差示扫描量热分析
差示量热扫描法
差示量热扫描法
差示扫描量热法(DSC)是一种热分析技术,用于测量在程序控制温度下输入到试样和参比物的功率差(如以热的形式)与温度的关系。
差示扫描量热仪记录到的曲线称为DSC曲线,它以样品吸热或放热的速率,即热流率dH/dt(单位毫焦/秒)为纵坐标,以温度T或时间t为横坐标,可以测量多种热力学和动力学参数,例如比热容、反应热、转变热、相图、反应速率、结晶速率、高聚物结晶度、样品纯度等。
差示扫描量热法有补偿式和热流式两种。
在差示扫描量热中,为使试样和参比物的温差保持为零在单位时间所必需施加的热量与温度的关系曲线为DSC曲线。
差示扫描量热法具有试样用量少、基本不需要前处理、耗时短等优势,并被广泛应用于测定物质的纯度。
通过该方法测定的纯度准确度和精确度均优于其他方法,能准确地测定物质的绝对纯度,并且在精确度和准确度上优于其他方法。
差示扫描量热法的使用范围很广,可在无机物、有机化合物及药物分析中进行应用。
此外,它还可在食品和制药行业中用于表征和微调某些性质,例如大分子的稳定性、折叠或展开信息,以及测定玻璃化转变温度等。
差示扫描量热法(DSC)
包括升温、降温速率和温度范围等,根据反应条件进行调整。
3 记录数据
自动化记录实验数据,并生成相应的曲线图像和热力学参数。
应用领域
差示扫描量热法广泛应用于化学、药品、食品、材料等领域,用于研究反应动力学、相变、热稳定 性、材料性能等问题。
1
化学领域
研究化学反应热力学、动力学、催化作用、聚合反应等。
吸热反应
反应过程中吸收热量,导致温 度下降,被量热计测量为正信 号。
基线
参比物和样品在无反应条件下 的基线,用于校正信号。
仪器和操作流程
差示扫描量热仪由样品盒、参比盒、控温系统、传感器和计算机组成。操作流程包括样品制备、 调试仪器、设定实验条件、记录数据、数据分析。
1 样品制备
样品必须纯净、均匀、充分干燥,以确保实验结果准确可靠。
2
材料领域
研究材料的热稳定性、热膨胀系数、晶体相变等。
3
药品领域
研究药品的热稳定性、储存条件、配方优化、反应动力学等。
优点和局限性
差示扫描量热法相比其他热学技术具有高灵敏度、快速、高精度、不需样品分离等优点,但也存在信号 干扰、噪声较大、基线不稳定等局限性。
优点
高灵敏度、高精度、
局限性
信号干扰、噪声较大、基线不稳定、不能确 定速率控制步骤。
案例研究
差示扫描量热仪可以用来研究化合物溶解和结晶过程、聚合反应、材料热稳定性等问题。
化合物溶解
结晶反应
研究葡萄糖在水中的溶解过程, 获得了其热力学参数。
观察钠乙酰丙酸盐的晶体化过 程,得到了其热力学曲线。
聚合反应
探究丙烯酸甲酯聚合反应的热 效应及反应动力学参数。
差示扫描量热法(DSC)
差示扫描量热法
T C CS CS dT C
KT
dt
(3-26),积分得:
dT C
KT dt
T T C
t CS CS
T
T
exp
CS
KT CS
t
根据Kirchoff热功当量定律,可得下列方程式:
T TS T TS TR TS is
(3-7)
R
Rg
Rb
T TR T TR TR TS iR
(3-8)
R
Rg
Rb
式中:T——炉温;TS——试样温度;TR——参 比物温度。 (3-7)和(3-8)式相减并设T=TR-TS,即得
KT
KT dt KT dt
(3-15)
(3-15)式给出了初始瞬时 的热流DSC曲线。 根据(3-15)式,可推断出 当 KT/KT=0 和 CS=CR 时 , T=0 。 这 说 明 在 热 流 型 DSC 的 构 造 中 KT/KT 是 很 重 要 的 , 为 了获得小的KT/KT值, 结构对称性必须很高, 温度滞后(Tf-T)应该很小, 炉 温 要 均 匀 且 KT 必 须 很 大。
T T
K 4SR T T T K 5SR T 4 T T 4
(3-11)
dT
CR dt
K1R Tf T
K 2R
T
4 f
T
4
K 3R Tf T K 4SR T T T K 5SR T T 4 T 4
(1)炉壁传导到试样和参比物的热流分别为i1S和i1R,传 热系数分别为K1S和K1R;
差示扫描量热曲线解析
食品添加剂的热行为研究
总结词
差示扫描量热曲线解析可以用于食品添加剂的热行为研究,通过分析食品添加剂在加热 过程中的热量变化,了解其热分解温度、熔点等性质,为食品加工和保藏提供指导。
详细描述
食品添加剂在食品加工和保藏过程中会受到高温的影响,其热稳定性对于食品质量和安 全具有重要意义。通过差示扫描量热曲线解析,可以了解食品添加剂的热分解温度、熔 点等性质,从而为食品加工和保藏提供指导。这对于保证食品质量和安全具有重要意义。
混合材料的热分析
确定各组分的熔点和结晶 度
通过比较DSC曲线上的峰和已知纯物质的熔 点数据,可以推断混合物中各组分的熔点和 结晶度。
评估组分间的相互作用
如果混合物中各组分之间存在相互作用,DSC曲线 上可能会出现新的峰或峰的形状发生变化。
计算组分含量
通过比较DSC曲线上的峰面积和已知纯物质 的峰面积数据,可以计算混合物中各组分的 含量。
1 2 3
联用光谱技术
结合差示扫描量热技术与光谱技术,如红外光谱、 拉曼光谱等,实现多信息同步获取。
联用显微技术
结合差示扫描量热技术与显微技术,如扫描电子 显微镜、原子力显微镜等,实现微观尺度上的热 性能分析。
联用质谱技术
结合差示扫描量热技术与质谱技术,如飞行时间 质谱、离子淌度质谱等,实现对挥发性成分的快 速分析。
03 差示扫描量热曲线的解析方法
CHAPTER
单一材料的热分析
01
02
03
确定材料熔点
通过观察DSC曲线的峰, 可以确定材料熔点的温度 范围。
判断结晶度
结晶度高的材料在DSC曲 线上表现出明显的熔点峰, 而结晶度低或无定形材料 则无明显熔点峰。
检测热稳定性
差示扫描量热仪(DSC分析解析
q--------热流, ΔT------样品参比温差,R-------热阻
实际测试过程
• 炉体把热量传到样品端和参比端,假设传到样品端的热阻 Rs小于传到参比端的热阻Rf,一定导致传到样品端的热多 于参比端的热从而导致一个Δ T的产生。或者相同热量传 到样品端和参比端,假设样品端热容Cs小于参比端热容Cf, 一定导致样品端温度高于参比端而产生一个Δ T,这些Δ T 都是由于系统引起,不是样品热反应引起,我们称之为热 阻热容的不平衡
DSC典型综合图谱
玻璃化转 变
结晶
氧化 或分解
熔化
交联 (固化)
热流 -> 放热
温度
DSC曲线
热焓变化率, 热流率(heat flowing),
单位为毫瓦(mW)
吸收热量,样品热容增加, 基线发生位移
结晶,放出热量,放热峰; 晶体熔融,吸热,吸热峰
一般在DSC热谱图中,吸热(endothermic)效应用凸起的峰 值来表征 (热焓增加),放热(exothermic)效应用反向的峰值 表征(热焓减少)。
-4
157.77°C
-6 80
Exo Up
100
120
140
Temperature (°C)
160
180
Universal V4.3A TA Instruments
差示扫描量热分析(DSC)
K=ΔHWs/AR
量程校正 K值测定
在铟的记录纸上划出一块大 小适当的长方形面积,如取高度 为记录纸的横向全分度的3/10即 三大格,长度为半分钟走纸距离, 再根据热量量程和纸速将长方形
面积转化成铟的ΔH,
按K=ΔHWs/AR计算校正系
数K’。若量程标度已校正好,则K’ 与铟的文献值计算的K应相等。
差示扫描量热分析法
• DTA面临的问题
定性分析,灵敏度不高
• 差示扫描量热分析法(DSC)
Differential Scaning Calarmeutry
——通过对试样因热效应而发生的能量变化进行及时补 偿,保持试样与参比物之间温度始终保持相同,无温差、 无热传递,使热损失小,检测信号大。灵敏度和精度大 有提高,可进行定量分析。
若量程标度有误差,则K’与按 文献值计算的K不等,这时的实 际量程标度应等于K/K’R。
DSC的影响因素
样品因素: 试样量 试样粒度
试验条件: 升温速率,气氛
主要操作参数:试验量,升温速率和气氛
DSC曲线的数据处理方法
称量法: 误差 2%以内。 数格法: 误差 2%—4%。 用求积仪:误差 4%。 计算机: 误差 0.5%。
1、差示扫描量热分析原理 (1)功率补偿型差示扫描量热法
通过对试样因热效应而发生的能量变化进行及时补偿,保 持试样与参比物之间温度始终保持相同,无温差、无热传 递,使热损失小,检测信号大。零点平衡原理
(2) 热流式差示扫描量热仪
通过测量加热过程中试样热流量达到DSC分析的 目的,试样和参比物仍存在温度差。 采用差热分析的原理来进行量热分析。
比热测定
dH / dt mC p dT / dt 式中,为热流速率(J∙s-1);m为样品质量(g);CP为比
15.-实验二-差示扫描量热法(DSC)
实验二差示扫描量热法(DSC)在等速升温(降温)的条件下,测量试样与参比物之间的温度差随温度变化的技术称为差热分析,简称DTA(Differential Thermal Analysis)。
试样在升(降)温过程中,发生吸热或放热,在差热曲线上就会出现吸热或放热峰。
试样发生力学状态变化时(如玻璃化转变),虽无吸热或放热,但比热有突变,在差热曲线上是基线的突然变动。
试样对热敏感的变化能反映在差热曲线上。
发生的热效大致可归纳为:(1)发生吸热反应。
结晶熔化、蒸发、升华、化学吸附、脱结晶水、二次相变(如高聚物的玻璃化转变)、气态还原等。
(2)发生放热反应。
气体吸附、氧化降解、气态氧化(燃烧)、爆炸、再结晶等。
(3)发生放热或吸热反应。
结晶形态转变、化学分解、氧化还原反应、固态反应等。
用DTA方法分析上述这些反应,不反映物质的重量是否变化,也不论是物理变化还是化学变化,它只能反映出在某个温度下物质发生了反应,具体确定反应的实质还得要用其他方法(如光谱、质谱和X光衍射等)。
由于DTA测量的是样品和基准物的温度差,试样在转变时热传导的变化是未知的,温差与热量变化比例也是未知的,其热量变化的定量性能不好。
在DTA基础上增加一个补偿加热器而成的另一种技术是差示扫描量热法。
简称DSC(Differential Scanning Calorimetry)。
因此DSC直接反映试样在转变时的热量变化,便于定量测定。
DTA、DSC广泛应用于:(1)研究聚合物相转变,测定结晶温度Tc 、熔点Tm、结晶度XD。
结晶动力学参数。
(2)测定玻璃化转变温度Tg。
(3)研究聚合、固化、交联、氧化、分解等反应,测定反应热、反应动力学参数。
一、目的要求:1.了解DTA、DSC的原理。
2.掌握用DSC测定聚合物的Tg 、Tc、Tm、XD。
二、基本原理:1.DTA图(11-1)是DTA的示意图。
通常由温度程序控制、气氛控制、变换放大、显示记录等部分所组成。
差示扫描量热仪(DSC分析解析
应用实例:混合物和共聚物的定量检测
Sample: PP:PE=4.00:6.65 Size: 10.6500 mg
DSC
File: J:...\Thermo data\标样\DSC\DSC-PP PE.001 Operator: Jenner Run Date: 21-Dec-2009 18:03 Instrument: DSC Q200 V23.5 Build 72
-0.7
1.0
-0.8
-0.9
0.5 70
Exo Up
-1.0 90 110
Temperature (°C)
Universal V3.8A TA Instruments
[ ––––– · ] Heat Flow (mW)
Heat Capacity (J/g/°C)
测量、报道玻璃化转变
• • 玻璃化转变永远是一个温度范围。 与玻璃化转变相关的分子运动是有温度依赖性的。因此,Tg随着 加热速率或者测试频率(MDSC, DMA等)的增加而提高。 • 当需要报道玻璃化温度时候,一定要说明测试方法(DSC、DMA
等等)、实验条件(加热速率、样品尺寸等等)以及Tg是如何确
定的(1/2Cp的中点,或者是拐点,或者是求导后的峰值)。
玻璃化转变分析
聚苯乙烯 9.67mg 10°C/min
玻璃化转变分析
聚苯乙烯 9.67mg 10°C/min
玻璃化转变是可逆的
玻璃化转变温度测定的推荐程序
• 样品用量10~15毫克 • 以20℃/min加热至Tg以上30或50℃ • 以最快速度或20℃/min将温度降到Tg以下30或50℃
DSC的基础公式
假设: 1, 传感器绝对对称,Tfs = Tfr, Rs = Rr = R 2, 样品和参比端的热容相等Cpr=Cps 3, 样品和参比的加热速率永远相同 4, 样品盘及参比盘的质量(热容)相等 5, 样品盘、参比盘与传感器之间没有热阻或者热阻相等
差示扫描量热法
差示扫描量热法
差示扫描量热法(DSC)是一种用于确定受控温度范围内被测样品与参考样品之间热流率差异的技术。
该分析过程是在一个封闭的系统中实现的,该封闭系统与周围环境之间通过边界隔离,只有热量和能量可以流动,而质量不能通过边界流动。
差示扫描量热法可以在恒定压力或恒定体积下进行,这使分析人员可以监测由所研究的反应引起的温度变化。
差示扫描量热法。
DSC常用于:1,获取未知材料的性质和成分信息;2,研究样品纯度和确认成分分析。
同时,DSC在食品和制药行业中也很流行,用于表征和微调某些性质;大分子的稳定性,折叠或展开信息也可以通过DSC实验测量。
差示扫描量热法可应用于:
1,相变分析。
通过测量焓随温度的变化来确定熔点、结晶点和相变;
2,玻璃化温度测量。
用高分辨率量热法检测玻璃化转变温度(Tg);3,比热容的测量。
用蓝宝石标准测定固体和液体的Cp(比热容);4,化学反应焓的测定。
测定化学反应的吸热和放热焓ΔH;
5,热、氧化稳定性的测定。
测定各种气体环境和不同压力下的氧化诱导时间。
差示扫描量热分析简介
0.0
Heat capacity (heating)
Glass Transition (Tg)
Melting
-0.1
Evaporation
Other endothermic processes
-0.2
Heat Flow (W/g)
-0.3
Endothermic
-0.4
0
Exo Up
25
50
75
100
一般在DSC热谱图中, 吸热(endothermic)效应用凸起旳峰值来表征 (热焓增
长); 放热(exothermic)效应用反向旳峰值表征(热焓降低)。
Endothermic Heo the sample as a result of either
125
150
Temperature (°C)
Exothermic Heat Flow
Exothermic
0.1
Heat Flow (W/g)
Heat flows out of the sample as a result of either
Heat capacity (cooling)
0.0
Crystallization
1923年,Honda首次提出连续测量试样质量变化旳热重分析。 1955年,Boersma设想在坩埚外放置热敏电阻,发明现今旳
DSC。 1964年,Watson等首次刊登了功率补偿DSC旳新技术。 频率可调旳动态热机械测量旳历史并不久。
近年来,热分析极大地得益于强大计算机软硬件旳应用。
梅特勒-托利多热分析简史
DSC与DTA测定原理旳不同
DSC是在控制温度变化情况下,以温度(或 时间)为横坐标,以样品与参比物间温差 为零所需供给旳热量为纵坐标所得旳扫描 曲线。
差示扫描量热法(DSC)的测试与分析 热分析
在不同温度完成预固化的环氧—酸酐试样 8℃/min 升温DSC曲线
样品历史效应对影响
热历史
制备样品时,如果冷却速率较小,加热速率大于冷 却速率,会出现吸热的“滞后峰”,反之则出现放 热峰,只有冷却速率与测定加热速率相同时,有标 准的转变曲线如图A 热历史对Tg的影响,可以用比热容—温度曲线来说 明(图B)。多方研究受热历史影响的Tg变化范围为 10—30℃。当加热速率与冷却速率相近时(图中曲 线1和3),不出现明显的热效应;当加热与冷却速 率不同时(图中曲线2和4),出现放热或吸热峰,热 历史被记录下来
升温速度对DSC曲线测定Tg的影响
下图是在氮气保护下测定的未拉伸PET纤维的 DTA曲线,77℃、136 ℃ ,261 ℃及447 ℃分 别为它的玻璃化转变温度Tg、低温结晶化温度 (冷结晶温度);熔融温度Tm及分解温度Td
没拉伸聚对苯二甲酸乙二醇酯 纤维的DTA曲线(在氮气中)
化学结构对Tg的影响 具有僵硬的主链或带有大的侧基的聚合物将具 有较高的Tg;链间具有强吸引力的高分子不宜 膨胀,Tg高,在分子链上挂有松散的侧基,使 高分子结构变得松散,增加了自由体积,而使 Tg降低 侧基对Tg影响
ΔT=Ts-Tr
谱图横坐标为温度T (或时间t),纵坐标 为ΔT。基线突变的温 度与聚合物的转变温度 或反应时吸热或放热有 关
DSC谱图的横坐标为温度T,纵坐标为热量变化率,曲线中出现的热量变 化峰或基线突变的温度与聚合物的转变温度相对应,也叫差动分析 DTA、DSC应用须注意的问题 谱图直接反映温度变化中样品的物理(玻璃化变、熔融、结晶、晶型转 变、升华、汽化、吸附等)和化学(如分解、降解、聚合、交联、氧化还原 等)变化过程,它在DSC曲线上表现为吸热或放热的峰或基线的不连续偏 移 样品受热历史对性能影响较大,即聚合物的转变与松弛收加工温度、冷 热处理时间与速度、放置的温度与时间影响较大 DSC比DTA易于定量:ΔH=KA ,T=RdQs/dt 升温速度对DSC和DTA有影响 ,通常5-20℃/min,升温速度快,灵敏度提 高,分辩率下降。升温过快,转变温度向高温偏移,相邻峰重迭;升温 过慢,测试效率低,影响Tg 样品需在惰性气体(N2、Ar、He)保护下测试,防止氧化,减少挥发物 对器皿的腐蚀 样品尽量小、均匀,5-15mg T<500 ℃,用铝皿;高温选择金、铂、石墨、氧化铝 仪器须定时、定期进行温度、能量、基线校正、清洗
示差扫描量热法
示差扫描量热法
示差扫描量热法(Differential Scanning Calorimetry,DSC)是一种利用固体、液体或气态样品随着温度变化所产生的热力学性质变化进行测试和分析的技术。
该方法利用示差式扫描量热计(Differential Scanning Calorimeter)测量试样与基准的热流差值随温度变化的情况,从而获得样品在升温或降温过程中的热反应特性。
具体地,DSC在实验中,通常会将试样和基准置于两个独立的炉腔中,随着温度的变化逐步加热或冷却。
测量过程中,试样和基准分别接收到不同的能量流,差值就称为示差热流信号,通过这个信号,我们可以分析得到试样的热反应情况,如熔化、结晶、玻璃化、聚合等物理化学过程以及与空气或其他气体发生反应的物质。
可以根据试样的变化以及热反应等性质解释得到样品本身的特性、纯度等信息。
DSC技术广泛应用于化学制品、医药、食品等领域,它具有操作简便、测试精度高等优点,同时可以提供大量有用的热学数据,为高分子材料、金属材料、药物、食品等领域的研究和应用提供了强有力的支持。
简述差热分析,差示扫描量热分析的基本原理
简述差热分析,差示扫描量热分析的基本原理差热分析和差示扫描量热分析(DSC)是测量材料的物理性质的一种常用技术。
它们可以测量和分析材料的热量流失,在加热和冷却过程中材料的温度,以及在这两个过程中发生的化学反应。
这些技术也常用于分析材料的物化特性,如熔点,热容量等。
差热分析是一种根据材料在不同温度下的热导率,来测量材料特性的技术。
它通过控制一个样品在不同温度,以及使用固定的快速热流,来直接测量材料的热传导性能。
它的基本原理是,当样品和热源之间的温度差达到一定的值时,样品会吸收热量,加热;同时,温度差值会随着温度的变化而变化。
差示扫描量热分析(DSC)是一种更加精确的测量技术,它可以测量更小的温度变化,以及更小的热量流失。
它将差热分析中的快速热流替换成一致热流,从而得到更精确的测量结果。
它的基本原理是,在一个固定的温度量程内(由上下限确定),控制一个样品在升温或降温过程中,样品吸收或放出热量,从而使得温度变化,从而得到热量流失的精确值。
在差热分析和差示扫描量热分析的应用中,需要使用专业的仪器来测量和控制温度。
这些仪器可以精确地控制温度,使用户可以在短时间内得到精确的测量结果。
差热分析和差示扫描量热分析是材料特性分析中常用的技术,它们可以测量材料的热量流失,温度变化,以及发生的化学反应。
它们通过精确的控制温度,以及使用固定的快速热流或一致热流,来测量材料的热传导性能,以及材料的物理和化学特性。
同时,它们也可以帮助用户轻松地得到精确的测量结果。
总之,差热分析和差示扫描量热分析是研究材料特性常用的技术,它们的基本原理是,在一定温度差达到一定大小时,样品会吸收或放出热量,从而使得温度变化。
同时,这些技术也需要使用专业的仪器,来获得精确的测量结果。
常用热分析技术:差示扫描量热法(DSC)、差热分析(DTA)、热重分析(TAG)
常用热分析技术:差示扫描量热法(DSC)、差热分析(DTA)、热重分析(TAG)物质的物理状态和化学状态发生变化(如升华、氧化、聚合、固化、硫化、脱水、结晶、熔融、晶格改变或发生化学反应)时,往往伴随着热力学性质(如热焓、比热、导热系数等)的变化,故可通过测定其热力学性能的变化,来了解物质物理或化学变化的过程。
主要方法有:▪差热分析-DTA;▪差示扫描量热法-DSC;▪热重分析-TGA。
▪1. TG的基本原理TG:可调速的加热或冷却环境中,以被测物重量作为时间或温度的函数进行记录的方法。
DTG:微商热重曲线,热重曲线对时间或温度的一阶微商的方法获得的曲线。
2. 分析方法:升温法和恒温法升温法:样品在真空或其他任何气体中进行等速加温,样品将温度的升高发生物理变化和化学变化使原样品失重—动态法。
原理:在某特定的温度下,会发生重量的突变,以确定样品的特性。
恒温法:在恒温下,记录样品的重量变化作为时间的函数的方法。
3. 影响TGA数据的因素(1)气体的浮力和对流浮力的影响:样品周围的气体因温度的升高而膨胀,比重减小,则样品的TGA值增加。
对流的影响:对流的产生使得测量出现起伏。
(2)挥发物的再凝聚凝聚物的影响:物质分解产生的挥发物质可能凝聚在与称重皿相连而又较冷的部位上,影响失重的测定结果。
(3)样品与称量皿的反应反应的影响:某些物质在高温下会与称量皿发生化学反应而影响测定结果。
(4)升温速率的影响升温速率的影响:升温速率太快,TGA曲线会向高温移动;速度太慢,实验效率降低。
(5)样品用量和粒度用量和粒度影响:样品用量大,挥发物不易逸出,影响曲线比那话的清晰度;样品细,反应会提前影响曲线低温移动。
(6)环境气氛环境气氛对热失重曲线的影响4. 热重分析的应用热重分析主要研究在空气或惰性气氛材料的热稳定性、热分解作用和氧化分解等物理化学变化;也广泛用于涉及质量变化的所有物理过程。
根据热失重曲线可获得材料热分解过程的活化能和反应级数:k = dm/dt= A·mn·e-E/RT;ln(dm/dt) = lnA + nlnm- E/RT;获得n和E的方法:a. 示差法;b. 不同升温速率法;ln(d m/d t) = lnA + n ln m- E/RT;ln k= 0时,有:E/RT0= lnA + n ln m;T0—反应速度的对数为零时的温度;1. DSC的工作原理差示扫描量热法(DSC)是在程序控制温度条件下,测量输入给样品与参比物的功率差与温度关系的一种热分析方法。
差示扫描量热仪(DSCDTA)简介
差示扫描量热仪(DSC/DTA)简介1. 简介差示扫描量热仪(Differential Scanning Calorimetry,DSC)和差示热分析仪(Differential Thermal Analysis,DTA)是常用的热分析仪器。
它们广泛应用于材料科学、化学、生物学等领域,在研究样品的热性质、热变化以及相变等方面起到关键作用。
2. 差示扫描量热仪(DSC)的原理差示扫描量热仪通过比较待测样品与参比样品之间的热量差异,来分析样品的热性质。
其主要原理是利用两个温度探测器来测量样品和参比样品之间的温度差异,并通过控制和调整样品和参比样品的温度,以获取相应的热量数据。
3. 差示扫描量热仪(DSC)的仪器组成差示扫描量热仪主要由以下几个部分组成:3.1 采样系统采样系统用于装载和固定待测样品和参比样品,并提供温度控制和调整的环境。
样品采用常见的形式,如粉末、片状、颗粒状等。
3.2 温度控制系统温度控制系统用于精确控制样品和参比样品的温度,并能够按照特定的温度程序进行加热或冷却。
3.3 热量测量系统热量测量系统由两个温度探测器组成,分别测量样品和参比样品的温度变化。
常用的温度探测器包括热电偶和铂电阻温度计等。
3.4 数据记录和分析系统数据记录和分析系统负责采集、记录和分析差示扫描量热仪所产生的数据。
它可以提供实时数据显示和曲线分析功能,以便进一步研究样品的热性质和热变化规律。
4. 差示扫描量热仪(DSC)的应用领域差示扫描量热仪广泛应用于材料科学、化学、生物学等领域。
它可以用于测量和研究固体、液体和气体等样品的热性质,包括热容、热导率、热膨胀系数、熔点、熔融焓、晶型转变等。
在材料科学领域,差示扫描量热仪可以用于材料的热稳定性研究,新材料的开发和性能评价,以及相变、晶型转变等研究。
在化学领域,差示扫描量热仪可以用于测量和研究化学反应的热效应,包括吸热反应、放热反应、放热反应的速率等。
在生物学领域,差示扫描量热仪可以用于生物分子的稳定性研究,生物催化反应的研究,以及生物样品的热变化和相变等研究。
示差扫描量热法原理
示差扫描量热法原理示差扫描量热法是一种常用的热分析技术,用于研究物质在加热或冷却过程中的热性质变化。
该方法通过测量样品和参比物温度之间的差异来确定样品的热容量和热效应。
下面将详细介绍示差扫描量热法的原理及其应用。
一、示差扫描量热法原理示差扫描量热法基于热平衡原理,通过对比样品和参比物的温度差异来测量样品的热性质变化。
该方法主要包括以下几个步骤:1. 样品和参比物的准备:选择适当的样品和参比物,样品应具有所需研究的热性质变化,参比物应具有稳定的热性质。
样品和参比物应具有相似的质量和形状,以保证在相同条件下吸收或释放相同的热量。
2. 样品和参比物的装填:将样品和参比物分别装填到示差扫描量热仪的样品盒和参比盒中。
装填时要注意避免气泡的产生,以确保热传导的准确性。
3. 扫描温度:将样品和参比物的温度从初始温度升至最高温度或降至最低温度的过程称为扫描温度。
在扫描温度过程中,示差扫描量热仪会记录样品和参比物的温度变化。
4. 温度差分析:示差扫描量热仪将记录的样品和参比物温度差异转换为热性质变化数据。
通过计算样品和参比物之间的温度差异,可以确定样品的热容量和热效应。
二、示差扫描量热法的应用示差扫描量热法广泛应用于材料科学、化学工程、生物医学和环境科学等领域,主要用于以下方面的研究:1. 热性质分析:示差扫描量热法可以测量材料的热容量、热导率和热膨胀系数等热性质参数,用于分析材料的热稳定性和热行为。
2. 反应动力学研究:通过示差扫描量热法可以研究化学反应或生物反应的热效应和反应动力学参数,如反应速率常数、反应活化能等。
3. 材料相变分析:示差扫描量热法可以用于研究材料的相变行为,如熔化、凝固、晶化和玻璃化等过程,从而揭示材料的结构和性质变化。
4. 生物热学研究:示差扫描量热法可以用于生物体系的热学研究,如生物大分子的热解、蛋白质的折叠和解聚等过程。
5. 药物研究:示差扫描量热法可以用于药物的热稳定性和热效应研究,包括药物的热解、溶解、晶型转变等。
我总结的差示扫描量热法DSC
放热
结晶
放热行为 (固化,氧化,反应,交联)
玻璃化转变
基线
吸热 dH/dt(mW)
固固 一级转变
Tg Td
熔融
Tc
Tm
DSC曲线
分解气化 Tr
mW
冷结晶 玻璃化转变
放热
吸热
温度
聚合物典型 DSC曲线
熔融
C
➢热流型 DSC
在给予试样和参比品相同的功率下,测定 试样和参比品两端的温差ΔT,然后根据热 流方程,将 ΔT(温差)换算成 ΔQ(热量 差)作为信号的输出。
Tm
温度
C
固-液相转变的DSC曲线
② DTA及DSC曲线峰面积的计算
在 Ti 和 Tf 间直接连线。如图中的(a)和(b)。 联接 Ti 和 Tf 。是 ICTA 所规定的方法。
如图中的(c)。
过峰顶作基线垂线法。如图中的(d)。 对对称峰,在峰两侧在曲率最大的两点间
联线。如图中的(e)。
对峰形很明确而基线有移动的吸热峰,则
延长原来的基线法。如图中的(f)。
DSC及DTA曲线峰面的计算法方法
Tf
Ti
Tf
Ti
(a)
(b)
Tf
Tf
Ti
Ti
(c) (d)
大 选用高K值的,
如氦气
为获高的灵敏度
大 快 试样与参比物容器要 隔离(K大,R小) 小 选用低K值的, 如真空
表中, K —— 传热系数 R —— 热阻
五、DSC、DTA的基线
基线
DSC、DTA仪器未装载样品或者样品池 加载参比物时所测得的DSC或DTA曲线。
DSC、DTA的基线是曲线,而不是一 条直线
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
所要补偿的功率相当于样品热量的变化。 所要补偿的功率相当于样品热量的变化。 差示扫描量热曲线与差热分析基本相同, 差示扫描量热曲线与差热分析基本相同 , 但定量更 准确、可靠。 准确、可靠。
DTA图中,温度上升曲线的斜率由于试样的吸热或放热而产生扰乱,而DSC 图中,温度上升曲线的斜率由于试样的吸热或放热而产生扰乱, 图中 曲线却不受干扰,且峰形更规整(曲线上的三个吸热峰分别是CuSO4·5H2O 曲线却不受干扰,且峰形更规整(曲线上的三个吸热峰分别是 失去2分子 分子、 分子和 分子水形成的) 分子和1分子水形成的 失去 分子、2分子和 分子水形成的)。
DSC: :
DSC用于药 用于药 物品质分析
内容选择: 内容选择:
19.1 热分析法概述 19.2 热重与微分热重分析法 19.3 差热分析法 19.4 差示扫描量热分析法
结束
第十九章 热分析法
thermal analysis, TA
第四节 差示扫 描量热分析法
differential scanning calorimetry,DSC22:48:45差示扫描量热分析法原理
试样和参比物各自独立加热, 试样和参比物各自独立加热 , 随时保持两者的温度 相同。 相同。 如果样品发生相变或失重, 如果样品发生相变或失重 , 它与参比物间将产生温 度差时,系统提供功率补偿使两者再度保持平衡。 度差时,系统提供功率补偿使两者再度保持平衡。