关于气固流化床模拟的一个实例Modeling Uniform Fluidization in 2D Fluidized Bed
FLUENT流化床模拟实例
Tutorial:Using the Eulerian Multiphase Model with Species TransportIntroductionFluidized beds are used in processes where gas/solid mass transfer is of importance.The de-composition of ozone(O3),using particles as a catalyst,creates a suitable low-temperature environment for mass transfer.This tutorial solves a gas/solidflow with a simple one-step ozone decomposition reaction in afluidized bed.The reaction equation isO3→1.5O2(1) This tutorial demonstrates how to do the following:•Use the granular Eulerian multiphase model with species transport.•Define the rate of reaction with a user-defined function(UDF).•Define the Syamlal-O’Brien drag correlation with a user-defined function(UDF)usingappropriate parameters.•Set boundary conditions for internalflow.•Define thefluid and solid phases.•Calculate a solution using2D planar geometry in conjunction with the pressure-basedsolver.•Solve a time-accurate transient problem with data sampling for time statistics.PrerequisitesThis tutorial assumes that you are familiar with the FLUENT interface and that you have a good understanding of basic setup and solution procedures.Some steps will not be shown explicitly.In this tutorial you will use the Eulerian multiphase model with species transport.If you have not used this feature before,refer to the FLUENT6.3User’s Guide.Using the Eulerian Multiphase Model with Species TransportProblem DescriptionThe problem involves the transient startup of ozone decomposition in a fluidized bed.The fluid phase is a mixture of ozone and air,while the solid phase consists of sand particles with an 87.75micron diameter.A schematic of the fluidized bed is shown in Figure 1.The domain is modeled as a 2D planar cylindricalcase.volume fraction 0.52 of solids pressure outlet uniform velocity inlet u = 0.08 m/s 0 Pa gauge Figure 1:Problem SpecificationUsing the Eulerian Multiphase Model with Species Transport Preparation1.Copy thefiles2-D-FBed Ozone.msh.gz,rrate.c,and bp drag.c to your workingfolder.2.Start the2D double-precision(2ddp)version of FLUENT.Setup and SolutionStep1:Grid1.Read the gridfile(2-D-FBed_Ozone.msh).File−→Read−→Case...As FLUENT reads the gridfile,it will report its progress in the console.2.Check the grid.Grid−→CheckFLUENT will perform various checks on the mesh and will report the progress in the console.Make sure the minimum volume reported is a positive number.3.Display the grid using the default settings.Display−→Grid...Figure2:Grid Display4.Rotate the view so that the inlet of thefluidized bed is at the bottom.Display−→Views...Using the Eulerian Multiphase Model with Species Transport(a)Click the Camera...button to open the Camera Parameters panel.i.Drag the indicator of the dial with the left mouse button in the counter-clockwise direction until the upright view(-90◦)is displayed(Figure2).ii.Close the Camera Parameters panel.(b)Click the Save button in the Actions group box in the Views panel to save theupright view.When you do this,view-0will be added to the list of Views.(c)Close the Views panel.You can use the probe mouse button to check which zone number corresponds to eachboundary.If you click the probe mouse button on one of the boundaries in the graphicswindow,its zone number,name,and type will be printed in the FLUENT console.Thisfeature is especially useful when you have several zones of the same type and you wantto distinguish between them quickly.Using the Eulerian Multiphase Model with Species Transport Step2:Models1.Specify a transient,2D model.Define−→Models−→Solver...(a)Retain the default selection of Pressure Based from the Solver list and2D fromthe Space list.The pressure based solver must be used for multiphase calculations.(b)Select Unsteady from the Time list.(c)Click OK to close the Solver panel.2.Define the multiphase model.Define−→Models−→Multiphase...(a)Select Eulerian from the Model list.The panel will expand to show the inputs for the Eulerian model.Using the Eulerian Multiphase Model with Species Transport(b)Retain the default value of2for Number of Phases.(c)Click OK to close the Multiphase Model panel.3.Define the species model.Define−→Models−→Species−→Transport&Reaction...(a)Select Species Transport from the Model list.The Species Model panel will expand.(b)Enable Volumetric from the Reactions group box.(c)Disable Diffusion Energy Source from the Options group box.(d)Click OK to close the Species Model panel.Using the Eulerian Multiphase Model with Species Transport FLUENT will list the properties required for the models that you enabled,in theconsole.An Information dialog box will appear,reminding you to confirm theproperty values that have been extracted from the database.(e)Click OK in the Information dialog box to continue.Step3:MaterialsDefine−→Materials...1.Create a new material called air+ozone.(a)Click the Fluent Database...button to open the Fluent Database Materials panel.i.Selectfluid from the Material Type drop-down list.ii.Select ozone(o3)from the Fluent Fluid Materials selection list.iii.Click Copy to copy the information for ozone to your model and close the Fluent Database Materials panel.(b)Select mixture from the Material Type drop-down list.(c)Enter air+ozone for Name.(d)Click Change/Create.When you click Change/Create,a Question dialog box will appear,asking you ifmixture-template should be overwritten.Click No to retain mixture-template andadd the new material,air+ozone,to the list.The Materials panel will be updatedto show the new material name in the Fluent Mixture Materials list.Using the Eulerian Multiphase Model with Species Transport2.Click the Edit...button to the right of the Mixture Species drop-down list to open theSpecies panel.You will select the species that are involved in the decomposition of ozone.The orderof the species in the Selected Species list is important.Perform the following steps to achieve the proper order:(a)Select water-vapor(h2o)from the Selected Species selection list and click theRemove button to move it to the Available Materials selection list.(b)Similarly,remove n2from the Selected Species list.(c)Select ozone(o3)from the Available Materials selection list and click the Addbutton.(d)Similarly,add n2back in the Selected Species list.The Selected Species list should now contain o2,o3,and n2,respectively.(e)Click OK to close the Species panel.Using the Eulerian Multiphase Model with Species Transport 3.Click the Edit...button to the right of the Reaction drop-down list to open the Reac-tions panel.(a)Select o3from the Species drop-down list in the Reactants group box and enter1for both Stoich.Coefficient and Rate Exponent.(b)Select o2from the Species drop-down list in the Products group box and enter1.5for Stoich.Coefficient and0for Rate Exponent,respectively.There is no need to modify the Arrhenius Rate constants,as a UDF will be used to define them in Step4.(c)Click OK to close the Reactions panel.4.Retain the default settings in the Reaction Mechanisms panel.5.Select volume-weighted-mixing-law from the Density drop-down list.Thermal properties do not need to be specified since this is an isothermal case.6.Retain the default value of1.72e-05for Viscosity.7.Click Change/Create.Using the Eulerian Multiphase Model with Species Transport8.Create a new material called solids.In thefluidized bed the solid particles(treated as afluid)are held in suspension by theair+ozone mix injected at the bottom of the bed.(a)Selectfluid from the Material Type drop-down list.(b)Select water-vapor(h2o)from the Fluent Fluid Materials drop-down list.(c)Enter solids for Name.(d)Enter silica for Chemical Formula.(e)Enter2650kg/m3for Density.(f)Click Change/Create and close the Materials panel.When you click Change/Create,a question dialog box will appear,asking you ifwater-vapor(h2o)should be overwritten.Click No to retain water-vapor(h2o)and add the new material,solids,to the list.The Materials panel will be updatedto show the new material name in the Fluent Fluid Materials list.You can remove materials that are not required to run this case by selecting mix-ture in the Material Type in the Materials panel.Under Fluent Mixture Materials,select mixture-template from the drop-down list and click the Delete button.Simi-larly,selectfluid in the Material Type and delete all Fluent Mixture Materials otherthan O2,O3,N2,air and silica.9.Specify the species for the gaseous phase(phase-1)and the sand bed phase(phase-2).Define−→Models−→Species−→Transport&Reaction...(a)Select phase-1from the Phase drop-down list and click the Set...button to openthe Phase Properties panel.i.Select air+ozone from the Material drop-down list.ii.Click OK to close the Phase Properties panel.(b)Select phase-2from the Phase drop-down list and click the Set...button to openthe Phase Properties panel.i.Select solids from the Material drop-down list.ii.Click OK to close the Phase Properties panel.(c)Click OK to close the Species Model panel.Step4:User-Defined Functionspile the user-defined functions.Define−→User-Defined−→Functions−→Compiled...(a)Click the Add...button in the Source Files group box to open the Select Filepanel.(b)Select thefiles,rrate.c and bp drag.c and click OK.The bp drag.c source code is a routine for customizing the default Syamlal-O’Briendrag law in FLUENT.In the solid phase,the default drag law uses coefficientsof0.8(for voids≤0.85)and2.65(for voids>0.85),for minimumfluid ve-locities of0.25m/s.The current drag law has been modified to accommodate aminimumfluid velocity of0.08m/s.The source code,rrate.c,defines a customvolumetric reaction rate for the decomposition reaction of ozone.(c)Click Build to build the library.(d)Click Load to load the UDF.FLUENT will build a libudf folder and compile the UDF.A dialog box will appear warning you to make sure that UDF sourcefiles are inthe folder that contain your case and datafiles.Click OK in the dialog box.(e)Close the Compiled UDFs panel.2.Specify the volume reaction rate function.Define−→User-Defined−→Function Hooks...(a)Select rrate::libudf from the Volume Reaction Rate Function drop-down list.(b)Click OK to close the User-Defined Function Hooks panel.Step5:Phases1.Define the granular secondary phase.Define−→Phases...(a)Select phase-2and click the Set...button.i.Enable Granular.ii.Define the properties of the solid phase as shown in the table:Parameters ValuesDiameter8.775e-05mGranular Viscosity syamlal-obrienGranular Bulk Viscosity lun-et-alFrictional Viscosity schaefferAngle of Internal Friction30degreesGranular Temperature algebraicSolids Pressure syamlal-obrienRadial Distribution syamlal-obrienElasticity Modulus derivePacking Limit0.53Note:You will have to scroll down the Properties list to see the remaining options.iii.Click OK to close the Secondary Phase panel.2.Specify the drag law to be used for computing the interphase momentum transfer.(a)Click the Interaction...button to open the Phase Interaction panel.i.Select user-defined from the Drag Coefficient drop-down list to open the User-Defined Functions panel.A.Select custom drag syam::libudf and click OK to close the User-DefinedFunctions panel.ii.Click the Collisions tab and enter0.8for Constant Restitution Coefficient.iii.Click OK to close the Phase Interaction panel.3.Close the Phases panel.Step6:Operating ConditionsSet the gravitational acceleration.Define−→Operating Conditions...1.Enable Gravity.The panel will expand to show additional inputs.2.Enter-9.81m/s2for Gravitational Acceleration in the X direction.3.Enter297K for Operating Temperature.4.Click OK to close the Operating Conditions panel.Step7:Boundary ConditionsDefine−→Boundary Conditions...1.Set the conditions for the gaseous phase(phase-1).(a)Select Inlet from the Zone selection list.(b)Select phase-1from the Phase drop-down list and click the Set...button to openthe Velocity Inlet panel.i.Enter0.08m/s for Velocity Magnitude.ii.Click the Thermal tab and enter293K for Temperature.iii.Click the Species tab and enter0.2097and0.1for o2and o3respectively.iv.Click OK to close the Velocity Inlet panel.2.Define the boundary conditions for leftwall.(a)Select leftwall from the Zone selection list.(b)Select phase-2from the Phase drop-down list and click the Set...button to openthe Wall panel.i.Select Specularity Coefficient from the Shear Condition list and enter0.5forSpecularity Coefficient.ii.Click OK to close the Wall panel.3.Define the boundary conditions for the rightwall zone identical to that of the leftwall.4.Close the Boundary Conditions panel.Step8:AdaptionA small region will be adapted in order to create a register so that the solid volume fraction can be patched.1.Adapt the the regions to be patched.Adapt−→Region...(a)Enter0and0.115for X Min and X Max respectively.(b)Enter0and10for Y Min and Y Max respectively.(c)Click Mark.FLUENT will report the number of cells marked for adaption in the console.Clicking the Manage...button will open the Manage Adaption Registers panel.The name of the register created will be hexahedron-r0.(d)Close the Region Adaption panel.Step9:Solution1.Set the solution parameters.Solve−→Controls−→Solution...(a)Deselect Energy from the Equations selection list.(b)Enter0.7and0.3for Pressure and Momentum respectively.Note:You will have to scroll down Under-Relaxation Factors to see the remaining parameters.(c)Enter1.0for Granular Temperature.(d)Select Second Order Upwind from the Momentum,Energy,phase-1o2and phase-1o3drop-down lists.(e)Select QUICK from the Volume Fraction drop-down list.(f)Click OK to close the Solution Controls panel.2.Enable the plotting of residuals during the calculation.Solve−→Monitors−→Residual...3.Initialize the solution.Solve−→Initialize−→Initialize...(a)Change the initial phase-1X Velocity to0.01.(b)Change the initial phase-1o2to0.233(composition of oxygen in air).(c)Retain all other default initial values.(d)Click Init and close the Solutio Initialization panel.4.Patch the initial sand bed configuration.Solve−→Initialize−→Patch...(a)Select phase-2from the Phase drop-down list.(b)Select Volume Fraction from the Variable selection list.(c)Select hexahedron-r0from the Registers To Patch selection list.(d)Enter0.52for Value.(e)Click Patch and close the Patch panel.After initializing the entire domain of yourflowfield,you can enter different initial-ization values for particular variables into different cells.This is known as patching and is generally used if you have multiplefluid zones that you want to patch with different values.5.Set the time stepping parameters.Solve−→Iterate...(a)Enter0.001for Time Step Size and10000for Number of Time Steps.(b)Select Fixed from the Time Stepping Method list.(c)Enable Data Sampling for Time Statistics.This will allow you to sample data at a frequency that is set by you.(d)Enter40for Max Iterations per Time Step.(e)Click Apply.6.Save the initial case and datafiles(ozone fluidbed.cas.gz andozone fluidbed.dat.gz).File−→Write−→Case&Data...7.Save the datafiles every1000time steps.File−→Write−→Autosave...(a)Enter1000for Autosave Data File Frequency.(b)Enter ozonefluidbed%t.dat.gz for Filename.(c)Click OK to close the Autosave Case/Data panel.8.Click Iterate to run the calculation for10seconds in the Iterate panel.Step10:PostprocessingYou will now examine the progress of the sand and ozone/air mixture in thefluidized bed after a total of10seconds.Thefluidized bed should have reached a steadyflow solution at this time.1.Plot contours of mass fraction for oxygen and ozone species.Display−→Contours...(a)Select Species...and Mass fraction of o3from the Contours of drop-down list.(b)Enable Filled from the Options list.(c)Click Display.The O3mass fraction contours are shown in Figure3.(d)Similarly plot the mass fraction contours of O2.The mass fraction contours of O2is shown in Figures4.In Figure3you can see that O3is almost fully decomposed as it approaches the outlet of thefluidized bed.Figure3:O3Mass FractionFigure4:O2Mass Fraction2.View the phase motion by displaying plots of velocity vectors for the gas and solidphases.Display−→Vectors...(a)Select Velocity from the Vectors of drop-down list and phase-1from the Phasedrop-down lists.(b)Select Velocity...and Velocity Magnitude from the Color by drop-down list andphase-1from the Phase drop-down list.(c)Enter5for Scale and2for Skip to improve visualization of the velocity vectors.(d)Click Display.The phase-1velocity vectors are shown in Figure5.(e)Select phase-2from the Phase drop-down list to plot the phase-2velocity vectors.The phase-2velocity vectors are shown in Figure6.Figure5:Velocity Vectors for Phase-1Figure6:Velocity Vectors for Phase-23.Displayfilled contours of Phases...by Volume fraction for phase-1.Display−→Contours...(a)Select Phases...and Volume fraction from the Contours of drop-down list.(b)Select phase-1from the Phase drop-down list.(c)Click Display.The contours of volume fraction for phase-1are shown in Figure7.Figure7:Volume Fraction for Phase-1pare the mass fraction of O3and O2at the pressure outlet of thefluidized bed.Plot−→XY Plot...(a)Display an XY plot of mass fraction of O2.i.Select Species...and Mass fraction of o2from the Y Axis Function drop-downlist.ii.Retain the default selection of Direction Vector from the X Axis Function drop-down list.iii.Select outlet from the Surfaces selection list.iv.Enter0for X Plot Direction and1for Y Plot Direction.v.Click Plot.(b)Similarly,display an XY plot of mass fraction of O3by selecting Mass fraction ofo3from the Y Axis Function drop-down list.(c)Compare the O2and O3XY plots for mass fraction in Figure8and Figure9.Figure8:XY Plot of Mass Fraction of O3Figure9:XY Plot of Mass Fraction of O2SummaryThis tutorial demonstrated how to set up and solve a granular multiphase problem using the Eulerian multiphase model with species transport and reaction.The problem involved the2D modeling of particle suspension in afluidized bed,and postprocessing showed the near-steady-state behavior of the sand in thefluidized bed,under the assumptions made. Such cases should be typically run for a total of40seconds of operation,however,as this is very computationally intensive,this case was only run for10seconds for demonstration in this tutorial.。
循环流化床气固两相流动模拟
基金项目:国家自然科学基金(50576106)收稿日期:2008-01-18 修回日期:2008-02-27第26卷 第3期计 算 机 仿 真2009年3月文章编号:1006-9348(2009)03-0272-04循环流化床气固两相流动模拟白志刚,杨 晨(重庆大学动力工程学院,重庆400044)摘要:循环流化床已被广泛用于能源、化工、环保等工业领域,但由于流化床内两相流动、传热及化学反应的物理机理和作用规律复杂性,目前为止对流化床的认识还远远不能令人满意,因此了解流化床内流动机理对循环流化床的设计和运行有深远的指导意义。
针对循环流化床燃烧技术,建立了描述其炉内气固运动特性的三维数学模型,用F l uen t 软件作计算工具,利用欧拉双流体模型(EULER I AN-EULER I AN)对流化床内的颗粒浓度分布、颗粒速度分布和床内压力分布等进行了三维数值模拟,计算结果表明:在床内固体颗粒浓度中心区域低、近壁面高的环核结构,固体颗粒在横截面上存在由核心区向环形区的内循环运动,在相同流化风速度下,沿床高压降随循环物料的增加而变大,在相同的物料循环量,沿床高压降随着流化风速的增加而减小。
关键词:循环流化床;气固运动特性;数值研究中图分类号:TK16 文献标识码:ANu m erica l Si m ulati on of Gas -Soli d F l ow i n CFBBA I Zh i-gang ,YANG Chen(Pow er Eng i neer i ng Co llege ,Chongqi ng U nivers it y ,Chongqi ng 400044,China)ABSTRACT :C ircu lati on fl u i d i zed bed (CFB)has been used i n m any fie l d such as energy ,che m ical eng i neeri ngand env iron m ent etc .Bu t the understand i ng o f flui d ized bed is i n a l aggard place because o f the comp licated m echa n is m and i nteracti on a m ong hydrodyna m i cs ,heat transfer and combustion ,so t he understandi ng of co m pli cated hydro dynam i cs in CFB reactor is s i gnificant to the design and ope ration o f CFB.An Eu l e r t w o-flui d model is estab lished to s i m u l a te the gas-partic l e t urbu l ent flo w i n a CFB reactor wh i ch adopts t he techno l ogy o f co m busti on to re tro fit i n th i s pape r .The model is coded to s i m u l a te the t hree-di m ensiona l fl ow i n t he CFB by m eans of FLU ENT CFD soft ware and the affec tion o f the so lid phase concentra tion d i str i bu tion .The so li d phase ve l oc ity and pressure distr i bution of CFB are st udied and ana lyzed .The resu lts show tha t the fl ow pa ttern i n t he secti on of a CFB consists o f a core-annu l a r fl ow reg i m e i n w hich the so li d density near the wa ll reg i on is higher than that i n the cen ter o f the reactor ;t he pa rtic l es m ove fro m the center to t he annu lar zone i n the sa m e section ;at the fi xed fl u i d i zed a i r ve l oc ity ,t he press ure drop in the reactor i ncreases w ith the i ncrease o f c i rculati ng m ass and the pressure drop i n t he reactor decreases w it h the i ncrease o f t he flui d ized a ir veloc it y w it h t he sa m e c irculati ng m ass .KEY W ORDS :Characteristics o f gas-soli d flo w;N u m er ica l si m ulati on1 引言能源与环境是当今世界发展的两大问题,而石油资源日益紧张,使世界各国将能源结构的比例从燃油(天然气)向煤转移,我国是产煤大国,已经探明的煤的储存量达到八亿多吨,目前一次能源消耗中煤炭占76%,在可见的今后若干年内还有上升的趋势,而且这些煤炭中又有84%是直接用于燃烧的,但其燃烧的效率不高,并且燃烧所排出的大气污染物还没有得到有效的控制,可见发展高效的清洁煤燃烧技术是亟需解决的问题。
流化床反应器气固传热面积模型
第17卷第4期 化学反应工程与工艺 V ol 17,No 12001年3月 Chemical Reactio n Engineering and T echnolog y M ar , 2001收稿日期:1999-11-29;修订日期:2000-04-04作者简介:燕青芝(1966-),女,在读硕士,讲师,1999年在华东理工大学联合化学反应工程研究所做访问学者。
文章编号:1001-7631(2001)01-0016-05流化床反应器气固传热面积模型燕青芝1,李灵芝1,于丰东2,程振民2,袁渭康2(1.平顶山师专化学系,河南 平顶山 4670001;2.华东理工大学联合反应工程研究所,上海 200237)摘要: 研究了流化床反应器内发生气固反应时的传热机理,认为气固间的传热面积包括两部分,即气泡内所含颗粒的表面积与气泡和泡晕间的有效传热面积,据此首次导出了气固传热面积模型A =u 0-u mf 22.26d b 0.5-u mf [4.5u mf d g C pg d b + 5.85(λg d g C pg )0.5g 0.25d b 1.25]L mS T将该模型应用于半间歇的裂化催化剂烧炭再生过程,与实验数据的比较表明,模型预测是可靠的。
关键词:流化床反应器; 气固传热; 面积模型中图分类号:TQ 032.41 文献标识码:A引 言关于流化床反应器内的传热问题,主要集中于床层与换热元件之间的传热研究,关注较多的是换热元件的传热面积。
对于气体与颗粒间的传热面积,通常认为应是床层内所有颗粒的表面积[1~6]。
但笔者在做结焦催化剂再生的温升研究时发现,气固间的实际传热面积远小于床层内所有颗粒的总表面积,而与颗粒在床层内的暴露情况有关。
虽然戴维森等[7]提出固体颗粒的“活动”表面积的概念,也就是传热面积,并认为这一面积小于床层中颗粒的总表面积,但对这一面积如何求算却未给予论述。
其它相关文献中也仅论及了单个固体颗粒的传热面积[8],迄今为止尚未发现有关整个床层内气固传热面积的研究。
e4行床内气固流动及混合行为的CFD-DEM模拟
不大,都是单峰结构,且范围较窄,这也说明了颗 粒的惯性占相对主导的地位,颗粒的迁移受气体流
万方数据
场的影响较小所致。从图6(b)中可以看到,工 况1的颗粒停留时间分布最窄,说明工况1的入口
第6期
{ 至
2
盈
赵永志等:不同人口结构下行床内气固流动及混合行为的CFnDEM模拟
case l
九
case 2
M
O 060
case 3
:八//\\ O 040
0.020
O O 030
O 020
:八 0 0lO O O.030 O 020 O.OlO
Ⅳ=O,5m H=1 5m H=2 5m
O 0 030
:/\ 0 020
O.010 O
O 015
H=3 5m
0.0lO j¨、.∥”\~.n。 H=4 5m
O.005
kg·mq·s~,总颗 粒流率为50 kg·m_2·s,反应物气流(组分 A)通过管道问的缝隙引入,气速为7 m·s~,整个反应器的表观气速为4
i一;醐愆鞋勤靶烈唧瞪圃倒崤涮型薹兰;;~。
m·s 。工况2的入口
2.3.1 单粒径颗粒声发射能量
首先考虑质量为
结构与工况1完全相同,只是颗粒流率分布不均
管道的颗粒流率相同,为10
图3 f一2.5 s时下行床内的瞬态流型
Fig.3 Snapshots of flow patterns at simulation time£=2.5 s
行床(工况2、3),分布器影响段很长,颗粒聚团 同样出现在中下部的发展段,但数量较少。综合这 3种情况可以发现,在下行床人口段,颗粒的惯性 占主导地位,入口区一般较长,颗粒因受到气体作
4月22日单元5 任务3 气固流化床反应器仿真操作
新课讲解用以回收被气体带走的催化剂;底部设置原料进口管和气体分布板;中部为反应段,装有冷却水管和导向挡板,用以控制反应温度和改善气固接触条件1理论提升流化床反应器工作原理流化床反应器是一种有固体颗粒参与的反应器,这些颗粒系处于运动状态,且其运动方向多种多样,这是与固定床反应器的不同之处。
流化床反应器内流体与固体颗粒所构成的床层犹如沸腾的液体,故又称沸腾床反应器。
这种床层具有与液体相类似的性质,又叫假液化层。
称散式流化;而在气-固流化系统中,若颗粒很细,则在气速超过Umt后,床层尚能继续均匀膨胀,只在气速进一步增大到起始鼓泡气速Umb时,才开始出现气泡;若颗粒较粗,一旦气速超过Umf,就出现气泡。
流化床中的气泡部分称气泡相,其余部分称乳相,后者是处于起始鼓泡状况下的气-固混合相。
由于气-固流化床内存在气泡,床内空隙率不匀,床面波动,故称聚式流化,又因鼓泡使床面波动呈沸腾状,故又称沸腾床或鼓泡床。
流化床中的气泡在上升时会发生聚并而增思考回答讨论回答根据结构、工作原理讨论回答根据结构、工作原理培养总结能力。
体会流化床的局限性大,若床径甚小以致被气泡所充塞,气泡就与乳相交替上升,形成节涌床。
若向气速超过带出速度的床中不断补充被带出的物料,则气流会迅速把送入的粒子冲散,并最后把它们带出去。
此时因床层中保持着相当量的物料,湍动剧烈,所以这种状态的流化床称为湍流床。
若气速进一步增高,床内粒子从密集状、絮状到充分分散的各种形态同时并存,这床称为快速(流化)床。
图3上部是几种流化床的示意图,下部相应给出流化床中单位长度压降随流速的变化。
流化床吸附器多用于固体与气体、液体与液体的反应,特点是气体与固体接触相当充分,气流速度比固定床的气速大三四倍以上,所以该工艺强化了生产能力,对于连续性、气量较大的反应过程非常适合。
流化床反应器可用于气固、液固以及气液固催化或非催化反应,是工业生产中较广泛使用的反应器。
典型的例子是催化裂化反应装置,还有一些气固相催化反应,如萘氧化、丙烯氨氧化和丁烯氧化脱氢等也采用此种反应器。
基于Fluent软件的流化床的气固两相流模型研究
基于Fluent软件的流化床的气固两相流模型研究基于Fluent软件的流化床的气固两相流模型研究1. 引言气固两相流是指气体和固体颗粒同时存在且相互作用的流体系统,其广泛应用于化工、能源、环境等领域。
其中,流化床是一种常见的气固两相流设备,其特点是颗粒床层的非均匀性和颗粒与气体之间的复杂相互作用。
为了更好地理解和优化流化床的性能,研究人员创造了各种流态模型,并利用计算流体力学(CFD)软件进行模拟和研究。
本文将介绍基于Fluent软件对流化床的气固两相流模型进行的研究。
2. 模型建立基于Fluent软件对流化床的气固两相流模型进行研究首先需要建立适当的数学模型。
在模型建立过程中,考虑到颗粒的二维流动特性,我们采用了欧拉-拉格朗日方法,即将流体相视为连续介质,颗粒相视为离散颗粒。
然后,我们引入了连续相动力学方程和离散相运动方程,以描述气固两相之间的相互作用。
其中,连续相动力学方程包括连续相速度、压力和密度的变化等,离散相运动方程则考虑了颗粒的运动速度和位置等。
3. 模型求解在建立气固两相流模型后,我们利用Fluent软件进行数值求解。
首先,根据实际流化床的几何尺寸和操作条件,对计算域进行网格划分,并设定边界条件。
然后,通过求解连续相动力学方程和离散相运动方程,我们可以获得气固两相流的速度场、浓度场以及压力场等结果。
通过对结果进行分析和比较,我们可以得到流化床内气固两相之间的相互作用规律。
4. 结果与讨论根据模型求解的结果,我们可以得到一系列流化床内气固两相流的特性参数,如颗粒床层的压降、气固两相的混合程度等。
通过对这些参数的分析,可以评估流化床的性能,进而优化流化床的设计和操作。
此外,还可以对流化床的内部流动特征进行研究,如颗粒的运动规律、颗粒间的碰撞等,以深入理解流化床的工作原理。
5. 研究的局限性与展望通过基于Fluent软件对流化床的气固两相流模型的研究,我们可以得到一定的研究结果和结论。
外场作用下流化床中气固两相流动数值模拟
外场作用下流化床中气固两相流动数值模拟气固两相流化床已广泛应用于能源、化工、制药、石油等领域。
为了改善流化床的流化质量,通常采用对颗粒表面进行改性或者加入外能量场的方法,消除流化过程中出现的气固混合不均匀、扬析、沟流、颗粒损失等现象。
目前常用的外能量场有振动场、磁场、声场、电场等。
随着计算机性能的提高,离散元方法(DEM)在稠密气固两相流动数值模拟中得到广泛应用。
研究结果较好地复现了实际颗粒流化过程,预测了颗粒流动机理。
本文将对振动场、磁场和声场作为外加能量场的流化床内气固两相流动特性进行数值模拟,从宏观运动和受力分析角度研究外场对气固流动的影响。
采用Euler-Lagrange方法模拟气体和颗粒流动,颗粒碰撞采用软球模型。
同时考虑外场对颗粒受力的影响,建立不同外场作用下颗粒运动模型。
采用FORTRAN语言,自行编写计算程序。
为减小数值模拟运算量,在颗粒搜索方式上采用了定区域升序搜索,以提高运算速度。
通过上述模拟方法对外场作用下的流动现象进行复现,讨论了不同参数对气固流化特性的影响。
对于振动辅助气固流化床,考虑床体振动引起布风板所在的计算网格中心位置变化对空隙率和气体压力计算的影响,建立了振动辅助气固流化床的Euler-DEM计算模型,数值模拟研究床体竖直振动(整床振动)流化床中气体-颗粒流动过程。
研究振动幅值和振动频率对颗粒速度、浓度分布等的影响,分析振动能量从布风板传入气固两相流体的传播机理。
数值模拟发现,布风板振动导致布风板表面形成周期的低颗粒浓度区,振动空隙的出现促使床层内大气泡生成。
沿床高形成了受振动空隙影响的近布风板低颗粒浓度区域、床层中部高浓度区域和床层表面的过渡区域。
随着振动幅值和振动频率增加,平均颗粒浓度、颗粒速度、曳力径向分布都趋于均匀。
随布风板振动床层气体压力和气体压降均呈现周期振荡,由快速傅立叶变换(FFT)得到的气体压力波传播速度随振动频率增加而增大。
布风板产生的振动能量主要通过:(1)在布风板加速运动周期中布风板与颗粒之间的非弹性碰撞作用;(2)布风板减速运动周期中由气体压力波传递给床内气体-颗粒两相流体。
循环流化床锅炉炉膛内气固两相流的数值模拟
循环流化床锅炉炉膛内气固两相流的数值模拟第 41卷第 3期 2020 年 5月锅炉技术BOIL ER TECHNOLO GYVol. 41, No. 3May. ,2020收稿日期 :2020 205221简介 :王建军 (19712 , 男 , 博士 , 副教授 , 主要从事流态化、多相流分离的研究。
文章编号 : CN3121508(2020 0520021206循环流化床锅炉炉膛内气固两相流的数值模拟王建军 1, 李东芳 2, 姬广勤 1, 金有海 1(1. 中国石油大学 (华东机电工程学院 , 山东东营 257061; 2. 海洋石油工程股份 ,河北塘沽 300451关键词 :循环流化床锅炉 ; 双流体模型 ; 气固两相流 ; 数值模拟摘要 :利用 CFD 软件 Fluent , ( 流的宏观流动特性进行了数值模拟。
准确性。
通过定性与定量分析 , , 核” 流动结构及颗粒轴向速度中心处向上 , , 沿轴向炉膛中下部区域及沿同时 , 操作条件对颗粒轴向速度的影响都表现为中心区域颗粒向边壁处的气固两相流动规律还有待于进一步研究。
中图分类号 : T K 227. 1文献标识码 : A0前言目前 , 对于循环流化床内的气固两相流主要集中在对循环流化床反应器[1-2]及鼓泡床 [3-4]的研究。
循环流化床锅炉炉膛内和循环流化床反应器内的气固两相流动特性有一定的差别 , 不仅体现在燃烧室的高径比 , 循环系统中采用的颗粒循环流率 , 床料的特性 , 而且循环流化床锅炉有二次风的加入 , 对循环流化床锅炉内气固两相流的研究并不多 [5-6]。
本文以欧拉双流体模型和颗粒动力学理论为基础采用 CFD 软件 Fluent 研究对循环流化床锅炉炉膛内气固两相流动特性的影响进行数值模拟。
1计算模型及数值方法1. 1几何模型及计算条件图 1为整个循环流化床锅炉循环系统几何模型及网格模型 , 模型按照工业装置 12∶ 1缩小得到。
内循环流化床气固流动数值模拟与试验研究
内循环流化床气固流动数值模拟与试验研究内循环流化床在城市固体废弃物焚烧领域具有独特的优势。
本文采用离散单元法(DEM)数值模拟与台架试验相结合的方法,系统研究了流化床内的气体、颗粒流动特性。
基于对颗粒相的离散处理,本文利用气固速度场、颗粒加速度场、压力场、压力波动等特征信息量化分析了流化过程机理。
可视化观测、物料分层及其停留时间分布等试验研究则是正确认知流化现象、检验数学模型合理与否的第一手段、合理实施工业应用的依据。
本课题研究主要包括:流化过程的CCD (Charge Couple Device)可视化观测与DEM数值预报;气体通过床层的流动行为与流量分配、颗粒的微观运动特征;非均匀布风内循环流化床内气泡运动的可视化分析、颗粒流动规律及其动态混合过程的定量评价、物料换热过程的数值模拟;多组分内循环流化床内的分层现象与停留时间分布的试验研究。
采用CCD可视化试验详细验证了DEM模拟结果。
对比分析显示,数值模拟成功预报了气泡的形成、分离、长大、爆炸等过程。
颗粒受力分析表明:在扩散气流曳力和压力梯度力作用下,射流点处颗粒被外推,初始气泡空穴形成,并且逐步长大。
随着时间的推进,底部颗粒所受压力梯度力方向逐渐由向外扩张转变为向里收缩,颗粒涌入空穴底部;空穴最终以气泡的形式脱离布风板进入床层。
模拟所得气泡周期与试验结果十分接近。
压力信号频谱快速傅立叶变换(FFT)分析发现,入口射流速度越快,气泡的产生和通过频率也越高;高射流风速下,高频小幅波动也有所增加。
DEM计算过程中,空隙率直接依赖于当地颗粒密度,尾迹的有无则随气泡的进展而变。
因此,模拟所得气泡周围压力分布与文献试验结果更为一致:气泡上下两端等压线并不对称,并且内部存在一定的压力梯度。
气相速度场直观表明,气泡为低阻空间,具有短路效应,气泡相和乳化相之间存在强烈的气体交换。
DEM模拟直观描述了气泡内外的流线特征;流线基本与等压线呈垂直交叉分布,合理反映了流体选择最小阻力途径行进的本质特征;气体流线整体排布较为规则,床内气体表现为层流流动。
流化床内流动、传热与燃烧特性的DEM数值模拟
摘要*流化床在工业上的广泛应用使得稠密气固两相流动成为多相流研究领域的一个重要方向。
国内外已经进行了大量的实验和理论研究,但是由于气固流动的复杂性和流动机理尚未清楚的认识,故以实验为主的传统方法受到了很大限制。
近年来随着计算机技术的飞速发展,气固两相流动数值模拟正成为研究稠密气固两相流动的重要手段。
针对稠密气固两相流的数值模拟技术可以分为两大类:即欧拉—欧拉颗粒拟流体模型和欧拉—拉格朗日离散颗粒模型。
本文采用欧拉—拉格朗日离散单元法在颗粒水平上建立了一套描述流化床内气固流动、传热和燃烧的数学模型,并设计了模拟流化床内流动与燃烧的数值模拟程序。
首先本文对单孔射流流化床内的气固流动进行了数值模拟,得到了床层压降曲线和不同射流速度下的床层高度、气泡产生频率和气泡在床层内的上升速度,反映出流化床内的气固流动存在拟序结构。
另外,模拟得到了床内的气固流动速度,揭示出单孔射流流化床内存在强烈的颗粒返混和内循环现象。
并对颗粒参数改变对气泡特性的影响作了敏感性分析。
然后,在颗粒水平对流化床内的煤燃烧和传热特性进行了数值模拟,得到了床内的温度场、各燃烧组分的浓度场、颗粒升温曲线和四种颗粒传热量曲线,模拟表明了流化床内的气固流动和燃烧特性存在强烈的空间和时间非均匀性。
并对颗粒参数改变对燃烧与传热特性的影响作了敏感性分析。
最后对全文工作进行了总结和展望。
关键词:流化床气固两相流动离散单元法煤燃烧传热特性*本文受国家自然科学基金《循环流化床锅炉颗粒团燃烧行为研究》资助,项目批准号:5007615AbstractThe wide application of fluidized bed in industry made the hydrodynamic of dense gas-solid two-phase flow become an important research field of multiphase flow. A great deal of experiments and theoretical studies have been carried out all over the world. But due to the complicated effect factors and not yet clarifying the mechanism of two-phase flow, so the traditional experimental method is limited on certain extent. With the rapid development of computer technology, the computer numerical simulation of dense gas-solid two-phase flow has become an important research means.At present, the methods used to simulate dense gas-solid two-phase flow can be divided into two categories: Eulerian-Eulerian approach and Eulerian- Lagrangian discrete particles approach. In this paper, Eulerian-Lagrangian approach is used to establish a serial of models to simulate the gas-solid flow, heat transfer and coal combustion in fluidized bed at particle level. And a CFD-DEM numerical code has been developed.Firstly, the single spouted fluidized bed was simulated and acquired the pressure drop line. The height of solid bed, the generating frequency of bubble and the ascending velocity of bubble at different spouted gas velocity were also obtained. And the quasi-ordering structure in fluidized bed was observed. Besides, the distribution of gas and particle velocities was obtained. The velocity distribution indicated that there is phenomenon of intensive particle back-mixing and internal recycle. A sensitivity analysis was carried out on effects to bubble characteristics due to different particle parameters.Afterwards, the heat transfer and coal combustion properties in fluidized beds was simulated at particle level and obtained the distribution of gas temperature and gas species. The simulation indicated the intensive heterogeneity of the gas-solid flow and coal combustion in fluidized bed. The heating rate of particles and four different particle heat exchange modes were studied. And the sensitivity analysis was carried out on effects to combustion and heat transfer properties due to different particle parameters.Finally, the work of this paper and the further research were summarized. Keywords: fluidized bed gas-solid flow discrete element method coal combustion heat transfer characteristics独创性声明本人声明所呈交的学位论文是我个人在导师指导下进行的研究工作及取得的研究成果。
水平浓淡煤粉燃烧器内气固两相流的数值模拟
水平浓淡煤粉燃烧器内气固两相流的数值模拟在燃烧工程领域,水平浓淡煤粉燃烧器内气固两相流的数值模拟一直是一个备受关注的研究课题。
煤粉燃烧作为一种重要的能源利用方式,其优化设计和运行参数对于提高燃烧效率、减少污染排放具有重要意义。
水平浓淡煤粉燃烧器内气固两相流的数值模拟可以通过计算机模拟对流场、燃烧特性和热力学参数进行分析和预测,为煤粉燃烧工程的设计和优化提供理论依据和技术支持。
1. 水平浓淡煤粉燃烧器内气固两相流的数值模拟概述水平浓淡煤粉燃烧器是煤粉燃烧系统中的重要部件,其内部气固两相流动态特性对于燃烧效率和环境排放具有重要影响。
数值模拟是一种有效的研究方法,通过建立数学模型和求解数学方程来描述和预测水平浓淡煤粉燃烧器内的气固两相流动特性,从而为燃烧器的设计和优化提供科学依据。
2. 水平浓淡煤粉燃烧器内气相流动的数值模拟在水平浓淡煤粉燃烧器内,气体流动是影响燃烧效率和稳定性的重要因素。
数值模拟可以通过求解雷诺平均湍流模型(RANS)方程和离散相模型(DPM)方程来描述气相流动的特性,包括速度场、压力场和湍流特性等,从而揭示燃烧器内部气相流动的规律和规律。
3. 水平浓淡煤粉燃烧器内固相流动的数值模拟除了气相流动外,煤粉燃烧器内的固相流动也是十分复杂的,研究固相流动对优化燃烧过程至关重要。
数值模拟可以通过求解颗粒流体动力学(PFD)方程来描述固相颗粒的运动和燃烧过程,其中包括颗粒的输运、碰撞和燃烧过程,为燃烧器内固相流动的规律和规律提供重要信息。
4. 水平浓淡煤粉燃烧器内气固两相流的耦合数值模拟气固两相流动是水平浓淡煤粉燃烧器内最为复杂的部分,气相流动和固相流动之间存在多种相互作用和耦合关系。
数值模拟可以通过耦合求解气相流动和固相流动的方程来综合分析气固两相流动的特性,包括颗粒的输运、燃烧和热力学参数的耦合关系,为水平浓淡煤粉燃烧器内气固两相流的整体特性提供全面的理论支持。
5. 水平浓淡煤粉燃烧器内气固两相流的数值模拟在煤粉燃烧工程中的应用水平浓淡煤粉燃烧器内气固两相流的数值模拟在煤粉燃烧工程中具有重要的应用价值,可以为燃烧器的设计和运行参数优化提供重要的理论和技术支持。
循环流化床脱硫器气固两相流动的数值模拟_李艳平.caj
2008 年 6 月 Journal of Chemical Engineering of Chinese Universities June 2008 文章编号:1003-9015(2008)03-0454-06循环流化床脱硫器气固两相流动的数值模拟李艳平1, 胡金榜2, 赵凯2(1.沈阳工业大学理学院, 辽宁沈阳 110023; 2.天津大学化工学院, 天津 300072)摘要:以双流体模型为基础,结合颗粒动力学理论,对下部装有文丘里气体分布器的新型循环流化床脱硫反应器内气固两相流动特性进行了数值模拟。
为全面描述气固两相的相互作用以及固相的出现对气相湍流作用的影响,模型中引入了物理意义上更加合理的源项公式,并与实验值进行了比较,模拟计算值与实验值吻合良好,验证了双流体模型方程的适用性。
计算结果表明:由于文丘里管特殊结构的影响,流化床提升管内颗粒浓度分布非常不均匀,颗粒速度沿提升管高度发生强烈变化,流动非常复杂,研究结果为进一步优化循环流化床脱硫反应器入口结构打下了基础。
关键词:数值模拟;双流体模型;气固两相流;进口结构中图分类号:X701.3;TQ051.13;TQ018文献标识码:ANumerical Simulation of Gas Solid Flow in Circulating FluidizedBed Desulfurization ReactorLI Yan-ping1, HU Jin-bang2, ZHAO Kai2(1. College of Science, Shenyang University of Technology, Shenyang 110023, China;2. School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China)Abstract: Using the two-fluid model combining with the kinetic theory of granular flow, the numerical simulation of gas-solid two-phase flow field was performed for a circulating fluidized bed desulfurization reactor with a venturi distributor in its bottom. In order to describe the interaction between the gas and solid particles and the influence of solid phase on the gas turbulence more comprehensively, the source term formulation with more reasonable physical meaning was introduced into the model. Using above two-fluid model, the simulation results agree well with the experimental data, which shows the validity of the model. The numerical results also show that because of the specific configuration of the venturi gas distributor, the concentration distribution of the solid particles in the riser is very uneven, and the solid velocity along the column height varies violently. This study provides a good platform for the further optimization of the inlet configuration of the circulating fluidized desulfurization reactor.Key words: numerical simulation; two-fluid model; gas-solid two-phase flow; inlet configuration1 前言循环流化床烟气脱硫技术是近几年国际上新兴起的先进的烟气脱硫技术,它利用了循环流化床优良的传热传质性能,具有投资相对较低,脱硫效率相对较高,设备运行可靠,操作维护方便,占地面积小等优点,因此正引起越来越多国家的重视。
流化床干燥设备中气固两相流动的实验研究
流化床干燥设备中气固两相流动的实验研究随着科技进步和工业发展的推动,物料及生产过程的改进已成为追求高效和优质生产的必然要求。
在许多工业领域,干燥过程是一个重要的步骤,它对于物料的质量和工艺效率具有至关重要的影响。
干燥技术的不断发展和创新有助于提高物料的干燥速度和质量,并降低能源消耗。
其中,流化床干燥设备作为一种常见而重要的干燥设备,已经受到广泛关注。
在流化床干燥设备中,气固两相流动的研究对于提高干燥效果和优化设备运行至关重要。
气固两相流动是流化床干燥设备中一种常见的流动形式。
在流化床干燥设备中,物料被干燥的同时,气体以一定的速度通过床层,与物料颗粒发生气固两相流动。
这种气固两相流动的特点是流体具有较高的流动速度,可以实现物料的混合、传质和传热,从而提高干燥速度和质量。
实验研究是深入了解和优化气固两相流动的重要方法之一。
通过实验研究,可以获得气固两相流动的基本参数和特性,为流化床干燥设备的设计和优化提供依据。
在进行实验研究时,需要选择适当的实验装置和测量方法,以获取准确和可靠的实验数据。
在进行气固两相流动的实验研究时,首先需要确定实验的目标和研究内容。
比如,在流化床干燥设备中,可以研究气体的流速对气固两相流动的影响,物料的入口湿度对干燥效果的影响等。
然后,需要选择合适的实验装置和测量方法。
常用的实验装置包括流化床干燥设备、压力传感器、温度传感器等。
通过这些实验装置,可以获取气体和颗粒物料的压力、温度、湿度等参数,进一步分析和研究气固两相流动的特性。
在实验过程中,需要注意一些实验技巧和操作细节。
首先,需要选择合适的物料和颗粒粒度,以及合适的气体流速。
物料的选择应符合实际应用的要求,颗粒粒度的选择应考虑物料的性质和干燥速度的需求。
气体流速的选择应根据实验研究的目标和要求确定。
其次,需要进行实验前的准备工作,包括清洁实验装置、校准传感器等。
在实验过程中,需要及时记录和监测实验数据,保证实验数据的准确性和可靠性。
流化床气化炉气固两相流三维数值模拟
i n i t i l a l f u i d i z a t i o n p r o c e s s ,a n a l y z i n g a x i l, a r a d i l s a o l i d h o l d u p a n d v e l o c i t y i f e l d d i s t i r b u t i o n o f p a r t i c l e a n d
流 化 床 技 术 被 广 泛 应 用 于 燃 料 的燃 烧 、 热解 、
度 矢量 图 , 结论 表明 3 D数 值 模 拟 对 于 预 测 流 体 动 量、 质量 与能 量 的传递 更为 准确 。本 文应 用 C F D软
气化等工业过程 , 流化床内气 固两相 的流动特性 已 成 为人 们 研 究 的重 点 ] 。流 化 床 反 应 器 气 固 两
摘 要: 为 了研究流 化床 内气 固两相的流动特性 , 阐述 了应用 C F D
高通量循环流化床气固流动特性及甲烷化过程的数值模拟
高通量循环流化床气固流动特性及甲烷化过程的数值模拟迅速、强放热的甲烷化反应特性一直是其反应器研究中不可避免的难题,而以原料气作为固体催化剂颗粒流化介质的循环流化床反应器拥有更好的传质传热效率,是理想的甲烷化反应器,然而目前对反应器内的气-固两相流动状态以及甲烷化反应过程的了解并不全面。
本文在建立循环流化床反应器三维模型基础之上,引入MP-PIC模型,在CPFD软件中对高通量循环流化床反应器内催化剂颗粒的分布规律及甲烷化反应过程进行了数值模拟分析。
首先,根据冷态试验装置建立同比例尺寸全回路几何模型,针对高通量循环流化床提升管中的气固流动特性展开数值模化,分析了操作条件(气速U<sub>g</sub>、初始物料量M<sub>p</sub>、操作压力P)对催化剂颗粒在提升管轴向、径向流动特性(体积分布、速度分布)的影响规律。
然后,在气固两相流动基础上耦合甲烷化反应动力学模型,进行热态模拟并使用文献中报道的实验数据验证了模拟结果;提取了甲烷化循环流化床反应器的内部流场、温度场以及组分浓度分布规律,分析了催化剂颗粒流动特性对甲烷化产率的影响;数值研究了不同温度、入口气速、压力及原料气H<sub>2</sub>/CO比值下反应器内的甲烷生成过程;并通过正交实验探究了甲烷化产率最高的操作条件组合。
最后,以最大颗粒循环速率G<sub>s</sub>和最小气体反窜量为目标对返料阀进行了结构改进优化。
结果表明:(1)通过将提升管压降模拟值与文献冷态实验数据对比,发现吻合较好,确定了模拟方法的可行性。
(2)催化剂颗粒浓度在反应器内轴向上呈“下浓上稀”、径向上呈“中心低,边壁高”的分布,确定了操作条件对气固流动特性的影响规律。
(3)通过甲烷化反应模拟,得到了循环流化床中温度场云图、组分浓度分布云图及数值,发现合成气组分H<sub>2</sub>/CO比例低于3时,入口温度低于460K时,会得到较低的CO转化率和CH<sub>4</sub>产率;通过正交实验发现入口气速是循环流化床反应器甲烷化过程的主要影响因素,甲烷化产率最高的操作条件组合为入口温度500K、入口气速4 m/s、H<sub>2</sub>/CO比为3.5。
双流化床全场气固流动的数值模拟研究
8双流化床全场气固流动的数值模拟研究双流化床全场气固流动的数值模拟研究Numerica I Simu I ation of Fu I I-fie I d Gas—soI id FI ow in DuaI FI uidized Bed罗健威金保昇胡华军黄亚继(东南大学能源热转换及其过程测控教育部重点实验室,能源与环境学院,江苏南京210096)摘要:以自行设计的双流化床装置为研究对象。
以欧拉双流体模型为基础,采用FLUENT软件对双流化床装置的全场气固流动特性进行数值模拟探究。
分析了燃烧炉的流化风量对其内部颗粒分布与运行情况的影响。
认为随着燃烧炉底部流化风量的增加,燃烧炉内整体颗粒浓度逐渐降低,靠近出口位置的颗粒上行速度增加。
关键词:双流化床;FLUENT曰数值模拟;流化风量Abstract:A se I f-designed dua I-f Iuidized bed unit is taken as the research object in this paper.Based on Eu I e r two-f I u id mode I,FLUENT software is used to simu I a te the fu I I-fie I d gas-so I id flow characteristics of a dua I f I u idized bed device.The inf I u ence of fluidization airf I o w rate on partic Ie distribution and operation of combustion furnace is ana I y zed.It is considered that the overa I I partic I e concentration in the combustion furnace decreases gradua I I y and the upward ve I o city of the partic I e s near the exit increases with the increase of fluidized air rate.Keywords:dua I f I u idized bed,FLUENT,numericaI simu I a tion,f I u idization airf I o w rate双流化床技术由于其双床的反应区域分离,既可以保证反应气氛不同,又可以通过循环床料来实现双床间能量交互的特点,被广泛应用于固体废弃物热解、CO2捕集等方面[1]遥但双流化床的种类繁多,内部气固流动特性复杂,对双流化床装置的设计与运行都造成了不小的困难。
大颗粒气固流化床内两相流动的CFD模拟
大颗粒气固流化床内两相流动的CFD模拟摘要:采用欧拉双流体模型和颗粒动力学方法,数值模拟了大颗粒流化床在不同密度、布风装置及曳力模型情况下的气固两相流动,考察了大颗粒流化床流化和流动特点,颗粒体积分率分布,床层压力瞬时变化,床层碰撞比,以及颗粒速度径向和空隙率轴向分布规律.研究结果表明,与直型布风板流化床比较,凹型布风板流化床内的气泡产生快,颗粒横向运动能力强;随着颗粒密度的增大,其在凹型布风板流化床边壁处的速度比中心位置处减小的快;比较3种曳力模型,发现其模拟的轴向空隙率分布和床层压力存在较大差异,且与床层膨胀比实验关联式相比,3种模型预测的值比实验关联式要大一些.通过研究,3个曳力模型中Gidaspow模型相对适用于大颗粒气固流化床的数值模拟.关键词:流化床;欧拉双流体模型;并行计算;大颗粒近年来,随着流态化技术的发展,大颗粒流化床在煤粉流态化燃烧和水泥熟料流态化煅烧等领域的应用也越来越广泛.由于流化床内两相流动情况复杂,使得人们对气固两相间的作用、固相应力本构方程的建立、两相湍流的认识以及多种因素的相对控制和协调的理解等变得很困难[】].实际上大多数流化床反应器都是根据经验设计的,大颗粒流化床的设计更是如此.文献[2]在研究颗粒的粒度及颗粒的表观密度等对流化特性影响后,将颗粒分成了A(30~100 tma)、B(100~600 tLm)、C(一般情况下粒度小于20 tLm)、D(600 Fm以上)4类_3].依据此分类,粒度在600肿以上的颗粒称为过粗颗粒.然而由于颗粒的表观密度与气体密度之差不同,本文所用颗粒直径为855 可能为B类(鼓泡颗粒),也有可能为D类(喷动用颗粒).其中,D类颗粒流化时极易产生大气泡或节涌,使实验难以操作,然而数值模拟可以克服这一困难,而且D类颗粒粒度在1.5 rain以下时,是完全可以流化的[3].文献[4]用粒径为3 mm的颗粒进行了模拟与实验,研究了气体进口速度和温度对床内含湿量、颗粒温度等的影响,得出模拟与实验的结果大体是一致的.文献[5]研究了表观气速、床内有无管道及布风方式对大颗粒流动的影响.模拟和试验的结果都表明,布风方式对颗粒体积分率及速度径向分布有着很大的影响,而且不论有无管道,某些布风方式都有助于气固形成环核流动结构.文献[6]通过改变颗粒粒径(从o.25 mm到1 mm)、密度、进口气速等参数后进行了模拟,结果表明:颗粒的粒径和进口气速对颗粒滑移速度的影响较大;合适的进口气速对减少能耗起着很重要的作用.本文借助CFD软件FLUENT对大颗粒气固流化床进行了模拟计算.对比并分析了不同密度颗粒、曳力模型及布风装置对流化床流动特性的影响.有些曳力模型采用皿F(用户自定义函数)实现.通过这些研究,从数值计算的角度揭示出了一些大颗粒的流化及流动特性.1 控制方程及曳力系数模型1.1 流体控制方程由于气固间没有质量交换,且升力、附加质量力等对流化床的影响很小,故气固两相流动所遵循的连续方程和动量方程可以简化成如下形式:动量方程1.2 曳力系数模型颗粒在流场中受到的作用力包括曳力、重力、浮力和其他作用力(如Basset力、Magnus力和Saff.man力等).若忽略其他力的作用,则可认为气固间作用主要为曳力作[1].Syamla1.0BriencAmstoopour~。
气固下行流化床反应器 Ⅲ气、固混合
第12卷第4期 化学反应工程与工艺 V o l 12,N o 41996年12月 Chemica l Reac tio n Enginee ring and Technolog y Dec,1996专题讲座气固下行流化床反应器Ⅲ气、固混合魏 飞(清华大学化工系,北京100084)祝京旭(Departm ent of Chemical and Bioch emical Engineering Univ ersityof W es tern Ontario,London ,N6A5B9,Canada)摘 要 与气固并流上行提升管反应器相比,气固并流下行管反应器的轴向气固返混明显降低,而径向气固混和仍然相当大,因而有利于提高气固快速反应的转化率及选择性。
本文在分析下行流化床反应器内气、固混合机理的基础上,比较了有关气、固混合的研究方法及结果,并比较了提升管和下行管的不同混合现象,旨在促进对这一课题更加深入系统地研究,以适应循环床下行管反应器设计、放大和模型化的迫切要求。
关键词:下行流化床反应器 气、固混合 返混 停留时间分布1 前 言气固混合行为的研究不仅对于深入认识下行管作为一种通用的化工及物理加工设备有重要的学术意义,而且对于它作为反应器有特别重要的意义。
气固逆重力场流态化过程一直以良好的气固混合及传热性能而引人瞩目,但同时,它较大的气体及颗粒轴向返混对于反应转化率及选择性的提高都是极为不利的。
对于一个串联反应过程,特别是对于转化率及选择性均要求较高的反应过程,要得到尽可能多的中间产品,最大限度地减少气体返混是十分重要的。
催化裂化工艺从传统流化床过渡到提升管反应器所产生的质的飞跃,就是由于提升管有效地降低了气固返混,减少了反应生成的油气向下返混而过度裂化为气体及焦碳的可能性。
然而,由于颗粒的浓度及速度在提升管中的径向分布不均匀,提升管反应器内的气固返混仍然很严重。
从上一文(讲座Ⅱ)中介绍的下行管流体力学特性的研究结果可以看到,下行管给人们带来了一个希望:形成一种新型的流化床反应器,它不仅具有良好的气固传递特性,而且能使气固轴向返混比现有流化床反应器大大地降低。
内循环流化床气固流动数值模拟与试验研究
内循环流化床气固流动数值模拟与试验研究内循环流化床在城市固体废弃物焚烧领域具有独特的优势。
本文采用离散单元法(DEM)数值模拟与台架试验相结合的方法,系统研究了流化床内的气体、颗粒流动特性。
基于对颗粒相的离散处理,本文利用气固速度场、颗粒加速度场、压力场、压力波动等特征信息量化分析了流化过程机理。
可视化观测、物料分层及其停留时间分布等试验研究则是正确认知流化现象、检验数学模型合理与否的第一手段、合理实施工业应用的依据。
本课题研究主要包括:流化过程的CCD (Charge Couple Device)可视化观测与DEM数值预报;气体通过床层的流动行为与流量分配、颗粒的微观运动特征;非均匀布风内循环流化床内气泡运动的可视化分析、颗粒流动规律及其动态混合过程的定量评价、物料换热过程的数值模拟;多组分内循环流化床内的分层现象与停留时间分布的试验研究。
采用CCD可视化试验详细验证了DEM模拟结果。
对比分析显示,数值模拟成功预报了气泡的形成、分离、长大、爆炸等过程。
颗粒受力分析表明:在扩散气流曳力和压力梯度力作用下,射流点处颗粒被外推,初始气泡空穴形成,并且逐步长大。
随着时间的推进,底部颗粒所受压力梯度力方向逐渐由向外扩张转变为向里收缩,颗粒涌入空穴底部;空穴最终以气泡的形式脱离布风板进入床层。
模拟所得气泡周期与试验结果十分接近。
压力信号频谱快速傅立叶变换(FFT)分析发现,入口射流速度越快,气泡的产生和通过频率也越高;高射流风速下,高频小幅波动也有所增加。
DEM计算过程中,空隙率直接依赖于当地颗粒密度,尾迹的有无则随气泡的进展而变。
因此,模拟所得气泡周围压力分布与文献试验结果更为一致:气泡上下两端等压线并不对称,并且内部存在一定的压力梯度。
气相速度场直观表明,气泡为低阻空间,具有短路效应,气泡相和乳化相之间存在强烈的气体交换。
DEM模拟直观描述了气泡内外的流线特征;流线基本与等压线呈垂直交叉分布,合理反映了流体选择最小阻力途径行进的本质特征;气体流线整体排布较为规则,床内气体表现为层流流动。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Tutorial:Modeling Uniform Fluidization in2D Fluidized BedIntroductionThe purpose of this tutorial is to study the hydrodynamics and bubble formation in a fluidized bed over a period of time.It also demonstrates how to customize a drag law for granular gas-solidflow.The default drag law in FLUENT is the Syamlal-O’Brien drag law.This law works for a large variety of problems,but has to be tuned properly for predicting the minimumfluidization conditions accurately.This tutorial demonstrates how to do the following:•Customize a drag law for granular gas-solidflow.•Use the Eularian models to predict the pressure drop in an uniformlyfluidized bed.•Solve the case using appropriate solver settings.•Postprocess the resulting data.PrerequisitesThis tutorial assumes that you are familiar with the FLUENT interface,and have a good understanding of basic setup and solution procedures.This tutorial will not cover the mechanics of using the Eularian models.It will focus on the application of these models.If you have not used these models before FLUENT6.3Tutorial Guide will provide you with the necessary experience.Problem DescriptionThe prediction of pressure drop in an uniformlyfluidized bed is a problem of long standing interest in the process industry.The Eulerian models in FLUENT provide an important modeling tool for studying dense phase particulateflow involving complex inter-phase mo-mentum transfer.Despite rigorous mathematical modeling of the associated physics,the drag laws used in the model continue to be semi-empirical in nature.Therefore,it is crucial to use a drag law that correctly predicts the incipient or minimumfluidization conditions where the bed of particles is essentially in a state of suspension as a result of the balance between interfacial drag and body forces.Modeling Uniform Fluidization in2D Fluidized BedThe default Syamlal-O’brien is as follows:Thefluid-solid exchange coefficient isK sl=3αsαlρl4v2r,s d sC DRe sv r,s| v s− v l|where v2r,s is the terminal velocity coefficient for the solid phase.v r,s=0.5 A−0.06Re s+ (0.06Re s)2+0.12Re s(2B−A)+A2with A=α4.14l and B=0.8α1.28lforαl≤0.85and with B=α2.65lforαl>0.85The default constants of0.8and2.65predict a minimumfluidization of21cm/s.The experimentally observed minimumfluidization for this particular case is8cm/s.Therefore, by changing the constants we can tune the drag law to predict minimumfluidization at 8cm/s.After some mathematical manipulation,these constansts come out to be0.281632 and9.07696respectively.Therefore,these values have to be used to predict the correct bed behavior and are passed to the code through user-defined functions.The problem considered is a1m x0.15mfluidized bed as shown in Figure1.The inlet air enters in at0.25m/s and the top is modeled as a pressure outlet.The bed is packed with granular solids at0.55volume fraction(close topacking).Figure1:Problem SpecificationModeling Uniform Fluidization in2D Fluidized Bed Preparation1.Copy thefiles bp.msh.gz and bp drag.c to the working folder.2.Start the2ddp(2ddp)version of FLUENT.Setup and SolutionNote:All entries in setting up this case are in SI units,unless otherwise specified.Step1:Grid1.Read the gridfile bp.msh.gz.2.Check the grid.Grid−→Check3.Display the grid.Display−→Grid...Figure2:Graphics Display of the GridStep2:Models1.Select Pressure Based solver with2D space and Unsteady time condition.Define−→Models−→Solver...Modeling Uniform Fluidization in2D Fluidized Bed2.Select the Eulerian multiphase model.Define−→Models−→Multiphase...Step3:MaterialsDefine−→Materials...1.Modify the properties for air.(a)Enter1.2kg/m3for Density and1.8e-05kg/m-s for Viscosity.2.Define a material called solids.(a)Enter2600kg/m3for Density and1.7894e-05kg/m-s for Viscosity.3.Click Change/Create and close the Materials panel.Step4:Compile the UDFThe UDF contains two arguments s col and f col.These refer to the indices of the phases appearing in the second andfirst columns of the table in the interaction panel respectively.Therefore in this case s col refers to the index of gas phase which is0and f col refers to the index for solids which is equal to1.Define−→User-Defined−→Functions−→Compiled...1.Click the Add...button in the Source Files section to open the Select File dialog.2.Select thefile bp drag.c.3.Enter lib drag for Library Name.4.Click Build.A Warning dialog box will appear,warning you to make sure that the UDF sourcefilesare in the same folder that contains the case and datafiles.Click OK to close theWarning dialog box.You can view the compilation history in the‘log’file that is saved in your workingfolder.Modeling Uniform Fluidization in2D Fluidized Bed5.Click Load to load the library.Step5:PhasesDefine−→Phases...1.Select phase-1from the Phase selection list and click the Set...button to open thePrimary Phase panel.(a)Select air from the Phase Material drop-down list.(b)Enter gas for Name.(c)Click OK to close the Primary Phase panel.2.Select phase-2from the Phase selection list and click the Set...button to open theSecondary Phase panel.(a)Select solids from the Phase Material drop-down list.(b)Enter solid for Name and enable Granular.(c)Enter0.0003m for Diameter,and select syamlal-obrien from the Granular Viscositydrop-down list.(d)Retain the default values for the other parameters.(e)Click OK to close the Secondary Phase panel.Check the column numbers where the two phases appear in the Phase Interaction panel.In this case solid and gas appear in thefirst and second columns respectively.These columns are used to specify the phase indices in the argument list for the UDF.3.Set the drag coefficient.(a)Select gas from the Phase selection list and click the Interaction...button to openthe Phase Interaction panel.i.Select user-defined and custom drag syam::lib drag in the Drag Coefficientgroup box.ii.Click OK to close the Phase Interaction panel.(b)Similarly select the user-defined function for solid(custom drag syam::lib drag).4.Click OK to close the Phases panel.Step6:Operating ConditionsDefine−→Operating Conditions...1.Enable Gravity and enter-9.81m/s2for Gravitational Acceleration in the Y direction.2.Enable Specified Operating Density,and enter1.2kg/m3for Operating Density.3.Click OK to close the Operating Conditions panel.Modeling Uniform Fluidization in2D Fluidized BedStep7:Boundary ConditionsDefine−→Boundary Conditions...Set the boundary conditions for vintlet zone.1.Select vinlet from the Zone selection list,and gas from the Phase drop-down list.2.Click the Set...button to open the Velocity Inlet panel.(a)Select Components from the Velocity Specification Method drop-down list andenter0.25m/s for Y-Velocity.(b)Click OK to close the Velocity Inlet panel.3.Select solid from the Phase drop-down list and click the Set...button to open theVelocity Inlet panel.(a)Click the Multiphase tab and enter0for Volume Fraction.(b)Click OK to close the Velocity Inlet panel.4.Close the Boundary Conditions panel.Step8:Solution1.Mark a region for adaption.Adapt−→Region...(a)Enter0for X Min and Y Min,and0.15m for X Max and Y Max respectively inthe Input Coordinates group box.(b)Click Mark to mark the cells for refinement.Note:Click Adapt to perform the refinement immediately.(c)Close the Region Adaption panel.2.Initialize theflow with default values.Solve−→Initialize−→Initialize...3.Patch the solids volume fraction for hexahedron-r0.Solve−→Initialize−→Patch...(a)Select solid from the Phase drop-down list and select Volume Fraction from theVariable selection list.(b)Enter0.55for Value and select hexahedron-r0from the Registers to Patch selectionlist.If you wish to patch a constant value,enter that value in the Valuefield.If youwant to patch a previously-definedfield function,enable the Use Field Functionoption and select the appropriate function in the Field Function list.(c)Click Patch and close the Patch panel.Modeling Uniform Fluidization in2D Fluidized Bed4.Set the solution control parameters.Solve−→Controls−→Solution...(a)Retain the default selection from the Equations selection list.(b)Enter0.5for Pressure,0.2for Momentum,and0.4for Volume Fraction in theUnder-Relaxation Factors group box.(c)Retain the default values for other parameters.(d)Click OK to close the Solution Controls panel.5.Enable autosaving of the datafiles for every100time steps.File−→Write−→Autosave...6.Set up commands for animation.Solve−→Execute Commands...7.Set the graphics hardcopy format.File−→Hardcopy...(a)Select TIFF from the Fomat list,and Color from the Coloring list.(b)Click Apply and close the Graphics Hardcopy panel.8.Set up the contours display.Display−→Contours...(a)Enable Filled from the Options group box.(b)Select solid from the Phase drop-down list.(c)Select Phases...and Volume Fraction from the Contours of drop-down lists.(d)Click Display and close the Contours panel.Modeling Uniform Fluidization in2D Fluidized Bed9.Start the calculation by requesting1400iterations and set the Time Step Size to0.001sec.Solve−→Iterate...Step9:Postprocessing1.Display contours of volume fraction for solid at0.2sec(Figure3),0.9sec(Figure4),and1.4sec(Figure5).Display−→Contours...2.View the animation for thefluidization process using the.tifffiles and the command,animate*.tiffFigure3:Contours of Volume Fraction of solid(t=0.2s)Modeling Uniform Fluidization in2D Fluidized BedFigure4:Contours of Volume Fraction of solid(t=0.9s)Figure5:Contours of Volume Fraction of solid(t=1.4s)Modeling Uniform Fluidization in2D Fluidized BedResultsTypically,the constants set to0.8and2.65in the default drag law have to be modified to balance the interfacial drag with the weight of the bed at minimumfluidization.If this is not done,the correct bubbling pattern will not be predicted,leading to incorrect predictions of pressure drop which is the most important objective of such simulations.。