高聚物结构-问答计算题详解
高分子物理习题讲解
第一章绪论一、选择题1.GPC对高聚物进行分级的依据是(B)A.高聚物分子量的大小B.高分子流体力学体积大小C.高分子末端距大小D.高分子分子量分布宽度2.下列哪些方法获得的是数均分子量(BCD)A.粘度法B.冰点下降C.沸点升高D.渗透压E.超离心沉降F.光散射法3.聚合物分子量越大,则熔体粘度(A)对相同分子量聚合物而言,分子量分布越宽,则熔体粘度(B)A.增大B.降低C.相等D.不变4.某一高聚物试样A的分子量约为3×104,试样B的分子量约为7×105,测定试样A的分子量应采用(A)(B)等方法。
测出的分别是(C)(D)分子量。
测定试样B的分子量则宜采用(E)(F)等方法,测出的分别是(G)(各H)分子量。
A.膜渗透压B.粘度法降低C.数均D.粘均E.光散射F.凝胶渗透色谱法G.重均H.各种平均5.分子量相同的线形聚乙烯和支化聚乙烯的混合试样,当采用的溶解度分级时不能将它们分开,这是由于(AB)而采用GPC法则能将它们分开,这是由于(CD)首先被淋洗出来的是(E)A.两者分子量相同B.溶解度相同C.它们的分子尺寸不一样D.流体力立体积不同E.线性聚乙烯6.聚合物没有气态是因为(B)A .聚合物不耐高温B .聚合物分子间力很大C .聚合物的结构具多分散性D .聚合物的分子量具多分散性7.下列哪些方法获得的是数均分子量(BCD )A .粘度法B .冰点下降C .沸点升高D .渗透压E .超离心沉降F .光散射法8.不同用途和不同成型方法对聚合物分子量的大小有不同的要求。
通常是(C )A .合成纤维分子量最高,塑料最低B .塑料分子量最高,合成纤维最低C .合成橡胶分子量最高,合成纤维最低9.下列那种方法可测定聚合物的数均分子量(B )A .超速离心沉降;B .膜渗透压C .黏度D .光散射二、问答与计算题1. 某高聚物10,0000M η=,已知Mark-Houwink 方程中4110/d g -K =⨯I ,α=0.8 Huggins 方程中常数κ=0.33(1)计算c =0.0030g/ml 时,溶液的相对粘度r η。
高聚物结构与性能的答案
高聚物结构与性能试题参考答案一、名词解释(2.5×12 =30分)构型:由化学键决定的原子基团间的空间排列方式分子链柔顺性:高分子链能够改变其构型的性质高斯链:又名高斯线团,是末端距分布符合Gauss分布函数的线团。
熔限:高分子晶体的熔融发生在一个温度范围内,称为熔限。
多分散指数:描述高分子的分子量多分散性大小的参数,通常是Mw/Mn或Mz/Mw取向:高分子的链段、整链或其晶体结构沿外力方向所作的优先排列。
粘弹性:高分子固体的力学性质兼具纯弹性和纯粘性的特征,称为粘弹性。
溶度参数:定义为(CED)1/2,用于指导非极性聚合物的溶剂选择。
冷拉:高分子材料在拉伸条件下,发生应力屈服,出现细颈、细颈扩展所导致的大形变行为。
增韧:即增加聚合物材料韧性,所采用的技术路线有弹性体和刚性粒子增韧力学损耗:高分子材料在动态力学条件下,应力与应变出现滞后所导致的机械能损耗银纹:由于应力或环境因素的影响,聚合物表面所产生的银白色条纹二、简答题(8×5=40 分)1.分别写出顺丁橡胶、聚丙烯、聚异丁烯、聚甲醛、聚氯乙烯的结构式,比较其玻璃化温度的高低,并说明原因。
2.高聚物熔体的流动机理是什么?其流动行为上有什么特征?答:流动机理:高分子链的重心移动采用高分子链段的协同跃迁的方式完成,通常称为“蠕动”。
熔体流动的特征有三:1,高粘度,缘自高分子巨大的分子量;2,剪切变稀:高分子链受剪切作用时,发生构象变化。
3,弹性效应:高分子流动变形中包含可逆的构象变化,导致其表现出Barus效应、爬杆效应等现象。
3.何为θ溶液?θ条件下,Huggins参数取何值?此时溶液中高分子链的构象有何特征?答:处于θ状态,即高分子链段间作用等于高分子链段与溶剂分子作用的状态的高分子溶液,称为θ溶液。
此时,Huggins参数为1/2;溶液中高分子链的构象与同温度条件下的高聚物本体的非晶区构象相同。
4.请说明聚乙烯、尼龙-66和交联顺丁橡胶溶解行为上的差异。
高分子物理习题问题详解
高分子物理习题集-答案第一章高聚物的结构4、高分子的构型和构象有何区别?如果聚丙烯的规整度不高,是否可以通过单键的内旋转提高它的规整度?答:构型:分子中由化学键所固定的原子或基团在空间的几何排列。
这种排列是稳定的,要改变构型必须经过化学键的断裂和重组。
构象:由于单键内旋转而产生的分子在空间的不同形态。
构象的改变速率很快,构象时刻在变,很不稳定,一般不能用化学方法来分离。
不能。
提高聚丙烯的等规度须改变构型,而改变构型与改变构象的方法根本不同。
构象是围绕单键内旋转所引起的排列变化,改变构象只需克服单键内旋转位垒即可实现,而且分子中的单键内旋转是随时发生的,构象瞬息万变,不会出现因构象改变而使间同PP(全同PP)变成全同PP(间同PP);而改变构型必须经过化学键的断裂才能实现。
5、试写出线型聚异戊二烯加聚产物可能有那些不同的构型。
答:按照IUPAC有机命名法中的最小原则,CH3在2位上,而不是3位上,即异戊二烯应写成CH2C3CH CH21234(一)键接异构:主要包括1,4-加成、1,2-加成、3,4-加成三种键接异构体。
CH2nC3CH CH21,4-加成CH2nC3CH CH21,2-加成CH2nC CH3CH CH23,4-加成(二)不同的键接异构体可能还存在下列6中有规立构体。
①顺式1,4-加成CH 2CH 2CH 2CH 2C CH 3C HCH 3C CH②反式1,4-加成2CH 2CH 2CH 2C CH 3C HCH 3C CH③1,2-加成全同立构CH 2C C 3C C HH H HCH CH 2CH CH 3C C H CH 2CH CH3④1,2-加成间同立构C C 3CC HH HHCH 3C C H CH 3RRRR=CHCH 2⑤3,4-加成全同立构CH 2C CH3C CC C HH H HC C H HCH 2C CH 3CH 2C CH3H⑥3,4-加成间同立构C C CC HH H HC CH HRRRR=CH 2H H C CH 36.分子间作用力的本质是什么?影响分子间作用力的因素有哪些?试比较聚乙烯、聚氯乙烯、聚丙烯、聚酰胺(尼龙-66)、聚丙烯酸各有那些分子间作用力? 答:分子间作用力的本质是:非键合力、次价力、物理力。
高分子物理习题问题详解
高分子物理习题集-答案第一章高聚物的结构4、高分子的构型和构象有何区别?如果聚丙烯的规整度不高,是否可以通过单键的内旋转提高它的规整度?答:构型:分子中由化学键所固定的原子或基团在空间的几何排列。
这种排列是稳定的,要改变构型必须经过化学键的断裂和重组。
构象:由于单键内旋转而产生的分子在空间的不同形态。
构象的改变速率很快,构象时刻在变,很不稳定,一般不能用化学方法来分离。
不能。
提高聚丙烯的等规度须改变构型,而改变构型与改变构象的方法根本不同。
构象是围绕单键内旋转所引起的排列变化,改变构象只需克服单键内旋转位垒即可实现,而且分子中的单键内旋转是随时发生的,构象瞬息万变,不会出现因构象改变而使间同PP(全同PP)变成全同PP(间同PP);而改变构型必须经过化学键的断裂才能实现。
5、试写出线型聚异戊二烯加聚产物可能有那些不同的构型。
答:按照IUPAC有机命名法中的最小原则,CH3在2位上,而不是3位上,即异戊二烯应写成CH2C3CH CH21234(一)键接异构:主要包括1,4-加成、1,2-加成、3,4-加成三种键接异构体。
CH2nC3CH CH21,4-加成CH2nC3CH CH21,2-加成CH2nC CH3CH CH23,4-加成(二)不同的键接异构体可能还存在下列6中有规立构体。
①顺式1,4-加成CH 2CH 2CH 2CH 2C CH 3C HCH 3C CH②反式1,4-加成2CH 2CH 2CH 2C CH 3C HCH 3C CH③1,2-加成全同立构CH 2C C 3C C HH H HCH CH 2CH CH 3C C H CH 2CH CH3④1,2-加成间同立构C C 3CC HH HHCH 3C C H CH 3RRRR=CHCH 2⑤3,4-加成全同立构CH 2C CH3C CC C HH H HC C H HCH 2C CH 3CH 2C CH3H⑥3,4-加成间同立构C C CC HH H HC CH HRRRR=CH 2H H C CH 36.分子间作用力的本质是什么?影响分子间作用力的因素有哪些?试比较聚乙烯、聚氯乙烯、聚丙烯、聚酰胺(尼龙-66)、聚丙烯酸各有那些分子间作用力? 答:分子间作用力的本质是:非键合力、次价力、物理力。
高分子物理习题集--答案-2019
高分子物理习题集--答案-2019高分子物理习题集-答案第一章高聚物的结构4、高分子的构型和构象有何区别?如果聚丙烯的规整度不高,是否可以通过单键的内旋转提高它的规整度?答:构型:分子中由化学键所固定的原子或基团在空间的几何排列。
这种排列是稳定的,要改变构型必须经过化学键的断裂和重组。
构象:由于单键内旋转而产生的分子在空间的不同形态。
构象的改变速率很快,构象时刻在变,很不稳定,一般不能用化学方法来分离。
不能。
提高聚丙烯的等规度须改变构型,而改变构型与改变构象的方法根本不同。
构象是围绕单键内旋转所引起的排列变化,改变构象只需克服单键内旋转位垒即可实现,而且分子中的单键内旋转是随时发生的,构象瞬息万变,不会出现因构象改变而使间同PP (全同PP )变成全同PP (间同PP );而改变构型必须经过化学键的断裂才能实现。
5、试写出线型聚异戊二烯加聚产物可能有那些不同的构型。
答:按照IUPAC 有机命名法中的最小原则,CH 3在2位上,而不是3位上,即异戊二烯应写成1CH 22C 33CH42(一)键接异构:主要包括1,4-加成、1,2-加成、3,4-加成三种键接异构体。
CHCH 2nCH 2CH 2CH 3nCH 2C CH 3CH CH 2nCH 2CH 31,4-加成1,2-加成3,4-加成(二)不同的键接异构体可能还存在下列6中有规立构体。
①顺式1,4-加成 3222CH 322②反式1,4-加成3223CH 2③1,2-加成全同立构23HCH CH 23C HCH CH 23④1,2-加成间同立构H3C H3C H3R=CHCH 2⑤3,4-加成全同立构22CH3C HCH 3C H2CH3H⑥3,4-加成间同立构C HHR=3CH 26.分子间作用力的本质是什么?影响分子间作用力的因素有哪些?试比较聚乙烯、聚氯乙烯、聚丙烯、聚酰胺(尼龙-66)、聚丙烯酸各有那些分子间作用力?答:分子间作用力的本质是:非键合力、次价力、物理力。
聚合物结构分析 填空-简答
简答1、红外光谱分析方法、类型答:①溶液流延薄膜法②热压成膜法:适用于不容易溶解的热塑性树脂材料③溴化钾压片法:适用于粉末状的物质④溴化钾晶体涂膜法:适用于黏稠的低聚物或黏合剂类的物质⑤液体池法:适用于黏度低和沸点低的液体样品。
2、用光散射如何标定聚合物粘度方程中参数κ和α的标定:M k αγη=][ 两边对数lg[η]=lg κ+αlg M γ聚合物的α值一般都在0.5~0.8之间,所以聚合物的质均相对分子质量与黏均相对分子质量比较相近。
配置一系列单分散性的样品,用光散射法依次测定其值均相对分子质量,近视认为是黏均相对分子质量,用黏度法测定其黏度,以lg[η]~lg M γ做图,可以得到一条直线,外推直线得截距lg κ和斜率α。
3、哪些因素会影响聚合物的DSC 曲线? 是如何影响的影响因素有:样品量-样品量少,样品的分别率高,但灵敏度下降,一般根据样品热效应大小调节样品量,一般3~5mg 。
升温速率-通常升温速率范围在5~20℃/min 。
一般来说,升温速率越快,灵敏度提高,分别率下降。
气氛-一般使用惰性气体,这样不会产生氧化反应峰,同时又可减少试样挥发物对检测器的腐蚀。
4、DSC 曲线上玻璃化温度是如何标定的?热重曲线上关键温度是如何标定的?玻璃化温度标定:转变温度Tg 的确定,一般用曲线前沿切线与基线的交点B 或用中点C ,个别情况也有用交点D ,较明显易读准。
熔点的标定:聚合物的熔点都是具有一定宽度的吸收峰。
以下是标定熔点的3种方法①从样品的熔融峰的峰顶做一条直线,其斜率为金属铟熔融峰前沿的斜率1/R 0×dT/dt ,其中R 0是试样皿和样品支持器之间的热阻,它是热滞后的主要原因。
该直线与等温基线相交为C ,C 是真正的熔点。
一般与扫描基线的交点C,所对应的温度作为熔点。
②最通用的确定熔点的方法,是以峰前沿最大斜率点的切线与扫描基线的交点B 作为熔点。
③有直接用峰点A 点作为熔点,但要注意样品量升温速率不同对峰温的影响。
高分子物理聚合物的结构(计算题:均方末端距与结晶度)
聚合物的结构(计算题:均方末端距与结晶度)1.简述聚合物的层次结构。
答:聚合物的结构包括高分子的链结构和聚合物的凝聚态结构,高分子的链结构包括近程结构(一级结构)和远程结构(二级结构)。
一级结构包括化学组成、结构单元链接方式、构型、支化与交联。
二级结构包括高分子链大小(相对分子质量、均方末端距、均方半径)和分子链形态(构象、柔顺性)。
三级结构属于凝聚态结构,包括晶态结构、非晶态结构、取向态结构、液晶态结构和织态结构。
构型:是指分子中由化学键所固定的原子在空间的几何排列。
(要改变构型,必须经过化学键的断裂和重组。
)高分子链的构型有旋光异构和几何异构两种类型。
旋光异构是由于主链中的不对称碳原子形成的,有全同、间同和无规三种不同的异构体(其中,高聚物中全同立构和间同立构的总的百分数称为等规度。
)。
全同(或等规)立构:取代基全部处于主链平面的一侧或者说高分子全部由一种旋光异构单元键接而成间同立构:取代基相间地分布于主链平面的两侧或者说两种旋光异构单元交替键接无规立构:取代基在平面两侧作不规则分布或者说两种旋光异构单元完全无规键接几何异构是由于主链中存在双键而形成的,有顺式和反式两种异构体。
构象:原子或原子基团围绕单键内旋转而产生的空间分布。
链段:把若干个键组成的一段链作为一个独立运动的单元链节(又称为重复单元):聚合物中组成和结构相同的最小单位高分子可以分为线性、支化和交联三种类型。
其中支化高分子的性质与线性高分子相似,可以溶解,加热可以熔化。
但由于支化破坏了高分子链的规整性,其结晶能力大大降低,因此支化高分子的结晶度、密度、熔点、硬度和拉伸强度等,都较相应的线性高分子的低。
交联高分子是指高分子链之间通过化学键形成的三维空间网络结构,交联高分子不能溶解,只能溶胀,加热也不能熔融。
高分子链的构象就是由单键内旋转而形成的分子在空间的不同形态。
单键的内旋转是导致高分子链呈卷曲构象的根本原因,内旋转越自由,卷曲的趋势就越大。
高分子物理习题集-2010-2011学期使用
高分子物理习题集第一章高聚物的结构1.简述高聚物结构的主要特点。
2.决定高分子材料广泛应用的基本分子结构特征是什么?3.高分子凝聚态结构包括哪些内容?4.高分子的构型和构象有何区别?如果聚丙烯的规整度不高,是否可以通过单键的内旋转提高它的规整度?5.试写出线型聚异戊二烯加聚产物可能有那些不同的构型。
6.分子间作用力的本质是什么?影响分子间作用力的因素有哪些?试比较聚乙烯、聚氯乙烯、聚丙烯、聚酰胺(尼龙-66)、聚丙烯酸各有那些分子间作用力?7.下列那些聚合物没有旋光异构,并解释原因。
A.聚乙烯B .聚丙烯 C .1,4-聚异戊二烯D .3,4-聚丁二烯 E .聚甲基丙烯酸甲酯F .硫化橡胶8. 何谓大分子链的柔顺性?试比较下列高聚物大分子链的柔顺性,并简要说明理由。
9. 写出下列各组高聚物的结构单元,比较各组内几种高分子链的柔性大小并说明理由:1)聚乙烯,聚丙烯,聚苯乙烯;2)聚乙烯,聚乙炔,顺式1,4聚丁二烯;3)聚丙烯,聚氯乙烯,聚丙烯腈;4)聚丙烯,聚异丁稀;5)聚氯乙烯,聚偏氯乙烯;6)聚乙烯,聚乙烯基咔唑,聚乙烯基叔丁烷;7)聚丙烯酸甲酯,聚丙烯酸丙脂,聚丙酸戌酯;8)聚酰胺6.6,聚对苯二甲酰对苯二胺;9)聚对苯二甲酸乙二醇酯,聚对苯二甲酸丁二醇酯。
10.为什么真实的内旋高分子链比相应的高斯链的均方末端距要大些?11.分子量不相同的聚合物之间用什么参数比较其大分子链的柔顺性?12.试从统计热力学观点说明高分子链柔顺性的实质。
~\:CH 2~C —CH —CHCl CH —化+ CN “CH 3 n13.用键为单位统计大分子链的末端距与用链段为单位统计末端距有何异同?那种方法更复合实际情况?14.一个高分子链的聚合度增大100倍,其链的尺寸扩大了多少倍?15.假定聚丙烯中键长为0.154nm,键角109.5。
,无扰尺寸A=835x10-4nm,刚性因子(空间位阻参数)b二1.76,求其等效自由结合链的链段长度b。
高分子化学近百道填空题及50多题计算题和简答题说课讲解
1、聚合物的结构单元, 复合单元.2、高分子化合物(又称聚合物)其分子量一般在多大范围内___。
3、聚合物按大分子主链的化学组成可分 ___、 ___ 、____ 和____。
4、按聚合物材料性能及用途进行分类,一般可分为____、 ____、 ____三大类。
根据聚合物主链所含元素,又可将聚合物分为:____、 ____、 ____。
5、按单体和聚合物在组成和结构上发生变化聚合反应可为:___、___。
按聚合机理聚合反应可分为: ____、 ___。
6、聚乙烯的结构单元为_,此结构单元又可以称为_、__、__。
7、尼龙 -66 的单体是 __、___。
8、合成天然橡胶单体是 ____。
9、无定型高聚物的物理状态及力学性质随温度而变,其中Tg 是: ____;Tf 是:____。
而在结晶高聚物中 Tm是: ____。
10、____和____是评价聚合物耐热性的重要指标。
11、缩聚中的副反应: ____、______、 _____。
12、线形缩聚相对分子质量的控制手段有 ____、_____、和 ______。
13、单体浓度对成环或线性缩聚倾向也有影响,____有利于成环, _____有利于线性缩聚。
14、等摩尔的乙二醇和对苯二甲酸进行缩聚反应,反应程度P=0.95 时的数均聚合度。
15、线形缩聚的核心问题是 ______;体形缩聚的关键问题是 _____ 所有缩聚反应共有的特征是 ____16、逐步聚合法有熔融缩聚和_____、_____、 _____等四种。
17、合成涤纶聚酯的单体主要为、。
18、运用酯交换法合成涤纶聚酯的步骤为____、______、____。
19、涤纶的化学名称为__,它是由单体对苯二甲酸、__,经聚合制得的。
工业上生产涤纶比较成熟的技术是先使对苯二甲酸_、然后_,最后缩聚。
20、合成纤维的第一大品种为____,第二大类合成纤维为 ____。
21、酚醛反应形成酚醇无规预聚物的条件是____形成结构预聚物的条件是____。
高分子物理简答题
1,何谓聚合物合金,包括哪些类型?聚合物共混需要完全相容吗?为什么?答:高分子合金又称多组分聚合物,该体系是二种或多种聚合物组分形成的混合物。
类型:①塑料连续相,橡胶分散相;②塑料分散相,橡胶连续相;③两种塑料共混;④两种橡胶共混。
由于高分子混合时的熵变值ΔS 很小,而大多数高分子间的混合是吸热过程,即ΔH 为正值,要满足ΔG 小于零的条件较困难,所以绝大多数共混聚合物不能达到分子水平的混合,而形成非均相的“两相结构”。
2,如何测定θ温度和Huggins 参数χ1?答:①通过渗透压的测定,可求出高分子溶液的θ温度。
即在一系列不同温度下测定某聚合物-溶剂体系的渗透压,求出第二维利系数A2,以A2对温度作图,得一曲线,此曲线与的A2=0线之交点所对应的温度即为θ温度。
②从第二维利系数A2~χ1关系可求参数χ1。
3,为何称高分子链在其θ溶液中处于无扰状态?θ溶液与理想溶液有何本质区别? 答:选择合适的溶剂和温度,使△μ1E =0,这样的条件称为θ条件,在θ条件下,高分子链段间的相互作用等于链段与溶剂分子间的相互作用,所以溶剂分子对高分子构象不产生的干扰,故高分子链在其θ溶液中处于无扰状态。
在θ溶液中,△μ1E =0,但△H M ≠0,△S M 都不是理想值,只是两者的效应相互抵消,说明高分子溶液是一种假的理想溶液。
4,以分子运动观点和分子间物理缠结概念说明非晶态聚合物随着温度升高粘弹行为的5个区域.并讨论分子量对应力松弛模量—温度曲线的影响规律。
(1)玻璃态区:类似玻璃,脆性,温度不足以克服内旋转位垒,链段以上运动“冻结”,分子运动主要限于振动和短程的旋转运动。
(2)玻璃—橡胶转变区:远程、协同分子运动的开始。
链段获得了足够的热能开始以协同方式运动,不断改变构象。
(3)橡胶-弹性平台区:分子间存在物理缠结,聚合物呈现远程橡胶弹性。
(4) 粘弹转变区:分子链发生解缠作用,导致由链段运动向整个分子滑移运动过渡。
结构与性能(聚合物部分)习题
一:高聚物的分子结构结晶度:结晶部分在总体中所占的含量,分为重量结晶度和体积结晶度。
大分子:是由大量原子组成的,具有相对高的分子质量或分子重量。
聚合物分子:也叫高聚物分子,通常简称为高分子。
就字面上它是一个由许多部分组成的分子,然而它的确包含多重重复之意。
它意味着:(1) 这些部分是由相对低分子质量的分子衍生的单元(所谓的单体单元或链节); (2) 并且只有一种或少数几种链节;(3) 这些需要的链节多重重复重现。
星形大分子:若从一个公共的核伸出三个或多个支链,则称为星型高分子。
据文献报导,从不同单体已经合成了每个核具有128个臂的星型高分子。
假如所有的臂都是等长的,这样的星型高分子称做是规整的。
在臂的末端带有多官能度的星型高分子还可以再加其他的单体,生成的高分子做为二级支化的星型高分子,如果所有支化点具有同样的官能度和支化点间链段是等长的,则叫做树枝链共聚物:由两种或两种以上不同单体经聚合反应而得的聚合物。
根据各种单体在共聚物分子链中排列方式,可分为无规共聚物、交替共聚物、嵌段共聚物和接枝共聚物。
构造;一个分子的构造是指分子中原子和键的序列而不考虑其空间排列。
例如:高分子单体、单体单元和键接结构;分子链的共聚序列(无规共聚物,交替共聚物,梯度共聚物,嵌段共聚物)。
构型(configuration): 是指分子中通过化学键所固定的原子的空间排列。
例如:要改变分子的构造和构型必须经过化学键的断裂和重组。
构象(conformation);空间中的原子或原子团排列在一个具有一定构型的分子的单键上,称为构象。
“构象”是有机化学的名词,表示在单键周围的原子和原子基团的旋转产生的空间排列。
链段(macromolecular segments);高分子链的柔性(flexibility of polymer chain), 分子链能够改变其构象的性质聚合度(degree of polymerization); 大分子、低聚物分子、嵌段或分子链中单体单元的数目。
(生产管理知识)高聚物生产技术习题集
《高聚物生产技术》习题集绪论习题1.什么是高聚物?请指出你见过或用过的高聚物。
2.请简要指出三大合成材料之间的主要差别。
3.命名下列高聚物。
并写出其单体结构、单体名称、重复结构单元和结构单元。
4.写出下列各对高聚物的聚合反应方程式,注意它们的区别。
(1)聚丙烯酸甲酯和聚醋酸乙烯酯;(2)聚已二酰已二胺和聚已内酰胺;(3)聚丙烯腈和聚甲基丙烯腈。
5.试写出下列单体得到线型高分子的重复结构单元的化学结构。
并指出由单体形成对应高聚物的聚合反应类型。
(1)α-甲基苯乙烯;(2)偏二氰基乙烯;(3)α-氰基丙烯酸甲酯;(4)双酚A+环氧氯丙烷;(5)对苯二甲酸+丁二醇;(6)已二酸+已二胺。
6.写出热固性高聚物与热塑性高聚物的主要区别。
7.确定下列高聚物的名称,并按主链结构和几何形状进行分类。
(4)第一章习题1.请写出自由基聚合反应的基本特点。
2.请写出10种以用自由基聚合获得的高聚物。
3.自由基产生于共价键化合物的哪种断裂形式?并指明自由基的特性。
4.比较下列各组单体中进行自由基聚合反应的能力,为什么?5.写出以偶氮二异丁腈为引发剂,以氯乙烯为单体的聚合机理。
6.比较下列自由基的活性,说明原因。
并说明对自由基聚合起什么作用?7.画出自由基聚合反应的单体浓度、转化率、产物相对分子质量随时间的变化曲线。
8.写出乙烯高压聚合时短支链产生的原因与形式。
9.指明影响引发剂引发效率的原因。
10.在自由基聚合时,如何合理选择引发剂?其中高低活性引发剂并用的优点是什么?11.用碘量法测定60℃下引发剂DCPD的分解速率,引发剂初始浓度为0.0754mol/L。
经过0.2、0.7、1.2、1.7小时后,测得DCPD的浓度分别为0.0660、0.0484、0.0334、0.0228mol/L。
求该温度下,DCPD的分解速率常数和分解半衰期。
12.60℃时苯乙烯、甲基丙烯酸甲酯、氯乙烯分别进行自由基聚合,终止方式有何不同?对产物相对分子质量有何影响?13.说明自由基聚合反应中链转移的形式及对反应的影响。
聚合物结构与性能计算题例题与解析
构象统计计算(均方末端距、链段、分子无扰尺寸、伸直链长、蠕虫状连等)某PE 的聚合度为2000,键角为109.5︒,键长1.54 A ︒,①求伸直链长。
②当将其视为自由旋转时,均方末端距为多少?③若实测到其均方末端距为自由旋转链的8倍,求其链段长和分子无扰尺寸A 。
④通过伸直链长度与根均方末端距之比值分析解释某些高分子材料在外力作用下可以产生很大变形的原因。
答:①A)(5.503025.109sin 54.140002sinmax =⨯⨯==αnl L ②)(A 10897.15.70cos 15.70cos 154.14000cos 1cos 124222⨯=-+⨯⨯=-+=θθnl h r ③)A (17.305.503010518.185max 2max20=⨯=⨯==L h L h l r e ④9.1210518.15.5030520max=⨯==h L λ ⑤)A (65.128200010518.1520=⨯⨯==M h A假定聚丙烯主链上的键长为0.154nm ,键角为109.5︒,求其等效自由结合链的链段长。
答:查表得,A=0.0835nm ,σ=1.76。
则164.125.109sin 154.02420835.02sin 22sin 212sin 202022max 20=︒⨯⨯⨯=≈+===αααl M A nl n M A nl M A L h l e 或170.1)5.70cos 1(75.54sin 76.1)5.70cos 1(154.0)cos 1(2sin )cos 1(2sin cos 1cos 12222max 20=︒-⨯︒⨯︒+⨯=-⋅+=⋅-+==θασθασθθl nl nl L h l e蠕虫状链暂时没有相应的例题通过计算说明聚合物在晶态中的构象,以及能形成某种构象的聚合物的构型。
已知氢原子的范德华半径为1.2A ︒,氟原子的范德华半径为1.4 A ︒,碳碳键长1.54A ︒,键角109.5︒,根据以上数据,说明PE 、PTFE 在晶态中各呈什么构象形式?对于PTFE ,取代基为F 原子,两个F 原子间的范德华间距至少应为1.4×2=2.8A ︒>d ,因此不可取全反式构象。
问答题
(1)由丙烯得到的全同立构聚丙烯有无旋光性?(2)假若聚丙烯的等规度不高,能不能用改变构象的办法提高等规度? 解:(1)无旋光性。
(2)不能。
提高聚丙烯的等规度须改变构型,而改变构型与改变构象的方法根本不同。
构象是围绕单键内旋转所引起的排列变化,改变构象只需克服单键内旋转位垒即可实现;而改变构型必须经过化学键的断裂才能实现。
在热机械曲线上,为什么PMMA 的高弹区范围比PS 的大? (已知PMMA 的=g T 378K ,=f T 433—473K ;PS 的=g T 373K ,=f T 383—423K)解:PMMA 和PS 的T g 差不多,都是100℃左右,这是因为PMMA 的侧基极性较PS 大,应使T g 增加,但PMMA 侧基柔性比PS 大,侧基比PS 小,所以应使T g 减少,这两个因素互相抵消,故T g 差不多。
对于T f 来说,要使高聚物发生流动,分子与分子间的相对位置要发生显著变化。
因此分子间作用力的因素很重要。
PMMA 极性大,分子间作用力,T f 就高,而PS 分子间作用力小,T f 就低。
例6-7 指出错误之处,并给出正确的说法:对于线性高聚物来说,当相对分子质量大到某一数值后(分子链长大于链段长),高聚物出现g T .相对分子质量再增加g T 不变.高聚物熔体的黏性流动是通过链段的位移来完成的,因而,黏流温度f T 也和g T 一样,当相对分子质量达到某一数值后,f T 不再随相对分子质量的增加而变化.解:错误1:在相对分子质量达到临界相对分子质量c M 前,一直存在着T g ,而且T g 随着M 增加。
所以不是c M 以后才出现T g 。
对于小分子,也存在T g ,只是没有高弹态,T g =T f 。
错误2:在M 达到c M 之后,T f 仍然随相对分子质量增加而增加。
这是因为高聚物的黏流虽然是链段运动的总和,但是归根到底还是高分子链之间发生了相对位移。
M 增加,使分子间的作用力增大,使链段的协同运动困难,虽然T f 也会增加。
华理--高分子物理课后习题问题详解--高分子科学教程(第二版)--韩哲文
高分子科学教程(第二版)—高分子物理部分第7章 聚合物的结构 P2371.试述聚合物的结构特点2.简述聚合物的结构层次答:高分子结构的内容可分为链结构与聚集态结构两个组成部分。
链结构又分为近程结构和远程结构。
近程结构包括构造与构型,构造是指链中原子的种类和排列、取代基和端基的种类、单体单元的排列顺序、支链的类型和长度等。
构型是指某一原子的取代基在空间的排列。
近程结构属于化学结构,又称一级结构。
远程结构包括分子的大小与形态、链的柔顺性及分子在各种环境中所采取的构象。
远程结构又称二级结构。
聚集态结构是指高分子材料整体的内部结构,包括晶态结构、非晶态结构、取向态结构、液晶态结构以及织态结构。
前四者是描述高分子聚集体中的分子之间是如何堆砌的,又称三级结构。
织态结构则属于更高级的结构。
3.写出聚异戊二稀的各种可能的构型和名称(只考虑头-尾键接方式)。
解:(1)1,2-聚合:全同立构1,2-聚异戊二稀;间同立构1,2-聚异戊二稀;无规立构1,2-聚异戊二稀。
(2)3,4-聚合:全同(间同,无规)立构-聚3,4-聚异戊二稀。
(3)1,4聚合:顺式(反式)1,4-聚异戊二稀。
注意:一般来说,顺式、反式聚合都是在特定的催化剂下进行的,当催化剂一定时,产物结构就一定,所以不存在无规的几何异构体。
4.已知聚乙烯试样的聚合度为4105⨯,C-C 键长为0.154nm ,键角为109.5︒,试求:(1)若把聚乙烯看作自由旋转链时的聚乙烯试样的均方末端距;(2)若聚乙烯的末端距符合高斯分布时聚乙烯试样的平均末端距和最可几末端距。
解:54101052=⨯⨯=n ;nm l 154.0=; 5.109=θ(1)22522222.4743)154.0(10225.109cos 15.109cos 1cos 1cos 1nm nl nl nl r =⨯⨯==+-⋅=+-⋅=θθ (2)由于聚乙烯的末端距符合高斯分布,因此它应该是自由结合链)(87.44154.014159.33108385nm l n r =⨯⨯⨯=⋅=π)(76.39154.03102325nm l n r =⨯⨯=⋅=*注意:末端距复合高斯分布的链为高斯链,自由结合链和等效自由结合链都是高斯链。
第二章_高分子的聚集态结构习题
习题
9. 为什么PE和聚四氟乙烯的内聚能相差不多,而熔 点相差很大?PET和尼龙-66的内聚能相差很大,而 熔点却基本相同?
聚合物 内聚能 Tm/oC PE 聚四氟乙烯 PET 1.3 1.6 1.9 137 327 265 尼龙-66 3.4 264
10. 解释下列实验:将一个砝码系于聚乙烯醇纤维的 一端,把砝码和部分纤维浸入称有沸水的烧杯中。 如果砝码悬浮在水中,则体系是稳定的;如果砝码 挨着烧杯底部,则纤维被溶解了。 明德至诚 博学远志
明德至诚
博学远志
习题
11. 均聚物A的熔点为200ºC,其熔融热为8368焦耳/ 摩尔重复单元,如果在结晶的AB无规共聚物中,单 体B不能进入晶格,试预测含单体B10.0%摩尔分数 的AB无规共聚物的熔点。 12. 聚对苯二甲酸乙二酯的平衡熔点Tm0=280ºC,熔 融热∆Hu=26.9千焦/摩尔重复单元,试预计分子量从 10000增大到20000时,熔点将升高多少度?
习题
3. 将下列三组聚合物的结晶难易程度排列成序(1) PE,PP,PVC,PS,PAN;(2)聚对苯二甲酸乙 二酯,聚间苯二甲酸乙二酯,聚己二酸乙二酯;(3) 尼龙-66,尼龙-1010 4. 判断正误:“分子在晶体中是规整排列的,所以 只有全同立构或间同立构的高分子才能结晶,无规 立构的高分子不能结晶。” 5. 为什么聚对苯二甲酸乙二醇酯从熔体淬火时得到 透明体;为什么iPMMA是不透明的? 明德至诚 博学远志
第二章高分子的聚集态结构习题高分子化学习题及解答高分子物理习题集高分子物理习题答案高分子凝聚态物理学高分子液态发光字英语时态练习题时态练习题被动语态练习题初中被动语态练习题
习题
1. 根据高聚物的分子结构和分子间作用能,定性地讨 论表2-2中所列各高聚物的性能。
高分子物理习题答案
高分子物理习题答案高分子物理习题集-答案第一章高聚物的结构4、高分子的构型和构象有何区别?如果聚丙烯的规整度不高,是否可以通过单键的内旋转提高它的规整度?答:构型:分子中由化学键所固定的原子或基团在空间的几何排列。
这种排列是稳定的,要改变构型必须经过化学键的断裂和重组。
构象:由于单键内旋转而产生的分子在空间的不同形态。
构象的改变速率很快,构象时刻在变,很不稳定,一般不能用化学方法来分离。
不能。
提高聚丙烯的等规度须改变构型,而改变构型与改变构象的方法根本不同。
构象是围绕单键内旋转所引起的排列变化,改变构象只需克服单键内旋转位垒即可实现,而且分子中的单键内旋转是随时发生的,构象瞬息万变,不会出现因构象改变而使间同PP (全同PP)变成全同PP(间同PP);而改变构型必须经过化学键的断裂才能实现。
5、试写出线型聚异戊二烯加聚产物可能有那些不同的构型。
答:按照IUPAC有机命名法中的最小原则,CH3在2位上,而不是3位上,即异戊二烯应写成1CH22CCH33CH4CH2(一)键接异构:主要包括1,4-加成、1,2-加成、3,4-加成三种键接异构体。
CHCH2nCHCCH2CH2CH3nCH2CCH3CHCH2nCH2CCH31,4-加成1,2-加成3,4-加成(二)不同的键接异构体可能还存在下列6中有规立构体。
①顺式1,4-加成CH3CCH2CHCH2CH2CCH3CHCH2CHCH2②反式1,4-加成CH3CCH2CHCH2CH3CCH2③1,2-加成全同立构CHCH2HCHCCH3HCHCHCH2CCH3HCHCHCH2CCH3④1,2-加成间同立构RHCHCCH3HCHCH3CHCHRCCH3R=CHCH2R⑤3,4-加成全同立构CH2CH2CCH3HCCHHCCH3CHHCHCH2CCH3CHHCH⑥3,4-加成间同立构RHCHCHHCHHCHCRCHHR=CCH3CH2R6.分子间作用力的本质是什么?影响分子间作用力的因素有哪些?试比较聚乙烯、聚氯乙烯、聚丙烯、聚酰胺(尼龙-66)、聚丙烯酸各有那些分子间作用力?答:分子间作用力的本质是:非键合力、次价力、物理力。
高聚物结构答案排版
1.互穿网络结构(p67):用化学方法将两种或两种以上的聚合物互穿交织成网而形成的结构。
2.线性粘弹性(p253):在常温和通常的加载时间,高聚物往往同时显示弹性和粘性,即所谓的粘弹性。
如果高聚物的应力与应变和应力与应变速率之间存在线性关系,则叫线性粘弹性。
3.疲劳极限:疲劳极限是材料学里的一个极重要的物理量,表现一种材料对周期应力的承受能力。
在疲劳试验中,应力交变循环大至无限次而试样仍不破损时的最大应力叫疲劳极限。
4.θ溶液:高分子——溶剂相互作用参数是1χ, 当211 χ时,该溶剂为良溶剂;当211=χ时,该溶剂为θ溶剂;当211 χ时,该溶剂为劣溶剂。
当溶剂为θ溶剂时,溶液中溶质分子间,溶剂分子间,溶质和溶剂分子间的相互作用是相等的,形成无干扰状态的溶液。
此时的溶液为θ溶液。
5.波尔兹曼叠加原理:基本内容(1)先前载荷历史对聚合物材料形变性能有影响;即试样的形变是负荷历史的函数;(2)多个载荷共同作用于聚合物时,其最终形变性能与个别载荷作用有关系;即每一项负荷步骤是独立的,彼此可以叠加。
6.Griffith crack theory 断裂理论:(1)断裂要产生新的表面,需要一定的表面能,断裂产生新表面的所需要的表面能是由材料内部弹性储能的减少来补偿的。
(2)弹性储能在材料中分布不均匀。
在材料的微裂纹附近有很大的弹性储能集中。
因此在存在有裂纹的地方就比其他地方有更多的弹性储能来供给产生新表面所需的表面能,致使材料在微裂纹处先行断裂。
7.聚合物的熔融指数MI聚合物熔体的流动性可用多种指标来表征,其中最常用的是熔融指数:指在一定的温度下和规定负荷下,10min 内从规定直径和长度的标准毛细管内流出的聚合物的熔体的质量,用MI 表示,单位为g/10min 。
8.杨氏模量:杨氏模量是描述固体材料抵抗形变能力的物理量,定义为应力和应变之比,E=σ/ε。
模量越大,越不容易变形,材料刚性越大。
9.剪切柔量(P239):剪切应力对剪切应变之比定义为剪切模量G ,剪切模量G 的倒数叫作剪切柔量10.泊松比 γ(P241):高聚物单向拉伸时,不仅有拉伸方向的伸长,同时伴有横向收缩,横向收缩应变对轴向伸长应变之比即使泊松比。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.简述聚合物的结构层次。
答聚合物的结构包括高分子的链结构和聚合物的凝聚态结构,高分子的链结构包括近程结构和远程结构。
一级结构包括化学组成,结构单元链接方式,构型,支化与交联。
二级结构包括高分子链大小和分子链形态。
三级结构属于凝聚态结构,包括晶态结构,非态结构,取向态结构和织态结构。
2.高密度聚乙烯,低密度聚乙烯和线形低密度聚乙烯在分子链上的主要差别是什么?答高密度聚乙烯为线形结构,低密度聚乙烯为具有长链的聚乙烯,而线形低密度聚乙烯的支链是短支链,由乙烯和高级的a–烯烃如丁烯,己烯或辛烯共聚合而生成。
共聚过程生成的线形低密度聚乙烯比一般低密度聚乙烯具有更窄的相对分子质量分布。
高密度聚乙烯易于结晶,故在密度,熔点,结晶度和硬度等方面都高于低密度聚乙烯。
3.假若聚丙烯的等规度不高,能不能用改变构象的办法提高等规度?答不能,提高聚丙烯的等规度须改变构型,而改变构型与构象的方法根本不同。
构象是围绕单键内旋转所引起的分子链形态的变化,改变构象只需克服单键内旋转位垒即可实现;而改变够型必须经过化学键的断裂才能实现。
4.试从分子结构分析比较下列各组聚合物分子的柔顺性的大小:(1)聚乙烯,聚丙烯,聚丙烯腈;(2)聚氯乙烯,1,4-聚2-氯丁二烯,1,4-聚丁二烯;(3)聚苯,聚苯醚,聚环氧戊烷;(4)聚氯乙烯,聚偏二氯乙烯。
答(1)的柔顺性从大到小排列顺序为:聚乙烯>聚丙烯>聚丙烯腈;(2)的柔顺性从大到小排列顺序为:1,4-聚丁二烯>1,4-聚2-氯丁二烯>聚氯乙烯(3)的柔顺性从大到小排列顺序为:聚环氧戊烷聚苯醚聚苯(4)的柔顺性从大到小排列顺序为:聚偏二氯乙>烯聚氯乙烯5.请排出下列高聚物分子间的作用力的顺序,并指出理由:(1)顺1,4-聚丁二烯,聚氯乙烯,聚丙烯腈;(2)聚乙烯,聚苯乙烯,聚对苯二甲酸乙二酯,尼龙66。
答(1)分子间作用力从大到小的顺序为:聚丙烯腈>聚氯乙烯>顺1,4-聚丁二烯聚丙烯腈含有强极性基团,所以分子间作用力大;聚氯乙烯含有极性基团,分子间作用力较大;顺序1,4-聚丁二烯是非极性分子,不含庞大的侧基,所以分子间力作用小。
(2)分子间作用力从大到小的顺序为:尼龙66>聚对苯二甲酸乙二酯>聚苯乙>烯聚乙烯尼龙66分子间能形成氢键,因此分子作用力最大;聚对苯二甲酸乙二酯含有强极性基团,分子间作用力比较大;聚苯乙烯含有侧基,链段运动比较困难,分子间作用力较小;聚乙烯是非极性分子,又不含有侧基,分子间作用力最小。
6.将下列三组聚合物的结晶难易程度排列成序:(1)PE,PP,PVC,PS,PAN;(2)聚对苯二甲酸乙二酯,聚间苯二甲酸乙二酯,聚己二酸乙二酯;(3)尼龙66,尼龙1010。
答结晶难易程度为:(1)PE>PAN>PP>PVC>PS(2) 聚己二酸乙二酯>聚对苯二甲酸乙二酯>聚间苯二甲酸乙二酯.这是由于聚己二酸乙二酯柔性好,而聚间苯二甲酸乙二酯对称性不高。
(3)尼龙66>尼龙1010这是由于尼龙66分子中的氢键密度大于尼龙1010。
7.为什么高聚物只有固态和液态而没有气态?答由于高聚物相对分子质量很大,分子链长,分子间作用力的加和很大,远远超过了组成它的化学键的键能,所以没有气态,只有固态和液态。
8.为什么只有柔性高分子链才能作橡胶?答橡胶具有高弹性,弹性摸量很小,形变量很大的特点。
只有处于蜷曲状态的长链分子才能在外力的作用下产生大的形变,才能作为橡胶。
蜷曲程度与柔性是相对的,蜷曲程度高的,柔性越好。
所以适合作为橡胶的高分子必须具备相当高的柔性。
9. 聚丙烯是否可以通过单键的内旋转由全同立构变成间同立构,为什么?答不可以。
因为全同立构和间同立构是属于构型的范畴,构型是指分子中有化学键所固定的原子在空间的排列。
单键的内旋转只会改变构象,而改变构型必须通过化学键的断裂才能实现。
10.为什么等规立构聚苯乙烯分子链在晶体中呈31构象,而间同立构聚氯乙烯分子链在晶体中呈现平面锯齿型构象。
答等规立构聚苯乙烯带有交大的侧基,为了减小空间位阻,降低分子链的位能,在结晶时分子链要交替采取反式和旁式构象的螺旋链,此螺旋链刚好每一等同周期转一圈含有三个结构单元,成为31螺旋。
间同立构聚氯乙烯由于取代基交替的分布于分子链两侧,空间位阻小。
在结晶时可以取全反式的完全伸展的平面锯齿型构象。
11.说明化学结构,相对分子质量和温度对聚合物分子链的柔顺性的影响?答主链上含有孤立双键的双烯烃聚合物链的柔性较好,而主链上含有共轭双键和芳香环的聚合物的柔性较差;杂链聚合物的分子链一般都是柔性链;具有取代基的高分子链柔性降低,取代基的极性越大,柔性越小;高分子链柔性随分子量的增大而增大;温度升高加快了分子链的运动速度,有利于提高链的柔性。
12.试简述高分子结晶的特点。
答(1)高分子晶体属于分子晶体。
已知小分子有分子晶体,原子晶体,和离子晶体,而高分子仅有分子晶体,且仅是分子链的一部分形成的晶体。
(2)高分子晶体的熔点Tm定义为晶体的全部熔化的温度。
Tm虽是一级相转变点,但却是一个范围,称为熔限,一般为Tm±(3℃~5℃);而小分子的Tm是一个确定的值,一般在±0.1℃范围内。
高分子的Tm与结晶温度Tc有关。
(3)高分子链细而长(长径比500~2000),如此严重的几何尺寸的不对性,使得高分子链结晶得到的晶体只能属于较低晶系(对称性较差的晶系)如单斜与正交晶系(大约各占30﹪)。
至今还没有得到最高级的立方晶系。
(4)高分子的结晶是通过链段的协同运动排入晶格的。
由于链段运动有强烈的温度,时间依赖性,所以高分子结晶也具有对温度,时间的依赖性。
如把结晶性高分子熔体骤冷可得到非晶或结晶度很低的晶体;而慢冷却,甚至进行热处理,得到的是高结晶度的大晶粒的聚集体。
高分子结晶对温度的依赖性表现为结晶有一定的温度范围,且在这个温度范围内,存在一个结晶速度最快的温度Tmax.同时,高分子结晶速率常数K对温度特别敏感,温度变化1℃,K相差2~3个数量级.(5) 有结晶的概念.当结晶性高聚物达到结晶温度时,即处于Tg~Tm 之间时,开始结晶.由于高分子结构的复杂性,使得聚合物的结晶要比小分子晶体有更多的缺陷,所以结晶总是很不完善,是一种晶区与非晶区共存的体系,所以结晶聚合物实际上是“半结晶聚合物”按照折叠链的结晶理论,我们如果假设结晶聚合物中只包括完全结晶区和无定型区两部分,则可定义为晶区部分所占的百分数为聚合物的结晶度,常用质量百分数,f w来表示:f w=晶区质量/试样的质量×100%=晶区质量/晶区质量+无定形质量×100%(6)高聚物的结晶过程分一次结晶和二次结晶由于高分子的相对质量大,体系黏度大,分子运动迟缓,因此由完全无序到三维有序要经过很长时间,一些暂时没有结晶的分子链在聚合物储存或使用的过程中还会结晶。
有人以球晶为例,在球晶相互间没碰撞截顶之前为一次结晶,之后的再结晶是二次结晶,二次结晶的微观机制是有结晶缺陷所致。
Avranmi方程在结晶后期与实验的偏离及等温结晶曲线上出现两个台阶,都表明二次结晶的客观存在。
14.判断正误:“分子在晶体中是规整排列的,所以只有全同立构或间同立构的高分子才能结晶,无规立构的高分子不能结晶。
”解:错。
无规立构不等于没有对称性,况且对称性不是唯一的结构影响因素,柔顺性和分子间作用力也很重要。
一些无规立构的聚合物如聚乙烯醇(结晶度达30%)、聚三氟氯乙烯(结晶度达90%以上)等均能结晶。
17. 指出高聚物结晶形态的主要类型,并简要叙述其形成条件。
解:单晶:只能从极稀的高聚物溶液中缓慢结晶得到。
球晶:从浓溶液或熔融体冷却时得到。
纤维状晶(串晶):在应力下得到。
伸直链晶体:极高压力下缓慢结晶。
16.由什么事实可证明结晶高聚物中有非晶态结构解:(1)从结晶聚合物大角X光射线图上衍射花样和弥散环同时出现可以得证。
(2)一般测得的结晶聚合物的密度总是低于由晶胞参数计算的完全结晶的密度。
如PE实测0.93~0.96,而从晶胞参数计算出ρc=1.014g/cm3,可见存在非晶态。
错误分析:“从材料不透明可以证明有非晶的存在”。
一般来说有结晶存在时高分子材料常为不透明,这是由于高聚物是结晶与非晶并存,在两相界面上会反射或散射光。
但不能说不透明就一定有非晶或有结晶存在,因为填料、缺陷等许多因素都会影响材料的透明性。
15.列出下列聚合物的熔点顺序,并用热力学观点及关系式说明其理由。
聚对苯二甲酸乙二酯、聚丙烯、聚乙烯、顺1,4聚丁二烯、聚四氟乙烯解: PTFE(327℃) > PET(267℃) > PP (176℃)> PE(137℃) >顺1,4聚丁二烯(12℃)由于T m=ΔH m/ΔS m,ΔH增大或ΔS减少的因素都使T m增加。
(1)PTFE:由于氟原子电负性很强,F原子间的斥力很大,分子采取螺旋构象(136),分子链的内旋转很困难,ΔS很小,所以T m 很高。
(2)PET:由于酯基的极性,分子间作用力大,所以ΔH大;另一方面由于主链有芳环,刚性较大,ΔS较小,所以总效果T m较高。
(3)PP:由于有侧甲基,比PE的刚性大,ΔS较小,因而T m 比PE高。
(4)顺1,4聚丁二烯:主链上孤立双键柔性好,ΔS大,从而T m很低。
18.解释为什么PE和聚四氟乙烯的内聚能相差不多,而熔点相差很大。
PET和尼龙66的内聚能相差很大,而熔点却基本相同。
表2-4 几种聚合物内聚能与熔点的比较解:(1)PE与PTFE都是非极性高分子,分子间作用力差不多,即ΔH差不多。
但由于氟原子电负性很强,氟原子间的斥力很大,分子链的内旋转很困难,分子刚性很大,从而ΔS很小,T m很高。
(2)尼龙66的分子间作用力(由于氢键)大于PET,所以ΔH 较大,另一方面尼龙66的分子链无苯环,内旋转较容易,柔性大,ΔS较大。
ΔH和ΔS的影响相互抵消,从而T m差不多。
19.解释下列实验:将一个砝码系于聚乙烯醇纤维的一端,把砝码和部分纤维浸入盛有沸水的烧杯中.如果砝码悬浮在水中,则体系是稳定的;如果砝码挨着烧杯底部,则纤维被溶解了.解:如果砝码悬浮在水中,所以纤维受到砝码的拉伸作用而取向,而取向结构均有好的热稳定性。
但当砝码提到烧杯底部,维持取向的外力消失,纤维在沸水中被溶解了,因为聚乙烯醇本身不耐沸水。
20.为什么用聚对苯二甲酸乙二酯制备的矿泉水瓶子是透明的?为什么IPMMA又不是透明的?答:聚对苯二甲酸乙二酯结晶的速度很慢,快速冷却时来不及结晶,所以是透明的。
等规PMMA结晶能力大,结晶快,所以是不透明的。
21.试分析聚三氟氯乙烯是否是结晶性聚合物。