导数(文)常考题型汇总(历年高考和2010一模)

合集下载

导数各类题型方法总结(绝对经典)

导数各类题型方法总结(绝对经典)
0 a 1, x1 a x2 3a
依题得
0 a 1,2a a 1
第三种:构造函数求最值 题型特征 : f (x) g(x)恒成立
f (x) g(x) 恒成立, 从而转化成第一、 二种处理方法
2、常见处理方法有三种: 第一种:分离变量求最值-----用分离变量时要特别注意是否 需分类讨论(>0,=0,<0) 第二种:变更主元(即关于某字母的一次函数) -----(已知谁的范围就把谁作为主元); 第三种:构造函数求最值
3、根分布;
2
4、判别式法 f (x) x3 3ax2 3在R上单调递增,则a
5、二次函数区间最值求法:
(1)对称轴(重视单调区间)与定义域的关系
(2)端点处和顶点是最值所在
一、基础题型:函数的单调区间、极值、最值;不等式恒成立; 1、此类问题提倡按以下四个步骤进行解决: 第一步:写定义域并求导 第二步:令导函数为0求根 第三步:列表或画图(注意又赋值) 第四步:作答求值。
1 1 3
3 4或1 1 1 3
t
3 4,
t
t
(i)0 t 2 3时, h(4) 0, t 1
1 t 2 3
4
4
(ii)t 2 3时, h(1 1) 0, t
此时 0, 2 3 t 2 3(舍去) 综上所述t的取值范围是1 t 2 3
--(已知谁的范围就把谁作为主元); 第三种:构造函数求最值
二、常考题型一:已知函数在某个区间上的单调性求参数的范围
解法一 : 转化为f '(x) 0或f '(x) 0恒成立,回归基础题型
解法二:利用子区间(即子集思想); 首先求出函数的单调增或减区间, 然后让所给区间是求的增或减区间的子集;

导数常考题型归纳总结

导数常考题型归纳总结

导数常考题型归纳总结导数是微积分中的重要概念,是描述函数变化率的工具。

在高中数学中,导数是一个常考的内容。

为了帮助同学们更好地掌握导数的相关知识,本文将对导数常考题型进行归纳总结,以便同学们能够更好地应对考试。

一、常数函数求导常数函数的导数始终为零。

这个结论是很容易推导出来的,因为常数函数的图像是一条水平直线,斜率为零,所以导数为零。

二、幂函数求导对于幂函数(如x的n次方),我们可以利用求导的定义直接推导求导公式。

设y=x^n,其中n为常数,则有:dy/dx = n*x^(n-1)。

例如,对于y=x^2,求导后得到dy/dx=2x。

对于y=x^3,求导后得到dy/dx=3x^2。

这个公式是求解幂函数导数的基础公式,需要同学们熟练掌握。

三、指数函数求导对于指数函数(如e^x),其导数仍然是指数函数本身。

即dy/dx = e^x。

这个结论在微积分中是非常重要的,往往与幂函数求导相结合,可以解决很多复杂问题。

四、对数函数求导对于对数函数(如ln(x)),其导数可以通过指数函数的导数求出。

根据求导的链式法则,我们可以得到对数函数的导数公式:dy/dx = 1/x。

这个公式对于解决对数函数的导数问题非常有用。

五、三角函数求导对于三角函数(如sin(x)和cos(x)),它们的导数也具有一定的规律性。

我们可以根据求导的定义和三角函数的性质,得到以下导数公式:sin(x)的导数为cos(x);cos(x)的导数为-sin(x);tan(x)的导数为sec^2(x);cot(x)的导数为-csc^2(x)。

这些公式可以根据求导的定义进行推导,同学们需要牢记。

六、复合函数求导复合函数指的是由多个函数复合而成的函数。

对于复合函数的导数求解,我们可以利用链式法则。

链式法则的公式为:如果y=f(u),u=g(x),则有dy/dx = dy/du * du/dx。

通过链式法则,我们可以将复合函数的导数求解转化为简单函数的导数求解。

高中数学函数与导数常考题型归纳

高中数学函数与导数常考题型归纳

高中数学函数与导数常考题型整理归纳题型一 : 利用导数研究函数的性质利用导数研究函数的单调性、极值、最值是高考的热点问题之一,每年必考,一般观察两类题型:(1)谈论函数的单调性、极值、最值,(2) 利用单调性、极值、最值求参数的取值范围.【例 1】已知函数 f ( x) =ln x+ a(1 -x).(1)谈论 f ( x) 的单调性;(2)当 f x有最大值,且最大值大于a-2时,求实数a的取值范围.( )21解(1) f ( x) 的定义域为 (0 ,+∞ ) , f ′( x) =x- a.若 a≤0,则 f ′ ( x) >0,因此 f ( x) 在 (0 ,+∞ ) 上单调递加 .1若 a>0,则当 x∈ 0,a时, f ′( x) >0;当x∈1,+∞ 时, f ′x<,a()011因此 f ( x) 在 0,a上单调递加,在a,+∞ 上单调递减 .综上,知当 a≤0时, f ( x) 在(0 ,+∞ ) 上单调递加;当 a>0 时, f ( x) 在 0,1上单调递加,在1,+∞ 上单调递减 .a a(2)由 (1) 知,当 a≤0时, f ( x) 在(0 ,+∞ ) 上无最大值;1111当 a>0 时, f ( x) 在 x=a处获取最大值,最大值为 f a=ln a+ a 1-a=- ln a+ a- 1.因此f1>a-2等价于lna+ a-<a2 1 0.令g( a) =ln a+a-1,则 g( a) 在(0 ,+∞ ) 上单调递加,g(1) =0.于是,当 0<a<1 时, g( a) <0;当a>1 时, g( a) > 0.因此,实数 a 的取值范围是 (0 , 1).【类题通法】 (1) 研究函数的性质平时转变成对函数单调性的谈论,谈论单调性要先求函数定义域,再谈论导数在定义域内的符号来判断函数的单调性.(2) 由函数的性质求参数的取值范围,平时依照函数的性质获取参数的不等式,再解出参数的范围.若不等式是初等的一次、二次、指数或对数不等式,则能够直接解不等式得参数的取值范围;若不等式是一个不能够直接解出的超越型不等式时,如求解 ln a +a -1<0,则需要构造函数来解 .【变式训练】 已知 a ∈ R ,函数 f ( x) = ( - x 2+ax)e x ( x ∈ R , e 为自然对数的底数 ).(1) 当 a =2 时,求函数 f ( x) 的单调递加区间;(2) 若函数 f ( x) 在 ( - 1,1) 上单调递加,求实数 a 的取值范围 .解 (1) 当 a = 2 时, f ( x) =( -x 2+2x)e x ,因此 f ′(x) = ( - 2x +2)e x +( - x 2+2x)e x= ( - x 2+2)e x .令 f ′(x)>0 ,即 ( -x 2+2)e x >0,由于 e x >0,因此- x 2+ 2>0,解得- 2<x< 2.因此函数 f ( x) 的单调递加区间是 ( - 2, 2).(2) 由于函数 f ( x) 在( -1, 1) 上单调递加,因此 f ′(x) ≥0对 x ∈( - 1,1) 都成立,由于 f ′(x) = ( - 2x +a)e x +( - x 2+ax)e x=- x 2+( a -2) x +a]e x ,因此- x 2+ ( a -2) x + a]e x ≥0 对 x ∈( - 1, 1) 都成立 .由于 e x >0,因此- x 2+( a - 2) x +a ≥0对 x ∈( - 1, 1) 都成立,x 2+2x(x +1)2- 1即 a ≥ x +1 =x +11= ( x +1) -x +1对 x ∈( - 1,1) 都成立 .11令 y =( x + 1) -x +1,则 y ′= 1+(x +1)2>0.1因此 y =( x +1) - x + 1在( -1,1) 上单调递加,因此 y<(1 +1) -1 3 3 1+1 = . 即 a ≥ .223因此实数 a 的取值范围为 a ≥2.题型二 : 利用导数研究函数零点或曲线交点问题函数的零点、方程的根、曲线的交点,这三个问题实质上同属一个问题,它们之间可相互转变,这类问题的观察平时有两类: (1) 谈论函数零点或方程根的个数; (2) 由函数零点或方程的根求参数的取值范围 .m【例 2】设函数 f(x) = ln x +x,m∈R.(1)当 m=e(e 为自然对数的底数 ) 时,求 f ( x) 的极小值;x(2) 谈论函数 g( x) =f ′(x) -3零点的个数 .e解(1) 由题设,当 m=e 时, f ( x) =ln x+x,x- e定义域为 (0 ,+∞ ) ,则 f ′(x) =x2,由f′(x)=0,得x=e.∴当 x∈(0 , e) , f ′ ( x) < 0, f ( x) 在 (0 ,e) 上单调递减,当 x∈(e,+∞ ) , f ′( x) >0,f ( x) 在(e ,+∞ ) 上单调递加,e∴当 x=e 时, f ( x) 获取极小值 f (e) =ln e +e=2,∴f ( x) 的极小值为 2.x 1 m x(2) 由题设 g( x) = f ′(x) -3=x-x2-3( x>0) ,1令g( x) =0,得 m=- x3+ x( x>0).31 3设φ( x) =-3x +x( x>0) ,则φ′(x) =- x2+ 1=- ( x-1)( x+1) ,当x∈(0 , 1) 时,φ′( x) >0,φ ( x) 在(0 , 1) 上单调递加;当x∈(1 ,+∞ ) 时,φ′( x) <0,φ ( x) 在(1 ,+∞ ) 上单调递减 .∴x= 1 是φ ( x) 的唯一极值点,且是极大值点,因此 x=1 也是φ ( x) 的最大值点 .2∴ φ( x) 的最大值为φ(1) =3.又φ(0) = 0,结合 y=φ( x) 的图象 ( 如图 ) ,2可知①当 m>3时,函数 g( x) 无零点;2②当 m=3时,函数 g( x) 有且只有一个零点;2③当 0<m<3时,函数 g( x) 有两个零点;④当 m≤0时,函数 g( x) 有且只有一个零点 .2综上所述,当 m>3时,函数 g( x) 无零点;2当 m=3或 m≤0时,函数 g( x) 有且只有一个零点;2当 0<m<3时,函数 g( x) 有两个零点 .【类题通法】利用导数研究函数的零点常用两种方法:(1)运用导数研究函数的单调性和极值,利用单调性和极值定位函数图象来解决零点问题;(2)将函数零点问题转变成方程根的问题,利用方程的同解变形转变成两个函数图象的交点问题,利用数形结合来解决 .【变式训练】函数 f ( x) =( ax2+ x)e x,其中 e 是自然对数的底数, a∈R.(1)当 a>0 时,解不等式 f ( x) ≤0;(2)当 a=0 时,求整数 t 的所有值,使方程 f ( x) = x+ 2 在 t ,t +1] 上有解 .解(1) 由于 e x>0, ( ax2+x)e x≤ 0.∴ax2+ x≤0. 又由于 a>0,1因此不等式化为x x+a≤ 0.1因此不等式 f ( x) ≤0的解集为-a,0 .(2)当 a=0 时,方程即为 xe x=x+2,由于 e x>0,因此 x=0 不是方程的解,2x因此原方程等价于 e -x- 1=0.x2令h( x) =e -x-1,x2由于 h′(x) = e +x2>0 对于 x∈( -∞, 0) ∪(0 ,+∞ ) 恒成立,因此 h x 在 -∞, 0) 和 (0,+∞ )内是单调递加函数,( ) (又 h= - ,h2h - =-3-1,(1) e 3<0(2) =e -2>0, (3)e3<0h -2) =- 2,( e >0因此方程 f x ) =x + 有且只有两个实数根且分别在区间, 和- ,- 2]上,因此整数 t 的所有值( 21 2] 3为 { - 3, 1}.题型三 : 利用导数研究不等式问题导数在不等式中的应用是高考的热点,常以解答题的形式观察,以中高档题为主,突出转变思想、函数思想的观察,常有的命题角度: (1) 证明简单的不等式; (2) 由不等式恒成立求参数范围问题;(3)不等式恒成立、能成立问题 .【例 3】设函数 f ( x) = e 2x -aln x.(1) 谈论 f ( x) 的导函数 f ′(x) 零点的个数;2 (2) 证明:当 a >0 时, f ( x) ≥2a +aln .axa(1) 解 f( x) 的定义域为 (0 ,+∞ ) , f ′( x) = 2e 2-x ( x >0).当 a ≤0时, f ′x > ,f ′ x 没有零点.( )( )2xa当 a >0 时,设 u( x) =e , v( x) =- x ,由于 u x = 2x 在 (0 ,+∞ 上单调递加, v x =- a 在 (0,+∞ ) 上单调递加,因此f ′(x 在 (0,+( ) e ) ( ) x)∞) 上单调递加 .a1又 f ′(a) >0,当 b 满足 0<b < 4且 b <4时, f ′( b) < 0( 谈论 a ≥1或 a <1 来检验 ) ,故当 a >0 时, f ′( x) 存在唯一零点 .(2)证明 由 (1) ,可设 f ′(x 在 (0 ,+∞ 上的唯一零点为 x 0,当 x ∈(0 , x 0 时, f ′ x < ;) ) ) ( ) 0当 x ∈(x 0 ,+∞ ) 时, f ′( x) >0.故 f ( x) 在(0 , x 0 ) 上单调递减,在 ( x 0,+∞ ) 上单调递加,因此当 x = x 0 时, f ( x) 获取最小值,最小值为 f ( x 0 )a由于 2e2x 0- x 0=0,因此 f ( x 0 ) = a+ 2ax 0+aln 2 2a ≥2a + aln .x 0a22故当 a >0 时, f ( x) ≥2a + aln a .【类题通法】 1. 谈论零点个数的答题模板第一步:求函数的定义域;第二步:分类谈论函数的单调性、极值;第三步:依照零点存在性定理,结合函数图象确定各分类情况的零点个数.2. 证明不等式的答题模板第一步:依照不等式合理构造函数;第二步:求函数的最值;第三步:依照最值证明不等式 .【变式训练】 已知函数 f ( x) =ax +ln x( a ∈R).(1) 若 a =2,求曲线 y =f ( x) 在 x =1 处的切线方程;(2) 求 f ( x) 的单调区间;(3) 设 g( x) =x 2-2x +2,若对任意 x 1∈ (0 ,+∞ ) ,均存在 x 2∈0,1] 使得 f ( x 1)< g( x 2) ,求 a 的取值范围 .1解(1) 由已知得 f ′(x) = 2+ x ( x>0) ,因此 f ′(1) =2+1=3,因此斜率 k = 3. 又切点为 (1 , 2) ,所以切线方程为 y - 2= 3( x - 1) ,即 3x - y - 1= 0,故曲线 y = f ( x) 在 x =1 处的切线方程为 3x -y -1=0.1 ax +1(2) f ′(x) = a + x = x ( x>0) ,①当 a ≥0时,由于 x>0,故 ax +1>0, f ′ ( x)>0 ,因此 f ( x) 的单调增区间为 (0 ,+∞ ).1②当 a<0 时,由 f ′(x) =0,得 x =- a .11在区间 0,- a 上, f ′( x )>0 ,在区间 -a ,+∞ 上, f ′( x)<0 ,因此函数 f ( x) 的单调递加区间为0,- 1 ,单调递减区间为 1.a - ,+∞ a(3) 由已知得所求可转变成 f ( x) max <g( x) max ,g( x) =( x -1) 2+1,x ∈0, 1] ,因此 g( x) max=2,由(2) 知,当 a≥0时, f ( x) 在(0 ,+∞ ) 上单调递加,值域为 R,故不吻合题意 .a时, f x在 0,-1上单调递加,在1x的极大值即为最大值,当<0-,+∞ 上单调递减,故 f( )a a( )11是f -a=- 1+ln -a=- 1-ln( -a) ,1因此 2>-1-ln( -a) ,解得 a<-e3.。

(完整版)高考导数题型归纳,推荐文档

(完整版)高考导数题型归纳,推荐文档

高考压轴题:导数题型及解题方法
(自己总结供参考)
一.切线问题
题型1 求曲线在处的切线方程。

)(x f y =0x x =方法:为在处的切线的斜率。

)(0x f '0x x =题型2 过点的直线与曲线的相切问题。

),(b a )(x f y =方法:设曲线的切点,由求出,进而)(x f y =))(,(00x f x b x f x f a x -='-)()()(0000x 解决相关问题。

注意:曲线在某点处的切线若有则只有一,曲线过某点的切线往往不止一条。

例 已知函数f (x )=x 3﹣3x.
(1)求曲线y=f (x )在点x=2处的切线方程;(答案:)
0169=--y x (2)若过点A 可作曲线的三条切线,求实数的取值范围、
)2)(,1(-≠m m A )(x f y =m (提示:设曲线上的切点();建立的等式关系。

将问题转化为关
)(x f y =)(,00x f x )(,00x f x 于的方程有三个不同实数根问题。

(答案:的范围是)
m x ,0m ()2,3--练习 1. 已知曲线x
x y 33
-=(1)求过点(1,-3)与曲线相切的直线方程。

答案:(或x x y 33-=03=+y x )
027415=--y x (2)证明:过点(-2,5)与曲线相切的直线有三条。

x x y 33
-=2.若直线与曲线相切,求的值. (答案:1)0122=--+e y x e x
ae y -=1a 题型3 求两个曲线、的公切线。

)(x f y =)(x g y =。

导数考试题型及答案详解

导数考试题型及答案详解

导数考试题型及答案详解一、选择题1. 函数f(x) = x^2 + 3x + 2的导数是:A. 2x + 3B. x^2 + 2C. 2x + 6D. 3x + 2答案:A2. 若f(x) = sin(x),则f'(π/4)的值是:A. 1B. √2/2C. -1D. -√2/2答案:B二、填空题1. 求函数g(x) = x^3 - 2x^2 + x的导数,g'(x) = __________。

答案:3x^2 - 4x + 12. 若h(x) = cos(x),求h'(x) = __________。

答案:-sin(x)三、解答题1. 求函数f(x) = x^3 - 6x^2 + 9x + 2的导数,并求f'(2)的值。

解:首先求导数f'(x) = 3x^2 - 12x + 9。

然后将x = 2代入得到f'(2) = 3 * 2^2 - 12 * 2 + 9 = 12 - 24 + 9 = -3。

2. 已知函数y = ln(x),求y'。

解:根据对数函数的导数公式,y' = 1/x。

四、证明题1. 证明:若函数f(x) = x^n,其中n为常数,则f'(x) = nx^(n-1)。

证明:根据幂函数的导数公式,对于任意实数n,有f'(x) = n * x^(n-1)。

五、应用题1. 某物体的位移函数为s(t) = t^3 - 6t^2 + 9t + 5,求该物体在t = 3时的瞬时速度。

解:首先求位移函数的导数s'(t) = 3t^2 - 12t + 9。

然后将t = 3代入得到s'(3) = 3 * 3^2 - 12 * 3 + 9 = 27 - 36 + 9 = 0。

因此,该物体在t = 3时的瞬时速度为0。

六、综合题1. 已知函数f(x) = x^4 - 4x^3 + 6x^2 - 4x + 5,求f'(x),并求曲线y = f(x)在点(1, f(1))处的切线斜率。

2010年高考题导数部分汇编含答案(全国及各地全)范文

2010年高考题导数部分汇编含答案(全国及各地全)范文

安徽文(20)(本小题满分12分)设函数f (x )=sinx-cosx+x+1, 0﹤x ﹤2 π,求函数f(x)的单调区间与极值. (本小题满分12分)本题考查导数的运算,利用导数研究函数的单调性与极值的方法,考查综合运用数学知识解决问题的能力. 解:由f(x)=sinx-cosx+x+1,0﹤x ﹤2π, 知'()f x =cosx+sinx+1, 于是'()f x =1+2sin(x+4π). 令'()f x =0,从而sin(x+4π)=-22,得x= π,或x=32 π.当x 变化时,'()f x ,f(x)变化情况如下表:因此,由上表知f(x)的单调递增区间是(0, π)与(32π,2 π),单调递减区间是(π,32 π),极小值为f (32 π)=32 π,极大值为f (π)= π+2. 重庆 文(19) (本小题满分12分), (Ⅰ)小问5分,(Ⅱ)小问7分.)已知函数32()f x ax x bx =++(其中常数a,b ∈R),()()()g x f x f x '=+是奇函数. (Ⅰ)求()f x 的表达式;(Ⅱ)讨论()g x 的单调性,并求()g x 在区间[1,2]上的最大值和最小值.(19) 解:(Ⅰ)由题意得.23)(2b x ax x f ++='因此)(.)2()13()()()(22x g b x b x a ax x f x f x g 因为函数+++++='+=是奇函数,所以,),()(x x g x g 即对任意实数-=-有 ],)2()13([))(2())(13()(2223b x b x a ax b x b x a x a +++++-=+-++-++-从而的解析表达式为因此解得)(,0,31,0,013x f b a b a =-===+.31)(23x x x f +-=(Ⅱ)由(Ⅰ)知2,0)(,2)(,231)(122-=='+-='+-=x x g x x g x x x g 解得令所以,),2[],2,()(,0)(,22,22+∞--∞<'>-<=在区间从而时或则当x g x g x x x 上是减函数;当,22时<<-x ,0)(>'x g 从而)(x g 在区间]2,2[-上是增函数.由前面讨论知,,2,2,1]2,1[)(时取得能在上的最大值与最小值只在区间=x x g 而.34)2(,324)2(,35)1(===g g g 因此上的最大值为在区间]2,1[)(x g324)2(=g ,最小值为.34)2(=g江西文 17.(本小题满分12分)设函数32()63(2)2f x x a x ax =+++.(1)若()f x 的两个极值点为12,x x ,且121x x =,求实数a 的值;(2)是否存在实数a ,使得()f x 是(,)-∞+∞上的单调函数?若存在,求出a 的值;若不存在,说明理由.【解析】考查函数利用导数处理函数极值单调性等知识 解: 2()186(2)2f x x a x a '=+++(1)由已知有12()()0f x f x ''==,从而122118ax x ==,所以9a =; (2)由2236(2)418236(4)0a a a ∆=+-⨯⨯=+>,3 / 19所以不存在实数a ,使得()f x 是R 上的单调函数. 北京文(18) (本小题共14分)设定函数32()(0)3a f x x bx cx d a =+++,且方程'()90f x x -=的两个根分别为1,4.(Ⅰ)当a=3且曲线()y f x =过原点时,求()f x 的解析式; (Ⅱ)若()f x 在(,)-∞+∞无极值点,求a 的取值范围. (18)(共14分) 解:由32()3a f x x bx cx d =+++ 得 2()2f x ax bx c '=++ 因为2()9290f x x ax bx c x '-=++-=的两个根分别为1,4,所以290168360a b c a b c ++-=⎧⎨++-=⎩(*)(Ⅰ)当3a =时,又由(*)式得2608120b c b c +-=⎧⎨++=⎩解得3,12b c =-=又因为曲线()y f x =过原点,所以0d = 故32()312f x x x x =-+ (Ⅱ)由于a>0,所以“32()3a f x x bx cx d =+++在(-∞,+∞)内无极值点”等价于“2()20f x ax bx c '=++≥在(-∞,+∞)内恒成立”. 由(*)式得295,4b a c a =-=. 又2(2)49(1)(9)b ac a a ∆=-=--解09(1)(9)0a a a >⎧⎨∆=--≤⎩得[]1,9a ∈即a 的取值范围[]1,9 天津 文(20)(本小题满分12分)已知函数f (x )=3231()2ax x x R -+∈,其中a>0. (Ⅰ)若a=1,求曲线y=f (x )在点(2,f (2))处的切线方程; (Ⅱ)若在区间11,22⎡⎤-⎢⎥⎣⎦上,f (x )>0恒成立,求a 的取值范围.(20)本小题主要考查曲线的切线方程、利用导数研究函数的单调性与极值、解不等式等基础知识,考查运算能力及分类讨论的思想方法.满分12分.(Ⅰ)解:当a=1时,f (x )=323x x 12-+,f (2)=3;f ’(x)=233x x -, f ’(2)=6.所以曲线y=f (x )在点(2,f (2))处的切线方程为y-3=6(x-2),即y=6x-9.(Ⅱ)解:f ’(x)=2333(1)ax x x ax -=-.令f ’(x)=0,解得x=0或x=1a. 以下分两种情况讨论: (1) 若110a 2<≤≥,则,当x 变化时,f ’(x),f (x )的变化情况如下表:当11x f x 22⎡⎤∈-⎢⎥⎣⎦,时,()>0等价于5a 10,()0,8215a ()0,0.28f f -⎧⎧>->⎪⎪⎪⎪⎨⎨+⎪⎪>>⎪⎪⎩⎩即解不等式组得-5<a<5.因此0a 2<≤.(2) 若a>2,则11<<.当x 变化时,f ’(x),f (x )的变化情况如下表:5 / 19当11x 22⎡⎤∈-⎢⎥⎣⎦,时,f (x )>0等价于1f(-)21f()>0,a ⎧⎪⎪⎨⎪⎪⎩>0,即25811->0.2a a -⎧⎪⎪⎨⎪⎪⎩>0,解不等式组得52a <<或2a <-因此2<a<5. 综合(1)和(2),可知a 的取值范围为0<a<5.新课改(文)(21)本小题满分12分)设函数()()21x x f x e ax =--(Ⅰ)若a=12,求()x f 的单调区间; (Ⅱ)若当x ≥0时()x f ≥0,求a 的取值范围(21)解: (Ⅰ)12a =时,21()(1)2x f x x e x =--,'()1(1)(1)x x xf x e xe x e x =-+-=-+.当(),1x ∈-∞-时'()f x >0;当()1,0x ∈-时,'()0f x <;当()0,x ∈+∞时,'()0f x >.故()f x 在(),1-∞-,()0,+∞单调增加,在(-1,0)单调减少.(Ⅱ)()(1)af x x x ax =--.令()1ag x x ax =--,则'()xg x e a =-.若1a ≤,则当()0,x ∈+∞时,'()g x >0,()g x 为减函数,而(0)0g =,从而当x ≥0时()g x ≥0,即()f x ≥0.若a >1,则当()0,ln x a ∈时,'()g x <0,()g x 为减函数,而(0)0g =,从而当()0,ln x a ∈时()g x <0,即()f x <0. 综合得a 的取值范围为(],1-∞湖北文21.(本小题满分14分)设函数321a x x bx c 32f -++(x )=,其中a >0,曲线x y f =()在点P (0,0f ())处的切线方程为y=1(Ⅰ)确定b 、c 的值(Ⅱ)设曲线x y f =()在点(11x x f ,())及(22x x f ,())处的切线都过点(0,2)证明:当12x x ≠时,12'()'()f x f x ≠(Ⅲ)若过点(0,2)可作曲线x y f =()的三条不同切线,求a 的取值范围.辽宁文(21)(本小题满分12分)已知函数2()(1)ln 1f x a x ax =+++. (Ⅰ)讨论函数()f x 的单调性;(Ⅱ)设2a ≤-,证明:对任意12,(0,)x x ∈+∞,1212|()()|4||f x f x x x -≥-7 / 19山东 文(21)(本小题满分12分)已知函数).(111)(R a xaax nx x f ∈--+-= (Ⅰ)当处的切线方程;,在点(时,求曲线))2(2)(1f x f y a =-=(Ⅱ)当12a ≤时,讨论()f x 的单调性.(21)本小题主要考查导数的概念、导数的几何意义和利用导数研究函数性质的能力,考查分类讨论思想、数形结合思想和等价变换思想.满分12分.解:(Ⅰ) 当=-=)(1x f a 时,),,0(,12ln +∞∈-++x xx x 所以 )('x f 222,(0,)x x x x +-=∈+∞ 因此,,)(12=f 即 曲线.1))2(2)(,处的切线斜率为,在点(f x f y = 又 ,22ln )2(+=f所以曲线.02ln ,2)22(ln ))2(2)(=+--=+-=y x x y f x f y 即处的切线方程为,在点((Ⅱ)因为 11ln )(--+-=xaax x x f , 所以 211)('x a a x x f -+-=221xa x ax -+--= ),0(+∞∈x , 令 ,1)(2a x ax x g -+-=),,0(+∞∈x(1)当0,()1,(0,)a h x x x ==-+∈+∞时所以,当(0,1),()0,()0x h x f x '∈><时此时,函数()f x 单调递减;当(1,)x ∈+∞时,()0h x <,此时()0,f x '>函数f(x)单调递(2)当0a '≠时,由f (x)=0 即210ax x a -+-=,解得1211,1x x a==- ①当12a =时,12,()0x x h x =≥恒成立,此时()0f x '≤,函数()f x 在(0,+∞)上单调递减;9 / 19②当110,1102a a<<->>时 (0,1)x ∈时,()0,()0,()h x f x f x '><此时函数单调递减;1(1,1)x a∈-时,()0,()0,()h x f x f x '<>此时函数单调递增; 1(1,),()0x h x a∈-+∞>时,此时()0f x '<,函数()f x 单调递减;③当0a <时,由于110a -<(0,1)x ∈时,()0h x >,此时()0f x '<,函数()f x 单调递减; (1,)x ∈+∞时,()0h x <,此时()0f x '>,函数()f x 单调递增.综上所述:当0a ≤时,函数()f x 在(0,1)上单调递减; 函数()f x 在(1,+∞)上单调递增;当12a =时,函数()f x 在(0,+∞)上单调递减; 当102a <<时,函数()f x 在(0,1)上单调递减;函数()f x 在1(1,1)a -上单调递增;函数1()(1,)f x a-+∞在上单调递减,陕西yzt 文 A21、(本小题满分14分)已知函数()f x =()ln g x a x =,a R ∈(Ⅰ)若曲线()y f x =与曲线()y g x =相交,且在交点处有相同的切线,求a 的值及该切线的方程;(Ⅱ)设函数()()()h x f x g x =-,当()h x 存在最小值时,求其最小值()a ϕ的解析式; (Ⅲ)对(Ⅱ)中的()a ϕ,证明:当(0,)a ∈+∞时, ()1a ϕ≤.21解: (Ⅰ)()f x '=()g x '=ax(x>0),由已知得ln ,,a x ax== 解得a=2e ,x=e 2, ∴两条曲线交点的坐标为(e 2,e) 切线的斜率为k =f ’(e 2)=12e∴切线的方程为 y -e=12e (x -e 2)(II)由条件知h(x)= x –aln x (x >0), (i )当a>0时,令()0,h x '=解得24x a =,∴ 当0 <x < 24a 时,()0,h x '<,()h x 在(0,24a )上递减;当x >24a 时,()0,h x '>,()h x 在2(4,)a +∞上递增.∴ 24x a =是()h x 在(0,)+∞上的唯一极值点,且是极小值点,从而也是()h x 的最小值点.∴ 最小值22()(4)2ln 42(1ln 2).a h a a a a a a ϕ==-=- (ii )当0a ≤时,()0,h x '=>()h x 在(0,+∞)上递增,无最小值. 故()h x 的最小值 ()a ϕ的解析式为 ()2(1ln 2)(0).a a a a ϕ=-> (Ⅲ)由(Ⅱ)知 ()2(1ln 2ln ).a a a ϕ=--则 ()2ln 2a a ϕ'=-,令 ()0a ϕ'=解得12a =. 当102a <<时, ()0a ϕ'>,∴ ()a ϕ在1(0,)2上递增;当12a >时, ()0a ϕ'<,∴()a ϕ在1(,)2+∞上递减. ∴ ()a ϕ在12a =处取得最大值1()1,2ϕ= ∵ ()a ϕ在(0,)+∞上有且只有一个极值点,所以1()12ϕ=也是 ()a ϕ的最大值. ∴当(0,)a ∈+∞时,总有 () 1.a ϕ≤11 / 19四川 文yzt22、(本小题满分14分)设1()(0,1),()1xxa f x a a g x a+=>≠-且是()f x 的反函数, (Ⅰ)求()g x(Ⅱ)当[2,6]x ∈时,恒有2()log (1)(7)a tg x x x >--成立,求t 的取值范围. (Ⅲ)当102a <≤时,试比较(1)(2)()f f f n +++与4n +的大小,并说明理由.22、解析:(Ⅰ)由题意得101xy a y -=>+, 故1()log ,(,1)(1,)1ax g x x x -=∈-∞-+∞+, …………………… (3分) (Ⅱ) 由1()log 1ax g x x -=+2log (1)(7)a t x x >-- 得 ① 当1a >时,11x x -+20(1)(7)t x x >>-- ,又 因为[2,6]x ∈,所以 20(1)(7)t x x <<--.令232()(1)(7)9157,[2,6]h x x x x x x x =--=-+-+∈则2()'318153(1)(5)h x x x x x =-+-=---,列表如下:所以 ()5h x =最小值,∴05t <<, ② 当01a <<时,,101x x -<+2(1)(7)t x x <--,又 因为[2,6]x ∈,所以 由①知()32h x =最大值,∴32t >,综上,当1a >时,05t <<;当01a <<时,32t >. …………………(9分)(Ⅲ)设11a p=+,则1P ≥, 当1n =时,12(1)1351a f a p+==+≤<-, 当2n ≥时,设2,k k N *≥∈时,则122122()111(1)1...k k k k kK K K a f k a p C p C p C p+==+=+-+-+++ 所以1224441()111(1)1k k f k C C k k k k <≤+=+=+-+++, 从而44(2)(3)()1121f f f n n n n +++≤-+-<++. 所以,(1)(2)(3)()(1)14f f f f n f n n ++++<+++≤+综上, 总有(1)(2)(3)()4f f f f n n ++++<+ .………………(14分)浙江文(21)(本题满分15分)已知函数f (x )=(x -a )(x -b )(a ,b ∈R ,a<b ). (Ⅰ)当a =1,b =2时,求曲线y =f (x )在点(2,f (2))处的切线方程; (Ⅱ)设x 1,x 2是f (x )的两个极值点,x 3是f (x )的一个零点,且x 3≠x 1,x 3≠x 2. 证明:存在实数x 4,使得x 1,x 2,x 3,x 4按某种顺序排列后构成等差数列,并求x 4. (21)本题主要考查函数的极值概念、导数运算法则、切线方程、导线应用、等差数列等基础知识,同时考查抽象概括、推理论证能力和创新意识.满分15分. (Ⅰ)解:当a =1,b =2时, 因为f ′(x )=(x -1)(3x -5). 故f ′(2)=1.又f (2)=0,所以f (x )在点(2,0)处的切线方程为y =x -2. (Ⅱ)证明:因为f ′(x )=3(x -a )(x -23a b+),由于a <b .13 / 19故a <23a b+. 所以f (x )的两个极值点为x =a ,x =23a b+. 不妨设x 1=a ,x 2=23a b+, 因为x 3≠x 1,x 3≠x 2,且x 3是f (x )的零点, 故x 3=b .又因为23a b +-a =2(b -23a b+),x 4=12(a +23a b +)=23a b +,所以a ,23a b +,23a b+,b 依次成等差数列,所以存在实数x 4满足题意,且x 4=23a b+.湖南 文yzt21.(本小题满分13分)已知函数a x a x xax f 151+-++=ln )()(, 其中,0<a 且1-≠a (Ⅰ)讨论函数)(x f 的单调性;(Ⅱ)设函数⎩⎨⎧>⋅≤--++-=)()()()()(1164632223x x f e x e a a ax ax x x g x (e 是自然对数的底数),是否存在a ,使g(x)在[a,-a]上是减函数?若存在,求a 的取值范围;若不存在,请说明理由.21. (Ⅰ))(x f 的定义域为),(+∞0,22111xx a x x a x a x f ))(()(-+=-++-=' (1)若-1<a<0,则当0<x<-a 时,0>')(x f ;当-a <x<1时,0<')(x f ;当x>1时,0>')(x f .故)(x f 分别在),(),,(+∞-10a 上单调递增,在),(1a -上单调递减. (2)若a<-1,仿(1)可得)(x f 分别在),(),,(+∞-a 10上单调递增,在),(a -1上单调递减.(Ⅱ)存在a ,使g(x)在[a,-a]上是减函数.事实上,设)()()(R x e a a ax ax x x h x∈--++-=64632223,则x e a ax x a x x h ])([)(223412232-+-+-=',再设)()()(R x a ax x a x x m ∈-+-+-=223412232,则当g(x)在[a,-a]上单调递减时,h(x)必在[a,0]上单调递,所以0≤')(a h ,由于0>x e ,因此0≤)(a m ,而)()(22+=a a a m ,所以2-≤a ,此时,显然有g(x)在[a,-a]上为减函数,当且仅当)(x f 在[1,-a]上为减函数,h(x)在[a,1上为减函数,且)()(11f e h ⋅≥,由(Ⅰ)知,当a<-2时,)(x f 在),(a -1上为减函数 ①又41303134112-≤≤-⇔≤++⇔⋅≥a a a f e h )()( ② 不难知道,0101≤∈∀⇔≤'∈∀)(],,[)(],,[x m a x x h a x因))(()()(a x x a x a x x m -+-=+-+-='26122662,令0=')(x m ,则x=a或x=-2,而2-≤a于是 (1)当a<-2时,若a <x<-2,则0>')(x m ,若-2 <x<1,则0<')(x m ,因而)(x m 分别在),(2-a 上单调递增,在),(12-上单调递减;(2)当a =-2时, 0≤')(x m ,)(x m 在),(12-上单调递减.综合(1)(2)知,当2-≤a 时,)(x m 在],[1a 上的最大值为812422---=-a a m )(,所以,20812402012-≤⇔≤---⇔≤-⇔≤∈∀a a a m x m a x )()(],,[ ③又对01=∈)(],,[x m a x ,只有当a=-2时在x=-2取得,亦即0=')(x h 只有当a=-2时在x=-2取得.因此,当2-≤a 时,h(x)在[a,1上为减函数,从而由①,②,③知 23-≤≤-a综上所述,存在a ,使g(x)在[a,-a]上是减函数,且a 的取值范围为],[23--.广东文15 / 19(2)当32≤≤x 时,120≤-≤x)32()4)(2()2()(≤≤--=-=x kx x k x f x f 当02≤≤-x 时,220≤+≤x )02)(2()2()(≤≤-+=+=x x kx x kf x f当23-≤≤-x 时,021≤+≤-x)23)(4)(2()4)(2()2()(2-≤≤-++=++⋅=+=x x x k x x k k x kf x f)23(),4)(2(-≤≤-++x x x)02)(2(≤≤-+x x )20)(2≤≤-x x)32()4)(2(≤≤--x kx xc. 当1-<k 时12-<-k ,kk 1->- 此时:2min max )3()(,)1()(k f x f k f x f -=-=-=-= 福建 文yzt 22.(本小题满分14分) 已知函数f(x)=的图像在点P(0,f(0))处的切线方程为32y x =-.(Ⅰ)求实数a ,b 的值;(Ⅱ)设224(2)22,1y x p x =-==-()()1mg x f x x =+-是[2,)+∞上的增函数. (ⅰ)求实数m 的最大值;(ⅱ)当m 取最大值时,是否存在点Q ,使得过点Q 的直线能与曲线()y g x =围成17 / 19两个封闭图形,则这两个封闭图形的面积总相等?若存在,求出点Q 的坐标;若不存在,说明理由.22. 本小题主要考察函数、导数等基础知识,考察推力论证能力、抽象概况能力、运算求解能力,考察函数与方程思想、数形结合思想、化归与转换思想、分类与整合思想.满分14分. 解法一:(Ⅰ)由2'()2f x x x a =-+及题设得'(0)3(0)2f f =⎧⎨=-⎩即32a b =⎧⎨=-⎩.(Ⅱ)(ⅰ)由321()3231m g x x x x x =-+-+- 得22'()23(1)mg x x x x =-+--. ()g x 是[2,)+∞上的增函数, '()g x ∴0≥在[2,)+∞上恒成立,即22230(1)mx x x -+-≥-在[2,)+∞上恒成立. 设2(1)x t -=.[2,),[1,)x t ∈+∞∴∈+∞,即不等式20mt t+-≥在[1,)+∞上恒成立 当0m ≤时,不等式20mt t +-≥在[1,)+∞上恒成立.当0m >时,设2my t t=+-,[1,)t ∈+∞因为2'10m y t =+>,所以函数2my t t=+-在[1,)+∞上单调递增,因此min 3y m =-.min 0,30y m ≥∴-≥,即3m ≤.又0m >,故03m <≤. 综上,m 的最大值为3. (ⅱ)由(ⅰ)得3213()3231g x x x x x =-+-+-,其图像关于点1(1,)3Q 成中心对称.证明如下:3213()3231g x x x x x =-+-+- 3213(2)(2)(2)3(2)2321g x x x x x ∴-=---+--+--321833331x x x x=-+-++-因此,2()(2)3g x g x +-=.上式表明,若点(,)A x y 为函数()g x 在图像上的任意一点,则点2(2,)3B x y --也一定在函数()g x 的图像上.而线段AB 中点恒为点1(1,)3Q ,由此即知函数()g x 的图像关于点Q 成中心对称.这也就表明,存在点1(1,)3Q ,使得过点Q 的直线若能与函数()g x 的图像围成两个封闭图形,则这两个封闭图形的面积总相等. 解法二: (Ⅰ)同解法一. (Ⅱ)(ⅰ)由321()3231m g x x x x x =-+-+- 得22'()23(1)mg x x x x =-+--.()g x 是[2,)+∞上的增函数, '()g x ∴0≥在[2,)+∞上恒成立,即22230(1)mx x x -+-≥-在[2,)+∞上恒成立. 设2(1)x t -=.[2,),[1,)x t ∈+∞∴∈+∞,即不等式20mt t+-≥在[1,)+∞上恒成立. 所以22m t t ≤+在[1,)+∞上恒成立.令22y t t =+,[1,)t ∈+∞,可得min 3y =,故3m ≤,即m 的最大值为3.(ⅱ)由(ⅰ)得3213()3231g x x x x x =-+-+-, 将函数()g x 的图像向左平移1个长度单位,再向下平移13个长度单位,所得图像相应的函19 / 19数解析式为313()23x x x xφ=++,(,0)(0,)x ∈-∞+∞. 由于()()x x φφ-=-,所以()x φ为奇函数,故()x φ的图像关于坐标原点成中心对称. 由此即得,函数()g x 的图像关于点1(1,)3Q 成中心对称.这也表明,存在点1(1,)3Q ,是得过点Q 的直线若能与函数()g x 的图像围成两个封闭图形,则这两个封闭图形的面积总相等.。

文科《导数》高考常考题型专题训练

文科《导数》高考常考题型专题训练

文科《导数》高考常考题型专题训练1.已知函数/。

)= 6'一。

工一3(。

£/?)(1)若函数段)在函,—1))处的切线与直线木广0平行,求实数”的值;(2)当a=2, k为整数,且当Q1时,“一外/'(x) + 2x + l>0,求〃的最大值.1 .【解析】(1)由/(x) = "—ax — 3,则/'*・) = "—〃又函数7U)在(1,火1))处的切线与直线片厂0平行,则=(2)当〃=2,且当x>l 时,&一行(。

”一+ 2x + l>0等价于2), 2x+l)当x>l 时,k< x + ^—k " - 2 7m j n2x + \,-2X-3)令g(x) = x + ^-则g (幻=—:-------------------e -2 (。

”-2)-再令h(x) = e x - 2x - 3(x > 1),则/(x) = " - 2 > 0 ,所以,〃(x)在(L+o。

)上单调递增,且以l)vO,以2)>0,所以,/?(x)在(1, 2)上有唯一的零点,设该零点为小,则x°w(l,2),且e"=2%+3, 当xw。

,,q)时,〃(%)v。

,即g'(x)<。

:当xw(小,+°°)时,"(x)>。

,即g'(x)>0, 所以,g (x)在。

,小)单调递减,在(/,+8)单调递增,2( +1所以,g(X)min +c - z而x°e(L2),故一+le(2,3)且"vg(瓦),又k为整数,所以k的最大值为2.2.已知函数/(x) = 6 + sinx,其中(1)若函数”刈在区间上单调递增,求k的取值范围:⑵若k = l时,不等式/Oarcosx在区间0尚上恒成立,求实数。

的取值范围.2・1解析】(1)由题意,f\x) = k+cosx t(冗5兀।「兀5兀、因为/(”)在区间二;上单调递增,所以工£二:时,/'(x) = Z + cosxNO恒成立,即k 3 6 7 V3 6 yk>—COSX9因为函数)'= -cosx在(工:上单调递增,所以—cosxK—cos^ =无,所以攵之五. (361 6 2 2(2) 〃 = 1 时,/(x) = x + sinx,令g(x) = /(x)—ovcosx = x+sinx-arcosx, xw[o.g],则g(x)A。

高中文科数学导数经典题型

高中文科数学导数经典题型

高中文科数学导数经典题型
“函数关系背后的微分之旅:是收获还是挣扎?”
高中文科数学中的导数经典题型是非常重要的,它有助于加强学生的数学基本知识和技能,加深理解。

下面是一些常见的导数经典题型:
一、求函数的导数:
1、求一元函数的导数,包括多项式函数,指数函数,对数函数等。

2、求多元函数的一阶偏导数,如求直线、椭圆、圆、抛物线等函数的一阶偏导数。

二、解微分方程:
1、利用教材解决一阶常微分方程,包括恒定系数、变量系数、分段函数等类型的微分方程。

2、求非线性微分方程的解,包括二阶解函数、多项式的解、指数函数的解。

三、求极值问题:
1、求函数极值问题,包括单个变量和多变量函数极值问题,采用夹逼法求解。

2、求有限区间函数的极值,通过求和来解决问题。

四、建模:
1、用数学建模法解决实际问题,构建相应的导数函数对给定问题求解。

2、建立对应的微分不等式和微分关系,应用不等式有解的性质求解解。

以上就是我们通常所涉及的关于高中文科数学中的导数经典题型的介绍,它们是关键的基础,必须得到良好的掌握。

习题练习是最好的方法,只有不断的努力,才能更好的理解导数的概念,加深对导数的知
识的认识。

导数十年真题分类汇编(带答案)

导数十年真题分类汇编(带答案)

导数十年真题分类汇编(带答案)一.基础题组1. 【2010全国新课标,文4】曲线y =x 3-2x +1在点(1,0)处的切线方程为…( ) A .y =x -1 B .y =-x +1 C .y =2x -2 D .y =-2x +2 【答案】:A【解析】y ′|x =1=(3x 2-2)|x =1=1,因此曲线在(1,0)处的切线方程为y =x -1. 2. 【2010全国2,文7】若曲线y =x 2+ax +b 在点(0,b )处的切线方程是x -y +1=0,则( )A .a =1,b =1B .a =-1,b =1C .a =1,b =-1D .a =-1,b =-1 【答案】:A【解析】∵y ′=2x +a ,∴k =y ′|x =0=a =1,将(0,b )代入切线:0-b +1=0,∴b =1,∴a =1,b =1.3. 【2007全国2,文8】已知曲线24x y =的一条切线的斜率为12,则切点的横坐标为( ) (A)1(B) 2(C) 3(D) 4【答案】:A【解析】f'(x )=x/2,k=f'(x)=x/2=1/2,x=1,所以:切点的横坐标是1.4. 【2012全国新课标,文13】曲线y =x (3ln x +1)在点(1,1)处的切线方程为__________. 【答案】:4x -y -3=05. 【2005全国3,文15】曲线32x x y -=在点(1,1)处的切线方程为 . 【答案】x+y-2=0【解析】'223y x =-,1k =-,∴切线方程为11(1)y x -=-⨯-,即20x y +-=.6. 【2015新课标2文数】已知曲线ln y x x =+在点()1,1 处的切线与曲线()221y ax a x =+++ 相切,则a = .【答案】8 【解析】试题分析:由11y x'=+可得曲线ln y x x =+在点()1,1处的切线斜率为2,故切线方程为21y x =-,与()221y ax a x =+++ 联立得220ax ax ++=,显然0a ≠,所以由 2808a a a ∆=-=⇒=.【考点定位】本题主要考查导数的几何意义及直线与抛物线相切问题. 二.能力题组1. 【2013课标全国Ⅱ,文21】(本小题满分12分)已知函数f (x )=x 2e -x. (1)求f (x )的极小值和极大值;(2)当曲线y =f (x )的切线l 的斜率为负数时,求l 在x 轴上截距的取值范围.(2)设切点为(t ,f (t )),则l 的方程为y =f ′(t )(x -t )+f (t ). 所以l 在x 轴上的截距为m (t )=()223'()22f t t t t t f t t t -=+=-++--. 由已知和①得t ∈(-∞,0)∪(2,+∞). 令h (x )=2x x+(x ≠0),则当x ∈(0,+∞)时,h (x )的取值范围为22 当x ∈(-∞,-2)时,h (x )的取值范围是(-∞,-3).所以当t ∈(-∞,0)∪(2,+∞)时,m (t )的取值范围是(-∞,0)∪223,+∞). 综上,l 在x 轴上的截距的取值范围是(-∞,0)∪223,+∞). 2. 【2005全国2,文21】(本小题满分12分)设为实数,函数32()f x x x x a =--+. (Ⅰ) ()f x 的极值;(Ⅱ) 当在什么范围内取值时,曲线()y f x =与轴仅有一个交点. 【解析】:(I)'()f x =32x -2-1 若'()f x =0,则==-13, =1 当变化时,'()f x ,()f x 变化情况如下表:(-∞,-13) -13(-13,1) 1 (1,+∞)'()f x + 0 - 0 + ()f x极大值极小值∴()f x 的极大值是15()327f a -=+,极小值是(1)1f a =- ∴当5(,)27a ∈-∞-∪(1,+∞)时,曲线y =()f x 与轴仅有一个交点。

高中导数试题题型及答案

高中导数试题题型及答案

高中导数试题题型及答案一、选择题1. 函数 \( y = 3x^2 - 2x + 1 \) 在 \( x = 1 \) 处的导数是:A. 6B. 4C. 5D. 72. 已知 \( f(x) = x^3 + ax^2 + bx + c \),其中 \( a = 1 \),\( b = -1 \),\( c = 1 \),求 \( f'(x) \):A. \( 3x^2 + 2x - 1 \)B. \( 3x^2 + 2x + 1 \)C. \( 3x^2 + 2x \)D. \( 3x^2 + 1 \)二、填空题3. 函数 \( y = x^3 \) 的导数是 ______ 。

答案:\( 3x^2 \)4. 如果 \( f(x) = \sin(x) \),那么 \( f'(x) \) 是 ______ 。

答案:\( \cos(x) \)三、计算题5. 求函数 \( y = x^4 - 5x^3 + 6x^2 \) 的导数。

答案:\( y' = 4x^3 - 15x^2 + 12x \)6. 已知 \( f(x) = \ln(x) + 2x^2 - 3x \),求 \( f'(x) \)。

答案:\( f'(x) = \frac{1}{x} + 4x - 3 \)四、应用题7. 某物体的位移函数是 \( s(t) = 2t^3 - 3t^2 + 4t \),求物体在\( t = 2 \) 秒时的瞬时速度。

答案:首先求导数 \( s'(t) = 6t^2 - 6t + 4 \),然后将 \( t= 2 \) 代入,得到 \( s'(2) = 6 \times 2^2 - 6 \times 2 + 4 =24 - 12 + 4 = 16 \) 米/秒。

8. 某工厂的产量函数是 \( P(x) = 100x - x^2 \),求工厂在 \( x= 10 \) 时的边际产量。

导数专题的题型总结

导数专题的题型总结

导数专题的题型总结一、导数的概念与运算题型1. 求函数的导数- 题目:求函数y = x^3+2x - 1的导数。

- 解析:- 根据求导公式(x^n)^′=nx^n - 1,对于y = x^3+2x - 1。

- 对于y = x^3,其导数y^′=(x^3)^′ = 3x^2;对于y = 2x,其导数y^′=(2x)^′=2;对于y=-1,因为常数的导数为0,所以y^′ = 0。

- 综上,函数y = x^3+2x - 1的导数y^′=3x^2+2。

2. 复合函数求导- 题目:求函数y=(2x + 1)^5的导数。

- 解析:- 设u = 2x+1,则y = u^5。

- 根据复合函数求导公式y^′_x=y^′_u· u^′_x。

- 先对y = u^5求导,y^′_u = 5u^4;再对u = 2x + 1求导,u^′_x=2。

- 所以y^′ = 5u^4·2=10(2x + 1)^4。

二、导数的几何意义题型1. 求切线方程- 题目:求曲线y = x^2在点(1,1)处的切线方程。

- 解析:- 对y = x^2求导,根据求导公式(x^n)^′=nx^n - 1,可得y^′ = 2x。

- 把x = 1代入导数y^′中,得到切线的斜率k = 2×1=2。

- 由点斜式方程y - y_0=k(x - x_0)(其中(x_0,y_0)=(1,1),k = 2),可得切线方程为y - 1=2(x - 1),即y = 2x-1。

2. 已知切线方程求参数- 题目:已知曲线y = ax^2+3x - 1在点(1,a + 2)处的切线方程为y = 7x + b,求a和b的值。

- 解析:- 先对y = ax^2+3x - 1求导,y^′=2ax + 3。

- 把x = 1代入导数y^′中,得到切线的斜率k = 2a+3。

- 因为切线方程为y = 7x + b,所以切线斜率为7,即2a + 3=7,解得a = 2。

导数大题20种题型

导数大题20种题型

导数大题20种题型导数是微积分中非常重要的概念,它用于描述函数在某一点处的变化率。

在求解导数的过程中,我们会遇到各种不同的题型。

下面是导数大题的20种题型。

1. 基本函数的导数:求解常见函数(如多项式函数、指数函数、对数函数、三角函数等)在给定点处的导数。

2. 复合函数的导数:根据链式法则,求解复合函数在给定点处的导数。

3. 反函数的导数:利用反函数的性质,求解反函数在给定点处的导数。

4. 参数方程的导数:对参数方程中的x和y分别求导,得到x和y 关于另一个参数的导数。

5. 隐函数的导数:根据隐函数的定义,利用全微分的性质,求解隐函数在给定点处的导数。

6. 对数导数:利用对数函数的导数性质,求解函数的对数导数。

7. 高阶导数:求解函数的二阶、三阶或更高阶导数。

8. 反复函数的导数:对反复函数进行多次求导,得到各阶导数。

9. 参数曲线的切线与法线:利用导数的定义,求解参数曲线在给定点处的切线和法线方程。

10. 极限定义的导数:利用导数的极限定义,求解函数在给定点处的导数。

11. 极值问题:利用导数的性质,求解函数的极大值和极小值点。

12. 函数的单调性:根据导数的正负性,判断函数在给定区间上的单调性。

13. 曲线的凹凸性:根据导数的增减性,判断函数在给定区间上的凹凸性。

14. 弧长问题:利用导数的定义,求解曲线弧长。

15. 曲率问题:利用导数的定义,求解曲线在给定点处的曲率。

16. 泰勒展开:利用导数的性质,对函数进行泰勒展开。

17. 函数的积分:利用导数和积分的关系,求解函数的积分。

18. 参数方程的弧长:利用导数的定义,求解参数方程表示的曲线的弧长。

19. 高阶导数的应用:利用高阶导数的性质,求解函数的拐点、极值点等特殊点。

20. 物理问题的应用:利用导数的物理意义,求解物理问题中的速度、加速度等相关概念。

这些题型覆盖了导数的基本概念及其在不同问题中的应用。

通过解答这些题型,我们可以更好地理解导数的性质及其在数学和物理中的重要作用。

导数题型及解题方法归纳

导数题型及解题方法归纳

导数题型及解题方法归纳一、导数的定义1. 导数的概念在微积分中,导数是用来描述函数变化率的量。

给定函数f(x),其导数可以看作是函数在某一点x 处的瞬时变化率。

导数的定义可以用以下式子表示:f′(x )=lim Δx→0f (x +Δx )−f (x )Δx2. 函数可导性一个函数在某一点可导的条件是该点邻近的间断点和极限不存在,且函数曲线经过该点处的切线存在。

二、导数的求解方法1. 基本导数公式可以通过基本导数公式来求常见函数的导数。

一些常用的基本导数公式包括: - 常数函数的导数为0:(c )′=0,其中c 为常数。

- 幂函数的导数:(x n )′=nx n−1,其中n 为常数。

- 指数函数的导数:(e x )′=e x 。

- 对数函数的导数:(lnx )′=1x 。

- 三角函数的导数: - (sinx )′=cosx - (cosx )′=−sinx - (tanx )′=sec 2x - (cotx )′=−csc 2x2. 求导法则为了更方便地求导,可以使用一些求导法则。

一些常用的求导法则包括: - 和差法则:(u ±v )′=u′±v′ - 乘法法则:(uv )′=u′v +uv′ - 商法则:(u v )′=u′v−uv′v 2,其中v 不等于0。

- 复合函数求导法则:若y = f(g(x)),则dy dx =dy du ⋅du dx ,其中u = g(x)。

3. 高阶导数高阶导数表示对函数进行多次求导得到的导数。

高阶导数可以通过多次使用导数公式和求导法则求解。

4. 隐函数求导有些函数可以通过隐函数形式表示,这时可以使用隐函数求导方法来求导。

隐函数求导的关键是利用导数的定义和求导法则,将相关变量分离并进行求导。

三、导数题型及解题方法1. 常函数的导数对于常函数f(x) = c,其导数为0,即f′(x)=0。

2. 幂函数的导数对于幂函数f(x) = x^n,其中n为常数,其导数为(x n)′=nx n−1。

完整版)导数的综合大题及其分类

完整版)导数的综合大题及其分类

完整版)导数的综合大题及其分类.导数在高考中是一个经常出现的热点,考题难度比较大,多数情况下作为压轴题出现。

命题的主要热点包括利用导数研究函数的单调性、极值、最值,不等式,方程的根以及恒成立问题等。

这些题目体现了分类讨论、数形结合、函数与方程、转化与化归等数学思想的运用。

题型一:利用导数研究函数的单调性、极值与最值这类题目的难点在于分类讨论,包括函数单调性和极值、最值综合问题。

1.单调性讨论策略:单调性的讨论是以导数等于零的点为分界点,将函数定义域分段,在各段上讨论导数的符号。

如果不能确定导数等于零的点的相对位置,还需要对导数等于零的点的位置关系进行讨论。

2.极值讨论策略:极值的讨论是以单调性的讨论为基础,根据函数的单调性确定函数的极值点。

3.最值讨论策略:图象连续的函数在闭区间上最值的讨论,是以函数在该区间上的极值和区间端点的函数值进行比较为标准进行的。

在极值和区间端点函数值中最大的为最大值,最小的为最小值。

例题:已知函数f(x)=x-,g(x)=alnx(a∈R)。

x1.当a≥-2时,求F(x)=f(x)-g(x)的单调区间;2.设h(x)=f(x)+g(x),且h(x)有两个极值点为x1,x2,其中h(x1)=h(x2),求a的值。

审题程序]1.在定义域内,依据F′(x)=0的情况对F′(x)的符号进行讨论;2.整合讨论结果,确定单调区间;3.建立x1、x2及a间的关系及取值范围;4.通过代换转化为关于x1(或x2)的函数,求出最小值。

规范解答]1.由题意得F(x)=x-x/(x2-ax+1)-alnx,其定义域为(0,+∞)。

则F′(x)=(x2-ax+1)-x(2ax-2)/(x2-ax+1)2.令m(x)=x2-ax+1,则Δ=a2-4.①当-2≤a≤2时,Δ≤0,从而F′(x)≥0,所以F(x)的单调递增区间为(0,+∞);②当a>2时,Δ>0,设F′(x)=0的两根为x1=(a+√(a2-4))/2,x2=(a-√(a2-4))/2,求h(x1)-h(x2)的最小值。

十年真题(2010-2019)高考数学(文)分类汇编专题04 导数及其应用(新课标Ⅰ卷)(原卷版)

十年真题(2010-2019)高考数学(文)分类汇编专题04 导数及其应用(新课标Ⅰ卷)(原卷版)

专题04导数及其应用历年考题细目表5解答题2014 导数综合问题2014年新课标1文科21解答题2013 导数综合问题2013年新课标1文科20解答题2012 导数综合问题2012年新课标1文科21解答题2011 导数综合问题2011年新课标1文科21解答题2010 导数综合问题2010年新课标1文科21历年高考真题汇编1.【2019年新课标1文科05】函数f()在[﹣π,π]的图象大致为()A.B.C.D.2.【2018年新课标1文科06】设函数f()=3+(a﹣1)2+a.若f()为奇函数,则曲线y=f()在点(0,0)处的切线方程为()A.y=﹣2 B.y=﹣C.y=2 D.y=3.【2017年新课标1文科08】函数y的部分图象大致为()A.B.C.D.4.【2017年新课标1文科09】已知函数f()=ln+ln(2﹣),则()A.f()在(0,2)单调递增B.f()在(0,2)单调递减C.y=f()的图象关于直线=1对称D.y=f()的图象关于点(1,0)对称5.【2016年新课标1文科09】函数y=22﹣e||在[﹣2,2]的图象大致为()A.B.C.D.6.【2016年新课标1文科12】若函数f()=sin2+a sin在(﹣∞,+∞)单调递增,则a的取值范围是()A.[﹣1,1] B.[﹣1,] C.[,] D.[﹣1,]7.【2014年新课标1文科12】已知函数f()=a3﹣32+1,若f()存在唯一的零点0,且0>0,则实数a 的取值范围是()A.(1,+∞)B.(2,+∞)C.(﹣∞,﹣1) D.(﹣∞,﹣2)8.【2013年新课标1文科09】函数f()=(1﹣cos)sin在[﹣π,π]的图象大致为()A.B.C.D.9.【2010年新课标1文科04】曲线y=3﹣2+1在点(1,0)处的切线方程为()A.y=﹣1 B.y=﹣+1 C.y=2﹣2 D.y=﹣2+210.【2019年新课标1文科13】曲线y=3(2+)e在点(0,0)处的切线方程为.11.【2017年新课标1文科14】曲线y=2在点(1,2)处的切线方程为.12.【2015年新课标1文科14】已知函数f()=a3++1的图象在点(1,f(1))处的切线过点(2,7),则a=.13.【2012年新课标1文科13】曲线y=(3ln+1)在点(1,1)处的切线方程为.14.【2019年新课标1文科20】已知函数f()=2sin﹣cos﹣,f′()为f()的导数.(1)证明:f′()在区间(0,π)存在唯一零点;(2)若∈[0,π]时,f()≥a,求a的取值范围.15.【2018年新课标1文科21】已知函数f()=ae﹣ln﹣1.(1)设=2是f()的极值点,求a,并求f()的单调区间;(2)证明:当a时,f()≥0.16.【2017年新课标1文科21】已知函数f()=e(e﹣a)﹣a2.(1)讨论f()的单调性;(2)若f()≥0,求a的取值范围.17.【2016年新课标1文科21】已知函数f()=(﹣2)e+a(﹣1)2.(Ⅰ)讨论f()的单调性;(Ⅱ)若f()有两个零点,求a的取值范围.18.【2015年新课标1文科21】设函数f()=e2﹣aln.(Ⅰ)讨论f()的导函数f′()零点的个数;(Ⅱ)证明:当a>0时,f()≥2a+aln.19.【2014年新课标1文科21】设函数f()=aln2﹣b(a≠1),曲线y=f()在点(1,f(1))处的切线斜率为0,(1)求b;(2)若存在0≥1,使得f(0),求a的取值范围.20.【2013年新课标1文科20】已知函数f()=e(a+b)﹣2﹣4,曲线y=f()在点(0,f(0))处切线方程为y=4+4.(Ⅰ)求a,b的值;(Ⅱ)讨论f()的单调性,并求f()的极大值.21.【2012年新课标1文科21】设函数f()=e﹣a﹣2.(Ⅰ)求f()的单调区间;(Ⅱ)若a=1,为整数,且当>0时,(﹣)f′()++1>0,求的最大值.22.【2011年新课标1文科21】已知函数f(),曲线y=f()在点(1,f(1))处的切线方程为+2y﹣3=0.(Ⅰ)求a、b的值;(Ⅱ)证明:当>0,且≠1时,f().23.【2010年新课标1文科21】设函数f()=(e﹣1)﹣a2(Ⅰ)若a,求f()的单调区间;(Ⅱ)若当≥0时f()≥0,求a的取值范围.考题分析与复习建议本专题考查的知识点为:导数的概念及运算,导数与函数的单调性、极值、最值,导数与函数的综合问题.历年考题主要以选择填空或解答题题型出现,重点考查的知识点为:导数的运算,导数与函数的单调性、极值、最值,导数与函数的综合问题,预测明年本考点题目会比较稳定.备考方向以知识点导数的运算,导数与函数的单调性、极值、最值,导数与函数的综合问题,为重点较佳.最新高考模拟试题1.已知函数10()ln ,0x xf x x x x⎧⎪⎪=⎨⎪⎪⎩,<>,若()()F x f x kx =-有3个零点,则k 的取值范围为( )A .(21e -,0) B .(12e-,0) C .(0,12e) D .(0,21e) 2.已知,(0,)2παβ∈,sin sin 0βααβ->,则下列不等式一定成立的是( )A .2παβ+<B .2παβ+=C .αβ<D .αβ>3.已知函数()ln 2f x a x x =-+(a 为大于1的整数),若()y f x =与(())y f f x =的值域相同,则a 的最小值是( )(参考数据:ln20.6931≈,ln3 1.0986≈,ln5 1.6094≈) A .5B .6C .7D .84.已知实数a ,b ,c ,d 满足ln 12113a cb d +-==+-,则22()()ac bd -+-的最小值为( ) A .8 B .4C .2D5.若函数()ln f x x a x =在区间()1,+∞上存在零点,则实数a 的取值范围为( ) A .10,2⎛⎫ ⎪⎝⎭B .1,2e ⎛⎫⎪⎝⎭C .()0,∞+D .1,2⎛⎫+∞⎪⎝⎭6.已知函数1()2x a f x e ax x x⎛⎫=-+- ⎪⎝⎭,若对任意(0,)x ∈+∞,都有()()f x xf x '≥-成立,则实数a 的取值范围是( )A .3,2e ⎛⎤-∞-⎥⎝⎦ B .(,-?C .3,2e 轹÷-+?ê÷ê滕 D .)é-+?êë7.已知奇函数()f x 是定义在R 上的可导函数,其导函数为()f x ',当0x >时,有()()22f x xf x x '>+,则不等式()()()22018+2018420x f x f +-<+的解集为( ) A .(),2016-∞-B .()2016,2012--C .(),2018-∞-D .()2016,0-8.已知函数35791131()135791113x x x x x x f x x =+-+-+-+,则使不等式(1)0f x ->成立的x 的最小整数为( ) A .-3B .-2C .-1D .09.直线y ax =是曲线1ln y x =+的切线,则实数a =____.10.函数()2xf x ae x =-与()21g x x x =--的图象上存在关于x 轴的对称点,则实数a 的取值范围为_________.11.已知函数()1xf x e =-,若存在实数,()a b a b <使得()()f a f b =,则2+a b 的最大值为________.12.已知实数a ,b ,c 满足2121a c b c e a b e +--+++≤(e 为自然对数的底数),则22a b +的最小值是_______.13.已知直线x t =与曲线()()()ln 1,xf x xg x e =+=分别交于,M N 两点,则MN 的最小值为________14.曲线cos y a x =在6x π=处的切线l 的斜率为12,则切线l 的方程为_____. 15.已知函数22,0,(),0,x x x f x e x ⎧≤=⎨>⎩若方程2[()]f x a =恰有两个不同的实数根12,x x ,则12x x +的最大值是______.16.已知函数31,0()2,0ax x f x x ax x x -≤⎧=⎨-+->⎩的图象恰好经过三个象限,则实数a 的取值范围______.17.已知函数()||ln (0)f x x a x a =-->. (Ⅰ)讨论()f x 的单调性;(Ⅱ)比较222222ln 2ln 3ln 23n n++⋯+ 与(1)(21)2(1)n n n -++的大小(n N +∈且)2n >,并证明你的结论.18.已知函数()()21ln 2f x x x ax a =++∈R . (1)讨论()f x 的单调性; (2)若12,x x 为()f x 的两个极值点,证明:()()21212+44282f x f x a a x x f +++⎛⎫-> ⎪⎝⎭. 19.已知函数()ln(1)1(1)f x ax x a =+-+…. (Ⅰ)当1a =时,求()f x 的最大值; (Ⅱ)若1()e f x e +…对1,x a ⎛⎫∈-+∞ ⎪⎝⎭恒成立,求实数a 的取值范围. 20.对于函数()y f x =的定义域D ,如果存在区间[],m n D ⊆,同时满足下列条件:①()f x 在()()f x g x +上是单调函数;②当[],x m n ∈时,()f x 的值域为[]2,2m n ,则称区间()()f x g x +是函数()f x 的“单调倍区间”.已知函数()ln 2,0()02,0a x x x f x a a x ->⎧⎪=>≤ (1)若2a =,求()f x 在点()(),e f e 处的切线方程; (2)若函数()f x 存在“单调倍区间”,求a 的取值范围. 21.已知函数2()(0)4x x a f x e a x ++=⋅≥+. (1)讨论函数()f x 的单调性;(2)当[0,1)b ∈时,设函数22(3)()(2)(2)x e b x g x x x +-+=>-+有最小值()h b ,求()h b 的值域. 22.已知函数1()x f x xe alnx -=-(无理数 2.718e =…). (1)若()f x 在(1,)+∞单调递增,求实数a 的取值范围: (2)当0a =时,设2()()eg x f x x x x=⋅--,证明:当0x >时,ln 2ln 2()122g x ⎛⎫>-- ⎪⎝⎭.。

十年真题(2010-近年)高考数学真题分类汇编专题04导数及其应用文(含解析)(最新整理)

十年真题(2010-近年)高考数学真题分类汇编专题04导数及其应用文(含解析)(最新整理)

专题04导数及其应用2013解答题2012导数综合问题2012年新课标1文科21解答题2011导数综合问题2011年新课标1文科21解答题2010导数综合问题2010年新课标1文科21历年高考真题汇编1.【2019年新课标1文科05】函数f(x)在[﹣π,π]的图象大致为() A.B.C.D.【解答】解:∵f(x),x∈[﹣π,π],∴f(﹣x)f(x),∴f(x)为[﹣π,π]上的奇函数,因此排除A;又f(),因此排除B,C;故选:D.2.【2018年新课标1文科06】设函数f(x)=x3+(a﹣1)x2+ax.若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为()A.y=﹣2x B.y=﹣x C.y=2x D.y=x【解答】解:函数f(x)=x3+(a﹣1)x2+ax,若f(x)为奇函数,可得a=1,所以函数f(x)=x3+x,可得f′(x)=3x2+1,曲线y=f(x)在点(0,0)处的切线的斜率为:1,则曲线y=f(x)在点(0,0)处的切线方程为:y=x.故选:D.3.【2017年新课标1文科08】函数y的部分图象大致为()A.B.C.D.【解答】解:函数y,可知函数是奇函数,排除选项B,当x时,f(),排除A,x=π时,f(π)=0,排除D.故选:C.4.【2017年新课标1文科09】已知函数f(x)=lnx+ln(2﹣x),则()A.f(x)在(0,2)单调递增B.f(x)在(0,2)单调递减C.y=f(x)的图象关于直线x=1对称D.y=f(x)的图象关于点(1,0)对称【解答】解:∵函数f(x)=lnx+ln(2﹣x),∴f(2﹣x)=ln(2﹣x)+lnx,即f(x)=f(2﹣x),即y=f(x)的图象关于直线x=1对称,故选:C.5.【2016年新课标1文科09】函数y=2x2﹣e|x|在[﹣2,2]的图象大致为() A.B.C.D.【解答】解:∵f(x)=y=2x2﹣e|x|,∴f(﹣x)=2(﹣x)2﹣e|﹣x|=2x2﹣e|x|,故函数为偶函数,当x=±2时,y=8﹣e2∈(0,1),故排除A,B;当x∈[0,2]时,f(x)=y=2x2﹣e x,∴f′(x)=4x﹣e x=0有解,故函数y=2x2﹣e|x|在[0,2]不是单调的,故排除C,故选:D.6.【2016年新课标1文科12】若函数f(x)=x sin2x+a sin x在(﹣∞,+∞)单调递增,则a的取值范围是( )A.[﹣1,1]B.[﹣1,] C.[,] D.[﹣1,]【解答】解:函数f(x)=x sin2x+a sin x的导数为f′(x)=1cos2x+a cos x,由题意可得f′(x)≥0恒成立,即为1cos2x+a cos x≥0,即有cos2x+a cos x≥0,设t=cos x(﹣1≤t≤1),即有5﹣4t2+3at≥0,当t=0时,不等式显然成立;当0<t≤1时,3a≥4t,由4t在(0,1]递增,可得t=1时,取得最大值﹣1,可得3a≥﹣1,即a;当﹣1≤t<0时,3a≤4t,由4t在[﹣1,0)递增,可得t=﹣1时,取得最小值1,可得3a≤1,即a.综上可得a的范围是[,].另解:设t=cos x(﹣1≤t≤1),即有5﹣4t2+3at≥0,由题意可得5﹣4+3a≥0,且5﹣4﹣3a≥0,解得a的范围是[,].故选:C.7.【2014年新课标1文科12】已知函数f(x)=ax3﹣3x2+1,若f(x)存在唯一的零点x,且x0>0,则实数a的取值范围是()A.(1,+∞)B.(2,+∞) C.(﹣∞,﹣1) D.(﹣∞,﹣2)【解答】解:∵f(x)=ax3﹣3x2+1,∴f′(x)=3ax2﹣6x=3x(ax﹣2),f(0)=1;①当a=0时,f(x)=﹣3x2+1有两个零点,不成立;②当a>0时,f(x)=ax3﹣3x2+1在(﹣∞,0)上有零点,故不成立;③当a<0时,f(x)=ax3﹣3x2+1在(0,+∞)上有且只有一个零点;故f(x)=ax3﹣3x2+1在(﹣∞,0)上没有零点;而当x时,f(x)=ax3﹣3x2+1在(﹣∞,0)上取得最小值;故f()3•1>0;故a<﹣2;综上所述,实数a的取值范围是(﹣∞,﹣2);故选:D.8.【2013年新课标1文科09】函数f(x)=(1﹣cos x)sin x在[﹣π,π]的图象大致为( )A.B.C.D.【解答】解:由题意可知:f(﹣x)=(1﹣cos x)sin(﹣x)=﹣f(x),故函数f(x)为奇函数,故可排除B,又因为当x∈(0,π)时,1﹣cos x>0,sin x>0,故f(x)>0,可排除A,又f′(x)=(1﹣cos x)′sin x+(1﹣cos x)(sin x)′=sin2x+cos x﹣cos2x=cos x﹣cos2x,故可得f′(0)=0,可排除D,故选:C.9.【2010年新课标1文科04】曲线y=x3﹣2x+1在点(1,0)处的切线方程为()A.y=x﹣1 B.y=﹣x+1 C.y=2x﹣2 D.y=﹣2x+2【解答】解:验证知,点(1,0)在曲线上∵y=x3﹣2x+1,y′=3x2﹣2,所以k=y′|x=1,得切线的斜率为1,所以k=1;﹣1所以曲线y=f(x)在点(1,0)处的切线方程为:y﹣0=1×(x﹣1),即y=x﹣1.故选:A.10.【2019年新课标1文科13】曲线y=3(x2+x)e x在点(0,0)处的切线方程为.【解答】解:∵y=3(x2+x)e x,∴y’=3e x(x2+3x+1),∴当x=0时,y'=3,∴y=3(x2+x)e x在点(0,0)处的切线斜率k=3,∴切线方程为:y=3x.故答案为:y=3x.11.【2017年新课标1文科14】曲线y=x2在点(1,2)处的切线方程为.【解答】解:曲线y=x2,可得y′=2x,切线的斜率为:k=2﹣1=1.切线方程为:y﹣2=x﹣1,即:x﹣y+1=0.故答案为:x﹣y+1=0.12.【2015年新课标1文科14】已知函数f(x)=ax3+x+1的图象在点(1,f(1))处的切线过点(2,7),则a=.【解答】解:函数f(x)=ax3+x+1的导数为:f′(x)=3ax2+1,f′(1)=3a+1,而f(1)=a+2,切线方程为:y﹣a﹣2=(3a+1)(x﹣1),因为切线方程经过(2,7),所以7﹣a﹣2=(3a+1)(2﹣1),解得a=1.故答案为:1.13.【2012年新课标1文科13】曲线y=x(3lnx+1)在点(1,1)处的切线方程为.【解答】解:求导函数,可得y′=3lnx+4,当x=1时,y′=4,∴曲线y=x(3lnx+1)在点(1,1)处的切线方程为y﹣1=4(x﹣1),即y=4x﹣3.故答案为:y=4x﹣3.14.【2019年新课标1文科20】已知函数f(x)=2sin x﹣x cos x﹣x,f′(x)为f(x)的导数.(1)证明:f′(x)在区间(0,π)存在唯一零点;(2)若x∈[0,π]时,f(x)≥ax,求a的取值范围.【解答】解:(1)证明:∵f(x)=2sin x﹣x cos x﹣x,∴f′(x)=2cos x﹣cos x+x sin x﹣1=cos x+x sin x﹣1,令g(x)=cos x+x sin x﹣1,则g′(x)=﹣sin x+sin x+x cos x=x cos x,当x∈(0,)时,x cos x>0,当x时,x cos x<0,∴当x时,极大值为g()0,又g(0)=0,g(π)=﹣2,∴g(x)在(0,π)上有唯一零点,即f′(x)在(0,π)上有唯一零点;(2)由(1)知,f′(x)在(0,π)上有唯一零点x0,使得f′(x0)=0,且f′(x)在(0,x0)为正,在(x0,π)为负,∴f(x)在[0,x0]递增,在[x0,π]递减,结合f(0)=0,f(π)=0,可知f(x)在[0,π]上非负,令h(x)=ax,作出图示,∵f(x)≥h(x),a≤0,∴a的取值范围是(﹣∞,0].15.【2018年新课标1文科21】已知函数f(x)=ae x﹣lnx﹣1.(1)设x=2是f(x)的极值点,求a,并求f(x)的单调区间;(2)证明:当a时,f(x)≥0.【解答】解:(1)∵函数f(x)=ae x﹣lnx﹣1.∴x>0,f′(x)=ae x,∵x=2是f(x)的极值点,∴f′(2)=ae20,解得a,∴f(x)e x﹣lnx﹣1,∴f′(x),当0<x<2时,f′(x)<0,当x>2时,f′(x)>0,∴f(x)在(0,2)单调递减,在(2,+∞)单调递增.(2)证明:当a时,f(x)lnx﹣1,设g(x)lnx﹣1,则,由0,得x=1,当0<x<1时,g′(x)<0,当x>1时,g′(x)>0,∴x=1是g(x)的最小值点,故当x>0时,g(x)≥g(1)=0,∴当a时,f(x)≥0.16.【2017年新课标1文科21】已知函数f(x)=e x(e x﹣a)﹣a2x.(1)讨论f(x)的单调性;(2)若f(x)≥0,求a的取值范围.【解答】解:(1)f(x)=e x(e x﹣a)﹣a2x=e2x﹣e x a﹣a2x,∴f′(x)=2e2x﹣ae x﹣a2=(2e x+a)(e x﹣a),①当a=0时,f′(x)>0恒成立,∴f(x)在R上单调递增,②当a>0时,2e x+a>0,令f′(x)=0,解得x=lna,当x<lna时,f′(x)<0,函数f(x)单调递减,当x>lna时,f′(x)>0,函数f(x)单调递增,③当a<0时,e x﹣a>0,令f′(x)=0,解得x=ln(),当x<ln()时,f′(x)<0,函数f(x)单调递减,当x>ln()时,f′(x)>0,函数f(x)单调递增,综上所述,当a=0时,f(x)在R上单调递增,当a>0时,f(x)在(﹣∞,lna)上单调递减,在(lna,+∞)上单调递增,当a<0时,f(x)在(﹣∞,ln())上单调递减,在(ln(),+∞)上单调递增,(2)①当a=0时,f(x)=e2x>0恒成立,②当a>0时,由(1)可得f(x)min=f(lna)=﹣a2lna≥0,∴lna≤0,∴0<a≤1,③当a<0时,由(1)可得:f(x)min=f(ln())a2ln()≥0,∴ln(),∴﹣2a<0,综上所述a的取值范围为[﹣2,1]17.【2016年新课标1文科21】已知函数f(x)=(x﹣2)e x+a(x﹣1)2.(Ⅰ)讨论f(x)的单调性;(Ⅱ)若f(x)有两个零点,求a的取值范围.【解答】解:(Ⅰ)由f(x)=(x﹣2)e x+a(x﹣1)2,可得f′(x)=(x﹣1)e x+2a(x﹣1)=(x﹣1)(e x+2a),①当a≥0时,由f′(x)>0,可得x>1;由f′(x)<0,可得x<1,即有f(x)在(﹣∞,1)递减;在(1,+∞)递增(如右上图);②当a<0时,(如右下图)若a,则f′(x)≥0恒成立,即有f(x)在R上递增;若a时,由f′(x)>0,可得x<1或x>ln(﹣2a);由f′(x)<0,可得1<x<ln(﹣2a).即有f(x)在(﹣∞,1),(ln(﹣2a),+∞)递增;在(1,ln(﹣2a))递减;若a<0,由f′(x)>0,可得x<ln(﹣2a)或x>1;由f′(x)<0,可得ln(﹣2a)<x<1.即有f(x)在(﹣∞,ln(﹣2a)),(1,+∞)递增;在(ln(﹣2a),1)递减;(Ⅱ)①由(Ⅰ)可得当a>0时,f(x)在(﹣∞,1)递减;在(1,+∞)递增,且f(1)=﹣e<0,x→+∞,f(x)→+∞;当x→﹣∞时f(x)>0或找到一个x<1使得f(x)>0对于a>0恒成立,f(x)有两个零点;②当a=0时,f(x)=(x﹣2)e x,所以f(x)只有一个零点x=2;③当a<0时,若a时,f(x)在(1,ln(﹣2a))递减,在(﹣∞,1),(ln(﹣2a),+∞)递增,又当x≤1时,f(x)<0,所以f(x)不存在两个零点;当a时,在(﹣∞,ln(﹣2a))单调增,在(1,+∞)单调增,在(1n(﹣2a),1)单调减,只有f(ln(﹣2a))等于0才有两个零点,而当x≤1时,f(x)<0,所以只有一个零点不符题意.综上可得,f(x)有两个零点时,a的取值范围为(0,+∞).18.【2015年新课标1文科21】设函数f(x)=e2x﹣alnx.(Ⅰ)讨论f(x)的导函数f′(x)零点的个数;(Ⅱ)证明:当a>0时,f(x)≥2a+aln.【解答】解:(Ⅰ)f(x)=e2x﹣alnx的定义域为(0,+∞),∴f′(x)=2e2x.当a≤0时,f′(x)>0恒成立,故f′(x)没有零点,当a>0时,∵y=e2x为单调递增,y单调递增,∴f′(x)在(0,+∞)单调递增,又f′(a)>0,假设存在b满足0<b<ln时,且b,f′(b)<0,故当a>0时,导函数f′(x)存在唯一的零点,(Ⅱ)由(Ⅰ)知,可设导函数f′(x)在(0,+∞)上的唯一零点为x0,当x∈(0,x0)时,f′(x)<0,当x∈(x0,+∞)时,f′(x)>0,故f(x)在(0,x0)单调递减,在(x0,+∞)单调递增,所欲当x=x0时,f(x)取得最小值,最小值为f(x0),由于0,所以f(x0)2ax0+aln2a+aln.故当a>0时,f(x)≥2a+aln.19.【2014年新课标1文科21】设函数f(x)=alnx x2﹣bx(a≠1),曲线y=f(x)在点(1,f(1))处的切线斜率为0,(1)求b;(2)若存在x0≥1,使得f(x0),求a的取值范围.【解答】解:(1)f′(x)(x>0),∵曲线y=f(x)在点(1,f(1))处的切线斜率为0,∴f′(1)=a+(1﹣a)×1﹣b=0,解得b=1.(2)函数f(x)的定义域为(0,+∞),由(1)可知:f(x)=alnx,∴.①当a时,则,则当x>1时,f′(x)>0,∴函数f(x)在(1,+∞)单调递增,∴存在x0≥1,使得f(x0)的充要条件是,即,解得;②当a<1时,则,则当x∈时,f′(x)<0,函数f(x)在上单调递减;当x∈时,f′(x)>0,函数f(x)在上单调递增.∴存在x0≥1,使得f(x0)的充要条件是,而,不符合题意,应舍去.③若a>1时,f(1),成立.综上可得:a的取值范围是.20.【2013年新课标1文科20】已知函数f(x)=e x(ax+b)﹣x2﹣4x,曲线y=f(x)在点(0,f(0))处切线方程为y=4x+4.(Ⅰ)求a,b的值;(Ⅱ)讨论f(x)的单调性,并求f(x)的极大值.【解答】解:(Ⅰ)∵f(x)=e x(ax+b)﹣x2﹣4x,∴f′(x)=e x(ax+a+b)﹣2x﹣4,∵曲线y=f(x)在点(0,f(0))处切线方程为y=4x+4∴f(0)=4,f′(0)=4∴b=4,a+b=8∴a=4,b=4;(Ⅱ)由(Ⅰ)知,f(x)=4e x(x+1)﹣x2﹣4x,f′(x)=4e x(x+2)﹣2x﹣4=4(x+2)(e x),令f′(x)=0,得x=﹣ln2或x=﹣2∴x∈(﹣∞,﹣2)或(﹣ln2,+∞)时,f′(x)>0;x∈(﹣2,﹣ln2)时,f′(x)<0∴f(x)的单调增区间是(﹣∞,﹣2),(﹣ln2,+∞),单调减区间是(﹣2,﹣ln2)当x=﹣2时,函数f(x)取得极大值,极大值为f(﹣2)=4(1﹣e﹣2).21.【2012年新课标1文科21】设函数f(x)=e x﹣ax﹣2.(Ⅰ)求f(x)的单调区间;(Ⅱ)若a=1,k为整数,且当x>0时,(x﹣k)f′(x)+x+1>0,求k的最大值.【解答】解:(I)函数f(x)=e x﹣ax﹣2的定义域是R,f′(x)=e x﹣a,若a≤0,则f′(x)=e x﹣a≥0,所以函数f(x)=e x﹣ax﹣2在(﹣∞,+∞)上单调递增.若a>0,则当x∈(﹣∞,lna)时,f′(x)=e x﹣a<0;当x∈(lna,+∞)时,f′(x)=e x﹣a>0;所以,f(x)在(﹣∞,lna)单调递减,在(lna,+∞)上单调递增.(II)由于a=1,所以,(x﹣k)f′(x)+x+1=(x﹣k)(e x﹣1)+x+1故当x>0时,(x﹣k)f′(x)+x+1>0等价于k(x>0)①令g(x),则g′(x)由(I)知,当a=1时,函数h(x)=e x﹣x﹣2在(0,+∞)上单调递增,而h(1)<0,h(2)>0,所以h(x)=e x﹣x﹣2在(0,+∞)上存在唯一的零点,故g′(x)在(0,+∞)上存在唯一的零点,设此零点为α,则有α∈(1,2)当x∈(0,α)时,g′(x)<0;当x∈(α,+∞)时,g′(x)>0;所以g(x)在(0,+∞)上的最小值为g(α).又由g′(α)=0,可得eα=α+2所以g(α)=α+1∈(2,3)由于①式等价于k<g(α),故整数k的最大值为2.22.【2011年新课标1文科21】已知函数f(x),曲线y=f(x)在点(1,f(1))处的切线方程为x+2y﹣3=0.(Ⅰ)求a、b的值;(Ⅱ)证明:当x>0,且x≠1时,f(x).【解答】解:(I).由于直线x+2y﹣3=0的斜率为,且过点(1,1)所以解得a=1,b=1(II)由(I)知f(x)所以考虑函数,则所以当x≠1时,h′(x)<0而h(1)=0,当x∈(0,1)时,h(x)>0可得;当从而当x>0且x≠1时,23.【2010年新课标1文科21】设函数f(x)=x(e x﹣1)﹣ax2(Ⅰ)若a,求f(x)的单调区间;(Ⅱ)若当x≥0时f(x)≥0,求a的取值范围.【解答】解:(I)a时,f(x)=x(e x﹣1)x2,(e x﹣1)(x+1)令f′(x)>0,可得x<﹣1或x>0;令f′(x)<0,可得﹣1<x<0;∴函数的单调增区间是(﹣∞,﹣1),(0,+∞);单调减区间为(﹣1,0);(II)f(x)=x(e x﹣1﹣ax).令g(x)=e x﹣1﹣ax,则g'(x)=e x﹣a.若a≤1,则当x∈(0,+∞)时,g'(x)>0,g(x)为增函数,而g(0)=0,从而当x≥0时g(x)≥0,即f(x)≥0.若a>1,则当x∈(0,lna)时,g’(x)<0,g(x)为减函数,而g(0)=0,从而当x∈(0,lna)时,g(x)<0,即f(x)<0.综合得a的取值范围为(﹣∞,1].另解:当x=0时,f(x)=0成立;当x>0,可得e x﹣1﹣ax≥0,即有a的最小值,由y=e x﹣x﹣1的导数为y′=e x﹣1,当x>0时,函数y递增;x<0时,函数递减,可得函数y取得最小值0,即e x﹣x﹣1≥0,x>0时,可得1,则a≤1.考题分析与复习建议本专题考查的知识点为:导数的概念及运算,导数与函数的单调性、极值、最值,导数与函数的综合问题。

2010年函数导数文科大题

2010年函数导数文科大题

2010年函数文科大题1、(2010全国卷1文数)已知函数42()32(31)4f x ax a x x =-++(I )当16a =时,求()f x 的极值; (II )若()f x 在()1,1-上是增函数,求a 的取值范围2、(2010全国卷2文数)已知函数f (x )=x 3-3ax 2+3x+1。

(Ⅰ)设a=2,求f (x )的单调期间;(Ⅱ)设f (x )在区间(2,3)中至少有一个极值点,求a 的取值范围。

3、(2010上海文数)若实数x 、y 、m 满足x m y m -<-,则称x 比y 接近m .(1)若21x -比3接近0,求x 的取值范围;(2)对任意两个不相等的正数a 、b ,证明:22a b ab +比33a b +接近2(3)已知函数()f x 的定义域{},,D x x k k Z x R π≠∈∈.任取x D ∈,()f x 等于1sin x +和1sin x -中接近0的那个值.写出函数()f x 的解析式,并指出它的奇偶性、最小正周期、最小值和单调性(结论不要求证明).4、(2010湖南文数)已知函数()(1)ln 15,a f x x a x a x=++-+其中a<0,且a ≠-1. (Ⅰ)讨论函数()f x 的单调性; (Ⅱ)设函数332(23646),1(),1(){x x ax ax a a e x e f x x g x -++--≤⋅>=(e 是自然数的底数)。

是否存在a ,使()g x 在[a,-a]上为减函数?若存在,求a 的取值范围;若不存在,请说明理由。

5、(2010陕西文数)已知函数f (x )g (x )=alnx ,a ∈R 。

(1) 若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a 的值及该切线的方程;(2) 设函数h(x)=f(x)- g(x),当h(x)存在最小之时,求其最小值ϕ(a )的解析式;(3) 对(2)中的ϕ(a ),证明:当a ∈(0,+∞)时, ϕ(a )≤1.6、(2010辽宁文数)已知函数2()(1)ln 1f x a x ax =+++.(Ⅰ)讨论函数()f x 的单调性;(Ⅱ)设2a ≤-,证明:对任意12,(0,)x x ∈+∞,1212|()()|4||f x f x x x -≥-.7、(2010安徽文数)设函数()sin cos 1f x x x x =-++,02x π<<,求函数()f x 的单调区间与极值。

导数知识点总结经典例题及解析近年高考题带答案

导数知识点总结经典例题及解析近年高考题带答案

导数知识点总结经典例题及解析近年⾼考题带答案导数及其应⽤【考纲说明】1、了解导数概念的某些实际背景(如瞬时速度,加速度,光滑曲线切线的斜率等);掌握函数在⼀点处的导数的定义和导数的⼏何意义;理解导函数的概念。

2、熟记⼋个基本导数公式;掌握两个函数和、差、积、商的求导法则,了解复合函数的求导法则,会求某些简单函数的导数。

3、理解可导函数的单调性与其导数的关系;了解可导函数在某点取得极值的必要条件和充分条件(导数在极值点两侧异号);会求⼀些实际问题(⼀般指单峰函数)的最⼤值和最⼩值。

【知识梳理】函数y=f(x),如果⾃变量x 在x 0处有增量x ?,那么函数y 相应地有增量y ?=f (x 0+x ?)-f(x 0),⽐值x y叫做函数y=f (x )在x 0到x 0+x ?之间的平均变化率,即x y ??=x x f x x f ?-?+)()(00。

如果当0→?x 时,x y ??有极限,我们就说函数y=f(x)在点x 0处可导,并把这个极限叫做f (x )在点x 0处的导数,记作f’(x 0)或y’|0x x =。

即f (x 0)=0lim →?x x y=0lim →?x x x f x x f ?-?+)()(00。

说明:(1)函数f (x )在点x 0处可导,是指0→?x 时,x y ??有极限。

如果x y不存在极限,就说函数在点x 0处不可导,或说⽆导数。

(2)x ?是⾃变量x 在x 0处的改变量,0≠?x 时,⽽y ?是函数值的改变量,可以是零。

由导数的定义可知,求函数y=f (x )在点x 0处的导数的步骤:(1)求函数的增量y ?=f (x 0+x ?)-f (x 0);(2)求平均变化率x y ??=x x f x x f ?-?+)()(00;(3)取极限,得导数f’(x 0)=x yx ??→?0lim。

⼆、导数的⼏何意义函数y=f (x )在点x 0处的导数的⼏何意义是曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率。

导函数大题类型总结(完整版)

导函数大题类型总结(完整版)

导函数大题类型总结(完整版)-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN【对分类讨论的考查】【例1】(2010西城一模)设0>a 且a ≠0,函数x a x a x x f ln )1(21)(2++-=.(1)当2=a 时,求曲线)(x f y =在(3,)3(f )处切线的斜率;(2)求函数)(x f 的极值点。

【总结】解决这类问题,我们应该注意以下几点: (1) 函数的定义域; (2) 当对原函数求导时,如果导函数化简完以后时一个二次函数且为形如a x a x ++-)1(2或1)1(2++-x a ax 时,这时一般地就是用“十字交叉”法把导函数等于零的根求出来(偶尔不能利用十字交叉求出这个二次函数的根,这时只能利用二次函数的对称轴或者求根公式把这个方程的根求出来(详见2011海淀二模文科试题);(注:形如a x ax +-2形式的导函数,一般的采用变量分类的方法去处理,如2011石景山一模) (3) 因为我们所要讨论的极值问题,极值点问题,函数的单调性问题都是在函数的定义域里面讨论的,所以这时要分类讨论导函数等于零的根在不在这个定义域内,如果在定义域内,那么解出来的这个方程的两个根那个大,那个小,这时就要分类讨论。

(4) 分类讨论时,第一步应该先把函数的定义域标在数轴上,然后把导函数等于零的根标在数轴上,然后再讨论两个根那个大,那个小,在不在区间里面等等。

变式与拓展: 【1】 (2011北京丰台第一学期期末文)已知函数2()(1)x f x e x ax =++.(Ⅰ)若曲线()y f x =在点(2(2))f ,处的切线与x 轴平行,求a 的值;(Ⅱ)求函数()f x 的极值.【2】(2010北京考试院调研试题文)设a ∈R ,函数32()2(63)122f x x a x ax =+--+.(Ⅰ)若1a =,求曲线()y f x =在点(0,(0))f 处的切线方程;(Ⅱ)求函数()f x 在[2,2]-上的最小值.【3】(2010北京宣武一模文)已知函数).,()1(31)(223R ∈+-+-=b a b x a ax x x f(I )若x=1为)(x f 的极值点,求a 的值;(II )若)(x f y =的图象在点(1,)1(f )处的切线方程为03=-+y x ,求)(x f 在区间[-2,4]上的最大值;(III )当0≠a 时,若)(x f 在区间(-1,1)上不单调,求a 的取值范围.【例2】(2011西城一模)已知函数()ln f x x x =.(Ⅰ)求函数()f x 的极值点;(Ⅱ)若直线l 过点(0,1)-,并且与曲线()y f x =相切,求直线l 的方程;(Ⅲ)设函数()()(1)g x f x a x =--,其中a R ∈,求函数()g x 在区间[1,e]上的最小值.(其中e 为自然对数的底数)【总结】解决这类问题,就是首先求函数导函数等于零的x 值,然后再把函数的定义域画在数轴上,然后分别得讨论导数等于0的自变量x 在各个小区间上的最值即可。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

类型一 求函数的单调区间与最值
(05北京.文.理)(19)(本小题共14分)
已知函数f (x )=-x 3+3x 2+9x +a ,
(I )求f (x )的单调递减区间;
(II )若f (x )在区间[-2,2]上的最大值为20,求它在该区间上的最小值. (08北京.文)17.(本小题共13分)
已知函数32()3(0)f x x ax bx c b =+++≠,且()()2g x f x =-是奇函数. (Ⅰ)求a ,c 的值;
(Ⅱ)求函数()f x 的单调区间
(2010崇文一模)(18)(本小题共14分)
已知函数322()69f x x ax a x =-+(a ∈R ).
(Ⅰ)求函数()f x 的单调递减区间;
(Ⅱ)当0a >时,若对[]0,3x ∀∈有()4f x ≤恒成立,求实数a 的取值范围 (2010西城一模)20.(本小题满分14分)
已知函数2()(),x f x x m x m e =-+其中m R ∈。

(1)若函数()f x 存在零点,求实数m 的取值范围;
(2)当0m <时,求函数()f x 的单调区间;并确定此时()f x 是否存在最小值,如果存在,求出最小值,如果存在,请说明理由。

类型二 曲线的切线方程与函数的最值的综合
(09 北京.文)18.(本小题共14分)
设函数3
()3(0)f x x ax b a =-+≠.
(Ⅰ)若曲线()y f x =在点(2,())f x 处与直线8y =相切,求,a b 的值; (Ⅱ)求函数()f x 的单调区间与极值点.
(2010门头沟一模)16. (本小题满分13分)
已知函数12)(23++-=x x x x f . (Ⅰ)求)(x f 在0=x 处的切线方程; (Ⅱ)求)(x f 在区间]2,0[上的最大值和最小值.
(2010海淀一模)18. (本小题满分14分)
已知函数1)(2-=x x f 与函数)0(ln )(≠=a x a x g .
(I )若)(),(x g x f 的图象在点)0,1(处有公共的切线,求实数a 的值;
(II )设)(2)()(x g x f x F -=,求函数)(x F 的极值.
类型三 已知函数的极值点或单调区间求函数表达式中某个参数的取值
(06 北京.文.理)(16)(本小题共13分)
已知函数32()f x ax bx cx =++在点0x 处取得极大值5,其导函数'()y f x =的图象经过点
(1,0),(2,0),如图所示.求:
(Ⅰ)0x 的值;
(Ⅱ),,a b c 的值.
(2010朝阳一模)18.(本小题满分14分)
已知函数.,33)(23R m x x mx x f ∈-+= (1)若函数1)(-=x x f 在处取得极值,试求m 的值,并求)(x f 在点))1(,1(f M 处的
切线方程;
(2)设0<m ,若函数)(x f 在(2,+∞)上存在单调递增区间,求m 的取值范围. (2010丰台一模)18.(13分) 设.13)1(23
)(2
3+++-=ax x a x x f (I )若函数)(x f 在区间(1,4)内单调递减,求a 的取值范围;
(II )若函数a x x f =在)(处取得极小值是1,求a 的值,并说明在区间(1,4)内函数)(x f 的单调性.
(2010宣武一模)18.(本小题共13分) 已知函数).,()1(31
)(2
23R ∈+-+-=b a b x a ax x x f (I )若x=1为)(x f 的极值点,求a 的值;
(II )若)(x f y =的图象在点(1,)1(f )处的切线方程为03=-+y x ,求)(x f 在区
间[-2,4]上的最大值;
(III )当0≠a 时,若)(x f 在区间(-1,1)上不单调,求a 的取值范围.。

相关文档
最新文档