I2C总线串行接口应用设计

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

计算机基本知识I2C总线串行接口应用设计

[ 2007-5-21 13:48:00 | By: 山野村夫 ] I2C总线串行接口应用设计

I2C是一种较为常用的串行接口标准,具有协议完善、支持芯片较多和占用I/O 线少等优点。I2C总线是PHILIPS公司为有效实现电子器件之间的控制而开发的一种简单的双向两线总线。现在,I2C总线已经成为一个国际标准,在超过100种不同的IC集成电路上实现,得到超过50家公司的许可,应用涉及家电、通信、控制等众多领域,特别是在ARM嵌入式系统开发中得到广泛应用。

1 实例说明

本实例介绍I2C总线接口在ARM中的应用,以及它在ARM平台中的I/O交互拓展能力。

在ARM嵌入式系统开发中,系统和外围设备的信息交换能力非常重要。传统的方式多采用地址和数据总线来完成,但是由于嵌入式系统总线资源的限制,利用有限的I/O接口和足够的通信速度来扩展多功能的外围器件就显得十分必要。I2C 总线正好可以满足这一嵌入式系统设计的需要。在嵌入式系统中应用I2C总线,可以在很大程度上简化系统结构,模块化系统电路,而I2C总线上各节点独立的电气特性也可以使整个系统具有最大的灵活性。

2 I2C设计原理

2.1 12G主从模式

I2C采用两根I/O线:一根时钟线(SCL串行时钟线),一根数据线(SDA串行数据线),实现全双工的同步数据通信。I2C总线通过SCL/SDA两根线使挂接到总线上的器件相互进行信息传递。

ARM通过寻址来识别总线上的存储器、LCD驱动器、I/O扩展芯片及其他I2C总线器件,省去了每个器件的片选线,因而使整个系统的连接极其简洁。总线上的设备分为主设备(ARM处理器)和从设备两种,总线支持多主设备,是一个多主总线,即它可以由多个连接的器件控制。典型的系统构建如图15-1所示。

每一次I2C总线传输都由主设备产生一个起始信号,采用同步串行传送数据,数据接收方每接收一个字节数据后都回应一个应答信号。一次I2C总线传输传送的字节数不受限制,主设备通过产生停止信号来终结总线传输。数据从最高位开始传送,数据在时钟信号高电平时有效。通信双方都可以通过拉低时钟线来暂停该次通信。

2.2 I2C工作原理

SDA和SCL都是双向线路,各通过一个电流源或上拉电阻连接到正的电源电压。当总线空闲时这两条线路都是高电平,连接到总线的器件输出必须是漏极开路或集电极开路才能执行线与的功能。I2C总线上数据的传输速率在标准模式下可达100kb/s,在快速模式下可达400kb/s,在高速模式下可达3.4Mb/s。连接到总线的接口数量由总线电容是400pF的限制决定。

图15-2(a)显示了I2C总线上的数据稳定规则,SCL为高电平时SDA上的数据保持稳定,SCL为低电平时允许SDA变化。如果SCL处于高电平时,SDA上产生下降沿,则认为是起始位,SDA上的上升沿认为是停止位。通信速率分为常规模式(时钟频率100kHz)和快速模式(时钟频率400kHz)。同一总线上可以连接多个带有I2C接口的器件,每个器件都有一个唯一的地址,既可以是单接收的器件,也可以是能够接收发送的器件。

图15-2(b)显示了I2C总线的起始位和停止位。

每次数据传输都是以一个起始位开始,而以停止位结束。传输的字节数由ARM 控制和决定,没有限制。最高有效位将首先被传输,接收方收到第8位数据后会发出应答位。数据传输通常分为两种:主设备发送从设备接收和从设备发送主设备接收。这两种模式都需要主机发送起始位和停止位,应答位由接收方产生。从

设备地址一般是1或2个字节,用于区分连接在同一I2C上的不同器件。

3 I2C硬件电路设计

3.1 I2C串口存储器

在嵌入式系统中会用到各种带I2C接口的芯片,这里以I2C串口存储器

CSl24WC256为例,说明I2C电路在ARM嵌入式系统中的应用。

CSl24WC256是美国CAllALXST公司的一款芯片,是一个256K位支持I2c总线数据传送协议的串行CMOS串口存储器,可用电擦除,可编程自定时写周期(包括自动擦除时间不超过10ms,典型时间为5ms),具有64字节数据的页面写能力。串行存储器一般具有两种写入方式,一种是字节写入方式,另一种是页写入方式。允许在一个写周期内同时对1个字节到一页的若干字节的编程写入,1页的大小取决于芯片内页寄存器的大小。

先进的CMOS技术实质上降低了器件的功耗,可在电源电压低到1.8V的条件下工作,等待电流和额定电流分别为0和3mA,特有的噪声保护施密特触发输入技术,可保证芯片在极强的干扰下数据不丢失。

芯片管脚排列图如图15-3所示,其管脚功能描述如表15-l所示。

其中:

·SCL:串行时钟。输入管脚,用于产生器件所有数据发送或接收的时钟。

·SDA:串行数据/地址。双向传输端,用于传送地址和所有数据的发送或接收。它是一个漏极开路端,因此要求接一个上拉电到Vcc端(典型值为100kHz时为10K,400kHz时为lK)。对于一般的数据传输,仅在SCL为低期间SDA才允许变

化;在SCL为高期间变化,留给指示Start(开始)和Stop(停止)条件。

·AO/A1/A2:器件地址输入端。这些输入端用于多个器件级联时设置器件地址,当这些脚悬空时默认值为空。

·WP:写保护。如果WP管脚连接到Vcc,则所有的内容都被写保护(只能读):当 WP管脚连接到Vss或悬空时,则允许器件进行正常的读/写操作。

3.2电路原理图

如图15-4所示为串行存储器电路原理图,具有串行存储的功能,速率为100kHz,所R2/R3为IOK。如果将编码开关任一位打开,则对应的地址线为“l”;如果将编码开关任一位闭合则对应的地址线就为“0”。

4软件设计

4.1 I2C读写过程设计

ARM在系统中一直作为主设备,所以在I2C总线中只有主发送和主接收两种操作方式。在系统初始化时,由指令控制CPU送出相关的数据,经接口送到I2C寄存器内。通过初始化这些寄存器,可以实现I2C总线的主模式控制,以及实现I2C 总线上的从设备读写。

当主设备和其中的一个从设备交换数据时,主设备首先发出一个启动Start信号,这个信号被所有的从设备接收。即从设备准备接收CPU的信号,然后主设备再发出它要通信的从设备地址。接下来,所有的从设备将收到的这个地址和它们自己的地址进行比较。

如果收到的地址和它们自己的地址不同,则什么都不做,只是等待主设备发出停止stop信号;如果收到的地址和它自己的地址相同,它就发出一个信号给主设备,这个信号称为应答Acknowledge信号。当主设备收到应答信号后,它就开始向从设备发送数据或者从从设备接收数据。当所有操作都进行完毕时,主设备发出一个Stop信号,通信完毕,释放I2C总线;然后所有的从设备都等待下一次

相关文档
最新文档