【答案】6 【解析】16.如图,在Rt△ABC 中,∠ABC=90°,C (0,-3),CD=3AD,点A 在xky =上,且y 轴平分脚ACB ,求k= 。
2019年北京中考数学试题及答案(解析版)
2019年北京市中考数学试卷考试时间:120分钟满分:100分{题型:1-选择题}一、选择题:本大题共8小题,每小题2分,合计16分.{题目}1.(2019年北京)4月24日是中国航天日.1970年的这一天,我国自行设计、制造的第一颗人造地球卫星“东方紅一号”成功发射,标志着中国从此进入了太空时代,它的运行轨道距地球最近点439000米,将439 000用科学记数法表示应为A.0.439×106B.4.39×106C.4.39×105D.439 ×103{答案}C{解析}本题考查了用科学记数法表示较大的数,科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.439 000=4.39×100000=4.39×105,故本题答案为C.{分值}2{章节:[1-1-5-2]科学计数法}{考点:将一个绝对值较大的数科学计数法}{类别:常考题}{难度:1-最简单}{题目}2.(2019年北京)下列但导节约的图案中,是轴对称图形的是()A B C D{答案}C{解析}本题考查了轴对称图形的识.如果一个图形沿某直线对折后,这线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形,这条直线叫做对称轴.根据轴对称图形的定义可知选项C 中的图形是轴对称图形.{分值}2{章节:[1-13-1-1]轴对称}{考点:轴对称图形}{类别:常考题}{难度:1-最简单}{题目}3.(2019年北京)正十边形的外角和为()A.180° B.360° C.720° D.1440°{答案}B{解析}本题考查了多边形的外角和,根据多边形的外角和都等于360°可知答案为B.{分值}2{章节:[1-11-3]多边形及其内角和}{考点:多边形的外角和}{类别:常考题}{难度:1-最简单}{题目}4.(2019年北京)在数轴上,点A,B在原点O的两侧,分别表示数a,2,将点A向右平移1个单位长度,得到点C.若CO=BO,则a的值为()A.-3 B.-2 C.-1 D.1{答案}A{解析}本题考查了数轴及平移的性质.∵点A,B在原点O的两侧,∴a<0.∵CO=BO,点B表示数2,∴点C表示数-2.∵点A向右平移1个单位长度得到点C,∴点A表示的数a=-2-1=-3.{分值}2{章节:[1-1-2-2]数轴}{考点:数轴表示数}{类别:常考题}{难度:2-简单}{题目}5.(2019年北京)已知锐角∠AOB.如图(1)在射线OA上取一点C,以点O为圆心,OC长为半径作PQ,交射线OB于点D.连接CD;(2)分别以点C、D为圆心,CD长为半径作弧,交PQ于点M、N;(3)连接OM,MN.根据以上作图过程及所作图形,下列结论中错误的是A.∠COM=∠CODB.若OM=MN,则∠AOB=20°C.MN∥CDD.MN=3CD{答案}D{解析}本题是一道尺规作图题,综合考查了等腰三角形、全等三角形、平行线的判定等知识.如图,连接ON,根据作图过程可知∠COM=∠COD=∠DON,故选项A正确;若OM=MN,则△OMN是等边三角形,∴∠AOB=13×60°=20°,故选项B正确;设MN与OA交于点E,与OB交于点F.易证△MOE≌△NOF,∴OE=OF.∵OC=OD,∴∠OEF=∠OFE=∠OCD=∠ODC,∴MN∥CD,故选项C正确;连接MC,DN,则MC=CD=DN,根据“两点之间线段最短”可知MC+CD+DN<MN,即3CD<MN,故选项D不正确.O{分值}2{章节:[1-13-2-2]等边三角形} {考点:全等三角形的判定ASA,AAS} {考点:等边三角形的判定与性质} {考点:等边对等角}{考点:同位角相等两直线平行} {考点:线段公理} {类别:常考题}{难度:3-中等难度}{题目}6.(2019年北京)如果m +n =1,那么代数式22221()()m n m n m mn m++⋅--的值为 ( )A .-3B .-1C .1D .3{答案}D{解析}本题考查了分式的化简求值.原式=()()()23()()()()m n m n mm n m n m n m n m m n m m n m m n ⎡⎤+-=+⋅+-=⋅+-⎢⎥---⎢⎥⎣⎦=3(m+n ).当m+n=1时,原式=3×1=3. {分值}2{章节:[1-15-2-2]分式的加减} {考点:分式的混合运算} {类别:常考题} {难度:3-中等难度}{题目}7.(2019年北京)用不等式a >b ,ab >0,11a b<中的两个不等式作为题设,余下的一个不等式作为结论组成一个命题,组成真命题的个数为( ) A .0 B .1 C .2 D .3{答案}D{解析}本题考查了不等式的基本性质及真命题的判定.根据题意,可知组成的命题有3个,分别为①若ab >0,11a b <,则a >b ;②若a >b ,ab >0,则11a b <;③若a >b ,11a b<,则ab >0. 对于命题①,∵ab >0,11a b <,∴b <a ,故该命题正确;对于命题②,∵a >b ,ab >0,∴11b a<,故该命题正确;对于命题③,∵11a b<,∴110b aa b ab --=<.∵a >b ,∴b-a <0,∴ab >0,故该命题正确; {分值}2{章节:[1-9-1]不等式} {考点:不等式的性质} {考点:命题} {类别:易错题} {难度:3-中等难度}{题目}8.(2019年北京)某校共有200名学生,为了解本学期学生参加公益劳动的情况,收集了他们参加公益劳动时间(单位:小时)等数据,以下是根据数据绘制的统计图表的一部分.下面有四个推断:①这200名学生参加公益劳动时间的平均数一定在24.5-25.5之间 ②这200名学生参加公益劳动时间的中位数在20-30之间③这200名学生中的初中生参加公益劳动时间的中位数一定在20-30之间 ④这200名学生中的高中生参加公益劳动时间的中位数可能在20-30之间 所有合理推断的序号是A.①③B.①④C.①②③D.①②③④ {答案}C{解析}本题是一道与统计图有关的题目,综合考查了平均数、中位数等知识.根据题意,补全统计名女生人均参加公益劳动的时间为25.5,故这200名学生参加公益劳动时间的平均数x -=24.597+25.5103200⨯⨯,故24.5<x -<25.5,故①正确;这200名学生参加公益劳动的时间的中位数是第100个数据和第101个数据的平均数,根据上面统计表可知,第100个数据和第101个数据都在20≤t <30这一组内,即中位数在20-30之间,故②正确;由统计表可知x+y=15,故初中生参加公益劳动时间的中位数一定在20≤t <30这一组内,高中生参加公益劳动时间的中位数一定在10≤t <20这一组内,故③正确,④不正确.{分值}2{章节:[1-20-1-2]中位数和众数}{考点:频数(率)分布表}{考点:算术平均数}{考点:中位数}{考点:条形统计图}{类别:高度原创}{难度:4-较高难度}{题型:2-填空题}二、填空题:本大题共8小题,每小题2分,合计16分.{题目}9.(2019年北京)若分式1xx-的值为0,则x的值为= .{答案}1{解析}本题考查了分式的值为0的条件.∵分式1xx-的值为0,∴分子x-1=0,解得x=1.{分值}2{章节:[1-15-1]分式}{考点:分式的值}{类别:常考题}{难度:1-最简单}{题目}10.(2019年北京)如图,已知△ABC,通过测量、计算得△ABC的面积约为=cm.(结果保留一位小数){答案}{解析}本题考查了三角形面积的计算,解题的关键正确作出三角形的高.如图,过点C作CD⊥AB,交AB的延长线于点D,则S△ABC=12 AB·CD.{分值}2{章节:[1-11-1]与三角形有关的线段}{考点:三角形的面积}{考点:准确数与近似数}{类别:常考题}{难度:2-简单}{题目}11.(2019年北京)在如图所示的几何体中,其三视图中有矩形的是.(写出所有正确答案的序号){答案}①②{解析}本题考查了几何体的三视图. ①中长方体的主视图、俯视图和左视图都是矩形,②中圆柱的主视图和左视图都是矩形,③中圆锥的三视图都不是矩形. {分值}2{章节:[1-29-2]三视图} {考点:同底数幂的乘法} {考点:简单几何体的三视图} {类别:常考题} {难度:1-最简单}{题目}12.(2019年北京)如图所示的网格是正方形网格,则∠PAB +∠PBA = °.{答案}45{解析}本题是一道网格题,利用全等三角形实现角的转化是解题的关键. 如图,∵△APC ≌△BED ,∴∠PAB=∠DBE.∵△EPB 是等腰直角三角形,∴∠EBP=45°,∴∠DBE+∠PBA=90°-45°=45°,即∠PAB+∠PBA=45°.{分值}2{章节:[1-13-2-1]等腰三角形} {考点:全等三角形的性质} {考点:等腰直角三角形} {类别:发现探究} {难度:3-中等难度}{题目}13.(2019年北京)在平面直角坐标系xOy 中,点A (a ,b )(a >0,b >0)在双曲线1k y x=上,点A 关于x 轴的对称点B 在双曲线2k y x=上,则k 1+k 2的值为 .{答案}0{解析}本题考查了反比例函数表达式的求法,确定关于x 轴的对称点的坐标是解题的关键. ∵点A (a ,b )在双曲线1k y x =上,∴k 1=ab.∵点A 与点B 关于x 轴对称,∴B (a,-b ).∵ 点B 在双曲线2ky x=上,∴k 2=-ab.∴k 1+k 2 =0. {分值}2{章节:[1-26-1]反比例函数的图像和性质} {考点:反比例函数的解析式} {考点:点的坐标}{考点:坐标系中的轴对称} {类别:常考题}{难度:3-中等难度}{题目}14.(2019年北京)把图1中的菱形沿对角线分成四个全等的直角三角形,将这四个直角三角形分别拼成如图2,图3所示的正方形,则图1中菱形的面积为 .图1 图2 图3 {答案}12{解析}本题考查了正方形和菱形的性质,根据所拼图形得到直角三角形两直角边的关系是解题的关键. 设每个直角三角形较长直角边为a ,较短直角边为b ,则5,1a b a b +=⎧⎨-=⎩,解得=3,2a b ⎧⎨=⎩,∴菱形的面积为12ab ×4=12.{分值}2{章节:[1-18-2-2]菱形} {考点:菱形的性质}{考点:二元一次方程组的应用} {类别:常考题} {难度:3-中等难度}{题目}15.(2019年北京)小天想要计算一组数据92,90,94,86,99,85的方差20s ,在计算平均数的过程中,将这组数据中的每一个数都减去90,得到一组新数据2,0,4,-4,9,-5.记这组新数据的方差为21s ,则20s 21s .(填“>”,“=”或“<”) {答案}={解析}本题考查了方差的计算,根据方差公式计算即可.原数据的平均数()1=92+90+94+86+99+85=916x -,()()()()()()22222221=9291909194918691999185916S ⎡⎤-+-+-+-+-+-⎣⎦0=68=3;新数据的平均数()1=2+04495=16x +-+--,()()()()()()22222221=2101414191516S ⎡⎤-+-+-+--+-+--⎣⎦168=3,∴22=S S 01.{分值}2{章节:[1-20-2-1]方差} {考点:同底数幂的乘法} {考点:方差} {类别:常考题} {难度:2-简单}{题目}16.(2019年北京)在矩形ABCD 中,M ,N ,P ,Q 分别为边AB ,BC ,CD ,DA 上的点(不与端点重合).对于任意矩形ABCD ,下面四个结论中, ①存在无数个四边形MNPQ 是平行四边形; ②存在无数个四边形MNPQ 是矩形; ③存在无数个四边形MNPQ 是菱形; ④至少存在一个四边形MNPQ 是正方形.所有正确结论的序号是 .{答案}①②③{解析}本题是一道四边形压轴题,综合考查了平行四边形的性质、矩形、菱形和正方形的判定.在矩形ABCD 中,对角线AC,BD 相交于点O ,过点O 作直线PM 和NQ 交BC ,易证MNPQ 为平行四边形;当PM=QN 时,四边形MNPQ 为矩形;当PM ⊥QN 时,四边形MNPQ 为菱形;由于PM=QN 与PM ⊥QN 不一定能同时成立,故四边形MNPQ 不一定是正方形.故正确的结论是①②③.{分值}2{章节:[1-18-2-3] 正方形} {考点:平行四边形边的性质} {考点:平行四边形对角线的性质} {考点:矩形的判定} {考点:菱形的判定} {考点:正方形的判定}{类别:高度原创}{类别:易错题} {难度:4-较高难度}{题型:4-解答题}三、解答题:本题共68分,第17-21题,每小题5分,第22-24题,每小题6分,第25题5分,第26题6分,第27-28题,每小题7分.{题目}17.(2019年北京)计算:011(4)2sin 60()4π---+︒+.{解析}本题考查了实数的运算,掌握绝对值的性质、零指数幂、特殊角的三角函数值及负指数幂是解题才能正确解答.{答案}解:原式{分值}5{章节:[1-28-3]锐角三角函数} {考点:实数与绝对值、相反数} {考点:零次幂}{考点:负指数参与的运算} {考点:特殊角的三角函数值} {考点:简单的实数运算} {类别:常考题} {难度:2-简单}{题目}18.(2019年北京)解不等式组:4(1)2,7.3x x x x -<+⎧⎪+⎨>⎪⎩{解析}本题考查了不等组的解法和不等式组的整数解,解不等式组的步骤为:先解出不等式组中每个不等式的解集,然后得出不等式组的解集. {答案}解:解不等式4(x-1)<x+2,得x <2;解不等式73x x +>,得x <72. 所以,这个不等式组的解集为x <2. {分值}5{章节:[1-9-3]一元一次不等式组}{难度:2-简单}{类别:常考题}{考点:解一元一次不等式组}{题目}19.(2019年北京)关于x的方程22+210x x m--=有实数根,且m为正整数,求m的值及此时方程的根.{解析}本题考查了一元二次方程根的判别式,由于原方程有实数根可知b2-4ac≥0,由此确定出m取值范围,又有m为正整数,从而可确定m的值.{答案}解:∵方程x2-2x+2m-1=0有实数根,∴(-2)2-4(2m-1)≥0,解得m≤1.∵m为正整数,∴m=1.∴原方程为x2-2x+1=0.解得x1=x2=1.{分值}5{章节:[1-21-2-2]公式法}{考点:根的判别式}{考点:完全平方式}{类别:常考题}{难度:3-中等难度}{题目}20.(2019年北京)如图,在菱形ABCD中,AC为对角线,点E,F分别在AB,AD上,BE= DF,连接EF.(1)求证:AC⊥EF;(2)延长EF交CD的延长线于点G,连接BD交AC于点O,若BD=4,tanG=12,求AO的长.{解析}本题考查了菱形的性质、等腰三角形的性质、平行四边形的判定、锐角三角函数等知识.(1)先根据菱形边和对角线的性质得到AB=AD,AC平分∠BAD,再根据等腰三角形三线合一的性质证得AC⊥EF;(2)根据菱形对角线的性质可得BO的长度及AC⊥BD,又有AC⊥EF,故BD∥EF,由此可知四边形EBDG是平行四边形,从而得到tan∠ABD= tanG=12.在Rt△ABD中由tan∠ABD=12即可求得AO的长度.{答案}解:(1)证明:∵四边形ABCD是菱形,∴AB=AD,AC平分∠BAD. ∵BE=DF,即AE=AF.∴AC⊥EF.(2)∵四边形ABCD是菱形,∴AC⊥BD,CG∥AB,BO=12BD=2.∵AC⊥EF,∴BD∥EF.∴四边形EBDG是平行四边形. ∴∠ABD =∠G.∵tan∠ABD=tanG=12,D BC∴2AO =12,解得AO=1.{分值}5{章节:[1-28-3]锐角三角函数} {考点:正切}{考点:菱形的性质} {考点:等腰直角三角形} {考点:平行四边形边的性质}{考点:两组对边分别平行的四边形是平行四边形} {类别:常考题} {难度:3-中等难度}{题目}21.(2019年北京)国家创新指数是反映一个国家科学技术和创新竞争力的综合指数,对国家创新指数得分排名前40的国家的有关数据进行收集、整理、描述和分析,下图给出了部分信息.a .国家创新指数得分的频数分布直方图(数据分成7组:30≤x < 40,40≤x <50,50≤x <60,60 ≤x <70,70≤x <80,80≤x <90,90 ≤x ≤100);b .国家创新指数得分在60≤x <70这一组的是:61.7 62.4 63.6 65.9 66.4 68.5 69.1 69.3 69.5c .40个国家的人均国内生产总值和国家创新指数得分情况统计图国家创新指数得分d .中国的国家创新指数得分为69.5.(以上数据来源于《国家创新指数报告(2018)》 根据以上信息,回答下列问题:(1)中国的国家创新指数得分排名世界第 ;(2)在40个国家的人均国内生产总值和国家创新指数得分情况统计图中,包括中国在内的少数几个国家所对应的点位于虚线l 1的上方,请在图中用“○”画出代表中国的点;(3)在国家创新指数得分比中国高的国家中,人均国内生产总值的最小值约为 万美元;(结果保留一位小数)(4)下列推断合理的是 .①相比于点A ,B 所代表的国家,中国的国家创新指数得分还有一定差距,中国提出"加快建设创新型国家"的战略任务,进一步提高国家综合创新能力;②相比于点B ,C 所代表的国家,中国的人均国内生产品值还有一定差距,中国提出"决胜全国建成小集社会"的奋斗目标,进一步提高人均国内生产总值.{解析}本题考查了统计图及数据的分析. (1)得分在60 ≤x <70这一组的9个国家中,中国得分最高,故70 ≤x <80这一组有12个国家,80 ≤x <90这一组有2个国家,90 ≤x <100这一组有2个国家,故中国的得分排名为1+12+2+2=17. (2)由中国的国家创新指数得分为69.5及“包括中国在内的少数几个国家所对应的点位于虚线l 1的上方”可以代表中国的点.(3)观察《40个国家的人均国内生产总值和国家创新指数得分情况统计图》可知有在国家创新指数得分比中国高的国家中,人均国内生产总值的最小值约为2.7万美元.(4)因为中国的国家创新指数得分比A,B 所代表的国家低得多,所以中国需进一步提高国家综合创新能力;因为中国的人均国内生产品值比B,C 所代表的国家低得多,所以中国需要进一步提高人均国内生产总值,故推断①②都是合理的.{答案}解:(1)17; (2)如图:(3)2.7. (4)①②. {分值}5{章节:[1-20-3]课题学习 体质健康测试中的数据分析} {考点:数据分析综合题}/万美元30405060708090{考点:频数(率)分布直方图} {类别:高度原创} {难度:3-中等难度}{题目}22.(2019年北京)在平面内,给定不在同一条直线上的点A ,B ,C .如图所示,点O 到点A ,B ,C 的距离均等于a (a 为常数),到点O 的距离等于a 的所有点组成图形G ,∠ABC 的平分线交图形G 于点D ,连接AD ,CD .(1)求证:AD = CD(2)过点D 作DE ⊥BA ,垂足为E ,作DF ⊥BC ,垂足为F ,延长DF 交图形G 于点M ,连接CM .若AD = CM ,求直线DE 与图形G 的公共点个数.{解析}解析:(1)由BD 平分∠ABCA 可得∠ABD=∠CBD ,根据相等的圆周角、等弧、等弦之间的关系可得AD CD =和AD=CD.(2)通过证明Rt △CDF ≌Rt △CMF 得到DF=MF ,连接OD ,由∠ABC=2∠CBD=∠COD 可得OD ∥BE ,进而由DE ⊥AB 得到OD ⊥DE ,即DE 为⊙O 的切线. {答案}解:(1)∵BD 平分∠ABCA,∴∠ABD=∠CBD , ∴AD CD =,∴AD=CD.(2)∵DF ⊥BC ,∴∠DFC=∠CFM=90°. 又∵CD=AD=CM.∴Rt △CDF ≌Rt △CMF.∴DF=MF ,∴BC 为⊙O 的直径. 连接OD.∵∠COD=2∠CBD ,∠ABC=2∠CBD , ∴∠ABC=∠OCD. ∴OD ∥BE. ∵DE ⊥AB , ∴OD ⊥DE.∴DE 为⊙O 的切线,即直线DE 与图形G 的公共点个数为1.{分值}6{章节:[1-24-2-2]直线和圆的位置关系} {考点:垂径定理}{考点:圆心角、弧、弦的关系} {考点:圆周角定理} {考点:切线的判定}{考点:全等三角形的判定HL}ABC{考点:同位角相等两直线平行} {考点:两直线平行同旁内角互补} {类别:高度原创} {类别:发现探究} {难度:4-较高难度}{题目}23.(2019年北京)小云想用7天的时间背诵若干首诗词,背诵计划如下:①将诗词分成4组,第i 组有x i 首,i =1,2,3,4;②对于第i 组诗词,第i 天背诵第一遍,第(i +1)天背诵第二遍,第(i +3)天背调第三遍,三解答下列问题:(1)填入x 3,补全上表;(2)若x 1=4,x 2=3,x 3=4,则x 4的所有可能取值为 ; (3)7天后,小云背诵的诗词最多为 首.{解析}本题是一道与不等式组有关的实际应用题.(1)由题意,得对于第3组诗词,第3天背诵第一遍,第4天背诵第二遍,第6天背调第三遍,三遍后完成背诵,其它天无需背诵.(2)由“每天最多背诵14首,最少背诵4首”可得134244414414414x x x x x x ≤++≤⎧⎪≤+≤⎨⎪≤≤⎩,解得4≤x 4≤6.(3)当第4天背诵的诗词数为14首时,x 1+x 3+x 4=14.由题意,得122324414414414x x x x x x ≤+≤⎧⎪≤+≤⎨⎪≤+≤⎩①②③,∴123412242x x x x ≤+++≤,解得222833x -≤≤,∴x 2的最大值为9,∴(x 1+x 3+x 4)+x 2=23.{答案}解: ((2)4,5,6. (3)23. {分值}6{章节:[1-9-3]一元一次不等式组} {考点:一元一次不等式组的应用} {类别:高度原创}{类别:易错题} {难度:4-较高难度}{题目}24.(2019年北京)如图,P 是AB 与弦AB 所围成的图形的外部的一定点,C 是AB 上一动点连接PC 交弦AB 于点D .小腾根据学习函数的经验,对线段PC ,PD ,AD 的长度之间的关系进行了程究. 下面是小腾的探究过程,请补充完整:(1)对于点C 在AB 的不同位置,画图,测量,得到了线段PC ,PD ,AD 的长度的几组值,如的长度这三个量中,确定 的长度是自变量, 的长度和 的长度都是这个自变量的函数;(2)在同一平面直角坐标系xOy 中,画出(1)中所确定的函数的图象;(3)结合函数图象,解决问题:当PC =2PD 时,AD 的长度约为 cm .{解析}本题是一道与函数图像有关的实际应用题.(1)观察表格可知,PC 在位置5和位置6时长度都等于2.25,PD 在位置3和位置7时长度都等于2.00,而AD 在不同位置时的长度各不相等,故AD 的长度是自变量,PC 的长度和PD 的长度都是这个自变量的函数.(2)根据(1)表格中的数值描点、连线,注意平面坐标系的x 轴表示AD 的长度,纵轴表示PC 或PD 的长度;(3)观察(2)中函数图像,并结合(1)表格求解即可. {答案}解: (1)AD PC PD ; (2)如图A(3)2.29或3.98.{分值}6{章节:[1-19-1-2] 函数的图象}{考点:函数的概念}{考点:函数的图象}{类别:高度原创}{难度:4-较高难度}{题目}25.(2019年北京)在平面直角坐标系xOy中,直线l:1(0)y kx k=+≠与直线x=k,直线y=-k分别交于点A,B,直线x=k与直线y =-k交于点C.(1)求直线1与y轴的交点坐标;(2)横、纵坐标都是整数的点叫做整点,记线段AB,BC,CA围成的区域(不含边界)为W.①当k=2时,结合函数图象,求区域W内的整点个数;②若区城W内没有整点,直接写出k的取值范围.{解析}本题是考查了一次函数的图像,解题时要画出函数图像并结合图像分析求解.(1)将x=0代入l的解析式即可;(2)画出k=2时三条直线并求出点A,B,C的坐标,从而确定出区域W及其内部整点的个数;(3)当-1≤k<0或k=-2时,区域W内没有整点.{答案}解:(1)将x=0代入y=kx+1,得y=1,∴直线l与y轴的交点坐标为(0,1).(2)①将x=2代入y=2x+1,得y=5,∴A(2,5).将y=-2代入y=2x+1,得2x+1=-2,解得y=-32,∴点B(-32,-2).又∵直线x=2和y=-2的交点C(2,-2),∴W内的整点为(1,2)(1,1)(1,0)(1,-1)(0,0)(0,-1),共6个.②k=-2或-1≤k<0.{分值}5{章节:[1-19-3]一次函数与方程、不等式}{考点:一次函数的图象}{考点:一次函数与几何图形综合}{类别:高度原创}{类别:发现探究}{类别:新定义}{难度:5-高难度}{题目}26.(2019年北京)在平面直角坐标系xOy中,抛物线21y ax bxa=+-与y轴交于点A,将点A向右平称2个单位长度,得到点B,点B在抛物线上.(1)求点B的坐标(用含a的式子表示);(2)求抛物线的对称轴:(3)已知点P11(,)2a-,Q(2.2),若抛物线与线段PQ恰有一个公共点,结合函数图象,求a的取值范围.{解析}本题是一道与二次函数图像有关的压轴题,解题时要画图分析.(1)先将x=0代入抛物线的解析式求得点A的坐标,再根据平移规律求得点B的坐标;(2)根据抛物线的对称性求解;(3)画出函数图像求解,注意由于点A和P的纵坐标相等,点B和点Q的纵坐标相等,故抛物线不能同时经过点A和P,也不能同时经过点B和Q.{答案}解:(1)将x=0代入y=ax2+bx-1a,得y=-1a,∴点A的坐标为(0,-1a).∵点B的坐标为(2,-1a).(2)∵抛物线经过点A(0,-1a)和点B(2,-1a),∴抛物线的对称轴为x=1.(2)①当a>0时,-1a<0.根据抛物线的对称性,可知抛物线不能同时经过点A和点P,也不能同时经过点B和点Q,所以此时抛物线与线段PQ没有交点;②当a<0时,-1a>0.根据抛物线的对称性,可知抛物线不能同时经过点A和点P;当点Q在点B上方或与点B重合时,抛物线与线段PQ恰有一个公共点,此时-1a≤2,即a≤-12.综上可知,当a≤-12时,抛物线与线段PQ恰有一个公共点.{分值}6{章节:[1-22-1-4]二次函数y=ax2+bx+c的图象和性质}{考点:算术平均数}{考点:含参系数的二次函数问题}{类别:思想方法}{类别:高度原创}{类别:发现探究}{难度:5-高难度}{题目}27.(2019年北京)已知∠AOB=30°,H为射线OA上一定点,OH,P为射线OB上一点,M为线段OH上一动点,连接PM.满足∠OMP为钝角,以点P为中心,将线段PM顺时针旋转150°,得到线段PN,连接ON.(1)依题意补全图1:(2)求证:∠OMP = ∠OPN:(3)点M关于点H的对称点为Q,连接QP,写出一个OP的值,使得对于任意的点M总有ON= QP,并证明.{解析}本题是考查了图形的旋转与中心对称、三角形内角和定理、全等三角形的判定和性质、解直角三角形等知识.(1)根据题意画图即可;(2)在△OMP 中根据三角形内角和定理可知∠OMP=150°-∠OPM ,而∠OPN=1 50°-∠OPM ,故∠OMP=∠OPM ;(3)求出当ON=PQ 时x 的值即可. {答案}解:(1)如图所示:(2)在△OMP 中,∵∠AOB=30°,∴∠OMP=150°-∠OPM. ∵∠MON=150°,∴∠OPN=150°-∠OPM ,∴∠OMP=∠OPM.(3)如图,过点P 作PK ⊥OA ,过点N 作NF ⊥OB ,垂足分别为K,F. ∴∠PKM=∠NFP=90°.∵∠OMP=∠OPM ,∴∠PMK=∠NPF. ∴△PMK ≌△NPF.∴MK=PF,∠MPK=∠PNF ,PK=NF. 假设ON=PQ ,∴Rt △NOF ≌Rt △PQK. ∴KQ=OF.设MK=y ,PK=x.在Rt △OPK 中,∵∠AOB=30°,∴OP=2x ,x.∴,∵点M 与Q 关于H 对称,∴MH=HQ ,∴∵KQ=OF ,∴,解得x=1. ∴OP=2x=2.{分值}7{章节:[1-28-1-2]解直角三角形} {考点:三角形内角和定理} {考点:全等三角形的判定HL}{考点:全等三角形的判定ASA,AAS} {考点:全等三角形的性质}OAOA{考点:含30度角的直角三角形} {考点:解直角三角形} {类别:高度原创} {类别:发现探究} {难度:5-高难度}{题目}28.(2019年北京)在△ABC 中,D ,E 分别是△ABC 两边的中点,如果DE 上的所有点都在△ABC 的内部或边上,则称DE 为△ABC 的中内弧,例如,下图中DE 是△ABC 的一条中内弧(1)如图,在Rt △ABC 中,AB =AC=D ,E 外别是AB ,AC 的中点,画出△ABC 的最长的中内弧DE ,并直接写出此时DE 的长;(2)在平而直角坐标系中,已知点A (0,2),B (0,0),C (4t ,0)(t >0). 在△ABC 中,D ,E 分别是AB ,AC 的中点①若t =12,求△ABC 的中内弧DE 所在圆的圆心P 的纵坐标的取值范围;②若在△ABC 中存在一条中内弧DE ,使得DE 所在圆的圆心P 在△ABC 的内部或边上,直接写出t 的取值范围.{解析}本题是一道新定义题,综合考查了等腰直角三角性的性质、弧长的计算、切线的性质、相似三角形的判定和性质等知识.(1)设DE 所在圆的圆心为P ,当⊙P 与BC 相切于F 时,中内弧DE最长,易证点P 是DE 的中点,∴PD=12DE=1. 1122122DE l r πππ=⨯=⨯⨯=.(2)分别求出⊙P 与AB相切和⊙P 与AC 相切时y p 的值,即可求出y p 的取值范围;(3)求出⊙P 分别与AC ,BC 相切时t 的值即可.{答案}解:(1)如图所示:BCCABDE的长为π.(2)①当t=12时,C(2,0),D(0,1),E(1,1).如图,当⊙P与AB相切于点D,y p=1;如图,当⊙P与AC相切于点E,y p=12,∴y p≤12.∴y p≥1或y p≤1 2 .(3)0<t.{分值}7{章节:[1-27-1-3]相似三角形应用举例}{考点:等腰直角三角形}{考点:勾股定理}{考点:切线的性质}{考点:弧长的计算}{考点:相似三角形的性质}{考点:相似三角形的判定(两角相等)}{类别:思想方法}{类别:高度原创}{类别:发现探究}{类别:新定义} {难度:5-高难度}。
广东省2019年中考数学试题及答案解析(WORD版)
2019年广东省初中毕业生学业考试数 学一、选择题 1.2-=A.2B.2-C.12D.12-【答案】A.【解析】由绝对值的意义可得,答案为A 。
2. 据国家统计局网站2019年12月4日发布消息,2019年广东省粮食总产量约为13 573 000吨,将13 573 000用科学记数法表示为A.61.357310⨯B.71.357310⨯C.81.357310⨯D.91.357310⨯ 【答案】B.【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同. 13 573 000=71.357310⨯;3. 一组数据2,6,5,2,4,则这组数据的中位数是A.2B.4C.5D.6 【答案】B.【解析】由小到大排列,得:2,2,4,5,6,所以,中位数为4,选B 。
4. 如图,直线a ∥b ,∠1=75°,∠2=35°,则∠3的度数是A.75°B.55°C.40°D.35° 【答案】C.【解析】两直线平行,同位角相等,三角形的一个外角等于与它不相邻的两个内角之和,所以, 75°=∠2+∠3,所以,∠3=40°,选C 。
5. 下列所述图形中,既是中心对称图形,又是轴对称图形的是A.矩形B.平行四边形C.正五边形D.正三角形 【答案】A.【解析】平行四边形只是中心对称图形,正五边形、正三角形只是轴对称图形,只有矩形符合。
6.2(4)x -=A.28x -B.28xC.216x -D.216x【答案】D.【解析】原式=22-4x ()=216x 7. 在0,2,0(3)-,5-这四个数中,最大的数是A.0B.2C.0(3)-D.5-【答案】B.【解析】(-3)0=1,所以,最大的数为2,选B 。
8. 若关于x 的方程2904x x a +-+=有两个不相等的实数根,则实数a 的取值范围是A.2a ≥B.2a ≤C.2a >D.2a <【答案】C.【解析】△=1-4(94a -+)>0,即1+4a -9>0,所以,2a >9. 如题9图,某数学兴趣小组将边长为3的正方形铁丝框ABCD 变形为以A 为圆心,AB 为半径的扇形 (忽略铁丝的粗细),则所得的扇形DAB 的面积为A.6B.7C.8D.9【答案】D.【解析】显然弧长为BC +CD 的长,即为6,半径为3,则16392S =⨯⨯=扇形.10. 如题10图,已知正△ABC 的边长为2,E ,F ,G 分别是AB ,BC ,CA 上的点,且AE =BF =CG ,设 △EFG 的面积为y ,AE 的长为x ,则y 关于x 的函数图象大致是【答案】D.【解析】根据题意,有AE=BF=CG ,且正三角形ABC 的边长为2, 故BE=CF=AG=2-x ;故△AEG 、△BEF 、△CFG 三个三角形全等. 在△AEG 中,AE=x ,AG=2-x , 则S△AEG=12AE×AG×sinA= 34x (2-x );故y=S△ABC-3S△AEG=3-3⨯34x (2-x )=34(3x 2 -6x+4). 故可得其图象为二次函数,且开口向上,选D 。
2019年江苏南京中考数学试题(解析版)
2019年南京市中考数学试卷考试时间:120分钟 满分:120分{题型:1-选择题}一、选择题:本大题共6小题,每小题2分,合计12分.{题目}1.(2019年江苏南京)2018年中国与“一带一路”沿线国家货物贸易进出口总额达到13000亿美元,用科学记数法表示13000是( )A .0.13×105B .1.3×104C .13×103D .130×102{答案}B{解析}本题考查了科学记数法.13000=1.3×10000=1.3×104.因此本题选B . {分值}4{章节:[1-1-5-2]科学计数法}{考点:将一个绝对值较大的数科学计数法}{类别:常考题}{难度:1-最简单}{题目}2.(2019年江苏南京)计算(a 2b )3的结果是( )A .a 2b 3B .a 5b 3C .a 6bD .a 6b 3{答案}D{解析}本题考查了幂的运算.(a 2b )3=(a 2)3b 3=a 6b 3.因此本题选D .{分值}2{章节:[1-14-1]整式的乘法}{考点:幂的乘方}{考点:积的乘方}{类别:常考题}{难度:1-最简单}{题目}3.(2019年江苏南京)面积为4的正方形的边长是( )A .4的平方根B .4的算术平方根C .4开平方的结果D .4的立方根 {答案}B{解析}本题考查了算术平方根的意义.面积为4=2.因此本题选B . {分值}2{章节:[1-6-1]平方根}{考点:算术平方根的应用}{类别:易错题}{难度:2-简单}{题目}4.(2019年江苏南京)实数a ,b ,c 满足a >b 且ac <bc ,它们在数轴上的对应点的位置可以是( ){答案}A{解析}本题考查了实数的大小比较、不等式的性质.∵a >b ,∴表示数a 的点在表示数b 的点的右边.∵a >b 且ac <bc ,∴c <0,即表示数c 的点在原点的左边.因此本题选A . {分值}2{章节:[1-9-1]不等式}{考点:数轴表示数}{考点:实数的大小比较}{考点:不等式的性质}{类别:常考题}{类别:思想方法}A .B .C .D .{难度:2-简单}{题目}5.(2019年江苏南京)下列整数中,与10( )A .4B .5C .6D .7{答案}C{解析}本题考查了实数的估算.∵9<13<16,∴3<4,-4<-3,10-4<10<10-3,即6<107.这说明10在6与7之间.∵3.52<13,∴3.5106.5.这说明106.∴与10最接近的整数是6.因此本题选C .{分值}2{章节:[1-6-3]实数}{考点:无理数的估值}{考点:有理数部分与无理数部分}{类别:常考题}{难度:3-中等难度}{题目}6.(2019年江苏南京)如图,△A ′B ′C ′是由△ABC 经过平移得到的,△A ′B ′C ′还可以看作是△ABC 经过怎样的图形变化得到?下列结论:①1次旋转;②1次旋转和1次轴对称;③2次旋转;④2次轴对称.其中所有正确结论的序号是( )A .①④B .②③C .②④D .③④{答案}D{解析}本题考查了图形变换及相互间的关系.连接AA ′,在AA ′上任取一点A 1.(1)如图1(1),分别取AA 1和A 1A ′的中点O 1,O 2,将△ABC 绕点O 1旋转180°得△A 1B 1C 1,将△A 1B 1C 1绕点O 2旋转180°得△A ′B ′C ′;(2)如图1(2),分别作AA 1和A 1A ′的垂直平分线l 1,l 2,△ABC 关于l 1对称的三角形是△A 2B 2C 2,△A 2B 2C 2关于l 2对称的三角形是△A ′B ′C ′.结论①②不正确.故选D .因此本题选D .{分值}2{章节:[1-23-2-1]中心对称} C A B B ′ C ′ A ′ 图1(2) l 1 l 2 C 2 B 2 A 2图1(1)CAB ′A ′第6题图{考点:平移的性质}{考点:轴对称的性质}{考点:旋转的性质}{考点:几何选择压轴}{类别:发现探究}{难度:4-较高难度}{题型:2-填空题}二、填空题:本大题共10小题,每小题2分,合计20分.{题目}7.(2019年江苏南京)-2的相反数是______;12的倒数是______.{答案}2,2{解析}本题考查了相反数、倒数的概念.a的相反数是-a,nm的倒数是mn.因此本题答案是2,2.{分值}2{章节:[1-1-2-3]相反数}{章节:[1-1-4-2]有理数的除法}{考点:相反数的定义}{考点:倒数}{类别:常考题}{难度:1-最简单}{题目}8.(2019年江苏南京)______.{答案}0{解析}本题考查了二次根式的计算.原式==0.因此本题答案是0.{分值}2{章节:[1-16-3]二次根式的加减}{考点:二次根式的加减法}{类别:常考题}{难度:2-简单}{题目}9.(2019年江苏南京)分解因式(a-b)2+4ab的结果是______.{答案}(a+b)2{解析}本题考查了乘法公式和因式分解.原式=a2-2ab+b2+4ab=a2+2ab+b2=(a+b)2.因此本题答案是(a+b)2.{分值}2{章节:[1-14-3]因式分解}{考点:完全平方公式}{考点:因式分解-完全平方式}{类别:常考题}{难度:2-简单}{题目}10.(2019年江苏南京)已知2x的方程x2-4x+m=0的一个根,则m=______.{答案}1{解析}本题考查了一元二次方程根与系数的关系或者根的定义.设原方程的另一根为x1,则由根与系数的关系得(2+x1=4,(2x1=m.解得x1=2,m=1.因此本题答案是1.{分值}2{章节:[1-21-1]一元二次方程}{章节:[1-21-3] 一元二次方程根与系数的关系}{考点:一元二次方程的定义}{考点:根与系数关系}{类别:常考题}{难度:3-中等难度}{题目}11.(2019年江苏南京)结合下图,用符号语言表达定理“同旁内角互补,两直线平行”的推理形式:∵______,∴a ∥b .{答案}∠1+∠3=180°{解析}本题考查了平行线的判定.图中∠2、∠3、∠4分别是∠1的同位角、同旁内角和内错角.因此同旁内角互补应表示为∠1+∠3=180°.因此本题答案是∠1+∠3=180°.{分值}2{章节:[1-5-2-2] 平行线的判定}{考点:同旁内角互补两直线平行}{考点:几何说理}{类别:常考题}{难度:1-最简单}{题目}12.(2019年江苏南京)无盖圆柱杯子的展开图如图所示,将一根长为20cm 的细木筷斜放在该杯子内,木筷露在杯子外面的部分至少有______cm .{答案}5{解析}本题考查了勾股定理的应用.当筷子倾斜放置时,∵以9和12=15,20-15=5,∴木筷露在杯子外面的部分至少有5cm .因此本题答案是5.{分值}2{章节:[1-17-1]勾股定理}{考点:几何体的展开图}{考点:勾股定理的应用}{类别:常考题}{难度:3-中等难度}{题目}13.(2019年江苏南京)为了了解某区初中学生的视力情况,随机抽取了该区500名初中学生第12题图 ab c1 2 34 第11题图{答案}7200{解析}本题考查了利用样本估计总体的思想.视力不低于4.8的人数=80+93+127=300.由样本估计总体的思想,可知求所结果=300500×12000=7200(人). 因此本题答案是7200.{分值}2{章节:[1-10-1]统计调查}{考点:抽样调查}{考点:用样本估计总体}{类别:常考题}{难度:1-最简单}{题目}14.(2019年江苏南京)如图,P A ,PB 是⊙O 的切线,A ,B 为切点,点C ,D 在⊙O 上,若∠P =102°,则∠A +∠C =______°.{答案}219{解析}本题考查了圆周角定理的推论、切线长定理.连接AB ,则∠DAB +∠C =180°.由切线长定理可知P A =PB ,∴∠P AB =12×(180°-∠P )=39°. ∴∠P AD +∠C =∠P AB +∠DAB +∠C =180°+39°=219°.因此本题答案是219.{分值}2{章节:[1-24-2-2]直线和圆的位置关系}{考点:圆内接四边形的性质}{考点:切线长定理}{类别:常考题}{难度:3-中等难度}{题目}15.(2019年江苏南京)如图,在△ABC 中,BC 的垂直平分线MN 交AB 于点D ,CD 平分∠ACB .若AD =2,BD =3,则AC 的长为______.{答案{解析}本题考查了垂直平分线的性质和相似三角形.∵DN 垂直平分BC ,∴DB =DC .∴∠B =∠DCB .M N DCAB 第15题图第14题图∵CD 平分∠ACB ,∴∠ACD =∠DCB ,∴∠ACD =∠B .又∠A =∠A ,∴△ACD ∽△ABC . ∴AC AB =AD AC,即AC 2=AD ·AB . ∴AD =2,BD =3,∴AB =5.∴AC{分值}2{章节:[1-27-1-1]相似三角形的判定}{考点:垂直平分线的性质}{考点:相似三角形的判定(两角相等)}{类别:常考题}{难度:3-中等难度}{题目}16.(2019年江苏南京)在△ABC 中,AB =4,∠C =60°,∠A >∠B ,则BC 的长的取值范围是______.{答案}4<BC{解析}本题考查了三角函数、轨迹等知识.∠A =∠B 时,△ABC 是等边三角形,此时BC =AB =AC =4.∵∠A >∠B ,∴BC >4.如图2,作△ABC 的外接圆O ,则当BC 是直径BC ′时,BC 的值最大.此时BC ′=sin 60AB. 综上所述,BC 的长的取值范围是4<BC. 因此本题答案是4<BC. {分值}2{章节:[1-24-2-1]点和圆的位置关系}{考点:等边对等角}{考点:解直角三角形}{考点:点与圆的位置关系}{考点:几何填空压轴}{类别:发现探究}{难度:5-高难度}{题型:4-解答题}三、解答题:本大题共11小题,合计88分.{题目}17.(2019年江苏南京)计算:(x +y )(x 2-xy +y 2).{解析}本题考查了整式的乘法.运用多项式乘多项式的法则进行计算.{答案}解:(x +y )(x 2-xy +y 2)=x 3-x 2y +xy 2+x 2y -xy 2+y 3=x 3+y 3.{分值}7′图2{章节:[1-14-1]整式的乘法}{难度:2-简单}{类别:常考题}{考点:多项式乘以多项式}{题目}18.(2019年江苏南京)解方程:1x x --1=231x -. {解析}本题考查了解分式方程.(1)去分母;(2)解整式方程;(3)验根.{答案}解:方程两边乘(x -1)(x +1),得x (x +1)-(x -1)(x +1)=3.解得x =2.检验:当x =2时,(x -1)(x +1)≠0.所以,原分式方程的解为x =2.{分值}7{章节:[1-15-3]分式方程}{难度:2-简单}{类别:常考题}{考点:一元二次方程的应用—增长率问题}{考点:解含两个分式的分式方程}{考点:分式方程的检验}{题目}19.(2019年江苏南京)如图,D 是△ABC 的边AB 的中点,DE ∥BC ,CE ∥AB ,AC 与DE 相交于点F ,求证:△ADF ≌△CEF .{解析}本题考查了.先证四边形DBCE 是平行四边形,再用“角边角”或“角角边”证△ADF 与△CEF 全等.{答案}证明:∵DE ∥BC ,CE ∥AB ,∴四边形DBCE 是平行四边形.∴BD =CE .∵D 是AB 的中点,∴AD =DB .∴AD =CE .∵CE ∥AB ,∴∠A =∠ECF ,∠ADF =∠E .∴△ADF ≌△CEF .{分值}7{章节:[1-18-1-2]平行四边形的判定}{难度:3-中等难度}{类别:常考题}{考点:全等三角形的判定ASA,AAS}{考点:两组对边分别平行的四边形是平行四边形}{题目}20.(2019年江苏南京)下图是某市连续5天的天气情况.F DE CAB 第19题图(1)利用方差判断该市这5天的日最高气温波动大还是日最低气温波动大;(2)根据上图提供的信息,请再写出两个不同类型的结论.{解析}本题考查了方差的应用、数据的分析.{答案}解:(1)这5天的日最高气温和日最低气温的平均数分别是x 高=15(23+25+23+25+24)=24,x低=15(21+22+15+15+17)=18.方差分别是2 s 高=15[(23-24)2+(25-24)2+(23-24)2+(25-24)2+(24-24)2]=0.8,2 s 低=15[(21-18)2+(22-18)2+(15-18)2+(15-18)2+(17-18)2]=8.8.由2s高<2s低可知,这5天的日最低气温的波动较大.(2)本题答案不唯一,下列解法供参考.例如,①25日、26日、27日、28日、29日的天气现象依次是大雨、中雨、晴、晴、多云,日温差依次是2℃、3℃、8℃、10℃、7℃,可以看出雨天的日温差较小.②25日、26日、27日的天气现象依次是大雨、中雨、晴,空气质量依次是良、优、优,说明下雨后空气质量改善了.{分值}8{章节:[1-20-2-1]方差}{难度:3-中等难度}{类别:常考题}{考点:方差的实际应用}{考点:用样本估计总体}{题目}21.(2019年江苏南京)某校计划在暑假第二周的星期一至星期四开展社会实践活动,要求每位学生选择参加活动.(1)甲同学随机选择两天,其中有一天是星期二的概率是多少?(2)乙同学随机选择连续的两天,其中有一天是星期二的概率是______.{解析}本题考查了用列举法求概率.{答案}解:(1)甲同学随机选择两天,所有可能出现的结果共有6种,即(星期一,星期二)、(星期一,星期三)、(星期一,星期四)、(星期二,星期三)、(星期二,星期四)、(星期三,星期四),这些结果出现的可能性相等,所有结果中,满足有一天是星期二(记为事件A)的结果有3种,即(星期一,星期二)、(星期二,星期三)、(星期二,星期四),所以P(A)=36=12.(2)23.[解析]乙同学随机选择连续的两天,所有可能出现的结果共有3种,即(星期一,星期二)、(星期二,星期三)、(星期三,星期四),这些结果出现的可能性相等,所有结果中,满足有一天是星期二(记为事件B )的结果有2种,即(星期一,星期二)、(星期二,星期三),所以P (B )=23. {分值}8{章节:[1-25-2]用列举法求概率}{难度:3-中等难度}{类别:常考题}{考点:一元二次方程的应用—增长率问题}{考点:两步事件不放回}{题目}22.(2019年江苏南京)如图,⊙O 的弦AB ,CD 的延长线相交于点P ,且AB =CD ,求证:P A =PC .{解析}本题考查了“三组量”之间的关系或垂径定理等知识.{答案}证法1:如图3(1),连接AC .∵AB =CD ,∴»AB =»CD. ∴»AB +»BD =»CD +»BD ,即»AD =»CB. ∴∠C =∠A .∴P A =PC .证法2:如图3(2),过点O 分别作OM ⊥AB ,ON ⊥CD ,垂足分别为M ,N .连接OA ,OC ,OP . ∵OM ⊥AB ,ON ⊥CD ,∴AM =12AB ,CN =12=CD . ∵AB =CD ,∴AM =CN .在Rt △OAM 和Rt △OCN 中,∠OMA =ONC =90°,根据勾股定理,得OMON又OA =OC ,AM =CN ,∴OM =ON .又OP =OP ,∴Rt △OPM ≌Rt △OPN .∴PM =PN .∴PM +AM =PN +CN ,即P A =PC .{分值}7{章节:[1-24-1-2]垂直于弦的直径}{章节:[1-24-1-3]弧、弦、圆心角}{难度:3-中等难度}{类别:常考题}图3(2)图3(1) 第22题图{考点:全等三角形的判定HL}{考点:垂径定理}{考点:圆心角、弧、弦的关系}{题目}23.(2019年江苏南京)已知一次函数y 1=kx +2(k 为常数,k ≠0)和y 2=x -3.(1)当k =-2时,若y 1>y 2,求x 的取值范围.(2)当x <1时,y 1>y 2.结合图象,直接写出k 的取值范围.{解析}本题考查了一次函数与不等式的关系、数形结合思想等.{答案}解:(1)当k =-2时,y 1=-2x +2.根据题意,得-2x +2>x -3.解得x <53. (2)-4≤k ≤1且k ≠0.[解析]如图4,直线y 2=x -3上横坐标是1的点D 的纵坐标是-2.①当直线y 1=kx +2经过点D (1,-2)时,k =-4.此时符合题意;②当直线y 1=kx +2与直线y 2=x -3平行时,k =1.此时符合题意;③当直线y 1=kx +2与直线y 2=x -3的交点P 在射线DC 上时,符合题意,此时k 的取值范围是-4<k <1且k ≠0.综上所述,k 的取值范围是-4≤k ≤1且k ≠0.{分值}8{章节:[1-19-3]一次函数与方程、不等式}{难度:4-较高难度}{类别:思想方法}{类别:易错题}{考点:一次函数的图象}{考点:一次函数的性质}{考点:两直线相交或平行问题}{考点:一次函数与一元一次不等式}{题目}24.(2019年江苏南京)如图,山顶有一塔AB ,塔高33m .计划在塔的正下方沿直线CD 开通穿山隧道EF .从与E 点相距80m 的C 处测得A ,B 的仰角分别为27°、22°,从与F 点相距50m 的D 处测得A 的仰角为45°.求隧道EF 的长度.(参考数据:tan22°≈0.40,tan27°≈0.51.){解析}本题考查了三角函数的实际应用.{答案}解:如图5,延长AB 交CD 于点H ,则AH ⊥CD .第24题图图4在Rt △ACH 中,∠ACH =27°,∵tan27°=AH CH , ∴AH =CH ·tan27°.在Rt △BCH 中,∠BCH =22°,∵tan22°=BH CH, ∴BH =CH ·tan22°.∵AB =AH -BH ,∴CH ·tan27°-CH ·tan22°=33.解得CH ≈300.∴AH =CH ·tan27°≈153.在Rt △ADH 中,∠D =45°,∵tan45°=AH HD, ∴HD =AH =153.∴EF =CD -CE -FD =CH +HD -CE -FD=300+150-80-50=323.答:隧道EF 的长度约为323m .{分值}12{章节:[1-28-2-2]非特殊角}{难度:3-中等难度}{类别:常考题}{考点:解直角三角形的应用-仰角}{题目}25.(2019年江苏南京)某地计划对矩形广场进行扩建改造.如图,原广场长50m ,宽40m ,要求扩充后的矩形广场长与宽的比为3∶2.扩充区域的扩建费用每平方米30元,扩建后和扩充区域都铺设地砖.铺设地砖费用每平方米100元.如果计划总费用642000元,扩充后广场的长和宽应分别是多少米?{解析}本题考查了一元二次方程的应用.{答案}解:设扩充后广场的长为3x m ,则宽为2x m .根据题意,得3x ·2x ·100+30(3x ·2x -50×40)=642000.解得x 1=30,x 2=-30(不合题意,舍去).所以3x =90,2x =60.答:扩充后广场的长和宽应分别为90m 和60m .{分值}8{章节:[1-21-4]实际问题与一元二次方程}{难度:3-中等难度}{类别:常考题}{考点:一元二次方程的应用—面积问题}{题目}26.(2019年江苏南京)如图①,在Rt △ABC 中,∠C =90°,AC =3,BC =4.求作菱形DEFG,第25题图图5使点D在边AC上,点E,F在边AB上,点G在边BC上.(1)证明小明所作的四边形DEFG是菱形.(2)小明进一步探索,发现可作出的菱形的个数随着点D的位置变化而变化……请你继续探索,直接写出菱形的个数及对应的CD的长的取值范围.{解析}本题考查了菱形的判定、相似三角形、分类讨论思想等.第(2)问,思考点D在CA边上由点C向点D移动时,以点D为圆心,DG长为半径画弧,弧与AB 边是否有交点、有几个交点;当DG增大时,还要考虑点F是否在AB边上.{答案}证明:(1)∵DG=DE,DE=EF,∴DG=EF.∵DG∥EF,∴四边形DEFG是平行四边形.又DE=EF,∴□DEFG是菱形.(2)当0≤CD<3637或43<CD≤3时,菱形的个数为0;当CD=3637或98<CD≤43时,菱形的个数为1;当3637<CD≤98时,菱形的个数为2.[解析]AB5,AB边上的高CM=AB ACBCg=125.设DG=x,则由△CDG∽△CAB可知CD=35 x.①如图6(1),当DE⊥AB时,由相似三角形的性质,得DG AB =CNCM,即5x=125125x-.解得x=6037.此时CD=3637.②如图6(2),当DG=DE2=DA=x时,由△CDG∽△CAB,得CD CA =DGAB,即33x-=5x.解得x=158.此时CD=98.BCAGFDE图6(1)MNF)CGD图6(3)C1GD122图6(2)C图①小明的作法1.如图②,在边AC上取一点D,过点D作DG∥AB交BC于点G.2.以点D为圆心,DG长为半径画弧,交AB于点E.3.在EB上截取EF=ED,连接FG,则四边形DEFG为所求作的菱形.CA BGFDE图②第26题图③如图6(3),当点F 与点B 重合时,DG =DE =EB =x .由△ADE ∽△ACB ,得DE CB =AE AB ,即4x =55x . 解得x =209.此时CD =43. 综上所述,当0≤CD <3637或43<CD ≤3时,菱形的个数为0;当CD =3637或98<CD ≤43时,菱形的个数为1;当3637<CD ≤98时,菱形的个数为2. {分值}9{章节:[1-27-1-1]相似三角形的判定}{难度:5-高难度}{类别:思想方法}{类别:高度原创}{考点:线段尺规作图}{考点:菱形的判定}{考点:由平行判定相似}{题目}27.(2019年江苏南京)[概念认识]城市的许多街道是相互垂直或平行的,因此,往往不能沿直线行走到达目的地,只能按直角拐弯的方式行走.可以按照街道的垂直和平行方向建立平面直角坐标系xOy ,对两点A (x 1,y 1和B (x 2,y 2),用以下方式定义两点间的距离:d (A ,B )=|x 1-x 2|+|y 1-y 2|.[数学理解](1)①已知点A (-2,1),则d (O ,A )=______;②函数y =-2x +4(0≤x ≤2)的图象如图①所示,B 是图象上一点,d (O ,B )=3,则点B 的坐标是______.(2)函数y =4x(x ≥0)的图象如图②所示.求证:该函数的图象上不存在点C ,使d (O ,C )=3. (3)函数y =x 2-5x +7(x ≥0)的图象如图③所示,D 是图象上一点,求d (O ,D )的最小值及对应的点D 的坐标.[问题解决](4)某市要修建一条通往景观湖的道路,如图④,道路以M 为起点,先沿MN 方向到某处,再在该处拐一次直角弯沿直线到湖边,如何修建能使道路最短?(要求:建立适当的平面直角坐标系,画出示意图并简要说明理由)第27题图 图④第27题图 M N{解析}本题考查了一次函数、反比例函数、二次函数的图象和性质;一元二次方程根的判别式;转化思想;数学应用意识等.{答案}解:(1)①3;②(1,2).[解析]①d (O ,A )=|-2-0|+|1-0|=2+1=3;②设点B 的坐标为(t ,-2t +4)(0≤t ≤2),则|t -0|+|-2t +4-0|=3,即|t |+2|t -2|=3.∵0≤t ≤2,∴t -2<0.∴t +2(2-t )=3.解得t =1.此时-2t +4=2.∴点B 的坐标为(1,2).(2)假设函数y =4x(x >0)的图象上存在点C (x ,y ),使d (O ,C )=3. 根据题意,得|x -0|+|4x-0|=3. 因为x >0,所以4x >0,|x -0|+|4x -0|=x +4x. 所以x +4x=3. 方程两边乘x ,得x 2+4=3x .整理,得x 2-3x +4=0.因为a =1,b =-3,c =4,b 2-4ac =(-3)2-4×1×4=-7<0,所以方程x 2-3x +4=0无实数根.所以函数y =4x(x >0)的图象上不存在点C ,使d (O ,C )=3. (3)设D (x ,y ).根据题意,得d (O ,D )=|x -0|+|x 2-5x +7-0|=|x |+|x 2-5x +7|.因为x 2-5x +7=(x -52)2+34,又x ≥0, 所以d (O ,D )=x +x 2-5x +7=x 2-4x +7=(x -2)2+3.所以当x =2时,d (O ,D )有最小值3,此时点D 的坐标是(2,1).(4)如图5,以M 为原点,MN 所在直线为x 轴建立平面直角坐标系xOy .将函数y =-x 的图象沿y 轴正方向平移,直到与景观湖边界所在曲线有交点时停止.设交点为E ,过点E 作EH ⊥MN ,垂足为H .修建方案是:先沿MN 方向修建到H 处,再沿HE 方向修建到E 处.理由:设过点E 的直线l 1与x 轴相交于点F .在景观湖边界所在曲线上任取一点P ,过点P 作直线l 2∥l 1,l 2与x 轴相交于点G .因为∠EFH =45°,所以EH =FH ,d (O ,E )=OH +EH =OF .同理d (O ,P )=OG .因为OG ≥OF ,所以d (O ,P )≥d (O ,E ).因此,上述方案修建的道路最短.{分值}11{章节:[1-22-1-4]二次函数y=ax2+bx+c 的图象和性质}{章节:[1-26-1]反比例函数的图像和性质}{难度:5-高难度}{类别:高度原创}{类别:发现探究}{类别:新定义}{考点:平面直角坐标系}{考点:根的判别式}{考点:一次函数的图象}图7{考点:反比例函数的图象}{考点:二次函数y=ax2+bx+c的性质} {考点:几何综合}。
2019年吉林长春中考数学试题(解析版)
2019年吉林省长春市中考数学试卷考试时间:100分钟满分:120分{题型:1-选择题}一、选择题(本大题共8小题,每小题3分,共24分){题目}1.(2019吉林长春,T1)如图,数轴上表示-2的点A到原点的距离是()A.-2B.2C.1 2 -D.12A{答案} B{解析}本题考查了数轴,解题的关键是利用数形结合求出数轴上两点的距离.因为()022--=,故选择B.{分值}3{章节:[1-1-2-4]绝对值}{考点:绝对值的意义}{类别:常考题}{难度:1-最简单}{题目}2. (2019吉林长春,T2)2019年春运期间,全国铁路、道路、水路、民航共累计发送旅客约为275000000人次,275000000这个数用科学记数法表示为()A. 2.75×107B. 2.75×109C. 2.75×108D. 2.75×109 {答案}C{解析}本题考查了用科学记数法表示较大的数,解题的关键是能根据科学记数法的记数规则确定表示的结果.根据科学记数法的定义,需要将140 000改写成a×10n的形式(其中1≤a <10,n为整数),因此,先确定a的值,再确定n的值即可.275000000=2.75×108,故选择C.{分值}3{章节:[1-1-5-2]科学计数法}{考点:将一个绝对值较大的数科学计数法}{类别:常考题}{类别:易错题}{难度:2-简单}{题目}3. (2019吉林长春,T3)如图是由4个相同的小正方体组成的立体图形,这个立体图形的主视图是(){答案}A{解析}本题考查了三视图,解题的关键是会从不同侧面观察立体图形,并且抽象出平面图形.主视图是从前面看得到的图形,按照这个方法得出本题答案.解:主视图有二列,第一列有一层,第二列有两层,故选择 A .{分值}3{章节:[1-4-1-1]立体图形与平面图形} {考点:简单组合体的三视图} {类别:常考题}{类别:易错题} {难度:3-中等难度}{题目}4. (2019吉林长春,T4)不等式-x+2≥0的解集为( ) A.x ≥-2 B. x ≤-2 C. x ≥2 D. x ≤2 {答案}D{解析}本题考查了解一元一次不等式,掌握不等式的基本性质是解题关键.按照解不等式的步骤,先移项,然后后系数化为1即得到不等式的解集. 解:移项得-x ≥-2,系数化为1得, x ≤2,故选择D . {分值}3{章节:[1-9-2]一元一次不等式} {考点:解一元一次不等式} {类别:常考题}{类别:易错题} {难度:3-中等难度}{题目}5.(2019吉林长春,T5)《九章算术》是中国古代重要的数学著作,其中“盈不足术”记载:今有共买鸡,人出九,盈十一;人出六,不足十六.问人数鸡价各几何?译文:今有人合伙买鸡,每人出9钱,会多出11钱;每人出6钱,又差16钱.问人数、买鸡的钱数各是多少?设人数为x ,买鸡的钱数为y ,可列方程组为( )A. ⎩⎨⎧=+=+y x y x 166119B.⎩⎨⎧=-=-y x y x 166119 C.⎩⎨⎧=-=+y x yx 166119 D. ⎩⎨⎧=+=-y x yx 166119{答案} D{解析}本题考查了根据实际问题列二元一次方程组,解题的关键是能从给定的问题中找出相等关系.不难发现题中有两个相等关系:x 人每人出9钱的总数-11钱=买鸡的钱数为y ;x 人每人出6钱的总数+16钱=买鸡的钱数为y ,据此列出方程组即可.解:∵每人出9钱,会多出11钱;每人出6钱,又差16钱,∴可列方程组为⎩⎨⎧=+=-yx yx 166119,故答案为D .{分值}3{章节:[1-8-3]实际问题与一元一次方程组} {考点:二元一次方程组的应用} {类别:常考题} {难度:2-简单}{题目}6. (2019吉林长春,T6)如图,一把梯子靠在垂直于水平地面的墙上,梯子AB 的长是3米,若梯子与地面的夹角为a ,则梯子顶端到地面的距离BC 为( )米. A. 3sin a B. 3cos a C.3sin aD. 3cos a{答案} A{解析}本题考查了锐角三角函数,解题的关键是熟练并准确掌握锐角三角函数的计算公式.根据锐角三角函数定义得出sin a =BC AB ,代入求出即可.∵sin a =BCAB,AB =3,∴BC =3sin a ,故选A. {分值}3{章节:[1-28-1-2]解直角三角形} {考点:解直角三角形的应用} {类别:常考题}{类别:易错题}{难度:4-较高难度}{题目}7. (2019吉林长春,T7)如图,在ABC 中,ACB 为钝角,用直尺和圆规在边AB 上确定一点D ,使∠ADC=2∠B ,则符合要求的作图痕迹是( ).{答案}B{解析}本题考查了尺规作图及线段垂直平分线的应用,解题的关键是掌握线段垂直平分线的性质和判定.按作图的痕迹一一分析哪种作图的结束满足CD =BD .假设点D 在AB 上存在,由CD =BD ,可得∠BCD=∠B ,所以有∠ADC=2∠B ,于是点D 在BC 垂直平分线上,故选B. {分值}3{章节:[1-11-2]与三角形有关的角} {考点:垂直平分线常见辅助线的作法} {类别:常考题}{难度:4-较高难度}{题目}8. (2019吉林长春,T8)如图,在平面直角坐标系中,Rt D ABC 的顶点A ,C 的坐标分别为(0,3)和(3,0),∠ACB=90°,AC=2BC ,函数()0,0ky k x x=>>的图象经过点B ,则k 的值为( ) A.92B. 9C. 278D. 274{答案}D{解析}过点B 作BD ⊥x 轴,∴∠AOC =∠BDC =90°,∵AC ⊥BC ,∴∠ACO=∠C BD ,∴△AOC ∽△CDB ,∴2AO OC AC CD BD BC ===,∵AO=3,CO=3,∴32BD CD ==,∴39322OD =+=,∴B 点的坐标为(92,32),∵函数()0,0k y k x x =>>的图象经过点B ,∴9327224k =?.{分值}3{章节:[1-27-1-1]相似三角形的判定} {考点:相似基本图形}{考点:一线三等角} {类别:常考题} {难度:4-较高难度}{题型:2-填空题}二、填空题:本大题共6小题,每小题3分,合计18分.{题目}9.(2019吉林长春,T9)计算:355= .{答案}25{解析}本题考查了二次根式的化简与加减运算,解题的关键是掌握二次根式的化简与合并法则.解:原式=3552525{分值}3{章节:[1-16-3]二次根式的加减} {考点:二次根式的加减法} {类别:常考题} {难度:1-最简单} {题目}10.(2019吉林长春,T10)分解因式:2ab b += . {答案}()2b a +{解析}本题考查了运用提公因式法把多项式进行因式分解,解题的关键是熟练掌握提因式法分解因式的方法与步骤.先找到多项式各项的公因式,再提取公因式. 解:因为2ab b +=()2b a +. {分值}3{章节:[1-14-3]因式分解}{考点:因式分解-提公因式法} {类别:常考题} {难度:1-最简单}{题目}11.(2019吉林长春,T11)一元二次方程2310x x -+=根的判别式的值为 . {答案}5{解析}本题考查了一元二次方程根的判别式,解题的关键是掌握一元二次方程根的判别式(b 2-4ac )与一元二次方程根字母系数之间的关系.△=(﹣3)2﹣4×1×1=5. {分值}3{章节:[1-21-2-2]公式法} {考点:根的判别式} {类别:常考题} {难度:1-简单}{题目}12.(2019吉林长春,T12)如图,直线MN ∥PQ ,点A ,B 分别在MN 、PQ 上,∠MAB=33°,过线段AB 上的点C 作CD ⊥AB 交PQ 于点D ,则∠CDB 的大小为 度.{答案}57°{解析}本题考查了几何初步知识,涉及到的知识点有:平行线的性质、三角形的内角和定理,解题的关键是能熟练运用上述有关知识求得∠CDB 的度数.解:如图1,∵MN ∥PQ ,∴∠MAB =∠ABD =33°,∵∠BCD =90°,∴∠CDB =90°-33°=57°. {分值}3{章节:[1-5-3]平行线的性质} {考点:两直线平行同位角相等} {类别:常考题}{类别:易错题} {难度:2-简单}{题目}13.(2019吉林长春,T13)如图,有一张矩形纸片ABCD ,AB=8,AD=6,先将矩形纸片ABCD 折叠,使边AD 落在边AB 上,点D 落在点E 处,折痕为AF ;再将△AEF 沿EF 翻折,AF 与BC 相交于点G ,则△GCF 的周长为 .{答案}422+{解析}考查折叠的性质,相似三角形的判定与性质,以及矩形的性质等知识,由矩形纸片ABCD ,AB=8,AD=6,AB=DC-DF ,DF=AD ,AB ∥FC ,∴△ABG ∽△FCG ,根据相似三角形的对为边成比例,即可求得GC ,FG 的长度,继而求得周长为422+.{分值}3{章节:[1-18-2-1]矩形}{考点:相似三角形的判定(两角相等)} {类别:常考题}{类别:易错题} {难度:4-较高难度}{题目}14.(2019吉林长春,T14)如图,在平面直角坐标系中,抛物线()28203y ax ax a =-+>与y 轴交于点A ,过A 作x 轴的平行线交抛物线于点M ,P 为抛物线的顶点,若直线OP 交直线AM 于点B ,且M 为线段AB 的中点,则a 的值为 .{答案}2{解析}考查二次函数图象与性质,由A 纵坐标为83,因顶点坐标公式,点P 的横坐标为1,根据对称关系求得M (2,83),M 为线段AB 中点,所以B (4, 83),代入直线AM 的解析式y kx =中,求得其解析式为23y x =,再由顶点坐标公式求得P (1, 83a -+)代入计算可得a =2.{分值}3{章节:[1-22-1-1]二次函数}{考点:含参系数的二次函数问题} {类别:常考题}{类别:易错题} {难度:5-高难度}{题型:4-解答题}三、解答题(本大题共10小题,满分78分,解答应写出文字说明、证明过程或演算步骤){题目}15.(2019吉林长春,T15)先化简,再求值:()()22141a a a +--,其中18a =.{解析}本题考查了整式的混合计算-化简求值,解题的关键是利用整式的乘法法则和加减法法则进行计算。
2019深圳中考真题数学试卷(含详细解析和答案)
2019年深圳市初中毕业升学考试数学一、选择题(每小题3分,共12小题,满分36分)1.51-的绝对值是( )A. -5B.51C. 5D.51-【答案】B【解析】考点绝对值.2.下列图形是轴对称图形的是( )【答案】A【考点】轴对称图形与中心对称图形3.预计到2025年,中国5G 用户将超过460 000 000,将460 000 000用科学计数法表示为( ) A.4.6×109 B.46×107 C.4.6×108 D.0.46×109 【答案】C【考点】科学计数法4.下列哪个图形是正方体的展开图( )【答案】B【考点】立体图形的展开.5.这组数据20,21,22,23,23的中位数和众数分别是( ) A.20,23 B.21,23 C.21,22 D.22,23 【答案】D【解析】中位数:先把数据按从小到大排列顺序20,21,22,23,23,则中间的那一个就是中位数. 众数是出现次数最多的那个数就是众数,即是23.故选D6.下列运算正确的是( )A.422a a a =+B.1243a a a =⋅ C.1243)(a a = D.22)(ab ab =【答案】C【解析】整式运算,A.2222a a a =+; B 743a a a =⋅ ;D 222)(b a ab =.故选C7.如图,已知AB l =1,AC 为角平分线,下列说法错误的是( ) A.∠1=∠4 B.∠1=∠5 C.∠2=∠3 D.∠1=∠3【答案】B【解析】两直线平行,同位角相等,即∠2=∠3.故选B.8.如图,已知AB=AC ,AB=5,BC=3,以AB 两点为圆心,大于21AB 的长为半径画圆,两弧相交于点M,N ,连接MN 与AC 相较于点D ,则△BDC 的周长为( ) A.8 B.10 C.11 D.13【答案】A【解析】尺规作图,因为MN 是线段AB 的垂直平分线,则AD=BD ,又因为AB=AC=5,BC=3,所以△BDC的周长为8.9.已知)0(2≠++=a c bx ax y 的图象如图,则b ax y +=和xcy =的图象为( )【答案】C【解析】根据)0(2≠++=a c bx ax y 的图象可知抛物线开口向下,则0<a ,抛物线与y 轴交点在负半轴,故c <0,对称轴在y 轴的右边,则b >0.10.下列命题正确的是( ) A.矩形对角线互相垂直 B.方程x x 142=的解为14=x C.六边形内角和为540°D.一条斜边和一条直角边分别相等的两个直角三角形全等 【答案】D【解析】矩形的对角线互相平分且相等,故A 错;方程x x 142=的解为14=x 或0=x ,故B 错;六边形内角和为720°,故C 错.故选D11.定义一种新运算:⎰-=⋅-abnn n b a dx x n 1,例如:⎰-=⋅khh k xdx 222,若⎰-=--m522mdx x ,则m=( )A. -2B. 52-C. 2D.52 【答案】B 【解析】⎰-=-=-=----m51122511)5(mm m m m dx x ,则m=52-,故选B. 12.已知菱形ABCD ,E,F 是动点,边长为4,BE=AF ,∠BAD=120°,则下列结论正确的有几个( ) ①△BEC ≌△AFC ; ②△ECF 为等边三角形 ③∠AGE=∠AFC ④若AF=1,则31=GE GF A. 1 B. 2 C. 3 D. 4【答案】D【解析】在四边形ABCD 是菱形,因为∠BAD=120°,则∠B=∠DAC=60°,则AC=BC ,且BE=AF ,故可得△BEC ≌△AFC ;因为△BEC ≌△AFC ,所以FC=EC ,∠FCA=∠ECB ,所以△ECF 为等边三角形;因为∠AGE=180°-∠BAC-∠AEG ;∠AFC=180°-∠FAC-∠ACF ,则根据等式性质可得∠AGE=∠AFC ;因为AF=1,则AE=3,所以根据相似可得31=GE GF . 二、填空题(每小题3分,共4小题,满分12分)13.分解因式:=-a ab 2. 【答案】)1)(1(-+b b a【解析】)1)(1()1(22-+=-=-b b a b a a ab14.现有8张同样的卡片,分别标有数字:1,1,2,2,2,3,4,5,将这些卡片放在一个不透明的盒子里,搅匀后从中随机地抽取一张,抽到标有数字2的卡片的概率是 .【答案】83 【解析】全部共有8张卡片,标有数字2的卡片有3张,随机抽取一张,故抽到2概率为83. 15.如图在正方形ABCD 中,BE=1,将BC 沿CE 翻折,使点B 对应点刚好落在对角线AC 上,将AD 沿AF 翻折,使点D 对应点落在对角线AC 上,求EF= .【答案】6 【解析】16.如图,在Rt △ABC 中,∠ABC=90°,C (0,-3),CD=3AD,点A 在xky =上,且y 轴平分脚ACB ,求k= 。
2019年中考数学100份试卷分类汇编:科学计数法
2019中考全国100份试卷分类汇编科学计数法1、(德阳市2019年)已知空气的单位体积质量为1.24×10-3克/厘米3,将1.24×10-3用小数表示为A: 0. 000124 B .0.0124 C.一0.00124 D 、0.00124答案:D解析:科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数。
1.24×10-3=0.001242、(2019达州)某中学在芦山地震捐款活动中,共捐款二十一万三千元。
这一数据用科学记数法表示为( ) A .321310⨯元 B .42.1310⨯元 C .52.1310⨯元 D .60.21310⨯元 答案:C解析:科学记数法写成:10n a ⨯形式,其中110a ≤<,二十一万三千元=213000=52.1310⨯元3、(2019年潍坊市)2019年,我国财政性教育经费支出实现了占国内生产总值比例达4%的目标.其中在促进义务教育均衡发展方面,安排义务教育教育经费保障教育机制改革资金达865.4亿元.数据“865.4亿元”用科学记数法可表示为( )元.A.810865⨯B.91065.8⨯C.101065.8⨯D.1110865.0⨯ 答案:C .考点: 科学记数法的表示。
点评:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.4、(绵阳市2019年)2019年,我国上海和安徽首先发现“H7N9”禽流感,H7N9是一种新型禽流感,其病毒颗粒呈多形性,其中球形病毒的最大直径为0.00000012米,这一直径用科学记数法表示为( D )A .1.2×10-9米B .1.2×10-8米C .12×10-8米D .1.2×10-7米[解析]科学记数法写成:10n a ⨯形式,其中110a ≤<,再数小数位知,选D 。
2019年全国各地中考数学试题汇编之山东省青岛市中考数学试卷试题及详细解析
2019年山东省青岛市初中学业水平考试数学试题一、选择题(本大题共8小题,每小题3分,共24分)在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)﹣的相反数是()A.﹣B.﹣C.±D.2.(3分)下列四个图形中,既是轴对称图形,又是中心对称图形的是()A. B.C. D.3.(3分)2019年1月3日,我国“嫦娥四号”月球探测器在月球背面软着陆,实现人类有史以来首次成功登陆月球背面.已知月球与地球之间的平均距离约为384000km,把384000km用科学记数法可以表示为()A.38.4×104kmB.3.84×105kmC.0.384×10 6kmD.3.84×106km4.(3分)计算(﹣2m)2•(﹣m•m2+3m3)的结果是()A.8m5B.﹣8m5C.8m6D.﹣4m4+12m55.(3分)如图,线段AB经过⊙O的圆心,AC,BD分别与⊙O相切于点C,D.若AC=BD=4,∠A=45°,则的长度为()A.πB.2πC.2πD.4π6.(3分)如图,将线段AB先向右平移5个单位,再将所得线段绕原点按顺时针方向旋转90°,得到线段A′B′,则点B的对应点B′的坐标是()A.(﹣4,1)B.(﹣1,2)C.(4,﹣1)D.(1,﹣2)7.(3分)如图,BD是△ABC的角平分线,AE⊥BD,垂足为F.若∠ABC=35°,∠C=50°,则∠CDE的度数为()A.35°B.40°C.45°D.50°8.(3分)已知反比例函数y=的图象如图所示,则二次函数y=ax2﹣2x和一次函数y=bx+a在同一平面直角坐标系中的图象可能是()A. B.C. D.二、填空题(本大题共6小题,每小题3分,共18分)9.(3分)计算:﹣()0=.10.(3分)若关于x的一元二次方程2x2﹣x+m=0有两个相等的实数根,则m的值为.11.(3分)射击比赛中,某队员10次射击成绩如图所示,则该队员的平均成绩是环.12.(3分)如图,五边形ABCDE是⊙O的内接正五边形,AF是⊙O的直径,则∠BDF的度数是°.13.(3分)如图,在正方形纸片ABCD中,E是CD的中点,将正方形纸片折叠,点B落在线段AE上的点G处,折痕为AF.若AD=4cm,则CF的长为cm.14.(3分)如图,一个正方体由27个大小相同的小立方块搭成,现从中取走若干个小立方块,得到一个新的几何体.若新几何体与原正方体的表面积相等,则最多可以取走个小立方块.三、作图题(本大题满分4分)请用直尺、圆规作图,不写作法,但要保留作图痕迹.15.(4分)请用直尺、圆规作图,不写作法,但要保留作图痕迹.已知:∠α,直线l及l上两点A,B.求作:Rt△ABC,使点C在直线l的上方,且∠ABC=90°,∠BAC=∠α.四、解答题(本大题共9小题,共74分)16.(8分)(1)化简:÷(﹣2n);(2)解不等式组,并写出它的正整数解.17.(6分)小明和小刚一起做游戏,游戏规则如下:将分别标有数字1,2,3,4的4个小球放入一个不透明的袋子中,这些球除数字外都相同.从中随机摸出一个球记下数字后放回,再从中随机摸出一个球记下数字.若两次数字差的绝对值小于2,则小明获胜,否则小刚获胜.这个游戏对两人公平吗?请说明理由.18.(6分)为了解学生每天的睡眠情况,某初中学校从全校800名学生中随机抽取了40名学生,调查了他们平均每天的睡眠时间(单位:h),统计结果如下:9,8,10.5,7,9,8,10,9.5,8,9,9.5,7.5,9.5,9,8.5,7.5,10,9.5,8,9,7,9.5,8.5,9,7,9,9,7.5,8.5,8.5,9,8,7.5,9.5,10,9.5,8.5,9,8,9.在对这些数据整理后,绘制了如下的统计图表:睡眠时间分组统计表睡眠时间分布情况请根据以上信息,解答下列问题:(1)m=,n=,a=,b=;(2)抽取的这40名学生平均每天睡眠时间的中位数落在组(填组别);(3)如果按照学校要求,学生平均每天的睡眠时间应不少于9h,请估计该校学生中睡眠时间符合要求的人数.19.(6分)如图,某旅游景区为方便游客,修建了一条东西走向的木栈道AB,栈道AB与景区道路CD平行.在C处测得栈道一端A位于北偏西42°方向,在D处测得栈道另一端B位于北偏西32°方向.已知CD=120m,BD=80m,求木栈道AB 的长度(结果保留整数).(参考数据:sin32°≈,cos32°≈,tan32°≈,sin42°≈,cos42°≈,tan42°≈)20.(8分)甲、乙两人加工同一种零件,甲每天加工的数量是乙每天加工数量的1.5倍,两人各加工600个这种零件,甲比乙少用5天.(1)求甲、乙两人每天各加工多少个这种零件?(2)已知甲、乙两人加工这种零件每天的加工费分别是150元和120元,现有3000个这种零件的加工任务,甲单独加工一段时间后另有安排,剩余任务由乙单独完成.如果总加工费不超过7800元,那么甲至少加工了多少天?21.(8分)如图,在▱ABCD中,对角线AC与BD相交于点O,点E,F分别为OB,OD的中点,延长AE至G,使EG=AE,连接CG.(1)求证:△ABE≌△CDF;(2)当AB与AC满足什么数量关系时,四边形EGCF是矩形?请说明理由.22.(10分)某商店购进一批成本为每件30元的商品,经调查发现,该商品每天的销售量y(件)与销售单价x(元)之间满足一次函数关系,其图象如图所示.(1)求该商品每天的销售量y与销售单价x之间的函数关系式;(2)若商店按单价不低于成本价,且不高于50元销售,则销售单价定为多少,才能使销售该商品每天获得的利润w(元)最大?最大利润是多少?(3)若商店要使销售该商品每天获得的利润不低于800元,则每天的销售量最少应为多少件?23.(10分)问题提出:如图,图①是一张由三个边长为1的小正方形组成的“L”形纸片,图②是一张a×b的方格纸(a×b的方格纸指边长分别为a,b的矩形,被分成a×b个边长为1的小正方形,其中a≥2,b≥2,且a,b为正整数).把图①放置在图②中,使它恰好盖住图②中的三个小正方形,共有多少种不同的放置方法?问题探究:为探究规律,我们采用一般问题特殊化的策略,先从最简单的情形入手,再逐次递进,最后得出一般性的结论.探究一:把图①放置在2×2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图③,对于2×2的方格纸,要用图①盖住其中的三个小正方形,显然有4种不同的放置方法.探究二:把图①放置在3×2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图④,在3×2的方格纸中,共可以找到2个位置不同的2 2×方格,依据探究一的结论可知,把图①放置在3×2的方格纸中,使它恰好盖住其中的三个小正方形,共有2×4=8种不同的放置方法.探究三:把图①放置在a×2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图⑤,在a×2的方格纸中,共可以找到个位置不同的2×2方格,依据探究一的结论可知,把图①放置在a×2的方格纸中,使它恰好盖住其中的三个小正方形,共有种不同的放置方法.探究四:把图①放置在a×3的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图⑥,在a×3的方格纸中,共可以找到个位置不同的2×2方格,依据探究一的结论可知,把图①放置在a×3的方格纸中,使它恰好盖住其中的三个小正方形,共有种不同的放置方法.……问题解决:把图①放置在a×b的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?(仿照前面的探究方法,写出解答过程,不需画图.)问题拓展:如图,图⑦是一个由4个棱长为1的小立方体构成的几何体,图⑧是一个长、宽、高分别为a,b,c(a≥2,b≥2,c≥2,且a,b,c 是正整数)的长方体,被分成了a×b×c个棱长为1的小立方体.在图⑧的不同位置共可以找到个图⑦这样的几何体.24.(12分)已知:如图,在四边形ABCD中,AB∥CD,∠ACB=90°,AB=10cm,BC=8cm,OD垂直平分A C.点P从点B出发,沿BA方向匀速运动,速度为1cm/s;同时,点Q从点D出发,沿DC方向匀速运动,速度为1cm/s;当一个点停止运动,另一个点也停止运动.过点P作PE⊥AB,交BC于点E,过点Q作QF∥AC,分别交AD,OD于点F,G.连接OP,EG.设运动时间为t(s)(0<t<5),解答下列问题:(1)当t为何值时,点E在∠BAC的平分线上?(2)设四边形PEGO的面积为S(cm2),求S与t的函数关系式;(3)在运动过程中,是否存在某一时刻t,使四边形PEGO的面积最大?若存在,求出t的值;若不存在,请说明理由;(4)连接OE,OQ,在运动过程中,是否存在某一时刻t,使OE⊥OQ?若存在,求出t的值;若不存在,请说明理由.2019年山东省青岛市初中学业水平考试数学试题参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分)在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)﹣的相反数是()A.﹣B.﹣C.±D.【试题分析】相反数的定义:只有符号不同的两个数互为相反数,0的相反数是0.【试题作答】解:根据相反数、绝对值的性质可知:﹣的相反数是.故选:D.【试题评价】本题考查的是相反数的求法.要求掌握相反数定义,并能熟练运用到实际当中.2.(3分)下列四个图形中,既是轴对称图形,又是中心对称图形的是()A. B.C. D.【试题分析】根据轴对称图形与中心对称图形的概念求解.【试题作答】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、不是轴对称图形,是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、既是轴对称图形,又是中心对称图形,故此选项正确.故选:D.【试题评价】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.(3分)2019年1月3日,我国“嫦娥四号”月球探测器在月球背面软着陆,实现人类有史以来首次成功登陆月球背面.已知月球与地球之间的平均距离约为384000km,把384000km用科学记数法可以表示为()A.38.4×104kmB.3.84×105kmC.0.384×10 6kmD.3.84×106km【试题分析】利用科学记数法的表示形式即可【试题作答】解:科学记数法表示:384 000=3.84×105km故选:B.【试题评价】本题主要考查科学记数法的表示,把一个数表示成a与10的n次幂相乘的形式(1≤a<10,n为整数),这种记数法叫做科学记数法.4.(3分)计算(﹣2m)2•(﹣m•m2+3m3)的结果是()A.8m5B.﹣8m5C.8m6D.﹣4m4+12m5【试题分析】根据积的乘方以及合并同类项进行计算即可.【试题作答】解:原式=4m2•2m3=8m5,故选:A.【试题评价】本题考查了幂的乘方、积的乘方以及合并同类项的法则,掌握运算法则是解题的关键.5.(3分)如图,线段AB经过⊙O的圆心,AC,BD分别与⊙O相切于点C,D.若AC=BD=4,∠A=45°,则的长度为()A.πB.2πC.2πD.4π【试题分析】连接OC、OD,根据切线性质和∠A=45°,易证得△AOC和△BOD是等腰直角三角形,进而求得OC=OD=4,∠COD=90°,根据弧长公式求得即可.【试题作答】解:连接OC、OD,∵AC,BD分别与⊙O相切于点C,D.∴OC⊥AC,OD⊥BD,∵∠A=45°,∴∠AOC=45°,∴AC=OC=4,∵AC=BD=4,OC=OD=4,∴OD=BD,∴∠BOD=45°,∴∠COD=180°﹣45°﹣45°=90°,∴的长度为:=2π,故选:B.【试题评价】本题考查了切线的性质,等腰直角三角形的判定和性质,弧长的计算等,证得∠COD=90°是解题的关键.6.(3分)如图,将线段AB先向右平移5个单位,再将所得线段绕原点按顺时针方向旋转90°,得到线段A′B′,则点B的对应点B′的坐标是()A.(﹣4,1)B.(﹣1,2)C.(4,﹣1)D.(1,﹣2)【试题分析】在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度;图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.【试题作答】解:将线段AB先向右平移5个单位,点B(2,1),连接OB,顺时针旋转90°,则B'对应坐标为(1,﹣2),故选:D.【试题评价】本题考查了图形的平移与旋转,熟练运用平移与旋转的性质是解题的关键.7.(3分)如图,BD是△ABC的角平分线,AE⊥BD,垂足为F.若∠ABC=35°,∠C=50°,则∠CDE的度数为()A.35°B.40°C.45°D.50°【试题分析】根据角平分线的定义和垂直的定义得到∠ABD=∠EBD=∠ABC=,∠AFB=∠EFB=90°,推出AB=BE,根据等腰三角形的性质得到AF=EF,求得AD=ED,得到∠DAF=∠DEF,根据三角形的外角的性质即可得到结论.【试题作答】解:∵BD是△ABC的角平分线,AE⊥BD,∴∠ABD=∠EBD=∠ABC=,∠AFB=∠EFB=90°,∴∠BAF=∠BEF=90°﹣17.5°,∴AB=BE,∴AF=EF,∴AD=ED,∴∠DAF=∠DEF,∵∠BAC=180°﹣∠ABC﹣∠C=95°,∴∠BED=∠BAD=95°,∴∠CDE=95°﹣50°=45°,故选:C.【试题评价】本题考查了三角形的内角和,全等三角形的判定和性质,三角形的外角的性质,熟练掌握全等三角形的判定和性质是解题的关键.8.(3分)已知反比例函数y=的图象如图所示,则二次函数y=ax2﹣2x和一次函数y=bx+a在同一平面直角坐标系中的图象可能是()A. B.C. D.【试题分析】先根据抛物线y=ax2﹣2过原点排除A,再反比例函数图象确定ab的符号,再由a、b的符号和抛物线对称轴确定抛物线与直线y=bx+a的位置关系,进而得解.【试题作答】解:∵当x=0时,y=ax2﹣2x=0,即抛物线y=ax2﹣2x经过原点,故A错误;∵反比例函数y=的图象在第一、三象限,∴ab>0,即a、b同号,当a<0时,抛物线y=ax2﹣2x的对称轴x=<0,对称轴在y轴左边,故D错误;当a>0时,b>0,直线y=bx+a经过第一、二、三象限,故B错误,C正确.故选:C.【试题评价】本题主要考查了一次函数、反比例函数、二次函数的图象与性质,根据函数图象与系数的关系进行判断是解题的关键,同时考查了数形结合的思想.二、填空题(本大题共6小题,每小题3分,共18分)9.(3分)计算:﹣()0=2+1.【试题分析】根据二次根式混合运算的法则计算即可.【试题作答】解:﹣()0=2+2﹣1=2+1,故答案为:2+1.【试题评价】本题考查了二次根式的混合运算,熟记法则是解题的关键.10.(3分)若关于x的一元二次方程2x2﹣x+m=0有两个相等的实数根,则m的值为.【试题分析】根据“关于x的一元二次方程2x2﹣x+m=0有两个相等的实数根”,结合根的判别式公式,得到关于m的一元一次方程,解之即可.【试题作答】解:根据题意得:△=1﹣4×2m=0,整理得:1﹣8m=0,解得:m=,故答案为:.【试题评价】本题考查了根的判别式,正确掌握根的判别式公式是解题的关键.11.(3分)射击比赛中,某队员10次射击成绩如图所示,则该队员的平均成绩是8.5环.【试题分析】由加权平均数公式即可得出结果.【试题作答】解:该队员的平均成绩为(1×6+1×7+2×8+4×9+2×10)=8.5(环);故答案为:8.5.【试题评价】本题考查了加权平均数和条形统计图;熟练掌握加权平均数的计算公式是解决问题的关键.12.(3分)如图,五边形ABCDE是⊙O的内接正五边形,AF是⊙O的直径,则∠BDF的度数是54°.【试题分析】连接AD,根据圆周角定理得到∠ADF=90°,根据五边形的内角和得到∠ABC=∠C=108°,求得∠ABD =72°,由圆周角定理得到∠F=∠ABD=72°,求得∠F AD=18°,于是得到结论.【试题作答】解:连接AD,∵AF是⊙O的直径,∴∠ADF=90°,∵五边形ABCDE是⊙O的内接正五边形,∴∠ABC=∠C=108°,∴∠ABD=72°,∴∠F=∠ABD=72°,∴∠F AD=18°,∴∠CDF=∠DAF=18°,∴∠BDF=36°+18°=54°,故答案为:54.【试题评价】本题考查正多边形与圆,圆周角定理等知识,解题的关键灵活运用所学知识解决问题,属于中考常考题型.13.(3分)如图,在正方形纸片ABCD中,E是CD的中点,将正方形纸片折叠,点B落在线段AE上的点G处,折痕为AF.若AD=4cm,则CF的长为6﹣cm.【试题分析】设BF=x,则FG=x,CF=4﹣x,在Rt△GEF中,利用勾股定理可得EF2=(﹣4)2+x2,在Rt△FCE中,利用勾股定理可得EF2=(4﹣x)2+22,从而得到关于x方程,求解x,最后用4﹣x即可.【试题作答】解:设BF=x,则FG=x,CF=4﹣x.在Rt△ADE中,利用勾股定理可得AE=.根据折叠的性质可知AG=AB=4,所以GE=﹣4.在Rt△GEF中,利用勾股定理可得EF2=(﹣4)2+x2,在Rt△FCE中,利用勾股定理可得EF2=(4﹣x)2+22,所以(﹣4)2+x2=(4﹣x)2+22,解得x=﹣2.则FC=4﹣x=6﹣.故答案为6﹣.【试题评价】本题主要考查了折叠的性质、勾股定理.折叠问题主要是抓住折叠的不变量,在直角三角形中利用勾股定理求解是解题的关键.14.(3分)如图,一个正方体由27个大小相同的小立方块搭成,现从中取走若干个小立方块,得到一个新的几何体.若新几何体与原正方体的表面积相等,则最多可以取走10个小立方块.【试题分析】根据新几何体的三视图与原来的几何体的三视图相同解答即可.【试题作答】解:若新几何体与原正方体的表面积相等,则新几何体的三视图与原来的几何体的三视图相同,如图所示,拿掉一角的2×2×2=8个,拿掉另一个角1×1×2=2个,所以最多可以取走10个小立方块.故答案为:10【试题评价】本题主要考查了几何体的表面积,理解三视图是解答本题的关键.用到的知识点为:主视图,左视图与俯视图分别是从物体的正面,左面,上面看得到的图形.三、作图题(本大题满分4分)请用直尺、圆规作图,不写作法,但要保留作图痕迹.15.(4分)请用直尺、圆规作图,不写作法,但要保留作图痕迹.已知:∠α,直线l及l上两点A,B.求作:Rt△ABC,使点C在直线l的上方,且∠ABC=90°,∠BAC=∠α.【试题分析】先作∠DAB=α,再过B点作BE⊥AB,则AD与BE的交点为C点.【试题作答】解:如图,△ABC为所作.【试题评价】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.四、解答题(本大题共9小题,共74分)16.(8分)(1)化简:÷(﹣2n);(2)解不等式组,并写出它的正整数解.【试题分析】(1)按分式的运算顺序和运算法则计算求值;(2)先确定不等式组的解集,再求出满足条件的正整数解.【试题作答】解:(1)原式=÷=×=;(2)由①,得x≥﹣1,由②,得x<3.所以该不等式组的解集为:﹣1≤x<3.所以满足条件的正整数解为:1、2.【试题评价】本题考查了分式的混合运算、不等式组的正整数解等知识点.解决(1)的关键是掌握分式的运算法则,解决(2)的关键是确定不等式组的解集.17.(6分)小明和小刚一起做游戏,游戏规则如下:将分别标有数字1,2,3,4的4个小球放入一个不透明的袋子中,这些球除数字外都相同.从中随机摸出一个球记下数字后放回,再从中随机摸出一个球记下数字.若两次数字差的绝对值小于2,则小明获胜,否则小刚获胜.这个游戏对两人公平吗?请说明理由.【试题分析】列表得出所有等可能的情况数,找出两次数字差的绝对值小于2的情况数,分别求出两人获胜的概率,比较即可得到游戏公平与否.【试题作答】解:这个游戏对双方不公平.理由:列表如下:所有等可能的情况有16种,其中两次数字差的绝对值小于2的情况有(1,1),(2,1),(1,2),(2,2),(3,2),(2,3),(3,3),(4,3),(3,4),(4,4)共10种,故小明获胜的概率为:=,则小刚获胜的概率为:=,∵≠,∴这个游戏对两人不公平.【试题评价】此题考查了游戏公平性,以及列表法与树状图法,判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.18.(6分)为了解学生每天的睡眠情况,某初中学校从全校800名学生中随机抽取了40名学生,调查了他们平均每天的睡眠时间(单位:h),统计结果如下:9,8,10.5,7,9,8,10,9.5,8,9,9.5,7.5,9.5,9,8.5,7.5,10,9.5,8,9,7,9.5,8.5,9,7,9,9,7.5,8.5,8.5,9,8,7.5,9.5,10,9.5,8.5,9,8,9.在对这些数据整理后,绘制了如下的统计图表:睡眠时间分组统计表睡眠时间分布情况请根据以上信息,解答下列问题:(1)m=7,n=18,a=17.5%,b=45%;(2)抽取的这40名学生平均每天睡眠时间的中位数落在3组(填组别);(3)如果按照学校要求,学生平均每天的睡眠时间应不少于9h,请估计该校学生中睡眠时间符合要求的人数.【试题分析】(1)根据40名学生平均每天的睡眠时间即可得出结果;(2)由中位数的定义即可得出结论;(3)由学校总人数×该校学生中睡眠时间符合要求的人数所占的比例,即可得出结果.【试题作答】解:(1)7≤t<8时,频数为m=7;9≤t<10时,频数为n=18;∴a=×100%=17.5%;b=×100%=45%;故答案为:7,18,17.5%,45%;(2)由统计表可知,抽取的这40名学生平均每天睡眠时间的中位数为第20个和第21个数据的平均数,∴落在第3组;故答案为:3;(3)该校学生中睡眠时间符合要求的人数为800×=440(人);答:估计该校学生中睡眠时间符合要求的人数为440人.【试题评价】本题考查了统计图的有关知识,解题的关键是仔细地审题,从图中找到进一步解题的信息.19.(6分)如图,某旅游景区为方便游客,修建了一条东西走向的木栈道AB,栈道AB与景区道路CD平行.在C处测得栈道一端A位于北偏西42°方向,在D处测得栈道另一端B位于北偏西32°方向.已知CD=120m,BD=80m,求木栈道AB 的长度(结果保留整数).(参考数据:sin32°≈,cos32°≈,tan32°≈,sin42°≈,cos42°≈,tan42°≈)【试题分析】过C作CE⊥AB于E,DF⊥AB交AB的延长线于F,于是得到CE∥DF,推出四边形CDFE是矩形,得到EF=CD=120,DF=CE,解直角三角形即可得到结论.【试题作答】解:过C作CE⊥AB于E,DF⊥AB交AB的延长线于F,则CE∥DF,∵AB∥CD,∴四边形CDFE是矩形,∴EF=CD=120,DF=CE,在Rt△BDF中,∵∠BDF=32°,BD=80,∴DF=cos32°•BD=80×≈68,BF=sin32°•BD=80×≈,∴BE=EF﹣BF=,在Rt△ACE中,∵∠ACE=42°,CE=DF=68,∴AE=CE•tan42°=68×=,∴AB=AE+BE=+≈139m,答:木栈道AB的长度约为139m.【试题评价】本题考查解直角三角形﹣方向角问题,解题的关键是学会添加常用辅助线.构造直角三角形解决问题,属于中考常考题型.20.(8分)甲、乙两人加工同一种零件,甲每天加工的数量是乙每天加工数量的1.5倍,两人各加工600个这种零件,甲比乙少用5天.(1)求甲、乙两人每天各加工多少个这种零件?(2)已知甲、乙两人加工这种零件每天的加工费分别是150元和120元,现有3000个这种零件的加工任务,甲单独加工一段时间后另有安排,剩余任务由乙单独完成.如果总加工费不超过7800元,那么甲至少加工了多少天?【试题分析】(1)设乙每天加工x个零件,则甲每天加工1.5x个零件,根据甲比乙少用5天,列分式方程求解;(2)设甲加工了x天,乙加工了y天,根据3000个零件,列方程;根据总加工费不超过7800元,列不等式,方程和不等式综合考虑求解即可.【试题作答】解:(1)设乙每天加工x个零件,则甲每天加工1.5x个零件,由题意得:=+5化简得600×1.5=600+5×1.5x解得x=40∴1.5x=60经检验,x=40是分式方程的解且符合实际意义.答:甲每天加工60个零件,乙每天加工,40个零件.(2)设甲加工了x天,乙加工了y天,则由题意得由①得y=75﹣1.5x③将③代入②得150x+120(75﹣1.5x)≤7800解得x≥40,当x=40时,y=15,符合问题的实际意义.答:甲至少加工了40天.【试题评价】本题是分式方程与不等式的实际应用题,题目数量关系清晰,难度不大.21.(8分)如图,在▱ABCD中,对角线AC与BD相交于点O,点E,F分别为OB,OD的中点,延长AE至G,使EG=AE,连接CG.(1)求证:△ABE≌△CDF;(2)当AB与AC满足什么数量关系时,四边形EGCF是矩形?请说明理由.【试题分析】(1)由平行四边形的性质得出AB=CD,AB∥CD,OB=OD,OA=OC,由平行线的性质得出∠ABE=∠CDF,证出BE=DF,由SAS证明△ABE≌△CDF即可;(2)证出AB=OA,由等腰三角形的性质得出AG⊥OB,∠OEG=90°,同理:CF⊥OD,得出EG∥CF,由三角形中位线定理得出OE∥CG,EF∥CG,得出四边形EGCF是平行四边形,即可得出结论.【试题作答】(1)证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,OB=OD,OA=OC,∴∠ABE=∠CDF,∵点E,F分别为OB,OD的中点,∴BE=OB,DF=OD,∴BE=DF,在△ABE和△CDF中,,∴△ABE≌△CDF(SAS);(2)解:当AC=2AB时,四边形EGCF是矩形;理由如下:∵AC=2OA,AC=2AB,∴AB=OA,∵E是OB的中点,∴AG⊥OB,∴∠OEG=90°,同理:CF⊥OD,∴AG∥CF,∴EG∥CF,∵EG=AE,OA=OC,∴OE是△ACG的中位线,∴OE∥CG,∴EF∥CG,∴四边形EGCF是平行四边形,∵∠OEG=90°,∴四边形EGCF是矩形.【试题评价】本题考查了矩形的判定、平行四边形的性质和判定、全等三角形的判定、三角形中位线定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.22.(10分)某商店购进一批成本为每件30元的商品,经调查发现,该商品每天的销售量y(件)与销售单价x(元)之间满足一次函数关系,其图象如图所示.(1)求该商品每天的销售量y与销售单价x之间的函数关系式;(2)若商店按单价不低于成本价,且不高于50元销售,则销售单价定为多少,才能使销售该商品每天获得的利润w(元)最大?最大利润是多少?(3)若商店要使销售该商品每天获得的利润不低于800元,则每天的销售量最少应为多少件?【试题分析】(1)将点(30,150)、(80,100)代入一次函数表达式,即可求解;(2)由题意得w=(x﹣30)(﹣2x+160)=﹣2(x﹣55)2+1250,即可求解;(3)由题意得(x﹣30)(﹣2x+160)≥800,解不等式即可得到结论.【试题作答】解:(1)设y与销售单价x之间的函数关系式为:y=kx+b,将点(30,100)、(45,70)代入一次函数表达式得:,解得:,故函数的表达式为:y=﹣2x+160;(2)由题意得:w=(x﹣30)(﹣2x+160)=﹣2(x﹣55)2+1250,∵﹣2<0,故当x<55时,w随x的增大而增大,而30≤x≤50,∴当x=50时,w由最大值,此时,w=1200,故销售单价定为50元时,该超市每天的利润最大,最大利润1200元;(3)由题意得:(x﹣30)(﹣2x+160)≥800,解得:x≤70,∴每天的销售量y=﹣2x+160≥20,∴每天的销售量最少应为20件.【试题评价】此题主要考查了二次函数的应用以及一元二次不等式的应用、待定系数法求一次函数解析式等知识,正确利用销量×每件的利润=w得出函数关系式是解题关键.23.(10分)问题提出:如图,图①是一张由三个边长为1的小正方形组成的“L”形纸片,图②是一张a×b的方格纸(a×b的方格纸指边长分别为a,b的矩形,被分成a×b个边长为1的小正方形,其中a≥2,b≥2,且a,b为正整数).把图①放置在图②中,使它恰好盖住图②中的三个小正方形,共有多少种不同的放置方法?问题探究:为探究规律,我们采用一般问题特殊化的策略,先从最简单的情形入手,再逐次递进,最后得出一般性的结论.探究一:把图①放置在2×2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图③,对于2×2的方格纸,要用图①盖住其中的三个小正方形,显然有4种不同的放置方法.探究二:把图①放置在3×2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图④,在3×2的方格纸中,共可以找到2个位置不同的2 2×方格,依据探究一的结论可知,把图①放置在3×2的方格纸中,使它恰好盖住其中的三个小正方形,共有2×4=8种不同的放置方法.探究三:把图①放置在a×2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图⑤,在a×2的方格纸中,共可以找到(a﹣1)个位置不同的2×2方格,依据探究一的结论可知,把图①放置在a ×2的方格纸中,使它恰好盖住其中的三个小正方形,共有(4a﹣4)种不同的放置方法.探究四:把图①放置在a×3的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图⑥,在a×3的方格纸中,共可以找到(2a﹣2)个位置不同的2×2方格,依据探究一的结论可知,把图①放置在a ×3的方格纸中,使它恰好盖住其中的三个小正方形,共有(8a﹣8)种不同的放置方法.……问题解决:把图①放置在a×b的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?(仿照前面的探究方法,写出解答过程,不需画图.)问题拓展:如图,图⑦是一个由4个棱长为1的小立方体构成的几何体,图⑧是一个长、宽、高分别为a,b,c(a≥2,b≥2,c≥2,且a,b,c 是正整数)的长方体,被分成了a×b×c个棱长为1的小立方体.在图⑧的不同位置共可以找到8(a﹣1)(b﹣1)(c﹣1)个图⑦这样的几何体.。
2019成都市中考数学试卷(含详细解析)
2019成都市中考数学试卷A 卷(共100分)第Ⅰ卷(选择题,共30分)一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.比-3大5的数是()A.-15B.-8C.2D.82.如图所示的几何体是由6个大小相同的小立方块搭成,它的左视图是()3.2019年4月10日,人类首张黑洞照片面世,该黑洞位于室女座一个巨椭圆星系M 87的中心,距离地球约5500万光年.将数据5500万用科学记数法表示为()A.5500×104B .55×106C.5.5×107D.5.5×1084.在平面直角坐标系中,将点(-2,3)向右平移4个单位长度后得到的点的坐标为()A.(2,3)B.(-6,3)C.(-2,7)D.(-2,-1)5.将等腰直角三角形纸片和矩形纸片按如图方式叠放在一起,若∠1=30°,则∠2的度数为()A.10°B.15°C.20°D.30°第5题图6.下列计算正确的是()A.5ab -3a =2bB.(-3a 2b )2=6a 4b 2C.(a -1)2=a 2-1D.2a 2b ÷b =2a 27.分式方程x -5x -1+2x=1的解为()A.x =-1B.x =1C.x =2D.x =-28.某校开展了主题为“青春·梦想”的艺术作品征集活动,从九年级五个班收集到的作品数量(单位:件)分别为:42,50,45,46,50,则这组数据的中位数是()A.42件B.45件C.46件D.50件9.如图,正五边形ABCDE 内接于⊙O ,P 为DE ︵上的一点(点P 不与点D 重合),则∠CPD 的度数为()A.30°B.36°C.60°D.72°第9题图10.如图,二次函数y =ax 2+bx +c 的图象经过点A (1,0),B (5,0),下列说法正确的是()A.c <0B.b 2-4ac <0C.a -b +c <0D.图象的对称轴是直线x =3第10题图第Ⅱ卷(非选择题,共70分)二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.若m +1与-2互为相反数,则m 的值为________.12.如图,在△ABC 中,AB =AC ,点D ,E 都在边BC 上,∠BAD =∠CAE ,若BD =9,则CE 的长为________.第12题图第14题图13.已知一次函数y =(k -3)x +1的图象经过第一、二、四象限,则k 的取值范围是________.14.如图,▱ABCD 的对角线AC 与BD 相交于点O ,按以下步骤作图:①以点A 为圆心,以任意长为半径作弧,分别交AO ,AB 于点M ,N ;②以点O 为圆心,以AM 长为半径作弧,交OC 于点M ′;③以点M ′为圆心,以MN 长为半径作弧,在∠COB 内部交前面的弧于点N ′;④过点N ′作射线ON ′交BC 于点E .若AB =8,则线段OE 的长为________.三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上)15.(本小题满分12分,每题6分)(1)计算:(π-2)0-2cos 30°-16+|1-3|;(2)3(x -2)≤4x -5,①5x -24<1+12x .②16.(本小题满分6分)先化简,再求值:(1-4x+3)÷x2-2x+12x+6,其中x=2+1.17.(本小题满分8分)随着科技的进步和网络资源的丰富,在线学习已经成为更多人的自主学习选择.某校计划为学生提供以下四类在线学习方式:在线阅读、在线听课、在线答题和在线讨论.为了解学生需求,该校随机对本校部分学生进行了“你对哪类在线学习方式最感兴趣”的调查,并根据调查结果绘制成如下两幅不完整的统计图.第17题图根据图中信息,解答下列问题:(1)求本次调查的学生总人数,并补全条形统计图;(2)求扇形统计图中“在线讨论”对应的扇形圆心角的度数;(3)该校共有学生2100人,请你估计该校对在线阅读最感兴趣的学生人数.18.(本小题满分8分)2019年,成都马拉松成为世界马拉松大满贯联盟的候选赛事,这大幅提升了成都市的国际影响力.如图,在一场马拉松比赛中,某人在大楼A处,测得起点拱门CD的顶部C的俯角为35°,底部D的俯角为45°,如果A 处离地面的高度AB =20米,求起点拱门CD 的高度.(结果精确到1米;参考数据:sin 35°≈0.57,cos 35°≈0.82,tan 35°≈0.70)第18题图19.(本小题满分10分)如图,在平面直角坐标系xOy 中,一次函数y =12x +5和y =-2x 的图象相交于点A ,反比例函数y =kx 的图象经过点A .(1)求反比例函数的表达式;(2)设一次函数y =12x +5的图象与反比例函数y =kx 的图象的另一个交点为B ,连接OB ,求△ABO 的面积.第19题图20.(本小题满分10分)如图,AB 为⊙O 的直径,C ,D 为圆上的两点,OC ∥BD ,弦AD ,BC 相交于点E .(1)求证:AC ︵=CD ︵;(2)若CE =1,EB =3,求⊙O 的半径;(3)在(2)的条件下,过点C 作⊙O 的切线,交BA 的延长线于点P ,过点P 作PQ ∥CB 交⊙O 于F ,Q 两点(点F 在线段PQ 上),求PQ 的长.第20题图B 卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)21.估算:37.7≈________(结果精确到1).22.已知x 1,x 2是关于x 的一元二次方程x 2+2x +k -1=0的两个实数根,且x 21+x 22-x 1x 2=13,则k 的值为________.23.一个盒子中装有10个红球和若干个白球,这些球除颜色外都相同.再往该盒子中放入5个相同的白球,摇匀后从中随机摸出一个球,若摸到白球的概率为57,则盒子中原有的白球的个数为________.24.如图,在边长为1的菱形ABCD 中,∠ABC =60°,将△ABD 沿射线BD 的方向平移得到△A ′B ′D ′,分别连接A ′C ,A ′D ,B ′C ,则A ′C +B ′C 的最小值为________.第24题图25.如图,在平面直角坐标系xOy 中,我们把横、纵坐标都是整数的点称为“整点”.已知点A 的坐标为(5,0),点B 在x 轴的上方,△OAB 的面积为152,则△OAB 内部(不含边界)的整点的个数为________.第25题图二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)26.(本小题满分8分)随着5G 技术的发展,人们对各类5G 产品的使用充满期待.某公司计划在某地区销售一款5G 产品,根据市场分析,该产品的销售价格将随销售周期的变化而变化,设该产品在第x (x 为正整数)个销售周期每台的销售价格为y 元,y 与x 之间满足如图所示的一次函数关系.(1)求y 与x 之间的关系式;(2)设该产品在第x 个销售周期的销售数量为p (万台),p 与x 的关系可以用p =12x +12来描述.根据以上信息,试问:哪个销售周期的销售收入最大?此时该产品每台的销售价格是多少元?第26题图27.(本小题满分10分)如图①,在△ABC 中,AB =AC =20,tanB =34,点D 为BC 边上的动点(点D 不与点B ,C 重合),以D为顶点作∠ADE =∠B ,射线DE 交AC 边于点E ,过点A 作AF ⊥AD 交射线DE 于点F ,连接CF .(1)求证:△ABD ∽△DCE ;(2)当DE ∥AB 时(如图②),求AE 的长;(3)点D在BC边上运动的过程中,是否存在某个位置,使得DF=CF?若存在,求出此时BD的长;若不存在,请说明理由.第27题图28.(本小题满分12分)如图,抛物线y=ax2+bx+c经过点A(-2,5),与x轴相交于B(-1,0),C(3,0)两点.(1)求抛物线的函数表达式;(2)点D在抛物线的对称轴上,且位于x轴的上方,将△BCD沿直线BD翻折得到△BC′D,若点C′恰好落在抛物线的对称轴上,求点C′和点D的坐标;(3)设P是抛物线上位于对称轴右侧的一点,点Q在抛物线的对称轴上,当△CPQ为等边三角形时,求直线BP的函数表达式.第28题图2019成都中考数学试卷解析1.C【解析】比-3大5的数是-3+5=-(3-5)=2.2.B【解析】左视图是从一个几何体的左面由左向右看所得到的视图,从这个几何体的左面看,可得到两排小正方形,其中上排有1个且在左侧,下排有2个.3.C【解析】将一个大于10的数用科学记数法表示为a×10n的形式,其中1≤a<10,n为原数整数位数减1.故5500万=55000000=5.5×107.4.A【解析】将点(-2,3)向右平移4个单位,得到(-2+4,3),即所得点的坐标为(2,3).5.B【解析】如解图,由矩形纸片性质可知两边a∥b,∴∠3=∠1=30°,由等腰直角三角形的性质可知,∠3+∠2=45°,∴∠2=45°-∠3=15°.第5题解图6.D【解析】逐项分析如下:选项逐项分析正误A5ab与3a不是同类项,不能合并×B(-3a2b)2=(-3)2a2×2b2=9a4b2≠6a4b2×C(a-1)2=a2-2a+1≠a2-1×D2a2b÷b=2a2b1-1=2a2√7.A【解析】给方程两边同乘以x(x-1)得x(x-5)+2(x-1)=x(x-1),去括号得x2-5x+2x-2=x2-x,即-2x=2,解得x=-1.经检验可知,x=-1是原分式方程的解.8.C【解析】将一组数据按照从小到大(或从大到小)的顺序排列后,若数据的个数是奇数,则最中间的一个数是中位数;若数据的个数是偶数,则中间两个数的平均数是中位数.将这组数据按从小到大的顺序排列为42,45,46,50,50,共5个数据,则中位数是46.9.B【解析】如解图,连接OC,OD,∵五边形ABCDE是正五边形,∴∠COD=360°5=72°,∵∠COD与∠CPD是CD︵所对的圆心角和圆周角,∴∠CPD=12∠COD=36°.10.D【解析】∵二次函数y=ax2+bx+c的图象与y轴交于正半轴,∴c>0,故A错误;∵二次函数图象与x轴交于A,B两个不同的点,∴b2-4ac>0,故B错误;∵抛物线与x轴的交点A(1,0),B(5,0),∴对称轴为直线x=1+52=3,故D正确;∵抛物线开口向上,∴当x<3时,y随x的增大而减小,∵-1<1,∴当x<1时,y>0,∴当x=-1时,y=a-b+c>0,故C错误.11.1【解析】∵m+1与-2互为相反数,∴m+1-2=0,解得m=1.12.9【解析】∵在△ABC中,AB=AC,∴∠B=∠C,∵∠BAD=∠CAE,∴△BAD≌△CAE,∴CE =BD=9.13.k<3【解析】∵一次函数y=(k-3)x+1的图象经过第一、二、四象限,∴k-3<0,∴k<3.14.4【解析】∵四边形ABCD是平行四边形,AC与BD相交于点O,∴OC=OA,由作图可知,∠COE=∠CAB,∴OE∥AB,∴OE是△CAB的中位线,∴OE=12AB=4.15.解:(1)原式=1-2×32-4+3-1=-4;(2)解不等式①得x≥-1,解不等式②得x<2,∴不等式组的解集为-1≤x<2.16.解:原式=x+3-4x+3÷(x-1)22(x+3)=x-1x+3·2(x+3)(x-1)2=2 x-1.当x=2+1时,原式=22+1-1=22= 2.17.解:(1)本次调查的学生总人数为18÷20%=90(人),则“在线听课”的学生人数为90-24-18-12=36(人).补全条形统计图如解图所示:(2)扇形统计图中“在线讨论”对应的扇形圆心角度数为360°×1290=48°;(3)2100×2490=560(人),∴该校对在线阅读最感兴趣的学生人数约为560人.18.解:如解图,过点C 作CF ⊥AB 于点F .∵AE ∥BD ,BD ⊥AB ,∴CF ∥BD ∥AE .∴∠ADB =∠EAD =45°,∠ACF =∠EAC =35°.∵在Rt △ABD 中,tan ∠ADB =ABBD ,∴tan 45°=20BD.第18题解图∴BD =20(米).∵CD ⊥BD ,BF ⊥BD ,∴四边形BDCF 是矩形.∴CF =BD =20米,CD =BF .∵在Rt △ACF 中,tan ∠ACF =AFCF ,∴tan 35°=AF20,∴AF =20·tan 35°,∴CD =BF =AB -AF =20-20·tan 35°≈6(米).∴起点拱门CD 的高度约为6米.19.解:(1)联立一次函数y =12x +5与正比例函数y =-2x=12x +5=-2x=-2=4,∴点A 的坐标为(-2,4).∵反比例函数y =kx 的图象经过点A ,∴k =-2×4=-8.∴反比例函数的表达式为y =-8x;(2)如解图,设直线AB 与x 轴交于点C ,分别过点A ,B 作x 轴的垂线,垂足记为E ,D.第19题解图y =12x +5y =-8x,x =-2y =4x =-8y =1,∴点B 的坐标为(-8,1).∴AE =4,BD =1.令y =12x +5=0,解得x =-10,∴点C 的坐标为(-10,0).∴CO =10.∴S △AOB =S △AOC -S △BOC=12OC ·AE -12OC ·BD=12×10×4-12×10×1=15.20.解:(1)如解图①,连接OD .∵OC ∥BD ,∴∠OCB =∠DB C.∵OB =OC ,∴∠OCB =∠OB C.第20题解图①∴∠OBC =∠DB C.∴∠AOC =∠COD .∴AC ︵=CD ︵;(2)如解图①,连接A C.∵AC ︵=CD ︵,∴∠CBA =∠CAD.∵∠BCA =∠ACE ,∴△CBA ∽△CAE .∴CA CE =CB CA.∴CA 2=CE ·CB =CE ·(CE +EB )=1×(1+3)=4.∴CA =2.∵AB 为⊙O 的直径,∴∠ACB =90°.在Rt △ACB 中,由勾股定理,得AB =CA 2+CB 2=22+42=25,∴⊙O 的半径为5;(3)如解图②,设AD 与CO 相交于点N .∵AB 为⊙O 的直径,∴∠ADB =90°.∵PC 为⊙O 的切线,∴∠PCO =90°.∴∠ANO =∠PCO .第20题解图②∴PC ∥AE .∴PA AB =CE EB =13.∴PA =13AB =13×25=253.∴PO =PA +AO =253+5=553.过点O 作OH ⊥PQ 于点H ,则∠OHP =90°=∠ACB ,∵PQ ∥CB ,∴∠BPQ =∠AB C.∴△OHP ∽△ACB .∴OP AB =OH AC =PH BC.∴OH =AC ·OP AB =2×55325=53,PH =BC ·OP AB =4×55325=103.连接OQ .在Rt △OHQ 中,由勾股定理,得HQ =OQ 2-OH 2=(5)2-(53)2=253.∴PQ =PH +HQ =10+253.21.6【解析】∵(37.7)2=37.7,36<37.7<49,∴6<37.7<7,∵6.52=42.25>37.7,∴6<37.7<6.5,∴37.7≈6.22.-2【解析】∵x 1,x 2是关于x 的一元二次方程x 2+2x +k -1=0的两个实数根,∴b 2-4ac =22-4(k -1)>0,解得k <2,由根与系数的关系可得x 1+x 2=-2,x 1·x 2=k -1,∴x 21+x 22-x 1·x 2=x 21+2x 1·x 2+x 22-3x 1·x 2=(x 1+x 2)2-3x 1x 2=(-2)2-3(k -1)=13,解得k =-2.23.20【解析】设这个盒子中原有x 个白球,根据题意,再放入5个相同的白球后,摸到白球的概率为57,可得x +510+x +5=57,解得x =20,经检验,x =20是分式方程的解,故盒子中原有的白球个数为20.24.3【解析】如解图,设A ′C 交BD 于点O ,连接AO ,AC ,延长DA 到点E ,使得AE =AD ,连接B ′E ,CE .由平移性质可知,A ′B ′∥CD 且A ′B ′=CD ,∴四边形A ′B ′CD 是平行四边形,∴B ′O =OD ,A ′O =OC ,由菱形性质可知,A ,C 关于BD 对称,∴AO =OC =OA ′,∵AD =EA ,OD =OB ′,∴AO 是△DEB ′的中位线,∴B ′E ∥AO 且B ′E =2AO =A ′C.∴当点B ′在CE 上时A ′C +B ′C 最小,最小值为CE .在△DCE 中,∵AE =AC ,∠EAC =180°-∠DAC =120°,∴∠AEC =∠ACE =30°,∴∠ECD =∠ACE +∠ACD =90°,∵ED =2AD =2,CD =1,∴EC =3,即A ′C +B ′C 的最小值为3.第24题解图25.4或5或6【解析】如解图,∵S △AOB =12OA ·y B =12·5·y B =152,∴y B =3.∴点B 在直线y =3上,设AB 与直线y =2交于点D ,与直线y =1交于点F ,OB 与直线y =2交于点C ,与直线y =1交于点E ,则△BCD ∽△BOA ,∴CD OA =13,解得CD =53,∵每两个格点之间的距离为1,∴CD 之间最少有1个格点,最多有2个格点;同理△BEF ∽△BOA ,∴EF OA =23,解得EF =103>3,∴EF 之间最少有3个格点,最多有4个格点,则△OAB 内的格点数可能有1+3=4或1+4=5或2+3=5或2+4=6,即△AOB 内的格点数可能是4或5或6个.第25题解图26.解:(1)设y 关于x 的函数关系式为y =kx +b (k ≠0),由图象可知,将点(1,7000),(5,5000)k +b =70005k +b =5000,k =-500b =7500,∴y 关于x 的函数关系式为y =-500x +7500;(2)设销售收入为W ,根据题意得W =yp =(-500x +7500)·(12x +12),整理得W =-250(x -7)2+16000,∵-250<0,∴W 在x =7时取得最大值,最大值为16000元,此时该产品每台的销售价格为-500×7+7500=4000元.∴第7个销售周期的销售收入最大,此时该产品每台的销售价格为4000元.27.解:(1)证明:∵AB =AC ,∴∠B =∠ACB .∵∠ADE +∠CDE =∠B +∠BAD ,∠ADE =∠B ,∴∠BAD =∠CDE .∴△ABD ∽△DCE ;(2)如解图①,过点A 作AM ⊥BC 于点M .第27题解图①在Rt △ABM 中,设BM =4k ,则AM =BM ·tanB =4k ·34=3k ,由勾股定理,得AB 2=AM 2+BM 2,∴202=(3k )2+(4k )2.∴k =4.∵AB =AC ,AM ⊥BC ,∴BC =2BM =2·4k =32.∵DE ∥AB ,∴∠BAD =∠ADE .又∵∠ADE =∠B ,∠B =∠ACB ,∴∠BAD =∠ACB .∵∠ABD =∠CBA ,∴△ABD ∽△CBA .∴AB CB =DB AB.∴DB =AB 2CB =20232=252.∵DE ∥AB ,∴AE AC =BD BC.∴AE =AC ·BD BC =20×25232=12516;(3)存在.如解图②,过点F 作FH ⊥BC 于点H ,过点A 作AM ⊥BC 于点M ,AN ⊥FH 于点N ,则∠NHM =∠AMH =∠ANH =90°,第27题解图②∴四边形AMHN 为矩形,∴∠MAN =90°,MH =AN .∵AB =AC ,AM ⊥BC ,∴BM =CM =12BC =12×32=16.在Rt △ABM 中,由勾股定理,得AM =AB 2-BM 2=202-162=12.∵AN ⊥FH ,AM ⊥BC ,∴∠ANF =90°=∠AMD .∵∠DAF =90°=∠MAN ,∴∠NAF =∠MAD .∴△AFN ∽△ADM .∴AN AM =AF AD =tan ∠ADF =tan ∠B =34.∴AN =34AM =34×12=9.∴CH =CM -MH =CM -AN =16-9=7.当DF =CF 时,由点D 不与点C 重合,可知△DFC 为等腰三角形,又∵FH ⊥DC ,∴CD =2CH =14.∴BD =BC -CD =32-14=18.∴点D 在BC 边上运动的过程中,存在某个位置,使得DF =CF ,此时BD =18.28.解:(1)a -2b +c =5-b +c =0a +3b +c =0=1=-2=-3,∴抛物线的函数表达式为y =x 2-2x -3;(2)∵抛物线与x 轴的交点为B (-1,0),C (3,0),∴BC =4,抛物线的对称轴为直线x =1.设抛物线的对称轴与x 轴交于点H ,则点H 的坐标为(1,0),BH =2,由翻折得C ′B =CB =4,在Rt △BHC ′中,由勾股定理,得C ′H =C ′B 2-BH 2=42-22=23,∴点C ′的坐标为(1,23),tan ∠C ′BH =C ′H BH =232= 3.∴∠C ′BH =60°.由翻折得∠DBH =12∠C ′BH =30°,∵在Rt △BHD 中,DH =BH ·tan ∠DBH =2·tan 30°=233,∴点D 的坐标为(1,233);(3)如解图①,取(2)中的点C ′,D ,连接CC ′,∵BC ′=BC ,∠C ′BC =60°,∴△C ′CB 为等边三角形.分类讨论如下:①当点P 在x 轴上方时,点Q 在x 轴上方,连接BQ,C′P,∵△PCQ,△C′CB为等边三角形,∴CQ=CP,BC=C′C,∠PCQ=∠C′CB=60°.第28题解图①∴∠BCQ=∠C′CP.∴△BCQ≌△C′CP.∴BQ=C′P.∵点Q在抛物线的对称轴上,∴BQ=CQ.∴C′P=CQ=CP.又∵BC′=BC,∴BP垂直平分CC′.由翻折可知BD垂直平分CC′,∴点D在直线BP上.设直线BP的函数表达式为y=kx+b(k≠0),k+bk+b=33=33,∴直线BP的函数表达式为y=33x+33;②如解图②,当点P在x轴下方时,点Q在x轴下方,∵△QCP,△C′CB为等边三角形,∴CP=CQ,BC=C′C,∠CC′B=∠QCP=∠C′CB=60°.∴∠BCP=∠C′CQ.∴△BCP≌△C′CQ.∴∠CBP=∠CC′Q.∵BC′=CC′,C′H⊥BC,∴∠CC′Q=12∠CC′B=30°.第28题解图②∴∠CBP=30°.设BP与y轴相交于点E,在Rt△BOE中,OE=OB·tan∠CBP=OB·tan30°=1×33=33,∴点E的坐标为(0,-33).设直线BP的函数表达式为y=k′x+b′(k′≠0),=-k′+b′-33=b′′=-33′=-33,∴直线BP的函数表达式为y=-33x-33.综上所述,直线BP的函数表达式为y=33x+33或y=-33x-33.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
科学计数法
1、(德阳市2018年)已知空气的单位体积质量为1.24×10-3克/厘米3,将1.24×10-3用小数表示为
A: 0. 000124 B .0.0124 C.一0.00124 D 、0.00124
答案:D
解析:科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值
时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数。
1.24×10-3=0.00124
2、(2018达州)某中学在芦山地震捐款活动中,共捐款二十一万三千元。
这一数据用科学记数法表示为( )
A .321310⨯元
B .42.1310⨯元
C .52.1310⨯元
D .60.21310⨯元 答案:C
解析:科学记数法写成:10n a ⨯形式,
其中110a ≤<,二十一万三千元=213000=52.1310⨯元
3、(2018年潍坊市)2012年,我国财政性教育经费支出实现了占国内生产总值比例达4%的目标.其中在促进义务教育均衡发展方面,安排义务教育教育经费保障教育机制改革资金达865.4亿元.数据“865.4亿元”用科学记数法可表示为( )元.
A.810865⨯
B.91065.8⨯
C.101065.8⨯
D.1110865.0⨯ 答案:C .
考点: 科学记数法的表示。
点评:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.
4、(绵阳市2018年)2018年,我国上海和安徽首先发现“H7N9”禽流感,H7N9是一种新型禽流感,其病毒颗粒呈多形性,其中球形病毒的最大直径为0.00000012米,这一直径用科学记数法表示为( D )
A .1.2×10-9米
B .1.2×10-8米
C .12×10-8米
D .1.2×10-7米
[解析]科学记数法写成:10n a ⨯形式,其中110a ≤<,再数小数位知,选D 。
5、(1-5近似数、有效数字和科学记数法·2018东营中考)国家卫生和计划生育委员会公布H7N9禽流感病毒直径约为0.0000001m ,则病毒直径0.0000001m 用科学记数法表示为( )(保留两位有效数字).
A. 60.1010-⨯m
B. 7
110-⨯m
C. 71.010-⨯m
D. 6
0.110-⨯m 3.C.解析:把一个绝对值小于1的数表示成10n a -⨯的形式,其中a 的聚会范围是1≤|a|
<10,n 为正整数,且等于第1个不为零的数字前面零的个数,所以0.0000001m ≈71.010-⨯m.
6、(2018济宁)2018年国家财政支出将大幅向民生倾斜,民生领域里流量最大的开销是教育,预算支出达到23 000多亿元.将23 000用科学记数法表示应为( )
A .2.3×104
B .0.23×106
C .2.3×105
D .23×104
考点:科学记数法—表示较大的数.
分析:科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.
解答:解:23 000=2.3×104,
故选A .
点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中
1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.
7、(2018•天津)中国园林网4月22日消息:为建设生态滨海,2018年天津滨海新区将完
成城市绿化面积共8210 000m 2,将8210 000用科学记数法表示应为( )
A . 821×102
B . 82.1×105
C . 8.21×106
D . 0.821×107
考点: 科学记数法—表示较大的数.
分析: 科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,
要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.
解答: 解:8 210 000=8.21×106,
故选:C .
点评: 此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中
1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.
8、(2018•新疆)惠及南疆五地州的天然气利民工程总投资约64.1亿元.将数6410000000用科学记数法表示为( )
A . 6.41×108
B . 6.41×109
C . 64.1×108
D . 6.41×1010
考点: 科学记数法—表示较大的数.
分析: 科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,
要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.
解答: 解:将6410000000用科学记数法表示为6.41×109.
故选B .。