七年级上册有理数加减乘除测试题(含解析)

合集下载

初一数学有理数的加减乘除以及乘方试题答案及解析

初一数学有理数的加减乘除以及乘方试题答案及解析

初一数学有理数的加减乘除以及乘方试题答案及解析1.小华利用计算器计算0.0000001295×0.0000001295时,发现计算器的显示屏上显示如下图的结果,对这个结果表示正确的解释应该是().A.1.677025×10—14B.1.677025×1014C.(1.677025×10)—14D.1.677025×10×(—14)【答案】A.【解析】0.0000001295×0.0000001295,=0.00000000000001677025,=1.677025×10-14.故选A.【考点】计算器—有理数.2.计算:【答案】41.【解析】针对有理数的乘方、绝对值分别进行计算,然后根据实数的运算法则求得计算结果.原式=.【考点】1.有理数的乘方;2..绝对值;3.实数的运算法则.3.人一根头发的直径大约为0.00072分米,用科学记数法表示正确的是()A.B.C.D.【答案】D.【解析】根据科学记数法的定义,科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值。

在确定n的值时,看该数是大于或等于1还是小于1.当该数大于或等于1时,n为它的整数位数减1;当该数小于1时,-n为它第一个有效数字前0的个数(含小数点前的1个0).0.00072第一个有效数字前有4个0(含小数点前的1个0),从而.故选D.【考点】科学记数法.4.中学数学中,我们知道加减运算是互逆运算,乘除运算也是互逆运算;其实乘方运算也有逆运算,如式子可写成,式子也可写成;已知式子表示为,则用表示时,=()A.6B.C.D.【答案】B.【解析】根据观察式子23=8可以变形为3=log28,2=log525也可以变形为52=25,可发现规律,根据同底数幂的乘法,可得答案.由y=log318,得3y=183x=2,32=932×3x=32+x=183y=18=32+x所以y=2+x.故选B.【考点】有理数的乘方.5.计算(1)[(x+y)2-(x-y)2]÷(2xy)(2)(3)【答案】(1)2;(2)-0.1;(3)-4.【解析】(1)原式中括号中利用完全平方公式展开,再利用多项式除以单项式法则计算即可得到结果.(2)先算积的乘方,再进行除法运算即可;(3)根据乘方、零次幂、负整数指数幂的意义进行计算即可求出答案.试题解析:(1)原式=(x2+2xy+y2-x2+2xy-y2)÷(2xy)=4xy÷(2xy)=2;(2) 原式====-0.1;(3)原式=-4+4×1-4=-4+4-4=-4【考点】1.完全平方公式;2.整式的除法;3.实数的混合运算.6.用小数表示2.014×10-3是 .【答案】0.002014.【解析】把数据2.014×10-3中2.014的小数点向左移动3位就可以得到.试题解析:2.014×10-3=0.002014.考点: 科学记数法—原数.7.已知,则=_______.【答案】-3.【解析】把变形为3-3,即可求出m的值.试题解析:∵∴m=-3.考点: 负整数指数幂.8.根据下图所示的程序计算代数式的值,若输入n的值为5,则输出的结果为()A.16B.2.5C.18.5D.13.5【答案】A【解析】由程序图可知输出的结果为3.9.明近期几次数学测试成绩如下:第一次85分,第二次比第一次高8分,第三次比第二次低12分,第四次又比第三次高10分.那么小明第四次测验的成绩是()A.90分B.75分C.91分D.81分【答案】C【解析】小明第四次测验的成绩是故选C.10.小彬从家里步行到学校需100步,他到学校的距离可能是()A.250 m B.200 m C.150 m D.50 m【答案】D【解析】0.5×100=50(m).故选D.11.计算(-2.5)×0.37×1.25×(-4)×(-8)=_________.【答案】-37【解析】原式=[(-2.5)×(-4)]×[1.25×(-8)]×0.37=10×(-10)×0.37=-37.12.比较下列各对数的大小.(1)与;(2)与;(3)与.【答案】(1)<(2)<(3)<【解析】解:(1)因为|-4+5|=1,|-4|+|5|=9,所以|-4+5|<|-4|+|5|.(2)因为,所以.(3)因为,,所以.13.务川电视台天气预报,12月20日的气温是﹣2℃~7℃,则这一天的温差是℃【答案】9【解析】用最高气温减去最低气温,然后根据减去一个数等于加上这个数的相反数进行计算即可得解.7﹣(﹣2)=7+2=9℃.故答案为:9.【考点】有理数的减法.14.)计算:(1)(2);(3);(4).【答案】(1)-2.5;(2);(3)-15;(4)1.【解析】(1)原式==0.5+(-3)=-2.5.(2)原式==(-1)×=.(3)原式=-25+=-25+12+16-18=-15(4)原式==1【考点】有理数的运算.15.一振子从点A开始左右振动8次,如果规定向右为正,向左为负,这8次振动记录为(单位:毫米):+10,-9,+8,-6,+7.5,-6,+8,-7.(1)求振子停止时所在位置距A点有多远?(2)如果每毫米需时0.22秒,则共用时多少秒?【答案】(1)5.5;(2)13.53.【解析】(1)将8次的记录相加,得到的数就是停止时所在位置距A点的距离,如果是“正”则在A点右边,如果是“负”则在A点左边;(2)将8次记录的绝对值相加就是它振运8次的距离,再乘以0.22,即可得到共用时间.试题解析:(1)+10-9+8-6+7.5-6+8-7=5.5;答:振子停止时位于A点右边5.5毫米处.(2)10+9+8+6+7.5+6+8+7=61.5,61.5×0.22=13.53(秒)答:振子共用时13.53秒.【考点】正数和负数.16.温家宝总理在十届全国人大四次会议上谈到解决“三农”问题时说,2006年中央财政用于“三农”的支出将达到33970000万元,这个数据用科学记数法可表示为万元.【答案】3.397×107【解析】科学记数法的表示方法:科学记数法的表示形式为,其中,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解:.【考点】科学记数法的表示方法点评:本题属于基础应用题,只需学生熟练掌握科学记数法的表示方法,即可完成.17. (-2)4表示A.(-2)×4B.(-2)×(-2)×(-2)×(-2)C.-4×4D.(-2)+(-2)+(-2)+(-2)【答案】B【解析】有理数的乘方的定义:几个相同因数的积叫做有理数的乘方.(-2)×(-2)×(-2)×(-2),故选B.【考点】有理数的乘方点评:本题属于基础应用题,只需学生熟练掌握有理数的乘方的定义,即可完成.18.按四舍五入法则取近似值:2.096≈(精确到百分位).-0.03445≈(精确到0.001).【答案】2.10,-0.034【解析】精确到百分位即是对千分位四舍五入,精确到0.001即是对0.0001位四舍五入.按四舍五入法则取近似值:2.096≈2.10(精确到百分位).-0.03445≈-0.034(精确到0.001).【考点】近似数和有效数字点评:本题属于基础应用题,只需学生熟练掌握取近似数的方法,即可完成.19.下表是小明记录的10月份某一周内每天中午12时的气温的变化情况(气温比前一天上升记为正数,下降记为负数)星期一二三四五六日(2)本周的最高气温与最低气温相差多少摄氏度?【答案】(1)由题意得【解析】(1)根据气温比前一天上升记为正数,下降记为负数即可依次计算出各天的实际气温;(2)根据(1)中得到的结果即可计算出本周的最高气温与最低气温的差.(1)由题意得13111614131716【考点】有理数的减法法则的应用点评:解题的关键是读懂气温比前一天上升记为正数,下降记为负数,分别计算出各天的实际气温.20.研究下列算式,你会发现什么规律?……问题探究(1)请你找出规律并计算=_____________=( ).(2)用含有的式子表示上面的规律:_____________________________.问题解决(3)用找到的规律解决下面的问题:计算: =_______________.写出运算过程:【答案】(1)8(2)(3)【解析】1)=64=8(2)n(n+2)+1=(3)解:原式==【考点】找规律-数字的变化点评:解答本题的关键是仔细分析题意得到规律,再把这个规律应用于解题.21. 2008年全国人民共向四川地震灾区捐款约43681000000元,这笔款额用科学记数法表示(保留三个有效数字)正确的是()A.0.437×1011B.4.4×1010C.4.37×1010D.43.7×109【答案】C【解析】科学记数法的表示形式为,其中,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.43681000000,故选C.【考点】科学记数法的表示方法,近似数与有效数字点评:解题的关键是熟练掌握从左边第一个不为0的数开始到末尾数字为止,所有的数字都是这个数的有效数字,注意有效数字的个数与乘方的次数无关.22.钓鱼岛自古以来是中国的领土,岛屿周围的海域面积约170 000平方公里,相当于五个台湾本岛面积. 这里的“170 000”用科学记数法表示为 .【答案】【解析】科学记数法的表示形式为,其中,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【考点】本题考查的是科学记数法的表示方法点评:本题属于基础应用题,只需学生熟练掌握科学记数法的表示方法,即可完成.23.有理数3.645精确到百分位的近似数为A.3.6B.3.64C.3.7D.3.65【答案】D【解析】由题意精确到百分位就是对千分位四舍五入取近似值.有理数3.645精确到百分位的近似数为3.65,故选D.【考点】近似数和有效数字点评:本题属于基础应用题,只需学生熟练掌握四舍五入取近似值的方法,即可完成.24.计算:(1)(2)(3)(4)【答案】(1)0;(2)-1;(3)7;(4)6【解析】有理数的混合运算的顺序:先算乘方,再算乘除,最后算加减,同级运算按从左向右的顺序依次计算;有括号的先算括号里的.同时注意运算过程中可以运用运算律计算的要运用运算律简化计算.(1)原式=-3+3=0;(2)原式==;(3)原式==;(4)原式==.【考点】有理数的混合运算点评:本题属于基础应用题,只需学生熟练掌握有理数的混合运算的顺序,即可完成.25.若a、b互为相反数,c、d互为倒数,∣m∣=2,求+m2-3cd的值.【答案】-2【解析】由题意可得,,,再整体代入求值即可.由题意得,,则【考点】代数式求值点评:解题的关键是熟记相反数之和为0,倒数之积为1,相反数的两个数的绝对值相等.26.计算:(1)4―-3×;(2)【答案】(1)-1;(2)【解析】有理数的混合运算的顺序:先算乘方,再算乘除,最后算加减,同级运算按从左向右的顺序依次计算;有括号的先算括号里的.同时注意运算过程中可以运用运算律计算的要运用运算律简化计算.(1)原式=4-6+1=-1;(2) 原式=-1-=.【考点】有理数的混合运算点评:本题属于基础应用题,只需学生熟练掌握有理数的混合运算,即可完成.27.的个位数字是()A.2B.4C.6D.8【答案】C【解析】∵一个数的乘方的个位数字=这个数的个位数字的乘方的个位数字。

七年级有理数的加减乘除乘方计算训练(80小题)-有解析

七年级有理数的加减乘除乘方计算训练(80小题)-有解析

有理数的加减乘除乘方计算(80小题)1.计算:(1)(−37)−(−47);(2)(−53)−16;(3)(−210)−87;(4)1.3−(−2.7).【答案】解:(1)(−37)−(−47)=−37+47=10;(2)(−53)−16=−69;(3)(−210)−87=−297;(4)1.3−(−2.7)=1.3+2.7=4.【解析】此题主要考查有理数的减法,解题关键是掌握有理数的减法法则,据此求解即可.(1)根据有理数的减法法则计算即可;(2)根据有理数的减法法则计算即可;(3)根据有理数的减法法则计算即可;(4)根据有理数的减法法则计算即可.2.计算:(1)−7+3−5+20;(2)223+(−223)+513−(−512);(3)4.25+(−2.18)−(−2.75)+5.18;(4)43−(−87)−2−13−17【答案】解:(1)原式=−12+23=11;(2)原式=0+163+112=326+336=656=1056;(3)原式=(4.25+2.75)+(5.18−2.18)=7+3=10;(4)原式=(43−13)−2+(87−17)=1−2+1=0.【解析】此题考查有理数的加减混合运算,熟练掌握有理数的加减混合运算法则和运算律是解题关键.(1)根据结合律和交换律先同号相加,再异号相加即可求解;(2)根据结合律和相反数的定义算223+(−223)并将513和512化成假分数,然后通分后算加法得出结果再化成带分数即可;(3)根据结合律和交换律先算4.25−(−2.75)和(−2.18)+5.18,再算加法即可求解;(4)根据结合律和交换律先算43−13和87−17,再算加减即可求解.3. 计算:(1)|−7|+|−9715|; (2)(+4.85)+(−3.25);(3)(−3.1)+6.9;(4)−(−15)+(−645);(5)(−3.125)+(+318). 【答案】解:(1)原式=7+9715=16715;(2)原式=4.85−3.25=1.6;(3)原式=−(6.9−3.1)=−3.8;(4)原式=15−645=−635;(5)原式=−3.125+3.125=0.【解析】本题考查有理数的加法,以及绝对值,掌握运算法则是解题关键.(1)先化简绝对值,再计算加法即可;(2)先化简括号,再计算即可;(3)根据异号两数相加,取绝对值较大的符号,再用较大的绝对值减较小的绝对值即可;(4)先化简括号,再计算即可;(5)将分数化为小数,再计算即可.4. 用简便方法计算:(1)−13×23−0.34×27+13×(−13)−57×0.34;(2)(−13−14+15−715)×(−60).【答案】解:(1)原式=(−13)×(23+13)+0.34×(−17−57)=−13×1+0.34×(−1)=−13−0.34=−13.34;(2)原式=−13×(−60)−14×(−60)+15×(−60)−715×(−60)=20+15−12+28=51【解析】本题主要考查了有理数的混合运算,关键是熟练掌握乘法运算律.(1)运用乘法分配律进行计算可得结果;(2)利用乘法分配律进行计算,最后计算加减可得结果.5. 计算:(1)(−8)×9×(−1.25)×(−19);(2)−113×214÷(−112);(3)(−132)÷(134−58+12);(4)(−3)÷134×0.75×|−213|÷9.【答案】解:(1)原式=(−8)×(−1.25)×[9×(−19)]=10×(−1)=−10;(2)原式=−43×94×(−23) =2;(3)原式=(−132)÷(148−58+48)=(−132)÷138 =−132×813=−152;(4)原式=−3×47×34×73×19=−13.【解析】本题主要考查的是有理数的乘法,有理数的混合运算的有关知识.(1)利用有理数的乘法的计算法则进行计算即可;(2)利用混合运算的运算法则进行计算即可;(3)利用混合运算的运算法则进行计算即可;(4)利用混合运算的运算法则进行计算即可.6.计算:(1)−2.2+(−4.3)(2)−(−334)+(−15.5)(3)−(−5)−|−4|(4)−21−12+33+12−67.【答案】解:(1)−2.2+(−4.3)=−(2.2+4.3)=−6.5(2)−(−334)+(−15.5)=3.75−15.5=−(15.5−3.75)=−11.75(3)−(−5)−|−4|=5−4=1(4)−21−12+33+12−67=−100+45=−55.【解析】此题主要考查有理数的加减及混合运算(1)根据同号两数相加,取相同的符号,并把绝对值相加求解(2)先求出相反数,根据异号两数相加,取绝对值较大加数的符号,并用较大的绝对值减去较小的绝对值求解(3)先求出相反数和绝对值,再相减(4)利用分组法,符号相同的加在一起,再根据异号两数相加,取绝对值较大加数的符号,并用较大的绝对值减去较小的绝对值求解7.计算:(1)(−99)+(−103);(2)(−16)+9;(3)3+(−8)+(−1).(4)|−18|+|−6|;(5)|−36|+|+24|.【答案】解:(1)(−99)+(−103)=−(99+103)=−202(2)(−16)+9=−(16−9)=−7;(3)3+(−8)+(−1)=3+(−9)=−(9−3)=−6.(4)|−18|+|−6|=18+6=24;(5)|−36|+|+24|=36+24=60.【解析】此题主要考查有理数的加法,根据同号两数相加,取相同的符号,并把绝对值相加,异号两数相加,取绝对值较大加数的符号,并用较大的绝对值减去较小的绝对值求解(1)根据同号两数相加,取相同的符号,并把绝对值相加求解(2)根据异号两数相加,取绝对值较大加数的符号,并用较大的绝对值减去较小的绝对值求解(3)先同号相加,再异号相加求解较简便(4)先求个数的绝对值,再相加(5)先求个数的绝对值,再相加8.计算题(1)−(−8)+(−32)+(−|−16|)+(+28)(2)0.36+(−7.4)+0.3+(−0.6)+0.64;。

7年级有理数的加减乘除混合运算

7年级有理数的加减乘除混合运算

七年级有理数的加减乘除混合运算题题目一:(-3)×2 + 5解析:先算乘法,(-3)×2 = -6,再算加法,-6 + 5 = -1。

题目二:4 - 2×(-3)解析:先算乘法,2×(-3) = -6,再算减法,4 - (-6) = 4 + 6 = 10。

题目三:(-2)×3÷(-6)解析:先算乘法,(-2)×3 = -6,再算除法,-6÷(-6) = 1。

题目四:5 + (-3)×4解析:先算乘法,(-3)×4 = -12,再算加法,5 + (-12) = -7。

题目五:(-4)÷2 + 3解析:先算除法,(-4)÷2 = -2,再算加法,-2 + 3 = 1。

题目六:2×(-3) - 4解析:先算乘法,2×(-3) = -6,再算减法,-6 - 4 = -10。

题目七:(-5)×2÷(-10)解析:先算乘法,(-5)×2 = -10,再算除法,-10÷(-10) = 1。

题目八:3 + (-2)×(-4)解析:先算乘法,(-2)×(-4) = 8,再算加法,3 + 8 = 11。

题目九:(-6)÷3 + 2解析:先算除法,(-6)÷3 = -2,再算加法,-2 + 2 = 0。

题目十:4×(-2) + 6解析:先算乘法,4×(-2) = -8,再算加法,-8 + 6 = -2。

题目十一:(-3)×(-3) - 5解析:先算乘法,(-3)×(-3) = 9,再算减法,9 - 5 = 4。

题目十二:5÷(-5) + 4解析:先算除法,5÷(-5) = -1,再算加法,-1 + 4 = 3。

题目十三:(-2)×4÷(-8)解析:先算乘法,(-2)×4 = -8,再算除法,-8÷(-8) = 1。

有理数加减乘除混合运算综合练习(附答案)

有理数加减乘除混合运算综合练习(附答案)

2020年09月27日xx 学校初中数学试卷学校:___________姓名:___________班级:___________考号:___________一、计算题1.计算:()341162|3|1--+÷-⨯-2.计算下列各式(1)()()1218723--+-+- (2) 11224463⎛⎫+-⨯ ⎪⎝⎭3.计算题 (1)551469⎛⎫⎛⎫÷-⨯- ⎪ ⎪⎝⎭⎝⎭(2)111135332114⎛⎫⨯-⨯÷ ⎪⎝⎭ 4.计算题(1)20(14)(18)13-+---- (2)()1 850.254⎛⎫+-+- ⎪⎝⎭(3)772(6)483÷-⨯- (4)3571491236⎛⎫--+÷ ⎪⎝⎭ 5.计算211(6)()23-⨯- 6.计算题(1)()517248612⎛⎫-+-⨯- ⎪⎝⎭(2)()()4211235⎡⎤---⨯--⎣⎦ 7.简算:(1))201620180311243⎛⎫⎛⎫-⨯÷ ⎪ ⎪⎝⎭⎝⎭ (2)22102525298⨯-⨯8.计算. (1)3351 (1)()48624-+÷-(2)3221113()(2)(2)()(3)()222⨯---÷+-⨯-÷- (3)2419(5)25-⨯- (4)43510.712(15)0.7(15)9494⨯+⨯-+⨯+⨯- (5)2111315()1(2)(5)223114-⨯-⨯÷⨯-÷- (6)31002111132(2)()(1)3(3)82--++⨯-+-⨯-- 9.计算.(1)()()50.750.34-÷÷-. (2)()349731221⎛⎫⎛⎫⨯⨯- ⎪ ⎪⎝⎭⎝-÷⎭- . (3)()11150.6 1.75232⎛⎫-⨯-⨯÷- ⎪⎝⎭. (4)3777148128⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+--+-÷- ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦. 10.计算 (1)4512117621⎛⎫⎛⎫⎛⎫÷÷ ⎪ ⎪ ⎪⎝⎭⎝-⎭⎝-⎭-. (2)()14812649⎛⎫-÷⨯-÷ ⎪⎝⎭. (3)11111345660⎛⎫⎛⎫-+-÷- ⎪ ⎪⎝⎭⎝⎭. 11.计算:1325792111315217-⨯++-⨯++-⨯++⋅⋅⋅+20112013220152017-⨯++12.计算:12313011.7211.712.52352⎛⎫⨯-+-⨯+⨯ ⎪⎝⎭13.计算:7111145(25)181547⎛⎫⎛⎫⨯-⨯⨯-÷⨯- ⎪ ⎪⎝⎭⎝⎭14.计算:23(2)14⎛⎫-⨯- ⎪⎝⎭. 15.计算:243110.53(1)2⎛⎫⎡⎤-+÷-⨯-+- ⎪⎣⎦⎝⎭16.计算:(1)34177536411411⎛⎫⎛⎫+---+ ⎪ ⎪⎝⎭⎝⎭ (2)4321415(2)31211⎛⎫---⨯+-÷-+ ⎪⎝⎭ (3)24611(131311284)34248⎛⎫-⎛⎫⎛⎫-÷-⨯- ⎪ ⎪⎝⎭⎝-⨯ ⎪⎝⎭⎭+ (4)32322004220042002200420042005-⨯-+- 17.计算:()23232236293⎛⎫--⨯+÷- ⎪⎝⎭. 18.计算:()()22018110.22024---⨯-+- 19.计算:4211(10.5)2(3)3⎡⎤---⨯⨯--⎣⎦参考答案1.答案:解:原式()11684=-+÷⨯-18=--9=-.解析:2.答案:(1)原式12187815=+--=(2)原式112=242424463⎛⎫⨯+⨯-⨯ ⎪⎝⎭()=6428+-⨯()=1016=6-- 解析:3.答案:(1)551469⎛⎫⎛⎫÷-⨯- ⎪ ⎪⎝⎭⎝⎭56114596=⨯⨯= (2)111135332114⎛⎫⨯-⨯÷ ⎪⎝⎭1131423116515⎛⎫=⨯⨯-⨯=- ⎪⎝⎭ 解析:4.答案:(1)()()20141813-+----20141813=--+-20141318=---+474829=-+=- (2)()1850.254⎛⎫+-+-- ⎪⎝⎭1850.254=-++8513=+= (3)()7726483÷-⨯-()78447=⨯--246=+= (4)4571341236⎛⎫--+÷ ⎪⎝⎭457363412⎛⎫=--+⨯ ⎪⎝⎭2202126=--+=- 解析:5.答案:原式=1136()1812623⨯-=-= 解析:6.答案:(1)25(2)25解析:7.答案:(1)169;(2)41600. 解析:8.答案:解:(1)原式735(24)(24)(24)486=⨯--⨯-+⨯- 42920=-+-53=-(2)原式1113()(2)()(3)4842=⨯---⨯+-⨯-⨯31166828 =-++=(3)原式1 (20)(5)25=-+⨯-1(20)(5)(5)25=-⨯-+⨯-14 10099.55=-=(4) 原式7135111 ()(15)() 109944 =⨯++-⨯+7(15)3 5=+-⨯21(45)5=+-343.5=-(5)原式11134144() 26115525 =⨯⨯⨯⨯⨯-=-(6)原式213(8)()1398=-+⨯-+-⨯283()() 398 =-+-+-67172=-解析:9.答案:(1)2.(2)3-.(3)1135,(4)123-.解析:10.答案:(1)162121-;(2)83;(3)7-.解析:11.答案:2017解析:原式()(1325)(79211)1315217=-⨯++-⨯++-⨯+()20112013220152017+⋅⋅⋅+-⨯++ 2017=12.答案:130解析:原式123130303011.712.522352⎛⎫=⨯-⨯+⨯+⨯- ⎪⎝⎭ 15201811.710=-++⨯13117=+130=13.答案:3300- 解析:原式()1178=452541587⎛⎫⎛⎫-⨯⨯⨯⨯⨯ ⎪ ⎪⎝⎭⎝⎭331001=-⨯⨯3300=-14.答案:原式31414144⎛⎫=⨯-=⨯= ⎪⎝⎭ 解析:15.答案:原式12[3(1)]=-+⨯-+-18=--9=-.解析:16.答案:(1)31211(2)0(3)3(4)20022005 解析:(1)原式31477356441111⎛⎫⎛⎫=++-+ ⎪ ⎪⎝⎭⎝⎭33111121111=+= (2)原式12891=-+-÷-+1288=-+-÷1210=-+-=(3)原式11141116148484816834⎛⎫=⨯⨯-⨯+⨯-⨯ ⎪⎝⎭()16664132=-+-()123=--= (4)原式()()2220042004220022004200412005⨯--=⨯+-22200420022002200420052005⨯-=⨯-()()22200220041200520041⨯-=⨯-20022005=17.答案:3284解析:原式928964927=-⨯+÷1271819692824=-+⨯=-+3284=.18.答案:4 解析:原式1111(20)41(20)44520=---⨯-+=--⨯-+()114=---+4=.19.答案:1 6解析:原式17110.5(29)1366⎛⎫=--⨯⨯-=---=⎪⎝⎭。

人教版七年级数学上册有理数加减法练习(含答案)

人教版七年级数学上册有理数加减法练习(含答案)

1.3有理数加减法知识要点:1.有理数的加法加法法则:同号两数相加,取相同的符号,并把绝对值相加;绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0;一个数同0相加,仍得这个数。

加法运算律:①交换律a+b=b+a;②结合律(a+b)+c=a+(b+c)。

2.有理数的减法减法法则:减去一个数,等于加这个数的相反数。

即:a -b= a +(-b)。

一、单选题1.﹣2﹣1的结果是()A.﹣1B.﹣3C.1D.3【答案】B2.计算:1﹣(﹣13)=()A.23B.﹣23C.43D.﹣43【答案】C3.下列运算中,正确的是:()A.(3)(4)34-+-=-+-B.-7-2×5=-9×5 C.(3)(4)34---=-+D.5252()7777-+=-+【答案】C4.把前2018个数1,2,3,4,…,2018的每一个数的前面任意填上“+”号或“﹣”号,然后将它们相加,则所得之结果为()A.偶数B.奇数C.正数D.有时为奇数,有时为偶数【答案】B5.若ab≠0,m=|a|a +|b|b+|ab|ab,则m的值是()A.3B.−3C.3或−1D.3或−3【答案】C6.蜗牛在井里距井口18米处,它每天白天向上爬行6米,但每天晚上又下滑3米.蜗牛爬出井口需要的()天数是A.4天B.5天C.6天D.7天【答案】B7.1+(−2)+3+(−4)+⋯+2017+(−2018)的结果是()A.0B.1009C.-1009D.-2018【答案】C8.下列算式中正确的是()A.(−5)−6=−1B.0−(−5)=5C.5−(−5)=−10D.|8−3|=−(8−3)【答案】B9.下列交换加数位置的变形中正确的是()A.−7−4+6−2=−7−4+2−6B.−3−2+3−5=2+3+5−3C.4−1−2+3=4−2+3−1D.−13+34−16−14=14+34−13−16【答案】C10.如果|a|=3,|b|=1,且a > b ,那么a -b 的值是()A.4 B.2 C.-4 D.4或2【答案】D11.计算111111261220309900+++++⋅⋅⋅⋅⋅⋅+的值为()A.1100B.10099C.199D.99100【答案】D二、填空题12.一架直升机从高度为450m 的位置开始,先以20m /s 的速度上升60s ,然后以12m /s 的速度下降120s ,这时,直升机的高度是_____. 【答案】210m .13.气象部门测定高度每增加1km ,气温约下降5℃,现在地面气温是15℃,那么4km 高空的气温是__________. 【答案】5-℃14.已知|a |=2 019,|b |=2 018,且a >b ,则a +b 的值为__________. 【答案】4037或115.如图,在一个由6个圆圈组成的三角形里,把1到6这6个数分别填入图的圆圈中,要求三角形的每条边上的三个数的和S 都相等,那么S 的最大值是___________【答案】1216.数轴上100个点所表示的数分别为123100,,,,a a a a ,且当i 为奇数时,12i i a a +-=,当i 为偶数时,11i i a a +-=,℃51a a -=________,℃若11001a a m -=,则m =________.【答案】6;13417.北京与纽约的时差为13h(负号表示同一时刻纽约时伺比北京时间晚),如果现在是北京时间16:00,那么纽约时间是________.【答案】3:00三、解答题18.某检修小组乘汽车检修供电线路,向南记为正,向北记为负.某天自A地出发,所走路程(单位:千米)为:+22,-3,+4,-2,-8,+17,-2,+12,+7,-5.问:(1)最后他们是否回到出发点?若没有,则在A地的什么地方?距离A地多远?(2)若每千米耗油0.06升,则今天共耗油多少升?【答案】(1)他们没有回到出发点,在A地的南方,距离A地42千米;(2)4.92升19.“滴滴”司机沈师傅从上午8:00~9:15在东西方向的江东大道上营运,共连续运载十批乘客.若规定向东为正,向西为负,沈师傅营运十批乘客里程如下:(单位:千米)+8,-6,+3,-7,+8,+4,-9,-4,+3,+3.(1)将最后一批乘客送到目的地时,沈师傅距离第一批乘客出发地的东面还是西面?距离多少千米?(2)上午8:00~9:15沈师傅开车的平均速度是多少?(3)若“滴滴”的收费标准为:起步价8元(不超过3千米),超过3千米,超过部分每千米2元.则沈师傅在上午8:00~9:15一共收入多少元?【答案】(1)东面,距离是3千米;(2)44千米/小时;(3)130元.20.计算:(1)25−(+214)−|−25|−(−2.75);(2)0.25+(−318)+(−14)+(−534);(3)(−14)+(+56)+(−12)+(−13);(4)338+(−1.75)+258+(+1.75).【答案】(1)12(2)−878(3)−14(4)621.阅读下面文字:对于(556-)+(293-)+1734+(132-),可以按如下方法计算:原式=[(-5)+(56-)]+[(-9)+(23-)]+(3174+)+[(-3)+(12-)]=[(-5)+(-9)+17+(-3)]+[(56-)+(23-)+34+(12-)]=0+(1 14 -)=-11 4 .上面这种方法叫拆项法.仿照上面的方法,请你计算:(-201856)+(-201723)+(-112)+4036.【答案】-2.。

七年级数学有理数加减乘除混合运算专项训练(一)(人教版)(含答案)

七年级数学有理数加减乘除混合运算专项训练(一)(人教版)(含答案)

学生做题前请先回答以下问题问题1:有理数加法口诀_________________________;有理数减法法则__________________________________,用字母表示为a-b=________.问题2:请用字母表示加法的交换律和结合律.问题3:有理数的乘法法则、除法法则分别是什么?问题4:请用字母表示乘法的交换律,结合律以及乘法对加法的分配律.问题5:什么是倒数?倒数等于它本身的数是________.有理数加减乘除混合运算专项训练(一)(人教版)一、单选题(共18道,每道5分)1.计算:( )A.-5B.5C.7D.-7答案:B解题思路:故选B.试题难度:三颗星知识点:有理数加减乘除混合运算2.计算:( )A.-14B.-2C.2D.答案:A解题思路:故选A.试题难度:三颗星知识点:有理数加减乘除混合运算3.计算:( )A.-23B.25C.-31D.17答案:D解题思路:故选D.试题难度:三颗星知识点:有理数加减乘除混合运算4.计算:( )A.1B.-1C.16D.-16答案:B解题思路:故选B.试题难度:三颗星知识点:有理数加减乘除混合运算5.计算:( )A.-5B.5C.11D.-11答案:A解题思路:故选A.试题难度:三颗星知识点:有理数加减乘除混合运算6.计算:( )A.13B.11C.-11D.-13答案:D解题思路:故选D.试题难度:三颗星知识点:有理数加减乘除混合运算7.计算:( )A. B.-8C.-2D.答案:A解题思路:故选A.试题难度:三颗星知识点:有理数加减乘除混合运算8.计算:( )A.3B.1C.-3D.-1答案:C解题思路:故选C.试题难度:三颗星知识点:有理数加减乘除混合运算9.计算:( )A.4B.-9C.7D.-11答案:C解题思路:有理数混合运算要点:观察结构划部分,有序操作依法则,每步推进一点点.比如本道题第一部分用到乘法分配律,为了避免错误分两步进行,第一步先把12分配给每一项,把负号留在外边,然后再每步推进一点点计算.故选C.试题难度:三颗星知识点:有理数加减乘除混合运算10.计算:( )A.-8B.-6C.-5D.-4答案:B解题思路:故选B.试题难度:三颗星知识点:有理数加减乘除混合运算11.计算:( )A.-2B.-6C.2D.6答案:C解题思路:故选C.试题难度:三颗星知识点:有理数加减乘除混合运算12.计算:( )A.-22B.18C.-2D.-26答案:C解题思路:故选C.试题难度:三颗星知识点:有理数加减乘除混合运算13.计算:( )A.4B.2C. D.答案:A解题思路:故选A.试题难度:三颗星知识点:有理数加减乘除混合运算14.计算:( )A.5B.-45C.-2D.-52答案:C解题思路:故选C.试题难度:三颗星知识点:有理数加减乘除混合运算15.计算:( )A.-14B.-2C.-16D.-4答案:A解题思路:故选A.试题难度:三颗星知识点:有理数加减乘除混合运算16.计算:( )A.14B.-14C.16D.-16答案:B解题思路:故选B.试题难度:三颗星知识点:有理数加减乘除混合运算17.计算:( )A.-7B.0C.-6D.-4答案:C解题思路:故选C.试题难度:三颗星知识点:有理数加减乘除混合运算18.计算:( )A.-1B.1C.-11D.-7答案:B解题思路:故选B.试题难度:三颗星知识点:有理数加减乘除混合运算。

部编数学七年级上册专题05有理数的加减乘除乘方的实际应用(解析版)含答案

部编数学七年级上册专题05有理数的加减乘除乘方的实际应用(解析版)含答案

专题05 有理数的加减乘除乘方的实际应用1.四个村庄A,B,C,D之间有小路相连,每条小路的长度如图所示(单位:km).从任一村庄出发,不重复走任意一条小路(四个村庄都要到达)的最长路线的长度是()A.83km B.86km C.87km D.98km【答案】C【解析】【分析】因为从某个村庄出发,不重复走任意一条小路(四个村庄都要到达),最多需要经过6条小路,从而可得最长线路长,再确定经过的路径即可.【详解】解:因为从某个村庄出发,不重复走任意一条小路(四个村庄都要到达),最多需要经过6条小路,所以为达到不重复走任意一条小路(四个村庄都要到达)的最长路线的长度为:+++++=14121617131587,km®®®®®®,路径为:B A B D A C D故选:.C【点睛】本题考查的是分析问题的能力,有理数的加法运算,理解题意得出为达到目的最多需要经过6条小路是解题的关键.2.小王在word文档中设计好一张A4规格的表格根据要求,这种规格的表格需要设计1000张,小王欲使用“复制一粘贴”(用鼠标选中表格,右键点击“复制”,然后在本word文档中“粘贴”)的办法满足要求.请问:小王需要使用“复制一粘贴”的次数至少为( )A.9次B.10次C.11次D.12次【答案】B【解析】【分析】根据题意得出第一次复制得2张,第二次复制最多得2×2=22=4张,第三次复制最多得2×2×2=23=8张,即可得出规律,第九次复制最多得29=512张,第十次复制最多得210=1024张,问题得解.【详解】解:由题意得第一次复制得2张,第二次复制最多得2×2=22=4张,第三次复制最多得2×2×2=23=8张,第四次复制最多得2×2×2×2=24=16张,……,第九次复制最多得29=512张,第十次复制最多得210=1024张,1024>1000,所以至少需要10次.故选:B【点睛】本题考查了乘方的应用,根据题意得到乘方运算规律,并正确进行计算是解题关键.3.甲、乙两人同时从相距2000米的两地出发,相向而行,甲每分钟走45米,乙每分钟走55米,一只小狗以每分钟200米的速度与甲同时、同地、同向而行,遇到乙后立即转头向甲跑去,如此循环,直到两人相遇,则这只小狗一共跑了()米A.3000B.4000C.5000D.6000【答案】B【解析】【分析】根据小狗用的时间是甲、乙两人相遇用的时间,先求出甲、乙两人相遇的时间,然后乘以小狗的速度即可求出小狗的路程.【详解】解:由题意知,甲、乙两人相遇的时间为200020 4555=+分钟∴小狗共跑了202004000´=米故选B.【点睛】本题考查了有理数的混合运算的应用,解题的关键在于明确小狗用的时间是甲、乙两人相遇用的时间.4.甲、乙两瓶中分别有水4升和10升,现要从这两瓶中各倒一些水到空的丙瓶中,使三个瓶中水量的比为3:2:1,那么乙瓶需倒出水 _____升.【答案】3升或51 3【解析】【分析】根据题意和题目中的数据,可以计算出最后三个瓶中水的升数,再根据题意可以确定最少的为甲瓶中的水,然后分两种情况,列出相应的方程,再求解即可.【详解】解:(10+4)÷(3+2+1)=14÷6=73(升),则最后三个瓶中的水分别为:73=73´(升),722=433´(升),771=33´(升),∵甲、乙两瓶中分别有水4升和10升,现要从这两瓶中各倒一些水到空的丙瓶中,∴最后甲瓶中一定有水73升,则乙瓶中有水7升或243升,设乙瓶倒出水x升,则10﹣x=7或10﹣x=243,解得x=3或1 =53 x,即乙瓶需倒出水3升或153升,故答案为:3升或153.【点睛】本题考查了一元一次方程的应用,解答本题的关键是明确题意,找出等量关系,列出相应的方程,注意要分类讨论,不要漏解.5.众所周知,公元纪年中没有公元零年.历史的长河就像一条如图的“缺零数轴”一样.比如阿基米德出生于公元前287年,公元前287年就可以用“缺零数轴”中的﹣287表示,那么,公元a年和公元前b相差的年数为_____.【答案】1a b +-.【解析】【分析】根据公元1年与公元前1年相差1年,公元前b 用“缺零数轴”中的﹣b 表示,公元a 年和公元前b 相差的年数为()11a b a b ---=+-即可.【详解】解:∵公元前b 用“缺零数轴”中的﹣b 表示,∴公元a 年和公元前b 相差的年数为()11a b a b ---=+-,故答案为:1a b +-.【点睛】本题考查“缺零数轴”表示相反意义的数,利用有理数减法计算,掌握“缺零数轴”表示相反意义的数,利用有理数减法列式时与有0数轴相差1计算是解题关键.6.斐波那契数列,是由一串有数学美感的数字排列而成,因以兔子繁殖为例作引入,故又称为“兔子数列”.仿照“兔子数列”有如下问题:一般而言,兔子在出生两个月后,就有繁殖能力,假设一对兔子每个月能生出2对小兔子来,且兔子不会死亡.育才校园养了1对小兔子:一个月后,小兔子没有繁殖能力,所以还是1对;两个月后,兔子生下两对小兔子,所以是3对;三个月后,小兔子没有繁殖能力,老兔子生下2对小兔子,所以一共是5对;以此类推,八个月后,一共有________ 对兔子.【答案】171【解析】【分析】根据大兔,中兔与小兔进行分类大兔的2倍是小兔,小兔1个月后变中兔,三类兔子之和是总共有的兔子,根据有理数的加法求和即可.【详解】解:设两月后的兔子称“大兔”,一个月后的兔子称“中兔”,刚出生的兔子称“小兔”一个月后中兔1对,共1对兔,二个月后大兔1对,小兔2对,共有1+2=3对兔,三个月后大兔1对,中兔2对,小兔2对,共有1+2+2=5对兔,四个月后大兔3对,中兔2对,小兔6对,共有3+2+6=11对兔,五个月后大兔5对,中兔6对,小兔10对,共有5+6+10=21对兔,六个月后大兔11对,中兔10对,小兔22对,共有11+10+22=43对兔七个月后大兔21对,中兔22对,小兔42对,共有21+22+42=85对兔,八个月后大兔43对,中兔42对,小兔86对,共有43+42+86=171对兔.故答案为171.【点睛】本题考查有理数的加法,根据分类确定大兔,中兔与小兔的对数是解题关键.7.如图,在甲,乙两个十字路口各方向均设有人行横道和交通信号灯,小宇在甲路口西南角的A 处,需要步行到对面乙路口东北角B处附近的餐馆用餐,已知两路口人行横道交通信号灯的切换时间与小宇的步行时间如下表所示:(图中箭头↑所示方向为北)人行横道交通信号灯的切换时间小宇的步行时间甲路口每1min沿人行横道穿过一条马路0.5min乙路口每2min在甲、乙两路口之间(CD段)6min假定人行横道的交通信号灯只有红、绿两种,且在任意时刻,同一十字路口东西向和南北向的交通信号灯颜色不同,行人步行转弯的时间可以忽略不计.若小宇在A处时,甲、乙两路口人行横道东西向的交通信号灯均恰好转为红灯,小宇从A处到达B处所用的最短时间为________min.【答案】8【解析】【分析】根据A向东过路口,等待0.5秒后,再向北过路口,在CD对面平行的路线到乙路口,共用时间7.5秒,当到达乙路口时东西向的交通信号灯正处于绿灯,不用等待,过路口后直接到达B点.解:由已知得:0.50.50.560.5=8++++(min)故答案为:8.【点睛】本题考查有理数的加法运算.理清时间,弄清路口是否等待是解题关键.8.小明有一把两条直角边都带有刻度的三角尺,直角顶点C的刻度为0.爱研究数学的小明做了一个实验,他把三角尺的直角边BC放到水平的数轴上,通过左右移动三角尺子,他发现:数轴上表示数字1-和4-的点刚好能与直角边BC上的刻度20和50分别重合,如图1,于是他又将该三角板尺子绕着此时的点C顺时针旋转了90°,结果他又发现另一条直角边AC上的点Q与数轴上表示数字2的点也重合,如图2,请你帮助小明计算一下,则点Q在直角边AC上所表示的刻度应为________.【答案】10【解析】【分析】根据题意先求得C点在数轴上表示的数,即可求得CQ的长,进而求得点Q在直角边AC上所表示的刻度.【详解】Q数轴上表示数字1-和4-的点刚好能与直角边BC上的刻度20和50分别重合,()---=-=Q,143,502030即数轴上1个单位长度对应三角尺上10个单位,()Q,112--=\C点在数轴上表示的数表示是1,Q直角边AC上的点Q与数轴上表示数字2的点也重合,\点Q 在直角边AC 上所表示的刻度为10.【点睛】本题考查了数轴上的点表示有理数,求得C 点在数轴上表示的数是解题的关键.三、解答题9.仔细观察下列规律:()()()2113222433322=2212,222212,222212--=-=-=-=-=……请完成下列题目(结果可以保留指数形式)(1)计算:1009922-=________(直接写出答案)(2)发现:122n n +-=__________(直接写出答案)(3)计算:2019201820172 (222221)----【答案】(1)992;(2)2n ;(3)1.【解析】【分析】(1)首先根据题意可以发现规律2得a 次方减去2的b 次方(a ,b 为两个相邻的正整数,a >b )可得a 的b 次方,根据规律可得答案;(2)根据(1)中的规律可得答案;(3)依据(1)中的规律依次相减即可.【详解】解:(1)100999999(21)2222-=-=,故答案为:992;(2)122(1)222n n n n +=--=,故答案为:2n ;(3)2019201820172 (222221)----=201820172(21) (22221)----=201820172 (22221)---=20172 (2221)--.....=21-=1.【点睛】本题考查有理数乘方运算的规律、探索与表达规律.能找出题干所给的规律是解题关键.10.已知一个三角形院墙,第一条边长为3a+2b,第二条边比第一边长a﹣b,第三条边比第二条边短2a.(1)求这个三角形的周长(用含有a、b表示).(2)当求a=2米,b=1米时,这个三角形的周长是多少米?(3)在(2)的条件下,围成院墙的材料20米以内收费每米180元,超过的部分每米只收费150元,请问围成这个三角形的院墙至少要花费多少钱?【答案】(1)9a+4b;(2)22米;(3)3900元.【解析】【分析】(1)先求出第二边长,第三边长,然后根据三角形的周长利用整式的加法求和即可;(2)把a=2米,b=1米代入代数式求值即可;(3)把三角形的周长分成两部分20×180+2×150计算即可.【详解】解:(1)∵第一条边长为3a+2b,第二条边长为3a+2b +a﹣b=4a+b,第三条边长为4a+b -2a=2a +b这个三角形的周长=3a+2b+4a+b+2a+b=9a+4b;(2)a=2米,b=1米时,9a+4b=9×2+4×1=18+4=22(米);(3)围成这个三角形的院墙至少要花费20×180+2×150=3600+300=3900(元).【点睛】本题考查列代数式,整式的加法,代数式的值,有理数乘法运算,掌握列代数式,整式的加法,代数式的值,有理数乘法运算是解题关键.11.大商超市对顾客实行优惠购物,优惠规定如下:A如果一次性购物在500元以内,按标价给予九折优惠;B如果一次性购物超过500元,其中500元部分给予九折优惠,超过500元部分给予八折优惠.(1)李叔叔在该超市购买了一台标价为780元的洗衣机,他应付多少元钱?(2)王阿姨先后两次去该超市购物,分别付款198元和554元,如果王阿姨一次性购买,只需要付款多少元?能节省多少元?【答案】(1)他应付钱674元;(2)王阿姨一次性购买,只需要付款730元,能节省22元.【解析】【分析】(1)根据780元>500元,分两部分计算500元九折+超过部分八折计算即可;(2)先求出两次构买物品的标价,将两次物品标价求和,再按一次性购物计算500元九折+超过部分八折,再计算王阿姨两次购物付款总和-一次性付款即可.【详解】解:(1)∵李叔叔在该超市购买了一台标价为780元的洗衣机,780元>500元,∴他应付钱为:500×0.9+(780-500)×0.8=450+224=674元;(2)王阿姨第一次去该超市购物付款198元,该物品标价为198÷0.9=220元,第二次去该超市购物付款554元,554-450=104,450÷0.9+104÷0.8=500+130=630元,两次购物标价为220+630=850元,∴王阿姨应付钱为:500×0.9+(850-500)×0.8=450+280=730元,198+554-730=22元,王阿姨一次性购买,只需要付款730元,能节省22元.【点睛】本题考查商品打折问题,掌握分类计算标准和计算方法是解题关键.12.外卖送餐为我们生活带来了许多便利,某学习小组调查了一名外卖小哥一周的送餐情况,规定送餐量超过40单(送一次外卖称为一单)的部分记为“+”,低于40单的部分记为“-”,下表是该外卖小哥一周的送餐量:星期一二三四五六日送餐量(单位:单)-3+4-5+14-8+7+12(1)求该外卖小哥这一周平均每天送餐多少单?(2)外卖小哥每天的工资由底薪30元加上送单补贴构成,送单补贴的方案如下:每天送餐量不超过40单的部分,每单补贴4元;超过40单但不超过50单的部分,每单补贴6元;超过50单的部分,每单补贴8元.求该外卖小哥这一周工资收入多少元?【答案】(1)43单(2)1500元【解析】【分析】(1)由40单加上超过或不足部分数据的平均数即可得到答案;(2)每天的工资由底薪加上送餐部分的补贴,分别计算每天的工资,再求解代数和即可.(1)解:该外卖小哥这一周平均每天送餐为:()140+3451487127-+-+-++ 1402143,7=+´= 答:该外卖小哥这一周平均每天送餐43单.(2)解:该外卖小哥这一周工资收入为()()()()()()()730+374+404+46+354+404+106+48+324+404+76+404+106+28´´´´´´´´´´´´´´210148184140252128202236=+++++++1500=【点睛】本题考查的是正负数的实际应用,平均数的计算,有理数的加法与乘法的实际应用,理解题意,正确的列代数式计算计算是解本题的关键.13.(1)观察下列各式:123456733,39,327,381,3243,3729,32187,=======L1234561313,13169,132197,1328561,13371293,134826809,======L根据你发现的规律回答下列问题:①20223的个位数字是___________;9913的个位数字是___________;②9943的个位数字是___________;5543的个位数字是___________;(2)自主探究回答问题:①997的个位数字是___________,557的个位数字是___________;②9952的个位数字是___________,5552的个位数字是___________.(3)若n 是自然数,则9955n n -的个位上的数字( )A .恒为0B .有时为0,有时非0C .与n 的末位数字相同D .无法确定【答案】(1)①9;7 ②7;7 (2)①3;3 ②8;8 (3)A【解析】【分析】(1)根据已知式子可以得到末尾数字4个一循环,据此解得即可;(2)可以先列出7的乘方及2的乘方的式子,可以得到末尾数字4个一循环,据此解得即可;(3)根据(1)(2)中的结论可知99n 与55n 个位上的数字相同即可得出答案.【详解】解:(1)①Q 123456733,39,327,381,3243,3729,32187,=======L\3的乘方的个位数字依次是3,9,7,1,以此4个数为一个循环依次进行循环20224505 (2)¸=Q \20223的个位数字是9;Q 1234561313,13169,132197,1328561,13371293,134826809,======L\13的乘方的个位数字依次是3,9,7,1,以此4个数为一个循环依次进行循环99424 (3)¸=Q \9913的个位数字是7;故答案为:9;7;②由①可知尾号为3的数的乘方的个位数字依次是3,9,7,1,以此4个数为一个循环依次进行循环99424...355413 (3)¸=¸=Q ,\9943的个位数字是7,5543的个位数字是7;故答案为:7;7;(2)①123456777497343724017168077117649...======Q ,,,,,\7的乘方的个位数字依次是7,9,3,1,以此4个数为一个循环依次进行循环99424...355413 (3)¸=¸=Q ,\997的个位数字是3,557的个位数字是3故答案为:3;3②123456222428216232264...======Q ,,,,,\2的乘方的个位数字依次是2,4,8,6,以此4个数为一个循环依次进行循环\52的乘方的个位数字依次是2,4,8,6,以此4个数为一个循环依次进行循环99424...355413 (3)¸=¸=Q ,\9952的个位数字是8,5552的个位数字是8故答案为:8;8(3)由(1)(2)中的结论可知99n 与55n 个位上的数字相同\9955n n -的个位上的数字恒为0故选A.【点睛】本题考查数字的变化规律,找出数字之间的规律是解题的关键.14.若一个三位数t=abc(其中a,b,c不全相等且都不为0),重新排列各数位上的数字必可得到一个最大数和一个最小数,此最大数和最小数的差叫作原数的差数,记为F(t).例如,246的差数F(246)=642﹣246=396,452的差数F(452)=542﹣245=297.(1)已知一个三位数2a b(其中a>b>2)的差数F(a2b)=693,则a= .(2)若一个三位数t=4ab(其中a、b都不为0)能被4整除,将百位上的数字移到个位得到一个新数4b a被4除余3,再将新数的百位数字移到个位得到另一个新数4ab被4除余2,则称原数为4的“循环数”.例如:因为344=4×86,443=4×110+3,434=4×108+2.所以344是4的一个“循环数”.求出所有三位数中4的“循环数”t,并求F(t)最大值.【答案】(1)9;(2)495【解析】【分析】(1)由一个三位数2a b(其中a>b>2)的差数F(a2b)=693,可得a=9,依此即可求解;(2)由一个三位数4ab(其中a、b都不为0)能被4整除,可得b=2或4或6或8,根据将百位上的数字移到个位得到一个新数4b a被4除余3,可得a=7或3,再根据将新数的百位数字移到个位得到另一个新数4ab被4除余2,可得b=4或8,可得4的“循环数”t为344,384,744,784,进一步求得F(t)的最大值.【详解】解:(1)∵一个三位数2a b(其中a>b>2)的差数F(a2b)=693,∴F(a2b)=100a+10b+2﹣(200+10b+a)=99a﹣198=693,解得a=9.故答案为:9;(2)∵一个三位数4ab(其中a、b都不为0)能被4整除,∴b=2或4或6或8,∵将百位上的数字移到个位得到一个新数4b a被4除余3,∴a=7或3,∵将新数的百位数字移到个位得到另一个新数4ab被4除余2,∴b=4或8,∴4的“循环数”t为344,384,744,784,∴F(344)=443﹣344=99,F(384)=843﹣348=495,F(744)=744﹣447=267,F(784)=874﹣478=396.F(t)最大值是495.【点睛】此题考查了同余问题,本题主要应用“差数”“循环数”的定义和整数性质,先将三位“差数”进行预选,然后再从中筛选出符合题意的数.这也是解答数学竞赛题的一种常用方法.。

初一数学有理数的加减乘除以及乘方试题

初一数学有理数的加减乘除以及乘方试题

初一数学有理数的加减乘除以及乘方试题1.计算;(1)(2)(-)2007×1.52008×(-1)2008【答案】(1)0 (2)-【解析】有理指数幂运算,注意负指数幂.(1)原式==4+1-5=0(2)原式=(-)2007×()2008×1=(-)2007×()2007×=(-×)2007×=(-1)2007×=-【考点】指数幂运算.2.月球距离地球约为3.84×105千米,一架飞机速度为8×102千米/时,•若坐飞机飞行这么远的距离需 _________ 小时【答案】4.8×102.【解析】先根据时间=路程÷速度,算出时间为(3.84×105)÷(8×102),利用单项式除单项式的法则计算,然后再按照科学记数法的方法的形式表示即可.试题解析:依题意得(3.84×105)÷(8×102),=0.48×103=4.8×102(小时).∴坐飞机飞行这么远的距离需4.8×102小时.考点: 1.整式的除法;2科学记数法—表示较大的数.3.李强靠勤工俭学的收入维持上大学费用,表中是李强某一周的收支情况表,记收入为正,支出为负(单位:元):星期一二三四五六日(2)照这个情况估计,李强一个月(按30天计算)能有多少节余?(3)按以上的支出水平,李强一个月(按30天计算)至少有多少收入才能维持正常开支?【答案】(1)到这个周末,李强有14元节余.(2)照这个情况估计,李强一个月(按30天计算)能有60元节余.(3)按以上的支出水平,李强一个月(按30天计算)至少有360元收入才能维持正常开支.【解析】分析:(1)七天的收入总和减去支出总和即可;(2)首先计算出平均一天的节余,然后乘30即可;(3)计算出这7天支出的平均数,即可作为一个月中每天的支出,乘30即可求得.解:(1)由题意可得:(元).(2)由题意得:14÷7×30=60(元).(3)根据题意得:10+14+13+8+10+14+15=84,84÷7×30=360(元).答:(1)到这个周末,李强有14元节余.(2)照这个情况估计,李强一个月(按30天计算)能有60元节余.(3)按以上的支出水平,李强一个月(按30天计算)至少有360元收入才能维持正常开支.4.(1)|﹣4|﹣(﹣2)2+(﹣1)2011﹣1÷2;(2)(﹣2)2+3×(﹣2)﹣1÷()2.【答案】(1)﹣1(2)﹣18【解析】(1)根据运算顺序先算乘方运算,(﹣2)2表示两个﹣2的乘积,(﹣1)2011表示2011个﹣1的乘积,其结果为﹣1,同时根据负数的绝对值等于它的相反数化简原式的第一项,根据互为相反数的两数和为0化简,然后利用同号两数相加的法则即可得到结果;(2)根据运算顺序先算乘方运算,(﹣2)2表示两个﹣2的乘积,()2表示两个的乘积,然后利用除以一个数等于乘以这个数的倒数把除法运算化为乘法运算,利用两数相乘,同号得正、异号得负,并把绝对值相乘来计算乘法运算,利用减法法则:减去一个数等于加上这个数的相反数把减法运算化为加法运算,利用同号及异号两数相加的法则即可得到结果.解:(1)|﹣4|﹣(﹣2)2+(﹣1)2011﹣1÷2=4﹣4+(﹣1)﹣=﹣1+(﹣)=﹣1;(2)(﹣2)2+3×(﹣2)﹣1÷()2=4+(﹣6)﹣1÷=4+(﹣6)﹣1×16=4+(﹣6)+(﹣16)=4+(﹣22)=﹣18.点评:此题考查了有理数的混合运算,有理数的混合运算首先弄清运算顺序:先乘方,再乘除,最后算加减,有括号先算括号里边的,然后利用各种运算法则进行计算,有时可以利用运算律来简化运算,注意(﹣2)2与﹣22的区别,前者表示两个﹣2的乘积,后者表示2平方的相反数.5.2003年10月15日,航天英雄杨利伟乘坐“神舟五号”载人飞船,于9时9分50秒准确进入预定轨道,开始巡天飞行.飞船绕地球飞行了十四圈后,返回舱与推进舱于16日5时59分分离,结束巡天飞行.飞船共用了20小时49分10秒,巡天飞行了约6×105千米,则“神舟五号”飞船巡天飞行的平均速度约为________千米/秒.(结果精确到0.1)【答案】8.0【解析】仔细分析题意,再根据平均速度=总里程÷总时间列式计算即可.解:10月15日9时50秒到16日5时59分期间共有20小时50分10秒,共计75 010秒.6×105÷75 010=7.99千米/秒≈8.0千米/秒.答:“神舟五号”飞船巡天飞行的平均速度是8.0千米/秒.【考点】有理数的除法的应用点评:计算题是中考必考题,一般难度不大,学生要特别慎重,尽量不在计算上失分.6.计算:(1);(2)【答案】(1);(2)1【解析】(1)先根据积的乘方、幂的乘方法则化简,再算同底数幂的乘法,最后合并同类项;(2)先根据有理数的乘方法则计算,再算加减即可.(1)原式;(2)原式.【考点】整式的混合运算,实数的运算点评:计算题是中考必考题,一般难度不大,要特别慎重,尽量不在计算上失分.7.用“<”号,将、、、连接起来______【答案】【解析】先根据有理数的乘方法则依次计算出各个数的值,再根据有理数的大小比较法则比较. ∵,,,∴.【考点】有理数的乘方点评:计算题是中考必考题,一般难度不大,要特别慎重,尽量不在计算上失分.8.今年3月26日20:30至21:30,在参与“地球一小时”活动中,南京全城节约用电约10万度.约可以减少二氧化碳排放量99700千克,这个排放量用科学记数法表示为千克.【答案】9.97´104【解析】99700有效数字为9.97.小数点向左移动4位。

七年级有理数加减乘除计算300道(含答案)

七年级有理数加减乘除计算300道(含答案)

七年级有理数加减乘除计算300道(含答案)一.加减法(25小题)1.计算:(1)﹣2﹣1;(2)﹣|﹣7|+(+3)﹣5;(3)2.7+(﹣8.5)﹣(+3.4)﹣(﹣1.2);(4)﹣3﹣2+(﹣4)﹣(﹣1);(5)(﹣1.2+2)﹣(﹣5)﹣|﹣3.4﹣(﹣1.2)|;(6)﹣205+400+(﹣204)+(﹣1).2.计算(1)﹣20﹣(﹣18)+(﹣14)+13 (2)18+(﹣12)+(﹣21)﹣(﹣12)(3)﹣|﹣1|﹣(+2)﹣(﹣2.75)(4)0.35+(﹣0.6)+0.25﹣(+5.4)(5)1(6)(+1.125)﹣(+3)﹣(+)+(﹣0.25)3.加减混合运算:(1)12﹣(﹣18)+(﹣7)﹣20 (2)+5.7+(﹣8.4)+(﹣4.2)﹣(﹣10)(3)(4)4.计算:(1)﹣6+6+9 (2)0+(﹣3.71)+(+1.71)﹣(﹣5)(3)﹣3+(﹣)﹣(﹣)+1(4)3﹣(+1)﹣5+(﹣1.25)(1)(﹣5)+12 (2)﹣7+13﹣6+20 (3)﹣23+(+58)﹣(﹣5)(4)﹣+(+)+(﹣)+2(5)(+1.5)+(﹣)+(+)+(﹣1)(6)﹣|﹣|﹣(+2)﹣(﹣2.25)(7)(+1)+(﹣2)+(+3)+(﹣4)+……+(+99)+(﹣100)6.计算(1)5+(﹣13)+(﹣14)(2)﹣12﹣26﹣(﹣27)(3)17﹣7+(﹣33)﹣49 (4)3+(﹣2)+5+(﹣7)(1)(﹣10)+(+5);(2)(+13)﹣(﹣7);(3)(﹣3)﹣5;(4)(﹣9)+0;(5)(﹣22)+24+(﹣28)+16;(6)25.3+(﹣7.3)+(+13.7)+7.3;(7)(﹣3)﹣(﹣2)+(+5);(8)(﹣)+(+)+(+)+(﹣1).8.计算①(﹣12)﹣5+(﹣14)﹣(﹣39)②|﹣21.76|﹣7.26+(﹣3);③3+(﹣)﹣(﹣)+2④0﹣16+(﹣29)﹣(﹣7)﹣(+11)9.计算(1)12﹣(﹣18)+(﹣7)(2)5.6+(﹣0.9)+4.4+(﹣8.1)+(﹣0.1)(3)﹣34+15﹣|﹣10|﹣(﹣6)(4)12﹣16﹣3﹣[4﹣15﹣(3﹣8)+9] (5)2+(﹣2)+(﹣1)+4+(﹣1)+(﹣3)10.计算(1)﹣+(﹣);(2)(﹣0.19)+(﹣3.12);(3)2.7﹣(﹣3.1);(4)0.15﹣0.26;(5)(﹣12.56)+(﹣7.25)+3.01+(﹣10.01)+7.25;(6)0.47+(﹣0.09)+0.39+(﹣0.3)+1.53;11.计算题:(1)(﹣53)+(+21)﹣(﹣69)﹣(+37)(2)5.7﹣4.2﹣8.4﹣2.3+1(3)﹣(﹣12)+(+18)﹣(+37)+(﹣41)(4)(﹣1)﹣1+(﹣2)﹣(﹣3)﹣(﹣1)+4.12.混合计算(1)﹣20+(﹣14)﹣(﹣18)﹣13 (2)﹣(﹣2.3)+(﹣3)(3)|﹣7|+(﹣15)+|﹣2| (4)﹣|﹣1|﹣(+2)﹣(﹣2.75)13.计算:(1)﹣﹣(﹣2)+(﹣3)﹣(+5);(2)﹣|﹣﹣(﹣)|+|(﹣)+(﹣)|;(3)(+1)﹣(﹣5)+(﹣)﹣(+)+(﹣5)14.计算:(1)﹣8+4﹣(﹣2)(2)(3)﹣5.6+0.9﹣4.4+8.1﹣0.1 (4)15.(1)6+(﹣5)﹣2﹣(﹣3)(2)1+(﹣)﹣(﹣)﹣(3)(﹣)+(﹣)+(+1)(4)﹣(5)5.4﹣2.3+1.5﹣4.2 (6)﹣2﹣6﹣|﹣9+5|16.计算:(1)27+18﹣(﹣3)﹣18 (2)15+(﹣5)+7﹣(﹣3)(3)(﹣11.5)﹣(﹣4.5)﹣3 (4)﹣(﹣)+(﹣3.4)17.计算:(1)(﹣7)﹣(+5)+(﹣4)﹣(﹣10)(2)(﹣3)+(+3)+(+2)+(﹣1)(3)8+|﹣|﹣(﹣4)+(﹣8)+(4)0﹣3.6+(﹣3.6)+7.2+2.518.计算:(1)(+)+(﹣)(2)(﹣10.5)+(﹣1.3)(3)(﹣)+(﹣)+(﹣)+(+)(4)(+0.56)+(﹣0.9)+(+0.44)+(﹣8.1)19.计算:(1)﹣(﹣)+()+;(2)12﹣(﹣18)+(﹣7)﹣15(3)1+2+3+4+5+(﹣1)+(﹣2)+(﹣3)+(﹣4);(4)﹣+(﹣)﹣(﹣)﹣1.20.计算:(1)|﹣|+|﹣|+|﹣|(2)2﹣[﹣1﹣(﹣)﹣5+]+|﹣3|(3)﹣5+3﹣9+16(4)﹣5+(﹣9)+3+17.21.计算(1)(﹣3.6)+(+2.5);(2)(﹣49)﹣(﹣91)﹣(+51)+(﹣9);(3)3﹣(﹣)+2+(﹣);(4)1+(﹣2)+|﹣2﹣3|﹣5.22.计算题(1);(2)23﹣17﹣(﹣7)﹣(﹣16)(3)(+26)+(﹣14)+(﹣16)+(+8);(4)﹣4.27+3.8﹣0.73+1.2(5)(﹣5)﹣(+3)+(﹣9)﹣(﹣7);(6)33.1﹣10.7﹣(﹣22.9)23.运算:(1)12﹣(﹣18)+(﹣7)﹣15;(2).(3)﹣24+3.2﹣16﹣3.5+0.3 (4).24.计算:(1)(﹣12)﹣5+(﹣14)﹣(﹣39)(2)+(﹣)++(﹣)+(﹣)(3)(﹣0.9)+(+4.4)+(﹣8.1)+(+5.6)(4)0﹣﹣(﹣2)﹣.25.(1)(﹣14)+(﹣6)(2)(﹣6)+(+4)(3)+(﹣)+(+1)(4)(﹣25)﹣(﹣18)﹣(+5)+(+12)(5)2.4+(﹣3.5)+(+5)+(﹣4)(6)(|﹣8|﹣16)﹣[(﹣16)﹣(﹣8)].二、有理数乘除以及综合运算27.计算:(1)(﹣)×(﹣3)÷(﹣1)÷3;(2)(﹣8)÷×(﹣1)÷(﹣9).28.计算:(1)﹣5÷(﹣1);(2)(﹣)÷(﹣)÷(﹣1).29.计算:(1)﹣0.75×(﹣0.4 )×1;(2)0.6×(﹣)×(﹣)×(﹣2).30.计算:(1)﹣0.75×(﹣0.4)×1(2)0.6×(﹣)•(﹣)•(﹣2)31.计算:(1)﹣0.75×(﹣0.4 )×1;(2)0.6×(﹣)•(﹣)•(﹣2)(1)99×(﹣9)(2)(﹣5)×(﹣3)+(﹣7)×(﹣3)+12×(﹣3)33.计算下列各题:(1)10×;(2)()×12;(3)19×(﹣11).34.简便方法计算:①(﹣﹣)×(﹣27);②﹣6×+4×﹣5×.35.用简便方法计算(1)29×(﹣12)(2)﹣5×(﹣)+13×(﹣)﹣3×(﹣)36.简便计算(1)(﹣48)×0.125+48×(2)()×(﹣36)(1)﹣13×﹣0.34×+×(﹣13)﹣×0.34 (2)(﹣﹣+﹣)×(﹣60)38.(1)(﹣)×(﹣3)÷(﹣1)÷3 (2)[(+)﹣(﹣)﹣(+)]÷(﹣)39.简便计算(1)(﹣48)×0.125+48×+(﹣48)×(2)()×(﹣36)40.计算(1)(2).41.计算:(1)﹣﹣2+(﹣)(2)﹣14﹣(1﹣0.5)××[1﹣(﹣2)2]42.计算:(1)﹣12+5+(﹣16)﹣(﹣17)(2)(3)﹣24×(﹣+﹣)(4)﹣23÷×(﹣)243.计算;(1)﹣27﹣(﹣15);(2)12;(3)﹣22×;(4)()3×32+2÷(1﹣22)44.计算:(1)﹣14+|3﹣5|﹣16÷(﹣2)×(2)(1)÷(﹣)÷(1)(1)12﹣(﹣18)+(﹣7)﹣15.(2)﹣0.25++﹣0.5.(3)×(﹣)×÷.(4)﹣42﹣(﹣1)10×|﹣3|÷.46.计算题(1)﹣3+8﹣15﹣6 (2)(﹣)×(﹣1)÷(﹣2)(3)(﹣+﹣)÷(﹣)(4)(﹣6)÷(﹣)2﹣72+2×(﹣3)247.计算:(1)1÷(﹣)2﹣|﹣|×(﹣2)3×(﹣1)(2)﹣12016+[×(﹣+)×(﹣12)+16](1)﹣8﹣(﹣3)+5 (2)﹣6÷(﹣2)×(3)(4)﹣14﹣(1﹣0.5)×49.计算(1)16﹣(﹣10+3)+(﹣2)(2)(﹣4)2×﹣27÷(﹣3)3 (3)﹣12﹣()2×(﹣﹣)÷50.计算:(1)(﹣1)3+10÷22×(2)(﹣3)2÷七年级分数有理数加减乘除计算300道答案一.1.【解】(1)原式=﹣3;(2)原式﹣6;(3)原式=﹣8;(4)原式=﹣8;(5)原式=4.6;(6)原式=﹣10.2.【解】(1)原式=﹣3;(2)原式=﹣3;(3)原式=﹣0.6;(4)原式=﹣5.4;(5)原式=6;(6)原式=﹣3.3.【解答】(1)原式=3;(2)原式=3.1;(3)原式=0;(4)原式=0.4.【解】(1)原式=0+9=9;(2)原式=3;(3)原式=﹣2;(4)原式=﹣5.5.【解】(1)7;(2)20;(3)40;(4)2;(5)0;(6)﹣;(7)﹣50.6.【解】(1)原式=5+(﹣27)=﹣22;(2)原式=﹣38+27=﹣11;(3)原式=﹣72;(4)原式=﹣1.7.【解】(1)原式=﹣(10﹣5)=﹣5;(2)原式=13+7=20;(3)原式=﹣3+(﹣5)=﹣8;(4)原式=﹣9;(5)原式=﹣10;(6)原式=39;(7)原式=4;(8)原式=﹣1.8.【解】①原式=8;②原式=11.5;③原式=6;④原式=﹣49.9.【解】(1)原式=23;(2)原式=0.9;(3)原式=﹣23;(4)原式=﹣10;(5)原式=﹣1.10.【解】(1)原式=﹣(+)=﹣=﹣;(2)原式=﹣3.31;(3)原式=5.8;(4)原式=﹣0.11;(5)原式=﹣19.56;(6)原式=2.11.【解】(1)原式==0;(2)原式=﹣8;(3)原式=﹣48;(4)原式=3.12.【解】(1)=﹣29;(2)=2.8;(3)=﹣9;(4)=﹣0.6.13.【解】(1)原式=﹣;(2)原式=;(3)原式=.14.【解答】(1)=﹣2;(2)=2.7;(3)=﹣1.1;(4=4.6.15.【解答】(1)2;(2)2;(3);(4)﹣;(5)0.4;(6)﹣12.16.【解】(1)原式=30;(2)原式=20;(3)原式=﹣10;(4)原式=﹣2.417.【解答】(1)原式=﹣7﹣5﹣4+10=﹣6;(2)原式=﹣1+2=1;(3)原式=8+4﹣8+1=5;(4)原式=﹣7.2+7.2+2.5=2.5.18.【解】=;(2)(﹣10.5)+(﹣1.3)=﹣11.8;(3)=﹣3;(4)=﹣8.19.【解】(1)=;(2)=8;(3)=5;(4)=﹣.20.【解】(1)原式=;(2)原式=10;(3)原式=5;(4)=.21.【解】(1)=﹣1.1;(2)=﹣18;(3)=6;(4)=﹣1.22.计算题【解答】(1)=4.8;(2)=29;(3)=4;(4)=0;(5)=﹣10;(6)=45.3.23.【解】(1)=8;(2)=﹣;(3)=﹣40;(4)=4.24.【解】(1)=8;(2)=﹣;(3)=1;(4)=1.25.【解】(1)原式=﹣20;(2)原式=(﹣6+4)+(﹣+)=﹣2+=﹣1;(3)原式=﹣+1=;(4)原式=0;(5)原式=0;(6)原式=0.27.【解】(1)﹣;(2)﹣2.28.【解答】(1)原式=3;(2)原式=﹣.29.【解】(1)原式=;(2)原式=﹣1.30.【解答】(1)原式=;(2)原式=﹣.31.【解】(1)=.(2)=﹣132.【解】(1)原式=﹣899.(2)原式=0.33.【解答】(1)原式=2;(2)原式=﹣1;(3)原式=﹣219.34.【解】(1)原式=5.(2)原式=﹣3.35.【解】(1)原式=﹣359;(2)原式=﹣11.36.【解】(1)=0;(2)=5.37.【解】(1)=﹣13.34(2)=5138.【解】(1)原式=﹣×××=﹣;(2)原式=(+﹣)×(﹣105)=﹣15﹣35+21=﹣29.39.【解】(1)原式=﹣60;(2)原式=5.40.【解】(1)=﹣;(2)=0.41.【解答】(1)=﹣3;(2)=﹣.42.【解答】(1)原式=﹣12+5﹣16+17=﹣6;(2)原式=﹣115+128=13;(3)原式=12﹣18+8=2;(4)原式=﹣8××=﹣8.43.【解】(1)原式=﹣27+15=﹣12;(2)原式=12××=3;(3)原式=﹣4×5+8﹣=﹣20+8﹣=﹣12;(4)原式=(﹣)3×9×8+2÷(﹣3)=﹣﹣=﹣1.44.【解】(1)原式=﹣1+2+4=5;(2)原式=﹣.45.【解】(1)原式=12+18﹣7﹣15=30﹣22=8;(2)原式=﹣++﹣==;(3)原式=×(﹣)××=﹣;(4)原式=﹣16﹣1×3×=﹣16﹣16=﹣32.46.【解答】(1)原式=﹣24+8=﹣16;(2)原式=﹣;(3)原式=2;(4)原式=﹣85.47.【解答】(1)原式=5;(2)原式=10.48.【解答】(1)=0;(2)=;(3)=17;(4)=.49.【解答】(1)原式=21;(2)原式=3;(3)原式=﹣.50.【解答】(1)=﹣;(2)=1。

有理数加减乘除混合运算基础试题[含答案解析]

有理数加减乘除混合运算基础试题[含答案解析]

WORD格式WORD 整理版数学练习(一)〔有理数加减法运算练习〕一、加减法法则、运算律的复习。

A.△同号两数相加,取___相同的符号_______________,并把__绝对值相加__________________________。

1、(– 3)+(–9)2、85+ ( +15)-12 1003、(–31)+(–32)4、(– 3.5) +(– 5 2)6 3 35 1-6 -96 6△绝对值不相等的异号两数相加,取 _绝对值较大的加数的符号 ________________________, 并用 ________较大的绝对值减去较小的绝对值____________ _____________. 互为 __________________ 的两个数相加得 0。

1、 (– 45) +( +23)2、(– 1.35) +6.353、 2 1 +(– 2.25)4、(– 9) +74△一个数同0 相加,仍得 ___这个数 __________ 。

1、(– 9)+ 0=___-9___________;2、 0 +( +15 ) =____15_________ 。

B.加法交换律: a + b = ____b+a_______ 加法结合律: (a + b) + c = ____a+(b+c)___________1、(– 1.76) +(– 19.15) + ( – 8.24)2、 23+(– 17) +(+7 ) +(– 13)3、(+3 1)+(–23)+5 3 +(–82)4、2+ 2+(–2)4 5 4 5 5 11 5C.有理数的减法可以转化为__正数 ___来进行,转化的“桥梁”是 ____(正号可以省略)或是(有理数减法法则)。

_____。

△减法法则:减去一个数,等于______加上这个数的相反数_________________________ 。

即 a– b = a +( -b )WORD格式专业资料学习参考WORD 格式WORD 整理版1、(– 3)–(– 5)2、3 1 –(–13)3、 0–(–7)4 4D.加减混合运算可以统一为____加法 ___运算。

初一数学有理数的加减乘除以及乘方试题

初一数学有理数的加减乘除以及乘方试题

初一数学有理数的加减乘除以及乘方试题1. 观察图6形并填表:梯形个数周长中空格处依次可填_____________. 【答案】17,20,3n+2.【解析】从图中可知有1个梯形时,周长=5; 有2个梯形时,周长=5+3=8; 有3个梯形时,周长=5+2×3=8; …有5个梯形时,周长=5+4×3=17; 有6个梯形时,周长=5+5×3=20;有n 个梯形时,周长=5+(n ﹣1)×3=3n+2. 故答案是17,20,3n+2. 【考点】图形的变化规律.2. 若规定“!”是一种数学运算符号,且1!=1,2!=1×2=2,3!=3×2×1=6, 4!=4×3×2×1=24,⋯,则的值为( ) A .B .99!C .9 900D .2!【答案】C【解析】根据题意可得:100!=100×99×98×97×…×1,98!=98×97×…×1, ∴=100×99="9" 900,故选C .3. 已知:且,求的值. 【答案】-125【解析】解:因为=3,所以=±3. 因为=2,所以=±2. 又因为,所以=-3,=±2. 所以或.4.计算:(1)(2)【答案】(1);(2)3.【解析】(1)先算乘法,再算加减;(2)按照有理数混合运算的顺序,先乘方后乘除最后算加减,注意乘法分配率的运用.试题解析:(1)原式=;(2)原式=.【考点】有理数的混合运算.5.高度每增加1000米,气温大约下降6℃,今测得高空气球的温度是-2℃,地面温度是5℃,则气球的大约高度是().A.千米B.千米C.1千米D.千米【答案】B【解析】先根据“高度每增加1000米,气温大约下降6℃”列出算式,再计算即可得到结果.解:由题意得气球的大约高度千米,故选B.【考点】有理数的混合运算的应用点评:计算题是中考必考题,一般难度不大,学生要特别慎重,尽量不在计算上失分.6.将0.000 006用科学记数法表示为.【答案】【解析】科学记数法的表示形式为,其中,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数,所以0.000 006=【考点】科学记数法的表示方法点评:本题是属于基础应用题,只需学生熟练掌握科学记数法的表示方法,即可完成7.计算:(1);(2)(3a+5b)(-3a-8b)【答案】(1)-10;(2)【解析】(1)先根据有理数的乘方法则计算,再算加减;(2)根据多项式乘多项式法则去括号化简即可.(1)原式;(2)原式.【考点】有理数的混合运算,整式的混合运算点评:计算题是中考必考题,一般难度不大,学生要特别慎重,尽量不在计算上失分.8.某地区总人口是1920000人,精确到千位,并用科学计数法表示为( )A.1.92×105人B.1.92×106人C.1.920×106人D.1.920×10 5人【答案】C【解析】1920000有效数字为1.92.小数点向左移动6位。

初一数学有理数的加减乘除以及乘方试题答案及解析

初一数学有理数的加减乘除以及乘方试题答案及解析

初一数学有理数的加减乘除以及乘方试题答案及解析1.用科学记数法表示0.000000063是【答案】6.3×10-8.【解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.试题解析:0.000000063=6.3×10-8.【考点】科学记数法—表示较小的数.2.(1)(2)(3)(4)【答案】(1)-14;(2)-5;(3)-17;(4)-4.【解析】(1)利用乘法对加法的分配律,把括号展开即可求出答案;(2)根据有理数的运算法则“先算乘方,再算乘除,最后算加减,括号优先”进行计算,即可求出答案;(3)先算乘方,再算乘除,最后算加减即可求解;(4)先算出乘方,再算括号和绝对值,接着算除法和乘法,最后算加减即可求出该题的答案.试题解析:(1)原式==-30+16=-14;(2)原式=(-1)×(-5)÷(9-10)=(-1)×(-5)÷(-1)=5÷(-1)=-5;(3)原式=16×(-)-5=-12-5=-17;(4)原式=-1-÷3×|3-9|=-1-××6=-1-3=-4。

【考点】有理数的混合运算.3.在一次水灾中,大约有个人无家可归,假如一顶帐篷占地100米,可以放置40个床位(一人一床位),为了安置所有无家可归的人,需要多少顶帐篷?这些帐篷大约要占多少地方?若某广场面积为5000米2。

要安置这些人,大约需要多少个这样的广场?(所有结果用科学计数法表示)【答案】(1);(2);(3).【解析】根据帐篷的数量=总人数÷每一个帐篷所容纳的人数;所占面积=帐篷数×一顶帐篷所占的面积,计算即可.试题解析:根据题意得2.5×107÷40=625000=顶帐篷,625000×100=6.25×107米2,6.25×107÷5000=个.考点: 整式的除法.4.下列运算正确的是()A.B.C.D.=8【答案】B【解析】,A错;,C错;,D错.只有B是正确的.5.计算的值是()A.0B.C.D.【答案】B【解析】6.已知互为相反数,互为倒数,的绝对值是,求的值.【答案】7【解析】解:由已知可得,,,.当时,;当时,.7.计算:;【答案】【解析】先根据有理数的除法法则统一为乘,再根据有理数的乘法法则计算,最后算减即可得到结果.解:原式.【考点】有理数的混合运算点评:计算题是中考必考题,一般难度不大,学生要特别慎重,尽量不在计算上失分.8. (-2)0=_________,=___________,(-3)-1=___________.【答案】1,2,【解析】(-2)0=1,(任何数的0次都为1)=2;(-3)-1=【考点】实数运算点评:本题难度较低,主要考查学生对实数运算知识点的掌握。

有理数加减乘除混合运算50题

有理数加减乘除混合运算50题

有理数加减乘除混合运算题50题一、加法与乘法混合运算1. 2 + 3×4-解析:先算乘法3×4 = 12,再算加法2 + 12 = 14。

2. 5 + (-2)×3-解析:先算乘法(-2)×3 = -6,再算加法5 + (-6)= -1。

3.(-3)+4×2-解析:先算乘法4×2 = 8,再算加法(-3)+8 = 5。

4. 6 + (-1)×(-2)-解析:先算乘法(-1)×(-2)=2,再算加法6 + 2 = 8。

4.(-4)+3×(-2)-解析:先算乘法3×(-2)= -6,再算加法(-4)+(-6)= -10。

二、减法与乘法混合运算1. 8 - 2×3-解析:先算乘法2×3 = 6,再算减法8 - 6 = 2。

2. 7 - (-3)×2-解析:先算乘法(-3)×2 = -6,再算减法7 - (-6)= 13。

-解析:先算乘法4×2 = 8,再算减法(-5)-8 = -13。

4. 9 - (-1)×3-解析:先算乘法(-1)×3 = -3,再算减法9 - (-3)= 12。

4.(-6)-3×(-2)-解析:先算乘法3×(-2)= -6,再算减法(-6)-(-6)= 0。

三、加法与除法混合运算1. 4 + 8÷2-解析:先算除法8÷2 = 4,再算加法4 + 4 = 8。

2. 5 + (-6)÷3-解析:先算除法(-6)÷3 = -2,再算加法5 + (-2)= 3。

3.(-3)+12÷4-解析:先算除法12÷4 = 3,再算加法(-3)+3 = 0。

4. 6 + (-8)÷4-解析:先算除法(-8)÷4 = -2,再算加法6 + (-2)= 4。

初一数学有理数的加减乘除以及乘方试题答案及解析

初一数学有理数的加减乘除以及乘方试题答案及解析

初一数学有理数的加减乘除以及乘方试题答案及解析1. =___________.【答案】6.【解析】根据负整数指数幂和零次幂的意义分别进行计算再求和即可得出答案.试题解析:原式=5+1=6.【考点】1.负整数指数幂;2.零次幂.2.计算:= .【答案】.【解析】针对负整数指数幂,零指数幂2个考点分别进行计算,然后根据实数的运算法则求得计算结果:.【考点】1.负整数指数幂;2.零指数幂.3.计算:_____________;【答案】.【解析】根据积的乘方运算简化该式即可计算..【考点】积的乘方运算.4.气象部门测定发现:高度每增加1 km,气温约下降5 ℃.现在地面气温是15 ℃,那么4 km 高空的气温是()A.5 ℃B.0 ℃C.-5 ℃D.-15 ℃【答案】C【解析】.5.若规定“!”是一种数学运算符号,且则的值为()A.B.99!C.9 900D.2!【答案】C【解析】根据题意可得:100!=100×99×98×97×...×1,98!=98×97× (1)∴=100×99="9" 900,故选C.6.若与互为相反数,则.【答案】16.【解析】相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0.因此,由与互为相反数,得.∴.【考点】1.相反数;2.绝对值和偶次幂的非负数性质.7.据人民网5月20日电报道:中国森林生态系统年涵养水源量约4948亿立方米,将4948亿用科学记数法表示为()A.4.948×1013B.4.948×1012C.4.948×1011D.4.948×1010【答案】C.【解析】 4 948亿="4" 948×108=4.948×1011.故选C.【考点】科学记数法—表示较大的数.8.某市在一次扶贫助残活动中,捐款约3180000元,请将3180000元用科学记数法表示为( ) A.0.318×106元B.3.18×106元C.31.8×106元D.318×106元【答案】B【解析】科学记数法的表示形式为,其中,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.,故选B.【考点】本题考查的是科学记数法的表示方法点评:本题属于基础应用题,只需学生熟练掌握科学记数法的表示方法,即可完成.9.)室内温度10℃,室外温度是-3℃,那么室内温度比室外温度高A.-13℃B.-7℃C.7℃D.13℃【答案】D【解析】室内温度10℃,室外温度是-3℃,温差是10-(-3)=13,有理数加减法在实际生活中的应用。

七年级上册有理数的加减乘除混合运算测试卷

七年级上册有理数的加减乘除混合运算测试卷

七年级上册有理数的加减乘除混合运算测试卷题目:理数的加减乘除混合运算测试卷导言:理数运算作为数学的基本内容之一,是我们日常生活中不可或缺的一部分。

通过对理数的加减乘除混合运算的学习和掌握,我们可以更灵活地运用数学知识解决现实生活中的问题。

本文将从理数运算和混合运算的基本概念入手,逐步展开对七年级上册理数的加减乘除混合运算的解析,帮助同学们巩固所学知识和提高解题能力。

一、理数运算的基本概念理数是整数和分数的统称,包括正数、负数和零。

在理数运算中,我们需要掌握加法、减法、乘法和除法四种基本运算。

1. 加法:加法是指两个数或多个数的和。

当两个理数同号时,我们将它们的绝对值相加,并取相同的符号;当两个理数异号时,我们将它们的绝对值相减,并取绝对值较大的符号。

2. 减法:减法是指一个数减去另一个数的差。

将减数与被减数相减,即可得到差。

3. 乘法:乘法是指两个数或多个数的积。

符号用正负数的乘法规则进行计算,正数乘正数为正,负数乘负数也为正,正数乘负数为负。

4. 除法:除法是指一个数被另一个数除的商。

当除数和被除数同号时,商为正数;当除数和被除数异号时,商为负数。

二、混合运算的概念和步骤混合运算是指在一个表达式中同时包括加、减、乘、除等多种运算符号。

正确进行混合运算需要按照一定的顺序和规律进行操作。

1. 确定运算顺序:一般情况下,混合运算中乘法和除法优先于加法和减法。

在计算时,首先进行乘法和除法运算,然后再进行加法和减法运算。

如果有括号,需要先计算括号中的运算。

2. 从左向右计算:在没有括号的情况下,从左向右按照确定的运算顺序进行计算。

三、解析七年级上册理数的加减乘除混合运算题目【题目1】计算:6 - 4 × (2 + 3)解析:根据混合运算的步骤,首先计算括号内的运算,2 + 3 = 5。

然后计算乘法,4 × 5 = 20。

最后进行减法,6 - 20 = -14。

【题目2】计算:(4 - 2) × 3 + 8 ÷ 4解析:根据混合运算的步骤,首先计算括号内的运算,4 - 2 = 2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七上有理数加减乘除测试题一、单选题(共5题;共10分)1.(2020·安源模拟)的倒数是()A. B. C. D.2.(2020·津南模拟)计算的值是()A. -12B. -2C. 35D. -353.(2020·红桥模拟)计算的结果等于()A. B. C. D.4.(2020七上·椒江期末)有理数,在数轴上对应的位置如图所示,则()A. B. C. D.5.(2020·山西)计算的结果是()A. B. C. D.二、填空题(共6题;共8分)6.(2019七下·东莞月考)下列几种说法中,错误的有________(只填序号)①几个有理数相乘,若负因数为奇数个,则积为负数,②如果两个数互为相反数,则它们的商为﹣1,③一个数的绝对值一定不小于这个数,④﹣a的绝对值等于a.7.(2020七上·建邺期末)我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳记数”.如图,一位妇女在从右到左依次排列的绳子上打结,满六进一,用来记录采集到的野果数量,由图可知,她一共采集到的野果数量为________个.8.(2020七上·萧山期末)已知a,b,c为互不相等的整数,且abc=-4,则a+b+c=________。

9.(2020七上·通榆期末)在-1,0,-2,3中,两个数的积的最大值是________。

10.(2019七上·孝南月考)-2.5的相反数、倒数、绝对值分别为________、________、________。

11.(2019七上·佛山月考)你会玩“24点”游戏吗?将下面四张扑克牌凑成24,结果是________=24,注:扑克牌下面的数是其对应的有理数.三、计算题(共9题;共65分)12.(2019七下·东莞月考)计算:(1)(﹣)﹣(﹣)(﹣)+(2){1+[ ﹣(﹣)2] (﹣2)3} (﹣+0.5)13.(2020七上·武城期末)计算(1)(-8)×1.25+(-4) ÷(2)-32-12×14.(2020七上·柳州期末)计算:15.(2020七上·开远期末)计算(1);(2)16.(2020七上·嘉陵期末)计算:17.(2020七上·西安期末)计算:已知|x|=3,|y|=2(1)当xy<0时,求x+y的值;(2)求x-y的最大值。

18.(2019七上·咸阳月考)计算:19.(2019七上·丰台月考)计算:(﹣)×(﹣)÷(﹣2 )20.(2019七上·丰台月考)计算四、作图题(共1题;共5分)21.(2019七上·新蔡期中)画一条数轴,并在数轴上表示:3.5和它的相反数,和它的倒数,绝对值等于3的数,最大的负整数和它的平方,并把这些数由小到大用“<”号连接起来.五、综合题(共7题;共75分)22.(2018七上·大冶期末)A,B两点在数轴上的位置如图所示,其中O为原点,点A对应的有理数为﹣4,点B对应的有理数为6.(1)动点P从点A出发,以每秒2个单位长度的速度向右运动,设运动时间为t秒(t>0).①当t=1时,AP的长为,点P表示的有理数为;②当PB=2时,求t的值;(2)如果动点P以每秒6个单位长度的速度从O点向右运动,点A和B分别以每秒1个单位长度和每秒3个单位长度的速度向右运动,且三点同时出发,那么经过几秒PA=2PB.23.(2019七上·防城港期末)如图1,已知点C在线段AB上,线段AC=10厘米,BC=6厘米,点M,N分别是AC,BC的中点.(1)求线段MN的长度;(2)根据第(1)题的计算过程和结果,设AC+BC=a,其他条件不变,求MN的长度;(3)动点P、Q分别从A、B同时出发,点P以2cm/s的速度沿AB向右运动,终点为B,点Q以1cm/s 的速度沿AB向左运动,终点为A,当一个点到达终点,另一个点也随之停止运动,求运动多少秒时,C、P、Q三点有一点恰好是以另两点为端点的线段的中点?24.(2018七上·长春期中)如图已知数轴上点A、B分别表示a、b,且|b+6|与(a﹣9)2互为相反数,O 为原点.(1)a=________,b=________;(2)若将数轴折叠点A与表示﹣10的点重合,则与点B重合的点所表示的数为________;(3)若点M、N分别从点A、B同时出发,点M以每秒1个单位长度的速度沿数轴向左匀速运动,点N 以每秒2个单位长度的速度沿数轴向右匀速运动,N到点A后立刻原速返回,设运动时间为t(t>0)秒.①点M表示的数是________(用含t的代数式表示);②求t为何值时,2MO=MA;________③求t为何值时,点M与N相距3个单位长度.________25.(2019七下·东莞月考)在抗险救灾中,消防官兵的冲锋舟沿东西方向的河流抢救灾民,早晨从A地出发,晚上到达B地,约定向东为正方向,当天的航行路程记录如下(单位:千米):+14,﹣9,+8,﹣7,+13,﹣6,+10,﹣5.(1)救灾过程中,B地离出发点A有多远?B地在A地什么方向?(2)若冲锋舟每千米耗油0.5升,油箱容量为29升,求途中还需补充多少升油?26.(2020七上·安陆期末)暖羊羊有5张写着不同数字的卡片,请你按要求选择卡片,完成下列各问题:(1)从中选择两张卡片,使这两张卡片上数字的乘积最大.这两张卡片上的数字分别是________,积为________.(2)从中选择两张卡片,使这两张卡片上数字相除的商最小.这两张卡片上的数字分别是________,商为________.(3)从中选择4张卡片,每张卡片上的数字只能用一次,选择加、减、乘、除中的适当方法(可加括号),使其运算结果为24,写出运算式子.(写出一种即可)27.某摩托车厂本周内计划每日生产300辆摩托车,由于工人实行轮休,每日上班人数不一定相等,实际每日生产量与计划量相比情况如表(增加的车辆数为正数,减少的车辆数为负数)(1)本周三生产了多少辆摩托车?(2)产量最多的一天和产量最少的一天各是哪一天?各生产了多少辆?(3)本周实际生产多少辆?28.(2019七上·新兴期中)某食品厂从生产的袋装食品中抽出20袋样品,检测每袋的质量是否符合标准,超过或不足的部分分别用正、负数表示,数据记录如下表:(1)样品的平均质量比标准质量多还是少?多或少多少克?(2)若标准质量为每袋450克,则抽检的总质量是多少克?答案解析部分一、单选题1.【答案】A【解析】【解答】解:的倒数是:.故答案为:A.【分析】直接利用倒数的定义得出答案.2.【答案】C【解析】【解答】原式故答案为:C.【分析】根据有理数的乘法法则计算即可.3.【答案】A【解析】【解答】解:故答案为:A.【分析】有理数的乘法计算,根据两个有理数相乘的乘法法则进行计算求解即可.4.【答案】A【解析】【解答】解:由图可知,a<-1<0<b<1,∴a+b<0, a-b<0, ab<0.故答案为:A.【分析】看数轴比较大小,得到a<-1<0<b<1, 分别确定各项的正负性即可解答.5.【答案】C【解析】【解答】解:(-6)÷(- )=(-6)×(-3)=18.故答案为:C.【分析】根据有理数的除法法则计算即可,除以应该数,等于乘以这个数的倒数.二、填空题6.【答案】①②④【解析】【解答】①几个非零有理数相乘,若负因数为奇数个,则积为负数,故不符合题意;②如果两个数互为相反数(0除外),则它们的商为﹣1,故不符合题意;③一个数的绝对值一定不小于这个数,符合题意;④﹣a的绝对值不一定等于a,如a=﹣2,不符合题意;错误的有①②④,故答案为:①②④.【分析】根据多个有理数的乘法法则,相反数的意义和绝对值的意义逐条分析即可得出答案.7.【答案】1838【解析】【解答】2+0×6+3×6×6+2×6×6×6+1×6×6×6×6=1838,故答案为:1838.【分析】类比于现在我们的十进制“满十进一”,可以表示满六进一的数为:万位上的数×64+千位上的数×63+百位上的数×62+十位上的数×6+个位上的数,即1×64+2×63+3×62+0×6+2=1838.8.【答案】4或1【解析】【解答】解:∵a,b,c为互不相等的整数,且abc=-4当a=2,b=-2,c=1时,a+b+c=-2+2+1=1;当a=4,b=1,c=-1a+b+c=4+1+(-1)=4.故答案为:4或1.【分析】由已知a,b,c为互不相等的整数,且abc=-4 ,分情况讨论:a,b,c为互不相等的整数,且abc=-4;当a=4,b=1,c=-1,再分别求出a+b+c的值。

9.【答案】2【解析】【解答】0与任何数相乘都为0,一正一负为负,正正得正,负负为正,故当-1×-2时,乘积最大为2【分析】根据两数相乘的规律,同号相乘为正,一正一负为负,0与任何数相乘均为0,分析计算即可。

10.【答案】2.5;;2.5【解析】【解答】∵互为相反数的两个数和为0,∴-2.5的相反数为2.5;∵互为倒数的两个数积为1,∴-2.5的倒数为;∵一个负数的绝对值是它的相反数,∴-2.5的绝对值为2.5;故答案为:2.5;;2.5;【分析】根据相反数的性质,互为相反数的两个数和为0;倒数的性质,互为倒数的两个数积为1;绝对值的定义,一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0,求解即可;11.【答案】(1+2)×23【解析】【解答】(1+2)×23=24.故答案为:(1+2)×23=24.(答案不唯一)【分析】根据有理数混合运算的运算方法,列出符合条件的算式即可.三、计算题12.【答案】(1)解:(﹣)﹣(﹣)(﹣)+(2)解:{1+[ ﹣(﹣)2] (﹣2)3} (﹣+0.5)={1+[ ﹣] (﹣8)} (﹣+ ).【解析】【分析】(1)根据有理数的混合运算法则即可求解;(2)根据有理数的混合运算法则即可求解.13.【答案】(1)解:-30(2)解:20【解析】【分析】(1)首先化简有理数的乘方,再计算分数和乘除法得到答案即可;(2)利用乘法分配律将式子展开,再进行求值即可。

相关文档
最新文档