高中数学人教新课标A版必修3第三章概率3.2古典概型C卷

合集下载

人教A版高中数学必修三练习:第三章概率3.2古典概型含答案

人教A版高中数学必修三练习:第三章概率3.2古典概型含答案

分层训练·进阶冲关A组基础练( 建议用时 20 分钟)1.以下对于古典概型的说法中正确的选项是( B )①试验中全部可能出现的基本领件只有有限个;②每个事件出现的可能性相等;③每个基本领件出现的可能性相等;④基本领件的总数为n, 随机事件 A 若包含 k 个基本领件 , 则 P(A)= .A. ②④B. ①③④C.①④D.③④2.同时扔掷两颗大小完整同样的骰子 , 用(x,y) 表示结果 , 记 A 为“所得点数之和小于 5”, 则事件 A 包含的基本领件数是( D )A.3B.4C.5D.63.从甲、乙、丙三人中任选 2 人作代表 , 则甲被选中的概率为( C )A. B. C. D.14. 从{1,2,3,4,5}中随机选用一个数为a, 从{1,2,3}中随机选用一个数为 b, 则 b>a 的概率是( D )A. B. C. D.5.一枚硬币连掷 3 次, 有且仅有 2 次出现正面向上的概率为( A )A. B. C. D.6. 已知某运动员每次投篮命中的概率等于40%.现采纳随机模拟的方法预计该运动员三次投篮恰有两次命中的概率: 先由计算器产生 0 到 9 之间取整数值的随机数 , 指定 1,2,3,4表示命中,5,6,7,8,9,0表示不命中; 再以每三个随机数为一组 , 代表三次投篮的结果 . 经随机模拟产生了以下 20 组随机数 :907 966 191 925 271 932 812 458569 683 431 257 393 027 556 488730 113 537 989据此预计 , 该运动员三次投篮恰有两次命中的概率为( B )7.从 1,2,3,4,5 这 5 个数字中 , 不放回地任取两数 , 两数都是奇数的概率是.8.从 1,2,3,4,5 中随意拿出两个不一样的数 , 其和为 5 的概率是 .9.现有 5 根竹竿 , 它们的长度 ( 单位 :m) 分别为 2.5,2.6,2.7,2.8,2.9,若从中一次随机抽取 2 根竹竿 , 则它们的长度恰巧相差0.3 m的概率为0.2 .10. 若以连续掷两次骰子分别获取的点数m,n 作为点 P 的坐标 , 则点 P落在圆 x2+y2=16 内的概率是.11.一个口袋内装有大小相等的 1 个白球和已编有不一样号码的 3 个黑球 , 从中摸出 2 个球 . 求:(1)基本领件总数 ;(2)事件“摸出 2 个黑球”包含多少个基本领件 ?(3)摸出 2 个黑球的概率是多少 ?【分析】因为 4 个球的大小相等 ,摸出每个球的可能性是均等的,所以是古典概型 .(1)将黑球编号为黑1 ,黑2 ,黑3,从装有4个球的口袋内摸出2个球,全部基本领件构成会合Ω ={( 黑1 ,黑2 ),( 黑1,黑3),( 黑1 ,白),( 黑2,黑3),( 黑2 , 白),( 黑3,白)}, 共有 6 个基本领件 .(2)事件“摸出 2 个黑球” ={( 黑1,黑2 ),( 黑2,黑3),( 黑1,黑3 )}, 共 3 个基本领件 .(3)基本领件总数 n=6, 事件“摸出两个黑球” 包含的基本领件数 m=3,故P= .12.一个袋中装有四个形状大小完整同样的球 , 球的编号分别为1,2,3,4.(1)从袋中随机取两个球 , 求拿出的球的编号之和不大于 4 的概率 .(2)先从袋中随机取一个球 , 该球的编号为 m,将球放回袋中 , 而后再从袋中随机取一个球 , 该球的编号为 n, 求 n<m+2的概率 .【分析】 (1) 从袋中随机取两个球 ,其全部可能的结果构成的基本领件有:1 和 2,1 和 3,1 和 4,2 和 3,2 和 4,3 和 4, 共 6 个.从袋中拿出的两个球的编号之和不大于 4 的事件有 :1 和 2,1 和 3, 共 2 个.所以所求事件的概率为P= = .(2)先从袋中随机取一个球 ,记下编号为 m, 放回后 ,再从袋中随机取一个球,记下编号为 n, 其全部可能的结果 (m,n)有:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),共16个.又知足条件 n ≥m+2的事件有(1,3),(1,4),(2,4),共3个.所以知足条件n ≥m+2的事件的概率为P1 =.故知足条件 n<m+2的事件的概率为1-P 1=1-=.B组提高练( 建议用时 20 分钟)13.先后扔掷两枚平均的正方体骰子 ( 它们的六个面分别标有点数1,2,3,4,5,6),骰子向上的面的点数分别为X,Y, 则 lo Y=1的概率为( C )A. B. C. D.14.从个位数与十位数之和为奇数的两位数中任取一个 , 其个位数为 0 的概率是( D)A. B. C. D.15.一只蚂蚁在以下图的树枝上寻找食品 , 假设蚂蚁在每个歧路口都会随机地选择一条路径 , 则它能获取食品的概率为.16.经过模拟试验 , 产生了 20 组随机数 :6830 3013 7055 7430 7740 4422 7884 2604 3346 09526807 9706 5774 5725 6576 5929 9768 6071 9138 6754假如恰有三个数在1,2,3,4,5,6中,则表示恰有三次击中目标, 问四次射击中恰有三次击中目标的概率约为.17.某小组共有 A,B,C,D,E 五位同学 , 他们的身高 ( 单位 : 米) 及体重指标( 单位:千克/ 米2) 以下表所示 :A B C D E身高 1.69 1.73 1.75 1.79 1.82体重指标19.225.118.523.320.9 (1)从该小组身高低于 1.80 的同学中任选 2 人, 求选到的 2 人身高都在1.78 以下的概率 .(2)从该小组同学中任选 2 人, 求选到的 2 人的身高都在 1.70 以上且体重指标都在 [18.5,23.9) 中的概率 .【分析】(1) 从身高低于 1.80 的 4 名同学中任选 2 人,其全部可能的结果构成的基本领件有 :(A,B),(A,C),(A,D),(B,C),(B,D),(C,D)共6个.设“选到的 2 人身高都在 1.78 以下”为事件 M, 其包含事件有 3 个,故P(M)= = .(2)从该小组 5 名同学中任选 2 人,其全部可能的结果构成的基本领件有:(A,B),(A,C),(A,D),(A,E),(B,C),(B,D),(B,E),(C,D),(C,E),(D,E),共10个.设“选到的 2 人的身高都在 1.70 以上且体重指标都在 [18.5,23.9) 中”为事件 N, 则事件 N 包含事件有 :(C,D),(C,E),(D,E), 共 3 个.则 P(N)=.18.设甲、乙、丙三个乒乓球协会的运动员人数分别为 27,9,18. 现采纳分层抽样的方法从这三个协会中抽取 6 名运动员组队参加竞赛 .(1) 求应从这三个协会中分别抽取的运动员的人数 .(2) 将抽取的 6 名运动员进行编号 , 编号分别为 A1,A 2 ,A 3,A 4,A 5,A 6. 现从这 6 名运动员中随机抽取 2 人参加双打竞赛 .①用所给编号列出全部可能的结果;②设 A 为事件“编号为A5和 A6的两名运动员中起码有 1 人被抽到” ,求事件 A发生的概率 .【分析】(1) 应从甲、乙、丙三个协会中抽取的运动员人数分别为3,1,2.(2)①从 6 名运动员中随机抽取 2 人参加双打竞赛的全部可能结果为{A 1 ,A 2 },{A 1 ,A 3 },{A 1 ,A 4 },{A 1 ,A 5 },{A 1,A 6 },{A 2 ,A 3 },{A 2 ,A 4 },{A 2 ,A5 },{A 2,A6 },{A 3 ,A 4},{A 3 ,A5 },{A 3 ,A 6},{A 4 ,A 5 },{A 4 ,A 6 },{A 5 ,A 6 },共15种.②编号为 A5和 A 6的两名运动员中起码有 1 人被抽到的全部可能结果为{A 1 ,A 5 },{A 1 ,A 6 },{A 2 ,A 5 },{A 2 ,A 6 },{A 3,A 5 },{A 3 ,A 6 },{A 4 ,A 5 },{A 4 ,A 6 },{A 5,A 6},共9种.所以 ,事件 A 发生的概率 P(A)== .C组培优练 ( 建议用时 15 分钟 )19.有五根细木棒 , 长度分别为 1,3,5,7,9(cm), 从中任取三根 , 能搭成三角形的概率是 ( D )A. B. C. D.20.某泊车场暂时泊车准时段收费 , 收费标准以下 : 每辆汽车一次泊车不超出 1 小时收费 6 元, 超出 1 小时的部分每小时收费 8 元( 不足 1 小时按 1 小时计算 ). 现有甲、乙两人在该地泊车 , 两人泊车都不超出 4 小时.(1)若甲泊车 1 小时以上且不超出 2 小时的概率为 , 泊车资多于 14 元的概率为, 求甲的泊车资为 6 元的概率 .(2)若甲、乙两人每人泊车的时长在每个时段的可能性同样 , 求甲、乙两人泊车资之和为 28 元的概率 .【分析】 (1) 记“一次泊车不超出 1 小时”为事件 A,“一次泊车 1 到 2 小时”为事件 B,“一次泊车 2 到 3 小时”为事件 C,“一次泊车 3 到 4 小时”为事件 D.由已知得 P(B)= ,P(C+D)=.又事件 A,B,C,D 互斥 ,所以 P(A)=1- - = .所以甲的泊车资为 6 元的概率为.(2) 易知甲、乙泊车时间的基本领件有(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),共16个;而“泊车资之和为28 元”的事件有 (1,3),(2,2),(3,1),共3个,所以所求概率为.封闭 Word 文档返回原板块。

人教A版高中数学必修3第三章 概率3.2 古典概型习题(3)

人教A版高中数学必修3第三章 概率3.2 古典概型习题(3)

人教版高中数学必修精品教学资料第三章概率3.2 古典概型3.2.1 古典概型3.2.2 (整数值)随机数(random numbers)的产生A级基础巩固一、选择题1.下列是古典概型的是 ( )A.任意抛掷两枚骰子,所得点数之和作为基本事件B.求任意的一个正整数平方的个位数字是1的概率,将取出的正整数作为基本事件时C.从甲地到乙地共n条路线,求某人正好选中最短路线的概率D.抛掷一枚均匀硬币首次出现正面为止解析:A项中由于点数的和出现的可能性不相等,故A不是;B项中的基本事件是无限的,故B不是;C项中满足古典概型的有限性和等可能性,故C是;D项中基本事件既不是有限个也不具有等可能性,故D不是.答案:C2.小明同学的QQ密码是由0,1,2,3,4,5,6,7,8,9这10个数字中的6个数字组成的六位数,由于长时间未登录QQ,小明忘记了密码的最后一个数字,如果小明登录QQ 时密码的最后一个数字随意选取,则恰好能登录的概率是( )A.1105B.1104C.1102D.110解析:只考虑最后一位数字即可,从0至9这10个数字中随机选择一个作为密码的最后一位数字有10种可能,选对只有一种可能,所以选对的概率是110.答案:D3.同时投掷两颗大小完全相同的骰子,用(x,y)表示结果,记A为“所得点数之和小于5”,则事件A包含的基本事件数是( )A.3 B.4 C.5 D.6解析:事件A包含的基本事件有6个:(1,1),(1,2),(1,3),(2,1),(2,2),(3,1).答案:D4.已知集合A ={2,3,4,5,6,7},B ={2,3,6,9},在集合A ∪B 中任取一个元素,则它是集合A∩B 中的元素的概率是( )A.23B.35C.37D.25解析:A∪B={2,3,4,5,6,7,9},A ∩B ={2,3,6},所以由古典概型的概率公式得,所求的概率是37. 答案:C5.下图是某公司10个销售店某月销售某产品数量(单位:台)的茎叶图,则数据落在区间[22,30)内的概率为( )A .0.2B .0.4C .0.5D .0.6解析:10个数据落在区间[22,30)内的数据有22,22,27,29共4个,因此,所求的频率即概率为410=0.4.故选B. 答案:B二、填空题6.从字母a ,b ,c ,d ,e 中任取两个不同字母,则取到字母a 的概率为________. 解:总的取法有:ab ,ac ,ad ,ae ,bc ,bd ,be ,cd ,ce ,de ,共10种,其中含有a 的有ab ,ac ,ad ,ae 共4种.故所求概率为410=25. 答案:257.分别从集合A ={1,2,3,4}和集合B ={5,6,7,8}中各取一个数,则这两数之积为偶数的概率是________.解析:基本事件总数为4×4=16,记事件M ={两数之积为偶数},则M 包含的基本事件有12个,从而所求概率为1216=34. 答案:348.某人有4把钥匙,其中2把能打开门,现随机地取1把钥匙试着开门,不能开门的就扔掉,问第二次才能打开门的概率是________;如果试过的钥匙不扔掉,这个概率是________.解析:第二次打开门,说明第一次没有打开门,故第二次打开门的概率为24×23=13.如果试过的钥匙不扔掉,这个概率为24×24=14. 答案:13 14三、解答题9.用红、黄、蓝三种不同颜色给图中3个矩形随机涂色,每个矩形只涂一种颜色,求3个矩形颜色都不同的概率.解:所有可能的基本事件共有27个,如图所示.记“3个矩形颜色都不同”为事件A ,由图,可知事件A 的基本事件有2×3=6(个),故P(A)=627=29. 10.(2015·天津卷)设甲、乙、丙3个乒乓球协会的运动员人数分别为27,9,18.现采用分层抽样的方法从这3个协会中抽取6名运动员组队参加比赛.(1)求应从这3个协会中分别抽取的运动员的人数.(2)将抽取的6名运动员进行编号,编号分别为A 1,A 2,A 3,A 4,A 5,A 6.现从这6名运动员中随机抽取2人参加双打比赛.①用所给编号列出所有可能的结果;②设事件A 为“编号为A 5和A 6的2名运动员中至少有1人被抽到”,求事件A 发生的概率.解:(1)应从甲、乙、丙三个协会中抽取的运动员人数分别为3,1,2.(2)①从6名运动员中随机抽取2人参加双打比赛的所有可能结果为{A 1,A 2},{A 1,A 3},{A 1,A 4},{A 1,A 5},{A 1,A 6},{A 2,A 3},{A 2,A 4},{A 2,A 5},{A 2,A 6},{A 3,A 4},{A 3,A 5},{A 3,A 6},{A 4,A 5},{A 4,A 6},{A 5,A 6},共15种.②编号为A 5和A 6的两名运动员中至少有1人被抽到的所有可能结果为{A 1,A 5},{A 1,A 6},{A 2,A 5},{A 2,A 6},{A 3,A 5},{A 3,A 6},{A 4,A 5},{A 4,A 6},{A 5,A 6},共9种.因此,事件A 发生的概率P(A)=915=35. B 级 能力提升1.四条线段的长度分别是1,3,5,7,从这四条线段中任取三条,则所取出的三条线段能构成一个三角形的概率是( )A.14B.13C.12D.25解析:从四条长度各异的线段中任取一条,每条被取出的可能性均相等,所以该问题属于古典概型.又所有基本事件包括(1,3,5),(1,3,7),(1,5,7),(3,5,7),共四种,其中能构成三角形的有(3,5,7)一种,故概率为P =14. 答案:A2.将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为________.解析:2本不同的数学书用a 1,a 2表示,语文书用b 表示,由Ω={(a 1,a 2,b),(a 1,b ,a 2),(a 2,a 1,b),(a 2,b ,a 1),(b ,a 1,a 2)(b ,a 2,a 1)}.于是两本数学书相邻的情况有4种,故所求概率为46=23. 答案:233.一个盒子里装有三张卡片,分别标记有数字1,2,3,这三张卡片除标记的数字外完全相同.随机有放回地抽取3次,每次抽取1张,将抽取的卡片上的数字依次记为a ,b ,c.求:(1)“抽取的卡片上的数字满足a +b =c”的概率;(2)“抽取的卡片上的数字a ,b ,c 不完全相同”的概率.解:(1)由题意知,(a ,b ,c)所有的可能为(1,1,1),(1,1,2),(1,1, 3),(1,2,1),(1,2,2),(1,2,3),(1,3,1),(1,3,2),(1,3,3),(2,1,1),(2,1,2),(2,1,3),(2,2,1),(2,2,2),(2,2,3),(2,3,1),(2,3,2),(2,3,3),(3,1,1),(3,1,2),(3,1,3),(3,2,1),(3,2,2),(3,2,3),(3,3,1),(3,3,2),(3,3,3),共27种.设“抽取的卡片上的数字满足a +b =c”为事件A ,则事件A 包括(1,1,2),(1,2,3),(2,1,3),共3种.所以P(A)=327=19.因此,“抽取的卡片上的数字满足a +b =c”的概率为19. (2)设“抽取的卡片上的数字a ,b ,c 不完全相同”为事件B ,则事件B -包括(1,1,1),(2,2,2),(3,3,3),共3种.所以P(B)=1-P(B -)=1-327=89. 因此,“抽取的卡片上的数字a ,b ,c 不完全相同”的概率为89.。

高中数学必修3(人教A版)第三章概率3.2知识点总结含同步练习及答案

高中数学必修3(人教A版)第三章概率3.2知识点总结含同步练习及答案

3 18
)
B.
4 18
C.
5 18
D.
6 18
答案: C 解析: 正方形四个顶点可以确定
6 条直线,甲乙各自任选一条共有 36 个基本事件.4 组邻边和对角线中两条直线相互垂直 10 5 的情况有 5 种,包括 10 个基本事件,根据古典概型公式得到结果 p = . = 36 18
4. 有 20 张卡片,每张卡片上分别标有两个连续的自然数 k , k + 1 ,其中 k = 0, 1, 2, ⋯ , 19 .从这 20 张卡片中任取一 张,记事件"该卡片上两个数的各位数字之和(例如:若取到标有 9, 10 的卡片,则卡片上两个数的各位数字之和为
所以取出的 2 个球一个是白球,另一个是红球的概率为
P ( B) =
某高级中学共有学生 3000 名,各年级男、女生人数如下表:
8 . 15
已知在全校学生中抽取 1 名学生,抽到高二年级女生的概率是 0.18 . (1)求 x 的值; (2)现用分层抽样的方法在全校学生中抽取 120 名学生,问应在高三年级抽取学生多少名? (3)在(2)的前提下,已知 y ⩾ 345 ,z ⩾ 345,求高三年级男生比女生多的概率. 解:(1)因为 (2)高三年级总人数为
y = kx + b 不经过第三象限的概率为 (
A.
2 9
B.
1 3
)
C.
4 9Байду номын сангаас
D.
5 9
答案: A 解析: 若直线
y = kx + b 不经过第三象限,则有 { k = −1, 和 { k = −1, b = 1, b = 2.
则满足条件的概率为

高中数学人教新课标A版必修3 第三章 概率 3.3几何概型C卷

高中数学人教新课标A版必修3 第三章 概率 3.3几何概型C卷

高中数学人教新课标A版必修3 第三章概率 3.3几何概型C卷姓名:________ 班级:________ 成绩:________一、选择题 (共7题;共14分)1. (2分)在长为10 cm的线段AB上任取一点P,并以线段AP为边长作正方形,这个正方形的面积介于25 cm2与49 cm2之间的概率为()A .B .C .D .2. (2分)如图,矩形ABCD中,点E为边CD的中点。

若在矩形ABCD内部随机取一个点Q,则点Q取自△ABE 内部的概率等于()A .B .C .D .3. (2分) (2016高二上·抚州期中) 如图面积为4的矩形ABCD中有一个阴影部分,若往矩形ABCD投掷1000个点,落在矩形ABCD的非阴影部分中的点数为400个,试估计阴影部分的面积为()A . 2.2B . 2.4C . 2.6D . 2.84. (2分)在[-2,3]上随机取一个数x,则的概率为A .B .C .D .5. (2分) AB是半径为1的圆的直径,在AB上的任意一点M,过点M作垂直于AB的弦,则弦长大于的概率是()A .B .C .D .6. (2分) (2016高二下·黑龙江开学考) 在长为12cm的线段AB上任取一点M,并以线段AM为一边作正方形,则此正方形的面积介于36cm2与81cm2之间的概率为()A .B .C .D .7. (2分)已知是所在平面内一点,,现将一粒红豆随机撒在内,则红豆落在内的概率是()A .B .C .D .二、单选题 (共1题;共2分)8. (2分)(2019·吴忠模拟) 某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是()A .B .C .D .三、填空题 (共3题;共3分)9. (1分)在边长为2的正方形ABCD中有一个不规则的图形M,用随机模拟方法来估计不规则图形的面积.若在正方形ABCD中随机产生了10000个点,落在不规则图形M内的点数恰有2000个,则在这次模拟中,不规则图形M的面积的估计值为________ .10. (1分)在长为10cm的线段AB上任取一点C.现作一矩形,邻边长分别等于线段AC,CB的长,则该矩形面积不小于9cm2的概率为________11. (1分) (2016高二上·辽宁期中) 欧阳修《卖油翁》中写到:(翁)乃取一葫芦置于地,以钱覆其口,徐以杓酌油沥之,自钱入孔入,而钱不湿,可见“行行出状元”,卖油翁的技艺让人叹为观止,若铜钱是直径为2cm 的圆,中间有边长为0.5cm的正方形孔,若你随机向铜钱上滴一滴油,则油(油滴的大小忽略不计)正好落入孔中的概率为________.四、解答题 (共3题;共25分)12. (5分)设有关x的一元二次方程9x2+6ax﹣b2+4=0.(1)若a是从1,2,3这三个数中任取的一个数,b是从0,1,2这三个数中任取的一个数,求上述方程有实根的概率;(2)若a是从区间[0,3]中任取的一个数,b是从区间[0,2]中任取的一个数,求上述方程有实根的概率.13. (10分)(2016·山东文) 某儿童节在“六一”儿童节推出了一项趣味活动.参加活动的儿童需转动如图所示的转盘两次,每次转动后,待转盘停止转动时,记录指针所指区域中的数.记两次记录的数分别为x,y.奖励规则如下:①若xy≤3,则奖励玩具一个;②若xy≥8,则奖励水杯一个;③其余情况奖励饮料一瓶.假设转盘质地均匀,四个区域划分均匀,小亮准备参加此项活动.(1)求小亮获得玩具的概率;(2)请比较小亮获得水杯与获得饮料的概率的大小,并说明理由.14. (10分) (2017高三上·九江开学考) 已知函数f(x)=ax2﹣2bx+a(a,b∈R)(1)若a从集合{0,1,2,3}中任取一个元素,b从集合{0,1,2,3}中任取一个元素,求方程f(x)=0恰有两个不相等实根的概率;(2)若b从区间[0,2]中任取一个数,a从区间[0,3]中任取一个数,求方程f(x)=0没有实根的概率.参考答案一、选择题 (共7题;共14分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、二、单选题 (共1题;共2分)8-1、三、填空题 (共3题;共3分)9-1、10-1、11-1、四、解答题 (共3题;共25分)12-1、13-1、13-2、14-1、14-2、。

人教新课标A版 高中数学必修3 第三章概率 3.2.1古典概型 同步测试(I)卷

人教新课标A版 高中数学必修3 第三章概率 3.2.1古典概型 同步测试(I)卷

人教新课标A版高中数学必修3 第三章概率 3.2.1古典概型同步测试(I)卷姓名:________ 班级:________ 成绩:________一、单选题 (共15题;共30分)1. (2分) (2016高一下·江门期中) 已知函数,其中,则使得f(x)>0在上有解的概率为()A .B .C .D . 02. (2分),,则的概率是()A .B .C .D .3. (2分)从数字1,2,3中任取两个不同的数字构成一个两位数,则这个两位数大于30的概率为()A .B .C .4. (2分)从一副标准的52张扑克牌(不含大王和小王)中任意抽一张,抽到黑桃Q的概率为()A .B .C .D .5. (2分)袋中共有6个除了颜色外完全相同的球,其中有1个红球,2个白球和3个黑球.从袋中任取两球,两球颜色不同的概率为()A .B .C .D .6. (2分)某产品分甲、乙、丙三级,其中乙、丙两级均属次品,在正常生产情况下,出现乙级品和丙级品的概率分别是5%和3%,则抽验一只是正品(甲级)的概率为()A . 0.95B . 0.97C . 0.92D . 0.087. (2分)一个单位有职工80人,其中业务人员56人,管理人员8人,服务人员16人,为了解职工的某种情况,决定采取分层抽样的方法。

抽取一个容量为10的样本,每个管理人员被抽到的概率为()B .C .D .8. (2分)甲、乙两人独立地解决同一问题,甲解决这个问题的概率是,乙解决这个问题的概率是,那么其中至少有一人解决这个问题的概率是A .B .C .D .9. (2分) (2018高二上·铜仁期中) 集合 ,集合,先后掷两颗骰子,掷第一颗骰子得点数为 ,掷第二颗骰子得点数为 ,则的概率等于()A .B .C .D .10. (2分)(2017·昆明模拟) 在数字1、2、3、4中随机选两个数字,则选中的数字中至少有一个是偶数的概率为()A .B .C .D .11. (2分) (2017高二下·故城期末) 将一颗质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛两次,记第一次出现的点数为,第二次出现的点数为,则事件“ ”的概率为()A .B .C .D .12. (2分)在集合{1,2,3,4…,10}中任取一个元素,所取元素恰好满足方程的概率为()A .B .C .D .13. (2分) (2017高二下·莆田期末) 甲、乙两人练习射击,命中目标的概率分别为和,甲、乙两人各射击一次,目标被命中的概率为()A .B .C .D .14. (2分)若P(A∪B)=P(A)+P(B)=1,事件A与事件B的关系是()A . 互斥不对立B . 对立不互斥C . 互斥且对立D . 以上答案都不对15. (2分) (2017高一下·郑州期末) 把黑、红、白3张纸牌分给甲、乙、丙三人,每人一张,则事件“甲分得黑牌”与“乙分得黑牌”是()A . 对立事件B . 必然事件C . 不可能事件D . 互斥但不对立事件二、填空题 (共5题;共6分)16. (1分) (2016高二下·姜堰期中) 掷一枚硬币,出现正面向上的概率为________.17. (1分)甲、乙两队进行足球比赛,若甲获胜的概率为0.3,甲不输的概率为0.8,则两队踢成平局的概率为________18. (1分) (2019高一下·西城期末) 从分别写有1,2,3,4的4张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为________.19. (1分)从2012名学生中选50名学生参加中学生作文大赛,若采用下面的方法选取:先用简单随机抽样的方法从2012人中剔除12人,剩下的再按系统抽样的抽取,则每人入选的概率________ (填相等或不相等)20. (2分)(2016·江苏模拟) 分别从集合A={1,2,3,4}和集合B={5,6,7,8}中各取一个数,则这两数之积为偶数的概率是________.三、解答题 (共5题;共25分)21. (5分) (2017高三上·连城开学考) 某班从6名干部中(其中男生4人,女生2人)选3人参加学校的义务劳动.(1)设所选3人中女生人数为ξ,求ξ的分布列及Eξ;(2)求男生甲或女生乙被选中的概率;(3)在男生甲被选中的情况下,求女生乙也被选中的概率.22. (5分)某班50名学生在元旦联欢时,仅买了甲、乙两种瓶装饮料供饮用.在联欢会上喝掉36瓶甲饮料,喝掉39瓶乙饮料.假设每个人至多喝1瓶甲饮料和1瓶乙饮料,并且有5名学生两种饮料都没有喝,随机选取该班的1名学生,计算下列事件的概率.(Ⅰ)他没有喝甲饮料;(Ⅱ)他只喝了1瓶乙饮料;(Ⅲ)他喝了1瓶甲饮料和1瓶乙饮料.23. (5分) (2016高一下·玉林期末) 袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分别为1,2.(1)从以上五张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率;(2)现往袋中再放入一张标号为0的绿色卡片,从这六张卡片中任取两张,求这两张卡片颜色不同且标号之和不大于4的概率.24. (5分) (2017高二下·深圳月考) 某中学校本课程开设了A、B、C、D共4门选修课,每个学生必须且只能选修1门选修课,现有该校的甲、乙、丙3名学生:(Ⅰ)求这3名学生选修课所有选法的总数;(Ⅱ)求恰有2门选修课没有被这3名学生选择的概率;(Ⅲ)求A选修课被这3名学生选择的人数的分布列 .25. (5分) (2016高二上·黑龙江期中) 在甲、乙两个盒子中分别装有标号为1、2、3、4的四个球,现从甲、乙两个盒子中各取出1个球,每个小球被取出的可能性相等.(Ⅰ)求取出的两个球上标号为相邻整数的概率;(Ⅱ)求取出的两个球上标号之和能被3整除的概率.参考答案一、单选题 (共15题;共30分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、二、填空题 (共5题;共6分) 16-1、17-1、18-1、19-1、20-1、三、解答题 (共5题;共25分)21-1、21-2、21-3、22-1、23-1、23-2、24-1、25-1、第11 页共11 页。

人教A版高中数学必修3第三章 概率3.2 古典概型习题(1)

人教A版高中数学必修3第三章 概率3.2 古典概型习题(1)

A 级 基础巩固一、选择题1.袋中有2个红球,2个白球,2个黑球,从里面任意摸2个小球,下列不是基本事件的是( )A .{正好2个红球}B .{正好2个黑球}C .{正好2个白球}D .{至少1个红球}解析:至少1个红球包括“一红一白”,“一红一黑”,“二个红球”. 答案:D2.一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都会随机地选择一条路径,则它能获得食物的概率为( )A.12B.13C.38D.58解析:该树枝的树梢有6处,有2处能找到食物,所以获得食物的概率为26=13.答案:B3.四条线段的长度分别是1,3,5,7,从这四条线段中任取三条,则所取出的三条线段能构成一个三角形的概率是( )A.14B.13C.12D.25解析:从四条长度各异的线段中任取一条,每条被取出的可能性均相等,所以该问题属于古典概型.又所有基本事件包括(1,3,5),(1,3,7),(1,5,7),(3,5,7)四种,而能构成三角形的基本事件只有(3,5,7)一种,所以所取出的三条线段能构成一个三角形的概率是P =14.答案:A4.若以连续掷两枚骰子分别得到的点数m 、n 作为点P 的横、纵坐标,则点P 落在圆x 2+y 2=9内的概率为( )A.536B.29C.16D.19解析:掷骰子共有6×6=36(种)可能情况,而落在x 2+y 2=9内的情况有(1,1),(1,2),(2,1),(2,2),共4种,故所求概率P =436=19.答案:D5.下图是某公司10个销售店某月销售某产品数量(单位:台)的茎叶图,则数据落在区间[22,30)内的概率为( )A .0.2B .0.4C .0.5D .0.6解析:10个数据落在区间[22,30)内的数据有22,22,27,29共4个,因此,所求的概率为410=0.4.答案:B 二、填空题6.盒子中有10个相同的小球分别标为1,2,3,4,5,6,7,8,9,10,从中任取一球,则此球的号码为3的倍数的概率为________.解析:由题意得基本事件总个数为10. 设A =抽出一球的号码为3的倍数, 则A 事件的基本事件个数为3个, 所以P (A )=310.答案:3107.从含有3件正品、1件次品的4件产品中不放回地任取两件,则取出的两件中恰有一件次品的概率是________.解析:从4件产品中不放回地任取两件,共有6个基本事件,事件“取出的两件中恰有一件次品”的基本事件有3个,故概率为12.答案:12.8.有20张卡片,每张卡片上分别标有两个连续的自然数k ,k +1,其中k =0,1,2,…,19.从这20张卡片中任取一张,记事件“该卡片上两个数的各位数字之和(例如:若取到标有9,10的卡片,则卡片上两个数的各位数字之和为9+1+0=10)不小于14”为事件A ,则P (A )=________.解析:从这20张卡片中任取一张:(0,1),(1,2),(2,3),(3,4),(4,5),(5,6),(6,7),(7,8),(8,9),(9,10),(10,11),(11,12),(12,13),(13,14),(14,15),(15,16),(16,17),(17,18),(18,19),(19,20),共有20个基本事件.卡片上两个数的各位数字之和不小于14的有:(7,8),(8,9),(16,17),(17,18),(18,19),共5个基本事件,则P (A )=520=14.答案:14三、解答题9.某商场举行购物抽奖促销活动,规定每位顾客从装有编号为0,1,2,3四个相同小球的抽奖箱中,每次取出一球,记下编号后放回,连续取两次,若取出的两个小球号码相加之和等于6,则中一等奖,等于5中二等奖,等于4或3中三等奖.(1)求中三等奖的概率; (2)求中奖的概率.解:设“中三等奖”为事件A,“中奖”为事件B,从四个小球中有放回地取两个有(0,0),(0,1),(0,2),(0,3),(1,0),(1,1),(1,2),(1,3),(2,0),(2,1),(2,2),(2,3),(3,0),(3,1),(3,2),(3,3),共16种不同的结果.(1)取出的两个小球号码相加之和等于4或3的取法有:(1,3),(2,2),(3,1),(0,3),(1,2),(2,1),(3,0),共7种结果,则中三等奖的概率为P(A)=7 16.(2)由(1)知两个小球号码相加之和等于3或4的取法有7种;两个小球号码相加之和等于5的取法有2种:(2,3),(3,2).两个小球号码相加之和等于6的取法有1种:(3,3).则中奖的概率为P(B)=7+2+116=58.10.设甲、乙、丙3个乒乓球协会的运动员人数分别为27,9,18.现采用分层抽样的方法从这3个协会中抽取6名运动员组队参加比赛.(1)求应从这3个协会中分别抽取的运动员的人数;(2)将抽取的6名运动员进行编号,编号分别为A1,A2,A3,A4,A5,A6.现从这6名运动员中随机抽取2人参加双打比赛.①用所给编号列出所有可能的结果;②设事件A为“编号为A5和A6的2名运动员中至少有1人被抽到”,求事件A发生的概率.解:(1)应从甲、乙、丙三个协会中抽取的运动员人数分别为3,1,2.(2)①从6名运动员中随机抽取2人参加双打比赛的所有可能结果为{A1,A2},{A1,A3},{A1,A4},{A1,A5},{A1,A6},{A2,A3},{A2,A4},{A2,A5},{A2,A6},{A3,A4},{A3,A5},{A3,A6},{A4,A5},{A4,A6},{A 5,A 6},共15种.②编号为A 5和A 6的两名运动员中至少有1人被抽到的所有可能结果为{A 1,A 5},{A 1,A 6},{A 2,A 5},{A 2,A 6},{A 3,A 5},{A 3,A 6},{A 4,A 5},{A 4,A 6},{A 5,A 6},共9种.因此,事件A 发生的概率P (A )=915=35. B 级 能力提升1.从分别标有1,2,…,9的9张卡片中不放回地随机抽取2次,每次抽取1张,则抽到的2张卡片上的数奇偶性不同的概率是( )A.518B.49C.59D.79答案:C2.将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为________.解析:2本不同的数学书用a 1,a 2表示,语文书用b 表示,由Ω={(a 1,a 2,b ),(a 1,b ,a 2),(a 2,a 1,b ),(a 2,b ,a 1),(b ,a 1,a 2),(b ,a 2,a 1)}.于是两本数学书相邻的情况有4种,故所求概率为46=23.答案:233.某儿童乐园在六一儿童节推出了一项趣味活动.参加活动的儿童需转动如图所示的转盘两次,每次转动后,待转盘停止转动时,记录指针所指区域中的数.设两次记录的数分别为x ,y .奖励规则如下:①若xy ≤3,则奖励玩具一个; ②若xy ≥8,则奖励水杯一个;③其余情况奖励饮料一瓶.假设转盘质地均匀,四个区域划分均匀.小亮准备参加此项活动.(1)求小亮获得玩具的概率;(2)请比较小亮获得水杯与获得饮料的概率的大小,并说明理由.解:用数对(x,y)表示儿童两次转动转盘记录的数,其活动记录与奖励情况如下:123 41123 4224683369124481216(1)xy≤3情况有5种,所以小亮获得玩具的概率为5 16.(2)xy≥8情况有6种,所以获得水杯的概率为616=38.所以小亮获得饮料的概率为1-516-38=516<38,即小亮获得水杯的概率大于获得饮料的概率.。

高中数学人教新课标A版 必修3 第三章 概率 3.1.3概率的基本性质C卷

高中数学人教新课标A版 必修3 第三章 概率 3.1.3概率的基本性质C卷

高中数学人教新课标A版必修3 第三章概率 3.1.3概率的基本性质C卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分)下列各组事件中,不是互斥事件的是()A . 一个射手进行一次射击,命中环数大于8与命中环数小于6B . 统计一个班级数学期中考试成绩,平均分数低于90分与平均分数高于90分C . 播种菜籽100粒,发芽90粒与至少发芽80粒D . 检查某种产品,合格率高于70%与合格率为70%2. (2分) (2018高二上·福建期中) 袋中装有黑、白两种颜色的球各三个,现从中取出两个球.设事件P表示“取出的都是黑球”;事件Q表示“取出的都是白球”;事件R表示“取出的球中至少有一个黑球”.则下列结论正确的是()A . P与R是互斥事件B . P与Q是对立事件C . Q和R是对立事件D . Q和R是互斥事件,但不是对立事件3. (2分)投篮测试中,每人投3次,至少投中2次才能通过测试。

已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为()A . 0.648B . 0.432C . 0.36D . 0.3124. (2分) (2019高二上·思明期中) 围棋盒子中有多粒黑子和白子,已知从中取出2粒都是黑子的概率为,都是白子的概率是,则从中任意取出2粒恰好是同一色的概率是()A .B .C .D . 15. (2分)设为两个事件,且,,则()A . 与互斥B . 与对立C .D . A、B、C都不对6. (2分) (2018高二上·宾阳月考) 某射手一次射击中,击中10环、9环、8环的概率分别是0.24,0.28,0.19,则这个射手在一次射击中至多击中8环的概率是()A . 0.48B . 0.52C . 0.71D . 0.297. (2分)小明同学的QQ密码是由0,1,2,3,4,5,6,7,8,9这10个数字中的6个数字组成的六位数,由于长时间未登录QQ,小明忘记了密码的最后一个数字,如果小明登录QQ时密码的最后一个数字随意选取,则恰好能登录的概率是()A .B .C .D .8. (2分)现有语文、数学、英语、物理和化学共5本书,从中任取1本,取出的是理科书的概率为()A .B .C .D .二、填空题 (共3题;共3分)9. (1分)(2020·秦淮模拟) 某班要选一名学生做代表,每个学生当选是等可能的,若“选出代表是男生”的概率是“选出代表是女生”的概率的,则这个班的女生人数占全班人数的百分比是________.10. (1分)三支球队中,甲队胜乙队的概率为0.4,乙队胜丙队的概率为0.5,丙队胜甲队的概率为0.6.比赛顺序是:第一局甲队对乙队,第二局是第一局中的胜者对丙队,第三局是第二局中的胜者对第一局中的败者,第四局为第三局中的胜者对第二局中的败者,则乙队连胜四局的概率是________.11. (1分)在一个由三个元件A,B,C构成的系统中,已知元件A,B,C正常工作的概率分别是,,,且三个元件正常工作与否相互独立,则这个系统正常工作的概率为:________.三、解答题 (共3题;共35分)12. (15分) (2016高一下·汉台期中) 袋中有大小相同的红、黄两种颜色的球各1个,从中任取1只,有放回地抽取3次.求:(1) 3只全是红球的概率;(2) 3只颜色全相同的概率;(3) 3只颜色不全相同的概率.13. (10分) (2018高一下·南阳期中) 由经验得知,在某商场付款处排队等候付款的人数及概率如表:排队人数人以上概率(1)至多有人排队的概率是多少?(2)至少有人排队的概率是多少?14. (10分)某医院一天派出医生下乡医疗,派出医生人数及其概率如下表所示.医生人数01234≥5概率0.10.16x y0.2z(1)若派出医生不超过2人的概率为0.56,求x的值;(2)若派出医生最多4人的概率为0.96,至少3人的概率为0.44,求y,z的值.参考答案一、选择题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共3题;共3分)9-1、10-1、11-1、三、解答题 (共3题;共35分)12-1、12-2、12-3、13-1、13-2、14-1、14-2、。

高中数学第三章概率3.2古典概型3.2.1古典概型优化练习新人教A版必修3(2021年整理)

高中数学第三章概率3.2古典概型3.2.1古典概型优化练习新人教A版必修3(2021年整理)

2017-2018学年高中数学第三章概率3.2 古典概型3.2.1 古典概型优化练习新人教A版必修3编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017-2018学年高中数学第三章概率3.2 古典概型3.2.1 古典概型优化练习新人教A版必修3)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017-2018学年高中数学第三章概率3.2 古典概型3.2.1 古典概型优化练习新人教A版必修3的全部内容。

3。

2。

1 古典概型[课时作业][A组学业水平达标]1.一个家庭有两个小孩,则所有可能的基本事件有( )A.(男,女),(男,男),(女,女)B.(男,女),(女,男)C.(男,男),(男,女),(女,男),(女,女)D.(男,男),(女,女)解析:由于两个孩子出生有先后之分.答案:C2.下列试验中,是古典概型的为()A.种下一粒花生,观察它是否发芽B.向正方形ABCD内,任意投掷一点P,观察点P是否与正方形的中心O重合C.从1,2,3,4四个数中,任取两个数,求所取两数之一是2的概率D.在区间[0,5]内任取一点,求此点小于2的概率解析:对于A,发芽与不发芽的概率一般不相等,不满足等可能性;对于B,正方形内点的个数有无限多个,不满足有限性;对于C,满足有限性和等可能性,是古典概型;对于D,区间内的点有无限多个,不满足有限性,故选C。

答案:C3.甲,乙,丙三名学生随机站在一排,则甲站在边上的概率为()A。

错误! B.错误!C。

错误! D.错误!解析:甲,乙,丙三名学生随机站成一排,基本事件有:甲乙丙,甲丙乙,乙甲丙,乙丙甲,丙甲乙,丙乙甲,共6个,甲站在边上包含的基本事件有:甲乙丙,甲丙乙,乙丙甲,丙乙甲,共4个,所以甲站在边上的概率P=错误!=错误!=错误!。

人教A版高中数学必修三试卷新课标高中章节素质测试题—第三章 概率

人教A版高中数学必修三试卷新课标高中章节素质测试题—第三章 概率

高中数学学习材料 (灿若寒星 精心整理制作)新课标高中数学人教A 版必修3章节素质测试题——第三章 概率(考试时间120分钟,满分150分)姓名_______评价______一、选择题(每小题5分,共60分. 以下给出的四个备选答案中,只有一个正确)1.(10北京文3)从{1,2,3,4,5}中随机选取一个数为a ,从{1,2,3}中随机选取一个数为b ,则a b >的概率是( ) A.45 B.35 C.25 D.152.(12北京理2)设不等式组⎩⎨⎧≤≤≤≤20,20y x ,表示平面区域为D ,在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是( )A.4π B.22π- C.6πD.44π-3.(07江西文6)一袋中装有大小相同,编号分别为12345678,,,,,,,的八个球,从中有放回...地每次取一个球,共取2次,则取得两个球的编号和不小于...15的概率为( ) A.132B.164C.332D.3644.(11新课标理4)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为( )A .13B .12 C .23D .345.(11福建文7)如图,矩形ABCD 中,点E 为边CD 的中点,若在矩形ABCD 内部随机取一个点Q ,则点Q 取自△ABE 内部的概率等于( )A .14B .13A BD E CC .12D .236.(11湖北5)已知随机变量ξ服从正态分布()22N ,a ,且8.0)4(=<ξP ,则=<<)20(ξP ( )A.0.6B .0.4C .0.3D .0.27.(09安徽文10)考察正方体6个面的中心,从中任意选3个点连成三角形,再把剩下的3个点也连成三角形,则所得的两个三角形全等的概率等于( ) A.1 B.21 C. 31D. 0 8.(10安徽文10)甲从正方形四个顶点中任意选择两个顶点连成直线,乙也从该正方形四个顶点中任意选择两个顶点连成直线,则所得的两条直线相互垂直的概率是( ) A.318 B.418 C.518 D.6189.(09辽宁文9)ABCD 为长方形,AB=2,BC=1,O 为AB 的中点,在长方形ABCD 内随机取一点,取到的点到O 的距离大于1的概率为( ) A.4πB.14π-C.8πD.18π-10.(08辽宁理7)4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率为( ) A .13B .12C .23D .3411.(12湖北理8)如图,在圆心角为直角的扇形OAB 中,分别以OA ,OB 为直径作两个半圆.在扇形OAB 内随机取一点,则此点取自阴影部分的概率是( )12.(12辽宁理10)在长为12cm 的线段AB 上任取一点C.现作一矩形,令边长分别等于线段AC ,CB 的长,则该矩形面积小于32cm 2的概率为( ) A.16 B. 13 C. 23 D. 45二、填空题(本大题共4小题,每小题5分,共20分,把答案填在答题卡中对应题号后的横线上) 13.(10江苏3)盒子中有大小相同的3只白球,1只黑球,若从中随机地摸出两只球,两只球颜色A. π21-B.π121-C. π2D. π1不同的概率是_________.14.(11江苏5)从1,2,3,4这四个数中一次随机取两个数,则其中一个数是另一个的两倍的概率是_________.15.(09湖南理13)一个总体分为A ,B 两层,其个体数之比为4:1,用分层抽样方法从总体中抽取一个容量为10的样本.已知B 层中甲、乙都被抽到的概率为128,则总体中的个体数为_______. 16.(11江西理12)小波通过做游戏的方式来确定周末活动,他随机地往单位圆内投掷一点,若此点到圆心的距离大于12,则周末去看电影;若此点到圆心的距离小于14,则去打篮球;否则,在家看书,则小波周末不.在家看书的概率为_________. 三、解答题(本大题共6小题,共70分,解答应写出文字说明.证明过程或演算步骤)17.(本题满分10分,11天津文15)编号为1216,,,A A A ⋅⋅⋅的16名篮球运动员在某次训练比赛中的得分记录如下: 运动员编号 1A2A3A4A5A6A7A8A得分 1535212825361834运动员编号 9A10A11A12A13A14A15A16A得分1726253322123138(Ⅰ)将得分在对应区间内的人数填入相应的空格;区间 [)10,20[)20,30[]30,40人数(Ⅱ)从得分在区间[)20,30内的运动员中随机抽取2人, (i )用运动员的编号列出所有可能的抽取结果; (ii )求这2人得分之和大于50的概率.18.(本题满分12分,12湖南文17)某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.一次购物量1至4件5至8件9至12件13至16件17件及以上顾客数(人)x30 25 y10结算时间(分钟/人) 1 1.5 2 2.5 3已知这100位顾客中的一次购物量超过8件的顾客占55%.(Ⅰ)确定x,y的值,并估计顾客一次购物的结算时间的平均值;(Ⅱ)求一位顾客一次购物的结算时间不超过...2分钟的概率.(将频率视为概率)19.(本题满分12分,08广东19)某初级中学共有学生2000名,各年级男、女生人数如下表:初一年级初二年级初三年级女生373 x y男生377 370 z已知在全校学生中随机抽取1名,抽到初二年级女生的概率是0.19.(Ⅰ)求x 的值;(Ⅱ)现用分层抽样的方法在全校抽取48名学生,问应在初三年级抽取多少名? (Ⅲ)已知245,245y z ≥≥,求初三年级中女生比男生多的概率.20.(本题满分12分,11辽宁19)某农场计划种植某种新作物,为此对这种作物的两个品种(分别称为品种甲和品种乙)进行田间试验.选取两大块地,每大块地分成n 小块地,在总共2n 小块地中,随机选n 小块地种植品种甲,另外n 小块地种植品种乙. (Ⅰ)假设n =2,求第一大块地都种植品种甲的概率;(Ⅱ)试验时每大块地分成8小块,即n =8,试验结束后得到品种甲和品种乙在个小块地上的每公顷产量(单位:kg/hm 2)如下表: 品种甲 403 397 390 404 388 400 412 406 品种乙419403412418408423400413分别求品种甲和品种乙的每公顷产量的样本平均数和样本方差;根据试验结果,你认为应该种植哪一品种?附:样本数据n x x x ,,,21⋅⋅⋅的的样本方差])()()[(1222212x x x x x x ns n -+⋅⋅⋅+-+-=,其中x 为样本平均数.21.(本小题满分12分,10山东19)一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4.(Ⅰ)从袋中随机取出两个球,求取出的球的编号之和不大于4的概率;(Ⅱ)先从袋中随机取一个球,该球的编号为m ,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n ,求2+<m n 的概率.22.(本小题满分12分,09山东19)一汽车厂生产A ,B ,C 三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如下表(单位:辆):轿车A 轿车B 轿车C 舒适型 100 150 z 标准型300450600按类型分层抽样的方法在这个月生产的轿车中抽取50辆,其中有A 类轿车10辆. (Ⅰ)求z 的值;(Ⅱ)用分层抽样的方法在C 类轿车中抽取一个容量为5的样本.将该样本看成一个总体,从中任取2辆,求至少有1辆舒适型轿车的概率;(Ⅲ)用随机抽样的方法从B 类舒适型轿车中抽取8辆,经检测它们的得分如下:9.4,8.6,9.2,9.6,8.7,9.3,9.0,8.2.把这8辆轿车的得分看作一个总体,从中任取一个数,求该数与样本平均数之差的绝对值不超过0.5的概率.新课标高中数学人教A 版必修3章节素质测试题——第三章 概率(参考答案)一、选择题:(本大题共12题,每小题5分,共60分)二、填空题(本大题共4小题,每小题5分,共20分)13.21. 14. 31. 15. 40 . 16. 1613. 三、解答题(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤) 17. 解:(Ⅰ)4,6,6(Ⅱ)(i )解:得分在区间[20,30)内的运动员编号为345101113,,,,,.A A A A A A 从中随机抽取2人,所有可能的抽取结果有:343531*********{,},{,},{,},{,},{,},{,},A A A A A A A A A A A A 410{,}A A ,411413510511513101110131113{,},{,},{,},{,},{,},{,},{,},{,}A A A A A A A A A A A A A A A A ,共15种.(ii )解:“从得分在区间[20,30)内的运动员中随机抽取2人,这2人得分之和大于50”(记为题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 DDDACCACBCAC事件B )的所有可能结果有:454104115101011{,},{,},{,},{,},{,}A A A A A A A A A A ,共5种. 所以51().153P B ==18. 解:(Ⅰ)由已知得251055,35,15,20y x y x y ++=+=∴==,该超市所有顾客一次购物的结算时间组成一个总体,所收集的100位顾客一次购物的结算时间可视为一个容量为100的简单随机样本,顾客一次购物的结算时间的平均值可用样本平均数估计,其估计值为: 115 1.530225 2.5203101.9100⨯+⨯+⨯+⨯+⨯=(分钟).(Ⅱ)记A 为事件“一位顾客一次购物的结算时间不超过2分钟”,123,,A A A 分别表示事件“该顾客一次购物的结算时间为1分钟”, “该顾客一次购物的结算时间为1.5分钟”, “该顾客一次购物的结算时间为2分钟”.将频率视为概率,得123153303251(),(),()10020100101004P A P A P A ======. 123123,,,A A A A A A A =且是互斥事件, 123123()()()()()P A P A A A P A P A P A ∴==++33172010410=++=. 故一位顾客一次购物的结算时间不超过2分钟的概率为710.19. 解:(Ⅰ)∵19.02000x=,∴.380=x (Ⅱ)初三年级人数为.500)370380377373(2000=+++-=+z y现用分层抽样的方法在全校抽取48名学生,应在初三年级抽取的人数为:200048×500=12名. (Ⅲ)设初三年级女生比男生多的事件为A ,初三年级女生男生数记为(y ,z):由(Ⅱ)知500=+z y ,且y ,z ∈N , 基本事件空间包含的基本事件有:(245,255)、(246,254)、(247,253)、……(255,245)共11个. 事件A 包含的基本事件有:(251,249)、(252,248)、(253,247)、(254,246)、(255,245)共5个.∴P(A)=115.20. 解:(Ⅰ)设第一大块地中的两小块地编号为1,2,第二大块地中的两小块地编号为3,4,令事件A=“第一大块地都种品种甲”.从4小块地中任选2小块地种植品种甲的基本事件共6个: (1,2),(1,3),(1,4),(2,3),(2,4),(3,4). 而事件A 包含1个基本事件:(1,2). 所以1().6P A =(Ⅱ)品种甲的每公顷产量的样本平均数和样本方差分别为:222222221(403397390404388400412406)400,81(3(3)(10)4(12)0126)57.25.8x S =+++++++==+-+-++-+++=甲甲品种乙的每公顷产量的样本平均数和样本方差分别为:2222222221(419403412418408423400413)412,81(7(9)06(4)11(12)1)56.8x S =+++++++==+-+++-++-+=乙乙由以上结果可以看出,品种乙的样本平均数大于品种甲的样本平均数,且两品种的样本方差差异不大,故应该选择种植品种乙.21. 解:(Ⅰ)从袋子中随机取两个球,其一切可能的结果组成的基本事件有1和2,1和3,1和4,2和3,2和4,3和4,共6个. 从袋中随机取出的球的编号之和不大于4的事件有1和2,1和3,共2个.因此所求事件的概率为.3162==P (Ⅱ)先从袋中随机取一个球,记下编号为m ,放回后,在从袋中随机取一个球,记下编号为n ,其一切可能的结果(m ,n )有:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3)(4,4),共16个.有满足条件2+≥m n 的事件为(1,3)、(1,4)、(2,4),共3个,所以满足条件2+≥m n 的事件的概率为.1631=P 故满足条件2+<m n 的事件的概率为.1613163111=-=-=P P22. 解:(Ⅰ)设该厂本月生产轿车为n 辆,由题意得,5010100300n =+,解得.2000=n .400)600450150300100(2000=++++-=∴z(Ⅱ)设所抽样本中有m 辆舒适型轿车,因为用分层抽样的方法在C 类轿车中抽取一个容量为5的样本, 所以40010005m=,解得.2=m 也就是抽取了2辆舒适型轿车,3辆标准型轿车,分别记作S 1,S 2;B 1,B 2,B 3,则 从中任取2辆的所有基本事件为:(S 1,B 1),(S 1,B 2),(S 1,B 3),(S 2,B 1),(S 2,B 2),(S 2,B 3),(S 1,S 2),(B 1,B 2),(B 2,B 3),(B 1,B 3)共10个,其中至少有1辆舒适型轿车的基本事件有7个基本事件:(S 1,B 1),(S 1,B 2),(S 1,B 3),(S 2,B 1),(S 2,B 2),(S 2,B 3),(S 1,S 2), 所以从中任取2辆,至少有1辆舒适型轿车的概率为710. (Ⅲ)样本的平均数为1(9.48.69.29.68.79.39.08.2)98x =+++++++=, 那么与样本平均数之差的绝对值不超过0.5的数为9.4,8.6,9.2,8.7,9.3,9.0这6个数,总的个数为8,所以该数与样本平均数之差的绝对值不超过0.5的概率为75.086=.。

人教新课标A版 高中数学必修3 第三章概率 3.2.1古典概型 同步测试(I)卷

人教新课标A版 高中数学必修3 第三章概率 3.2.1古典概型 同步测试(I)卷

人教新课标A版高中数学必修3 第三章概率 3.2.1古典概型同步测试(I)卷姓名:________ 班级:________ 成绩:________一、单选题 (共15题;共30分)1. (2分) (2016高一下·江门期中) 已知函数,其中,则使得f(x)>0在上有解的概率为()A .B .C .D . 02. (2分)连续抛掷两次骰子,得到的点数分别为m,n,记向量的夹角为,则的概率是()A .B .C .D .3. (2分)小明有5道课后作业题,他只会做前两道,若他从中任选2道题做,则选出的都是不会做的题的概率为()A .B .D .4. (2分)从一副标准的52张扑克牌(不含大王和小王)中任意抽一张,抽到黑桃Q的概率为()A .B .C .D .5. (2分)若书架中放有中文书5本,英文书3本,日文书2本,则抽出一本书为外文书的概率为()A .B .C .D .6. (2分)甲乙两人下棋,甲获胜的概率为30%,甲不输的概率为80%,则甲乙下成和棋的概率为()A . 70%B . 30%C . 20%D . 50%7. (2分)一个单位有职工80人,其中业务人员56人,管理人员8人,服务人员16人,为了解职工的某种情况,决定采取分层抽样的方法。

抽取一个容量为10的样本,每个管理人员被抽到的概率为()B .C .D .8. (2分)某5个同学进行投篮比赛,已知每个同学投篮命中率为,每个同学投篮2次,且投篮之间和同学之间都没有影响.现规定:投中两个得100分,投中一个得50分,一个未中得0分,记为5个同学的得分总和,则的数学期望为()A . 400B . 200C . 100D . 809. (2分) (2019高一下·菏泽月考) 任取一个三位正整数,则对数是一个正整数的概率是()A .B .C .D .10. (2分)甲、乙两人各掷一次骰子(均匀的正方体,六个面上分别为l,2,3,4,5,6点),所得点数分别记为x、y,则的概率为()A .C .D .11. (2分)已知地铁列车每10分钟一班,在车站停1分钟,则乘客到达站台立即乘车的概率为()A .B .C .D . 无法确定12. (2分)任取三个整数,至少有一个数为偶数的概率为()A . 0.125B . 0.25C . 0.5D . 0.87513. (2分) (2016高二下·宜春期中) 吉安市高二数学竞赛中有一道难题,在30分钟内,学生甲内解决它的概率为,学生乙能解决它的概率为,两人在30分钟内独立解决该题,该题得到解决的概率为()A .B .C .D .14. (2分)从一箱产品中随机地抽取一件,设事件A={抽到一等品},事件B={抽到二等品},事件C={抽到三等品},且已知 P(A)=0.65,P(B)=0.2,P(C)=0.1.则事件“抽到的不是一等品”的概率为()A . 0.7B . 0.65C . 0.35D . 0.315. (2分) (2018高一下·葫芦岛期末) 某产品分为三级,若生产中出现级品的概率为0.03,出现级品的概率为0.01,则对产品抽查一次抽得级品的概率是()A . 0.09B . 0.98C . 0.97D . 0.96二、填空题 (共5题;共6分)16. (1分)盒中装有形状、大小完全相同的5个球,其中红色球3个,黄色球2个,若从中随机取出2个球,则所取出的2个球颜色不同的概率为________.17. (1分)在某次考试中,要从20道题中随机地抽出6道题,若考生至少能答对其中的4道题即可通过:若至少能答对其中的5道题就获得优秀,已知某考生能答对其中的10道题,并且知道他在这次考试中已经通过,则他获得优秀成绩的概率是________.18. (1分) (2019高二下·涟水月考) 已知正六棱锥的底面边长为2,高为 .现从该棱锥的7个顶点中随机选取3个点构成三角形,设随机变量表示所得三角形的面积.则概率的值________.19. (1分)某园林局对1000株树木的生长情况进行调查,其中槐树600株,银杏树400株.现用分层抽样方法从这1000株树木中随机抽取100株,其中银杏树树干周长(单位:cm)的抽查结果如下表:树干周长(单位:cm)[30,40)[40,50)[50,60)[60,70)株数418x6则x的值为________;若已知树干周长在30cm至40cm之间的4株银杏树中有1株患有虫害,现要对这4株树逐一进行排查直至找出患虫害的树木为止.则排查的树木恰好为2株的概率为________.20. (2分)(2017·长宁模拟) 把一颗骰子投掷2次,观察出现的点数,记第一次出现的点数为a,第二次出现的点数为b,则方程组只有一个解的概率为________.三、解答题 (共5题;共25分)21. (5分)某校为了解学生的视力情况,随机抽查了一部分学生视力,将调查结果分组,分组区间为(3.9,4.2],(4.2,4.5],…,(5.1,5.4].经过数据处理,得到如下频率分布表:分组频数频率(3.9,4.2]30.06(4.2,4.5]60.12(4.5,4.8]25x(4.8,5.1]y z(5.1,5.4]20.04合计n 1.00(Ⅰ)求频率分布表中未知量n,x,y,z的值;(Ⅱ)从样本中视力在(3.9,4.2]和(5.1,5.4]的所有同学中随机抽取两人,求两人的视力差的绝对值低于0.5的概率.22. (5分) (2017高二下·临淄期末) 某地最近出台一项机动车驾照考试规定:每位考试者一年之内最多有4次参加考试的机会,一量某次考试通过,便可领取驾照,不再参加以后的考试,否则就一直考到第4次为止如果李明决定参加驾照考试,设他每次参加考试通过的概率依次为0.6,0.7,0.8,0.9.求在一年内李明参加驾照考试次数ξ的分布列和ξ的期望,并求李明在一所内领到驾照的概率.23. (5分) (2015高三上·河北期末) 某商场每天(开始营业时)以每件150元的价格购入A商品若干件(A商品在商场的保鲜时间为10小时,该商场的营业时间也恰好为10小时),并开始以每件300元的价格出售,若前6小时内所购进的商品没有售完,则商店对没卖出的A商品以每件100元的价格低价处理完毕(根据经验,4小时内完全能够把A商品低价处理完毕,且处理完后,当天不再购进A商品).该商场统计了100天A商品在每天的前6小时内的销售量,制成如下表格(注:视频率为概率).(其中x+y=70)前6小时内的销售量t(单位:件)456频数30x y(1)若某该商场共购入6件该商品,在前6个小时中售出4件.若这些产品被6名不同的顾客购买,现从这6名顾客中随机选2人进行回访,则恰好一个是以300元价格购买的顾客,另一个以100元价格购买的顾客的概率是多少?(2)若商场每天在购进5件A商品时所获得的平均利润最大,求x的取值范围.24. (5分) (2017高二·卢龙期末) 为迎接今年6月6日的“全国爱眼日”,某高中学校学生会随机抽取16名学生,经校医用对数视力表检查得到每个学生的视力状况的茎叶图(以小数点前的一位数字为茎,小数点后的一位数字为叶)如右图,若视力测试结果不低于5.0,则称为“好视力”,(1)写出这组数据的众数和中位数;(2)求从这16人中随机选取3人,至少有2人是“好视力”的概率;(3)以这16人的样本数据来估计整个学校的总体数据,若从该校(人数很多)任选3人,记X表示抽到“好视力”学生的人数,求X的分布列及数学期望.25. (5分) (2019高三上·沈河月考) 将4本不同的书随机放入如图所示的编号为1,2,3,4的四个抽屉中.1234(1)求4本书恰好放在四个不同抽屉中的概率;(2)随机变量表示放在2号抽屉中书的本数,求的分布列和数学期望 .参考答案一、单选题 (共15题;共30分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、二、填空题 (共5题;共6分) 16-1、17-1、18-1、19-1、20-1、三、解答题 (共5题;共25分) 21-1、22-1、23-1、23-2、24-1、24-2、24-3、25-1、25-2、第11 页共11 页。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学人教新课标A版必修3 第三章概率 3.2古典概型C卷
姓名:________ 班级:________ 成绩:________
一、选择题 (共8题;共16分)
1. (2分)从集合A={﹣1,1,2}中随机选取一个数记为k,从集合B={﹣2,1,2}中随机选取一个数记为b,则直线y=kx+b不经过第三象限的概率为()
A .
B .
C .
D .
2. (2分) (2017高一下·邯郸期末) 若以连续掷两次骰子分别得到的点数m,n作为点P的坐标,求点P落在圆x2+y2=16外部的概率是()
A .
B .
C .
D .
3. (2分) (2018高二下·大名期末) 将甲乙丙丁四人分成两组,每组两人,则甲乙两人在同一组的概率为()
A .
B .
D .
4. (2分) (2017高二下·故城期末) 将一颗质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛两次,记第一次出现的点数为,第二次出现的点数为,则事件“ ”的概率为()
A .
B .
C .
D .
5. (2分)一个不透明的口袋中装有形状相同的红球、黄球和蓝球,若摸出一球为红球的概率为,黄球的概率为,袋中红球有4个,则袋中蓝球的个数为().
A . 5个
B . 11个
C . 4个
D . 9个
6. (2分) (2019高二下·鹤岗月考) 已知某运动员每次投篮命中的概率是40%.现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定l,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了如下10组随机数:907 966 191 925 271 431 932 458 569 683.该运动员三次投篮恰有两次命中的概率为:()
A .
B .
D .
7. (2分)(2019·武汉模拟) 大学生小明与另外3名大学生一起分配到某乡镇甲、乙丙3个村小学进行支教,若每个村小学至少分配1名大学生,则小明恰好分配到甲村小学的概率为()
A .
B .
C .
D .
8. (2分) (2018高一下·葫芦岛期末) 集合,在集合中任取2个不同的数,则取出的2个数之差的绝对值不小于2的概率是()
A .
B .
C .
D .
二、填空题 (共3题;共3分)
9. (1分)(2017·莱芜模拟) 某班级要从5名男生和2名女生中选出3人参加公益活动,则在选出的3人中男、女生均有的概率为________(结果用最简分数表示)
10. (1分) (2019高三上·杨浦期中) 从1,2,3,4,5,6,7,8,9中任取5个不同的数,中位数为4的取法有________种.(用数值表示)
11. (1分) (2016高二下·宁波期末) 掷两颗质地均匀的骰子,在已知它们的点数不同的条件下,有一颗是
6点的概率是________.
三、解答题 (共3题;共25分)
12. (10分)一个盒子里装有三张卡片,分别标记有数字1,2,3,这三张卡片除标记的数字外完全相同.随机有放回地抽取3次,每次抽取1张,将抽取的卡片上的数字依次记为a , b , c.求:
(1)“抽取的卡片上的数字满足a+b=c”的概率;
(2)“抽取的卡片上的数字a,b,c不完全相同”的概率.
13. (10分)在一个不透明的箱子里装有5个完全相同的小球,球上分别标有数字1、2、3、4、5.甲先从箱子中摸出一个小球,记下球上所标数字后,将该小球放回箱子中摇匀后,乙再从该箱子中摸出一个小球.(1)若甲、乙两人谁摸出的球上标的数字大谁就获胜(数字相同为平局),求甲获胜的概率;
(2)规定:两人摸到的球上所标数字之和小于6,则甲获胜,否则乙获胜,这样规定公平吗?
14. (5分)某市的3个区共有高中学生20 000人,且3个区的高中学生人数之比为2∶3∶5,现要从所有学生中抽取一个容量为200的样本,调查该市高中学生的视力情况,试写出抽样过程.
参考答案一、选择题 (共8题;共16分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
二、填空题 (共3题;共3分)
9-1、
10-1、
11-1、
三、解答题 (共3题;共25分)
12-1、
12-2、
13-1、
13-2、
14-1、。

相关文档
最新文档