20届决赛试题

合集下载

18~22届华杯赛初二组决赛试题及参考答案

18~22届华杯赛初二组决赛试题及参考答案

13.【第 20 届华杯赛决赛卷第 7 题】
设 a、b 为实数,那么 a2 ab b2 a b 的最小值是 ______ .
14.【第 20 届华杯赛决赛卷第 9 题】
已知 3
S
1 3S
3 ,求 S 3
1 3 S
的值.
15.【第 20 届华杯赛决赛卷第 11 题】
实数 a 满足 a5 a 1 0 ,求多项式 a3 a2 的值.
2.【第 22 届华杯赛决赛卷第 3 题】 在平面直角坐标系 xOy 中,一次函数 y kx b 的图象过点 A(1,1) ,与坐标轴围 成的三角形面积为 2,这样的一次函数有个 ______ .
-4-
第三章 计数
1.【第 18 届华杯赛决赛 A 卷第 2 题】 从1 ~ 2013 的自然数中,含有重复数字的自然数的个数等于 ______ . 2.【第 18 届华杯赛决赛 A 卷第 7 题】 已知在平面直角坐标系中有如下 36 条直线: y 18x 17, y 17x 16,, y x, y x, y 2x 1,, y 17x 16, y 18x 17, 那么由这些直线相交所构成的交点有 ______ 个. 3.【第 19 届华杯赛决赛卷第 8 题】 方程 x3 Ax2 Bx C 0 的系数, A、B、C 为整数, A 10, B 10, C 10 ,且 1 是方程的根,那么这种方程总共有 ______ 个. 4.【第 20 届华杯赛决赛卷第 8 题】 在右图的八个顶点处分别标上 1 和-1,共有 4 个 1 和 4 个-1,将每个四边形 4 个顶点处的数相乘,再将所得的所有的积相加,那么其和至多有 ______ 个不同 的数值.
已知二次三项式 ax2 bx c 当 x 2 时,取到最小值 1;且它的两根的立方和为

第二十届日本奥赛决赛试题详解(高小组)

第二十届日本奥赛决赛试题详解(高小组)

【问题 6】 (12 分)
如图所示,在 2 cm× 2 cm× 5 cm 有盖的长方形箱子中放入 10 个 2 cm× 1 cm× 1 cm 的积木后盖好盖子。请问:积木一共有多少种不同的放入方法? 解析:如图,我们先把盒子等分为 5 份,摆好积木后,想象拿一把很锋利的 刀沿着等分线将盒子切开,从左到右,按顺序来。 现在我们将积木所有的放入方法分为 5 类:第 1 条等分线切开而不破坏 任何积木的;第 1 条切开会破坏积木而第 2 条切开不破坏积木的;前两条切 开破坏积木而第 3 条切开不破坏积木;前 3 条切开破坏积木而第 4 条切开不 破坏积木;每一条切开都会破坏积木的. 假设积木放入 2×2×n 的盒子有 an 种方法,而任意 2×2×n 的盒子只有 4 种 摆放方法是无论怎么切都会破坏积木.于是第一类就有 2 a4 种方法,第二类有 5 a3 种方法,第三类有 4 a2 种方法,第四类有 4 a1 种方法,第五类就有 4 种方法. 所以 a5 2a4 5a3 4a2 4a1 4 .同理 a4 2a3 5a2 4a1 4 , a3 2a2 5a1 4 , a2 2a1 5 . 所以可得 a1 2, a2 9, a3 32, a4 121, a5 450 . 即积木一共有 450 种不同的放入方法.
2
C
B
C
E
学而思南京分校—梁天祥老师 两式想减,结合平方差公式得:BC×(BC+2CE)=51…………………………① 因为 AC∥DE,所以 S△ACD
1 1 1 1 AC CE BC CE ,又 S△ACB AC BC BC 2 2 2 2 2 1 1 AC CE BC CE 7.5(cm2 ) . 2 2

历届“华杯赛”初赛决赛试题汇编【小中组(附答案)】

历届“华杯赛”初赛决赛试题汇编【小中组(附答案)】
9. 已知被除数比除数大 78, 并且商是 6, 余数是 3, 求被除数与除数之积. 10. 今年甲、乙俩人年龄的和是 70 岁. 若干年前, 当甲的年龄只有乙现在这么大 时, 乙的年龄恰好是甲年龄的一半. 问: 甲今年多少岁? 11. 有三个连续偶数, 它们的乘积是一个五位数, 该五位数个位是 0, 万位是 2, 十位、百位和千位是三个不同的数字, 那么这三个连续偶数的和是多少? 12. 在等式
二、简答题(每小题 15 分, 共 60 分, 要求写出简要过程)
9. 用 4 个数码 4 和一些加、减、乘、除号和小括号, 写出值分别等于 2、3、4、 5、6 的五个算式. 10. 右图是 U, V, W, X 四辆不同类型的汽车每百千米的耗油 量. 如果每辆车都有 50 升油, 那么这四辆车最多可行驶 的路程总计是多少千米? 11. 某商店卖出一支钢笔的利润是 9 元, 一个小熊玩具的进 价为 2 元. 一次, 商家采取 “买 4 支钢笔赠送一个小熊玩具”的打包促销, 共 获利润 1922 元. 问这次促销最多卖出了多少支钢笔? 12. 编号从 1 到 10 的 10 个白球排成一行, 现按照如下方法涂红色: 1)涂 2 个球; 2)被涂色的 2 个球的编号之差大于 2. 那么不同的涂色方法有多少种?
四百米比赛进入冲刺阶段,甲在乙前面 30 米,丙在丁后面 60 米,乙在丙前面 20 米. 这时,跑在最前面的两位同学相差( (A)10 (B)20 )米. (D)60
(C)50
5.
在右图所示的两位数的加法算式中, 已知 A B C D 22 , ). (B)4 (C)7 (D)13
一、选择题 (每小题 10 分, 满分 60 分. 以下每题的四个选项中, 仅 有一个是正确的, 请将表示正确答案的英文字母写在每题的圆括号 内.)

18~22届华杯赛初一组决赛试题及参考答案

18~22届华杯赛初一组决赛试题及参考答案

18~22届“华杯赛”【初一组】决赛试题及参考答案目录计算 (1)计数 (3)几何 (6)数论 (13)应用题、行程 (16)组合 (18)第一章计算1.【第18届华杯赛决赛A 卷第1题】计算:______90030010093186293140020010042)1(8424211=⨯⨯+⋅⋅⋅+⨯⨯+⋅⋅⋅+⨯⨯+⨯⨯⨯⨯-⋅⋅⋅+⨯⨯-+⋅⋅⋅+⨯⨯-⨯⨯-n n n n n n n .2.【第18届华杯赛决赛A 卷第7题】设d cx bx ax x P +++=23)(,若4,3,2,1,1)(==k k k P ,那么______=+-ba d c .3.【第18届华杯赛决赛A 卷第10题】解关于x 的方程:259]15[]2[-=+++x x x ,其中][x 表示不超过x 的最大整数4.【第18届华杯赛决赛A 卷第12题】整数d c b a 、、、满足105,183,82+=-=+=d c c b b a ,求a d 7+的最小值5.【第18届华杯赛决赛B 卷第1题】已知18=+b a ,17=ab ,求______=-b a .6.【第18届华杯赛决赛B 卷第10题】已知3128))(331(4)(332730+-⋅⋅⋅+--+⋅⋅⋅+-=a a n a a a f n ,求)(a f 被12-a 除的余式7.【第19届华杯赛决赛卷第1题】计算:______]6)8()3[(12)3()]27(0[625.38554)2(16)5(3233=÷-+-⨯+-÷--⎪⎭⎫ ⎝⎛-+⨯---÷+-⨯-.8.【第19届华杯赛决赛卷第4题】正整数c b a 、、满足三个等式:68,943,3222=+=⎪⎭⎫ ⎝⎛++=b a c b a c b a ,则c 等于______.9.【第20届华杯赛决赛卷第1题】计算:______)1024110813412211(2048=+⋅⋅⋅+++⨯.10.【第20届华杯赛决赛卷第3题】正整数d c b a 、、、满足4332<<<d c b a ,当d c b a +++最小时,______=c ,______=d .11.【第20届华杯赛决赛卷第11题】已知,23,43111=++=-+ab c ac b bc a a c b 0)2(4222=---c b b c c b ,b 与c 同号,且c b 2≠,求444c b a ++.12.【第21届华杯赛决赛卷第1题】已知n 个数n x x x ,,,21⋅⋅⋅,每个数只能取0,1,-1中的一个.若201621=+⋅⋅⋅++n x x x ,则20152015220151n x x x +⋅⋅⋅++的值为______.13.【第21届华杯赛决赛卷第4题】设正整数y x 、满足2099=--y x xy ,则______22=+y x .14.【第21届华杯赛决赛卷第6题】已知5=++z y x ,5111=++zy x ,1=xyz ,则______222=++z y x .15.【第21届华杯赛决赛卷第7题】关于y x 、的方程组⎪⎩⎪⎨⎧=-=+121y x a y x 只有唯一的一组解,那么a 的取值为______.16.【第22届华杯赛决赛卷第1题】数轴上10个点所表示的数分别为1a ,2a ,…10a ,且当i 为奇数时,21=-+i i a a ,当i 为偶数时,11=-+i i a a ,那么______610=-a a .17.【第22届华杯赛决赛卷第3题】如下的代数和10071010)12016()1(2015220161⨯+⋅⋅⋅++-⨯-+⋅⋅⋅-⨯+⨯-m m m 的个位数字是______,其中m 是正整数.第二章计数1.【第18届华杯赛决赛A 卷第8题】【第18届华杯赛决赛B 卷第6题】见右图,长宽比例是2:1的长方形镶有黑色宽边且一端带有1:1正方形对角线的图案,用8个这种长方形拼成一个正方形图案,要求其中4个水平放置,4个竖直放置,若一个这样拼成的正方形图案经过旋转与另一个拼成的正方形图案相同,则认为两个拼成的正方形图案相同,那么有对称轴的不同的图形有______种2.【第18届华杯赛决赛B 卷第4题】如图,一只青蛙开始在正六边形ABCDEF 顶点A 处,它每次可随意地跳到相邻的两个顶点之一,在D 点处有只飞虫,若青蛙在5次之内跳到D 点,则可以捕捉到飞虫,否则飞虫会逃走,那么青蛙从开始到抓住飞虫,有______种不同跳法解析:【知识点】计数青蛙跳三次即可到达D 点,第一种情况,青蛙按D C B A →→→的路线到达D 点,中间不折回,只有一种跳法,青蛙也可以选择在C B A 、、三点处折回,往回跳一个点再继续前进,总共有3种跳法,那么按D C B A →→→的路线到达D 点总共4种跳法;3.【第18届华杯赛决赛B 卷第8题】设c b a 、、是9~0中的数字且至少有两个不相等,将循环小数...0c b a 化成最简分数后,分子有______种不同的值4.【第19届华杯赛决赛卷第7题】方程023=+++C Bx Ax x 的系数,C B A 、、为整数,10,10,10<<<C B A ,且1是方程的根,那么这种方程总共有______个5.【第20届华杯赛决赛卷第10题】(1)右图有几个四边形?(2)在右图的每个顶点处分别标上1和-1,共有4个1和4个-1,将每个四边形4个顶点处的数相乘,再将所得的所有的积相加,问:至多有多少个不同的和?6.【第21届华杯赛决赛卷第3题】在9×9的格子纸上,1×1小方格的顶点叫做格点.如右图,三角形ABC 的三个顶点都是格点.若一个格点P 使得三角形PAB 与三角形PAC 的面积相等,就称P 为“好点”.那么在这张格子纸上共有______个“好点”.7.【第21届华杯赛决赛卷第8题】右图是一个骰子的展开图,每个面是一个单位正方形.用四个骰子粘成一个2×2×1的长方体放到桌面上,要求每两个粘在一起的面上的“点数”相同.长方体放到桌面上的六个面分别记为上、下、左、右、前、后六个面,两个长方体不同是指对应六个面的“点”的拼图不同.不考虑长方体的旋转,共可以粘出______种不同的长方体.8.【第22届华杯赛决赛卷第7题】右图是A,B,C,D,E五个防区和连接这些防区的条公路的示意图.已知每一个防区驻有一支部队.现在这五支部队都要换防,且换防时,每一支部队只能经过一条公路,换防后每一个防区仍然只驻有一支部队,则共有______种不同的换防方式.第三章几何1.【第18届华杯赛决赛A 卷第2题】将ABC ∆沿DE 、HG 、EF 翻折后压平,ABC ∆的三个顶点C B A 、、均落在点O 处,若o 512=∠,则1∠的度数为______.2.【第18届华杯赛决赛A 卷第4题】将长为8,宽为6的长方形ABCD 纸片一组对角的顶点D B 、重合,压平,折出右面的图形D AEFC ',则三角形AED 的面积为______.3.【第18届华杯赛决赛A 卷第11题】若用一张斜边长为15厘米的红色直角三角形纸片,一张斜边长为20厘米的蓝色直角三角形纸片,一张黄色的正方形纸片,如右图恰拼成一个直角三角形,则黄色正方形纸片的面积是多少平方厘米4.【第18届华杯赛决赛A 卷第13题】如图所示,两个等腰三角形ABC和ECD的底边在一条直线BD上,AD交EC于5和cm10,若三角形COD的面∠且它们的腰成分别为cm=O,顶角CEDBAC∠8cm,求四边形ABDE的面积积为25.【第18届华杯赛决赛B卷第3题】将的长方形ABCD纸片一组对角的顶点DB、重合,压平,折出右面的图形DAEFC',如果bAB==,,则三角形AED的面积与长方形ABCD的面积之aAD比为______.6.【第18届华杯赛决赛A卷第13题】如图所示,两个等腰三角形ABC和ECD的底边在一条直线BD上,AD交EC于∠且它们的腰成分别为cm10,若三角形COD的面5和cm=BAC∠O,顶角CED8cm,求四边形ABDE的面积积为27.【第18届华杯赛决赛B卷第5题】若F E 、分别为三角形ABC 中边AC AB 、上的点,CE 和BF 相交于P ,已知三角形EBP 与三角形EPC 以及四边形AEPF 的面积都是4,则三角形PBC 的面积为______.7.【第18届华杯赛决赛B 卷第13题】如图所示,两个等腰三角形ABC 和ECD 的底边在一条直线BD 上,AD 交EC 于O ,顶角CED BAC ∠=∠且它们的腰成分别为cm 5和cm 10,若四边形ABDE 的面积为25.52cm ,求三角形COD 的面积9.【第19届华杯赛决赛卷第2题】如图,由单位正方形组成的网格中,每个小正方形的顶点称为格点,以格点为顶点做一个三角形,记L 为三角形边上的格点数目,N 为三角形内部的格点数目,三角形的面积可以用下面的式子求出来:顶点在格点的三角形的面积121-+=N L 如果三角形的边上和内部共有20个点,则三角形面积最大等于______,最小等于______.10.【第19届华杯赛决赛卷第3题】长为4的线段AB 上有一动点C ,等腰三角形ACD 和等腰三角形BEC 在过AB 的直线同侧,EB CE DC AD ==,,则线段DE 的长度最小为______.11.【第19届华杯赛决赛卷第5题】如图,直角三角形ABC 中,F 为AB 上的点,且FB AF 2=,四边形EBCD 为平行四边形,那么______=EFFD .12.【第19届华杯赛决赛卷第10题】如右图,在ABC ∆中,D 为BC 的中点,AE CE FB AF 3,2==,连接CF 交DE 于P 点,求DPEP 的值13.【第20届华杯赛决赛卷第7题】如右图,正六边形中两个等边三角形的面积都是30平方厘米,那么正六边形的面积是______平方厘米14.【第20届华杯赛决赛卷第13题】如图,ABC ∆中,D 为BC 上一点,E DB CD ,3:2:=是AB 上一点,且F EB AE ,1:2:=是CA 的延长线上的一点,且3:4:=FA CA 若DFE ∆的面积是1209,求ABC ∆的面积15.【第21届华杯赛决赛卷第9题】在恰有三条边相等的四边形中,有两条等长的边所夹的内角为直角.若从该直角顶点引出的对角线恰好把这个四边形分成两个等腰三角形,求该直角所对的角的度数.16.【第21届华杯赛决赛卷第11题】两张8×12的长方形纸片重叠地放置,有一个顶点重合,尺寸如右图所示.问图中阴影部分的面积是多少?17.【第21届华杯赛决赛卷第13题】如右图,ABCD是正方形,F是其两条对角线的交点,E在BC边上,DE2:1BE与对角线AC的交点为G,三角形DFG的面积等于2.求正方:EC形ABCD的面积.18.【第22届华杯赛决赛卷第2题】如右图,三角形ABC,三角形AEF和三角形BDF均为正三角形,且三角形ABC,三角形AEF的边长分别为3和4,则线段DF长度的最大值等于______.19.【第22届华杯赛决赛卷第10题】如右图,已知正方形ABDF的边长为6厘米,三角形EBC的面积为6平方厘米,点C在线段FD的延长线上,点E为线段BD和线段AC的交点.求线段DC的长度.20.【第22届华杯赛决赛卷第11题】如右图,先将一个菱形纸片沿对角线AC折叠,使顶点B和D重合.再沿过A、和C其中一点的直线剪开折叠后的纸片,然后将纸片展开.这些纸片中)B(D菱形最多有几个?请说明理由.第四章数论1.【第18届华杯赛决赛A 卷第5题】设c b a 、、是9~0中的数字且至少有两个不相等,将循环小数...0c b a 化成最简分数后,分子有______种不同的值2.【第18届华杯赛决赛B 卷第11题】一个三位数,将它的三个数字、三个数字两两乘积、三个数字的乘积相加,其和恰好等于它本身,这样的三位数中最小的是多少?3.【第18届华杯赛决赛B 卷第12题】将2613表示为不少于5个非零连续自然数n a a a ,,,21⋅⋅⋅之和,即5,261321≥=+⋅⋅⋅++n a a a n ,则第一项(最小的数)1a 可以取的最大值与最小值分别是多少?4.【第18届华杯赛决赛B 卷第14题】某些不为0的自然数是2010个数码和相同的自然数之和,也是2012个数码和相同的自然数之和,还是2013个数码和相同的自然数之和,求其中最小的那个自然数5.【第19届华杯赛决赛卷第8题】如果c b a 、、为不同的正整数,且222c b a =+,那么乘积abc 最接近2014的值是______.6.【第19届华杯赛决赛卷第12题】将一个四位数中的四个数字之和的两倍与这个四位数相加得2379,求这个四位数7.【第19届华杯赛决赛卷第13题】求质数c b a 、、,使得abc bc ab a =++715.8.【第20届华杯赛决赛卷第6题】设c b a 、、为1到9中的三个不同整数,则cb a abc ++的最大值是______,最小值是______.(abc 是个三位数)9.【第20届华杯赛决赛卷第9题】算式:20146422013531⨯⋅⋅⋅⨯⨯⨯+⨯⋅⋅⋅⨯⨯⨯的值被2015除的余数是多少?10.【第20届华杯赛决赛卷第14题】求使得n n 22+是完全平方数的自然数n .11.【第21届华杯赛决赛卷第12题】证明:对任何非零自然数12123,23-++n n n n 都是整数,并且用3除余2.12.【第22届华杯赛决赛卷第4题】已知20162015<<x ,设][x 表示不大于x 的最大整数,定义{}][x x x -=,如果{}][x x ⨯是整数,则满足条件的所有x 的和等于______.13.【第22届华杯赛决赛卷第5题】设z y x 、、是自然数,则满足36222=+++xy z y x 的z y x 、、有______组.14.【第22届华杯赛决赛卷第6题】设pq q p q p 113--、、、都是正整数,则22q p +的最大值等于______.15.【第22届华杯赛决赛卷第8题】下面两串单项式各有2017个单项式:100831008210078100772535131287326050604960476046132387542,,,,,,,)2(;,,,,,,,)1(y x y x y x y x y x y x y x y x y x y x y x xy m m n n ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅----其中m n 、为正整数,则这两串单项式中共有______对同类项.16.【第22届华杯赛决赛卷第9题】是否存在长方体,其十二条棱的长度之和、体积、表面积的数值均相等?如果存在,请给出一个例子;如果不存在,请说明理由.17.【第22届华杯赛决赛卷第12题】证明:任意5个整数中,至少有两个整数的平方差7是的倍数.18.【第22届华杯赛决赛卷第14题】已知关于y x 、的方程201722=+-k y x 有且只有六组正整数解,且y x ≥,求k 的最大值.第五章应用题、行程1.【第18届华杯赛决赛A 卷第3题】【第18届华杯赛决赛B 卷第2题】若干人完成了植树2013棵的任务,每人植树的数目相同,如果有5人不参加植树,则剩余的人每人多植2棵不能完成任务,而每人多植3棵可以超额完成任务,那么共有______参加植树.2.【第18届华杯赛决赛A 卷第6题】【第18届华杯赛决赛B 卷第7题】甲、乙两车分别从A、B 地同时出发相向而行,甲车每小时行40千米,乙车每小时行50千米,两车分别到达B 地和A 地后,立即返回,返回时甲车的速度增加二分之一,乙车的速度增加五分之一,已知两车两次相遇处的距离是50千米,则A、B 两地的距离为______千米.3.【第19届华杯赛决赛卷第6题】一辆公交快车和一辆公交慢车沿某环路顺时针运行,它们的起点分别在A 站和B 站,快车每次回到A 站休息4分钟,慢车每次回到B 站休息5分钟,两车在其他车站停留的时间不计,已知沿顺时针方向A 站到B 站的路程是环路全程的52,两车环形一次各需45分钟和51分钟(不包括休息时间),那么,它们从早上6时同时出发,连续运行到晚上10时,两车同在B 站______次.4.【第20届华杯赛决赛卷第4题】圆形跑道上等距插着2015面旗子,甲与乙同时同向从某面旗子的位置出发,当甲与乙再次同时回到出发点时,甲跑了23圈,乙跑了13圈,不算起始点旗子位置,则中间有______次甲正好在旗子位置追上乙.5.【第21届华杯赛决赛卷第2题】某停车场白天和夜间两个不同时段的停车费用的单价不同.张明2月份白天的停车时间比夜间要多40%,3月份白天的停车时间比夜间要少40%.若3月份的总停车时间比2月份多20%,但停车费用却少了20%,那么该停车场白天时段与夜间时段停车费用的单价之比是______.6.【第21届华杯赛决赛卷第5题】甲、乙两队修建一条水渠.甲先完成工程的三分之一,乙后完成工程的三分之二,两队所用的天数为A;甲先完成工程的三分之二,乙后完成工程的三分之一,两队所用天数为B;甲、乙两队同时工作完成的天数为C.已知A比B多5,A是C的2倍多4.那么甲单独完成此项工程需要天______.第六章组合1.【第18届华杯赛决赛A 卷第9题】恰用4个数码4和一些加、乘、幂运算、负号、分数线和括号,写出5个值都等于5的不同算式2.【第18届华杯赛决赛A 卷第14题】若干红,黄,蓝三种颜色的球放在155个盒子中,现将这些盒子分类:第一种分类方法是将红色球数目相同的盒子归为一类,第二种方法是将黄色球数目相同的盒子归为一类,第三种方法是将蓝色球数目相同的盒子归为一类,结果发现从1到30之间所有整数都是某种方法分类中的某一类的盒子数那么,(1)三种分类的类数之和是多少?(2)说明,可以找到三个盒子,其中至少有两种颜色的球,它们的数目分别相同3.【第18届华杯赛决赛B 卷第9题】在直线上依次排列有D C B A 、、、四点,请证明:BDAC AD BC CD AB ⨯=⨯+⨯4.【第19届华杯赛决赛卷第9题】有三个农场在一条公路边,如图A、B、C 处,A 处农场年产小麦50吨,B 处农场年产小麦10吨,C 处农场年产小麦60吨,要在这条公路上修建一个仓库收买这些小麦,假设运费从A 到C 方向是1.5元/吨千米,从C 到A 方向是1元/吨千米,那么仓库应建在何处才能使运费最低?5.【第19届华杯赛决赛卷第11题】某地参加华杯赛决赛的104名小选手来自14所学校,请证明:一定有选手人数相同的两所学校.6.【第19届华杯赛决赛卷第14题】如果有理数10321,,,,a a a a ⋅⋅⋅满足条件:10,10,0109432110321≤++⋅⋅⋅++≤+≥≥⋅⋅⋅≥≥≥a a a a a a a a a a ,那么210232221a a a a +⋅⋅⋅+++的最大值是多少?7.【第20届华杯赛决赛卷第2题】一堆彩球只有红、黄两色,先数出的50个球有49个红球,此后,每数出8个球中都有7个红球,恰好数完,已数出的球中红球不少于90%,这堆彩球最多有______个.8.【第20届华杯赛决赛卷第5题】现有2015张卡片,每张上写有数字+1或-1,如果每次指着其中的三张卡片问:“这三张卡片所写的数字的乘积是多少?”并得到正确回答,那么,至少问______次才能确定这2015张卡片所写的数字的乘积.9.【第20届华杯赛决赛卷第8题】从一副扑克牌中抽走一些牌,在剩下的牌中至少要数出20张,才能确保数出的牌中有两张同花色的牌的点数和为15,那么最多抽走______张牌,最少抽走______张牌(K Q J 、、的点数为11,12,13,大小王的点数为0,一副扑克牌有54张牌,其中52张正牌,另两张是副牌(大王和小王),52张正牌又均分为13张一组,并以黑桃、红桃、草花、方块四种花色表示各组,每组花色的牌包括1至10(1通常表示为A ),以及K Q J 、、标示的13张牌).10.【第20届华杯赛决赛卷第12题】加工十个同样的木制玩具,需用260毫米和370毫米的标准木方分别为30根和40根,仓库里有长度分别为900毫米,745毫米,1385毫米的三种标准木方,用着三种标准木方锯出所需长度的木方,每锯一次要损耗5毫米的长木方,问是否可以用三种木方,每种木方选一些,恰好锯出十个玩具所需的木方?如果可以,锯的次数最少,那么三种木方各选多少根?(说明:一根木方被锯一次要得到两个长度大于0的木方,即不能从一端锯).11.【第21届华杯赛决赛卷第10题】围着一张可以转动的圆桌,均匀地放着8把椅子,在桌子上对着椅子放有8个人的名片.这8个人入座后,将圆桌顺时针转动,第一次转45°,从第二次开始,每次转动比上一次多转45°.每转动一次,当某人对着自己的名片时,取走自己的名片.如果入座时谁都没有对着自己的名片,那么桌子至少转多少度才能保证所有入座可能的情况下8个人都拿到了自己的名片?12.【第21届华杯赛决赛卷第14题】排成一行的学生,从左到右1至3报数,最后一个人报2.从右到左1至m 报数,最后一个人报1,这里m 与3互质.现凡报过1的学生出列,其余原地不动,共留下62名,其中只有21对学生原来相邻.问原来有多少名学生?m 的值是多少?13.【第22届华杯赛决赛卷第13题】直线a 平行于直线b ,a 上有10个点1021,,,A A A ⋅⋅⋅,b 上有11个点1021,,,B B B ⋅⋅⋅,用线段连接i A 和j B (11,,1,10,,1⋅⋅⋅=⋅⋅⋅=j i ),所得到的图形中一条边在a 上或者在b 上的三角形有多少个?目录计算 (21)计数 (27)几何 (32)数论 (39)应用题、行程 (46)组合 (49)第一章计算1.【第18届华杯赛决赛A 卷第1题】解析:【知识点】计算原式275427162410127820310193)102101(4210110041931)515041*********(421)100994321(931)10042(2)100994321[(421)100994321(931)100994321(42122222222422333333333333333333333333333-=⨯⨯-=⨯⨯-⨯⨯=⨯⨯⨯⨯⨯⨯⨯⨯-⨯⨯⨯⨯⨯=++⋅⋅⋅++++⨯⨯⨯+⋅⋅⋅++⨯-++⋅⋅⋅++++⨯⨯⨯=++⋅⋅⋅++++⨯⨯⨯-+⋅⋅⋅+-+-⨯⨯⨯=2.【第18届华杯赛决赛A 卷第7题】解析:【知识点】计算将4,3,2,1=k 代入d cx bx ax x P +++=23)(,得⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=-==-=⇒⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=+++=+++=+++=+++2450243524102414141664313927212481d c b a d c b a d c b a d c b a d c b a 则9851015035-=+---=+-b a d c 3.【第18届华杯赛决赛A 卷第10题】解析:【知识点】计算][x 表示不超过x 的最大整数,则15]15[115,2]2[12+≤+<-++≤+<-+x x x x x x即36259]15[]2[16+≤-=+++<+x x x x ,化简得61167≤<x ,则142598≤-<x ,259-x 为整数,其取值只能是9,10,11,12,13,14,分别解方程,得到:(1)9259=-x ,解得1823=x ,代入验算:1073=+=左,92523=-=右,右左≠,则1823=x 不是解;(2)10259=-x ,解得1825=x ,代入验算:1073=+=左,102525=-=右,右左=,则1825=x 是解;(3)11259=-x ,解得1827=x ,代入验算:1183=+=左,112527=-=右,右左=,则1827=x 是解;(4)12259=-x ,解得1829=x ,代入验算:1293=+=左,122529=-=右,右左=,则1829=x 是解;(5)13259=-x ,解得1831=x ,代入验算:1293=+=左,132531=-=右,右左≠,则1831=x 不是解;(6)14259=-x ,解得1833=x ,代入验算:13103=+=左,142533=-=右,右左≠,则1833=x 不是解;所以,原方程的解为1829,1827,1825=x .4.【第18届华杯赛决赛A 卷第12题】解析:【知识点】最值将105+=d c 代入183-=c b ,得到121518)105(3+=-+=d d b ,代入到82+=b a ,得32308)1215(2+=++=d d a ,所以224211)3230(77+=++=+d d d a d ,由于d 是整数,所以当1-=d 时a d 7+可以取到最小值1313=-.5.【第18届华杯赛决赛B 卷第1题】解析:【知识点】计算22)(4)(b a ab b a -=-+,即25617418)(22=⨯-=-b a ,则16±=-b a .6.【第18届华杯赛决赛B 卷第10题】解析:【知识点】计算,多项式312825221916131074)(36912151821242730+-+-+-+-+-=a a a a a a a a a a a f ,当k n 2=,即n 为偶数时,k n a a 2=,1122=-=k k a a ,12-k a 可以被12-a 整除,则k a 2除以12-a ,余式为1;当12+=k n ,即n 为奇数时,12+=k n a a ,a a a a k k +-=+)1(212,)1(2-k a a 可以被12-a 整除,则12+k a 除以12-a ,余式为a ;则)(a f 除以12-a 的余式为:96803128252219161310741+-=+-+-+-+-+-a a a a a a .7.【第19届华杯赛决赛卷第1题】解析:【知识点】计算原式2611225299202135]6)8()3[(12)3()]27(0[625.38554)2(16)5(3233-=-=--+--=÷-+-⨯+-÷--⎪⎭⎫ ⎝⎛-+⨯---÷+-⨯-=8.【第19届华杯赛决赛卷第4题】解析:【知识点】计算b ac c b a 33=⇒=,c b a 、、是正整数,则3239432=++⇒=⎪⎭⎫ ⎝⎛++c b a c b a ,则3233-+=b a c ,则有)2()2(33233a b a a b b a a -=-⇒=⎪⎭⎫ ⎝⎛-+⋅,b a -=显然不符合条件,则只能是02=-a ,即2=a ,解得12,8,2===c b a .9.【第20届华杯赛决赛卷第1题】解析:【知识点】计算原式1146862046552048)1024102355(20481024141211021(2048=+⨯=+⨯=+⋅⋅⋅++++⋅⋅⋅++⨯=10.【第20届华杯赛决赛卷第3题】解析:【知识点】计算通分,统一分子,可以得到acac ad ac cb ac ac ac 86666696<<<,分子相同,分母越大,分数值越小,则c d c dc d c ac ad ad ac 233434238669<<⇒⎩⎨⎧<>⇒⎩⎨⎧>>,要使得d c b a +++最小,则d c b a 、、、的取值尽可能小,1=c 时,2334<<d ,无解;2=c 时,338<<d ,无解;3=c 时,294<<d ,无解;4=c 时,6316<<d ,无解;5=c 时,215320<<d ,7=d ;则7,5==d c .11.【第20届华杯赛决赛卷第11题】解析:【知识点】计算23222=++abc c b a ,b 与c 同号,则0>a ,a c b 14311+=+,所以b 和c 也是正数,0)4)(2()2(42)2(422222=--=---=---bc c b c b b c c b c b b c c b ,c b 2≠,则4=bc ,代入a c b 14311+=+,得ac b 43+=+,222222262323a a a abc c b abc c b a -=-=+⇒=++,2222243243)(⎪⎭⎫ ⎝⎛+=++⇒⎪⎭⎫ ⎝⎛+=+a bc c b a c b ,226843a a a -=-⎪⎭⎫ ⎝⎛+,解得4=a ,则4443=+=+c b ,且4=bc ,解得2==c b ,则288224444444=++=++c b a 12.【第21届华杯赛决赛卷第1题】解析:【知识点】计算令2016=n ,且12016321==⋅⋅⋅===x x x x ,满足201621=+⋅⋅⋅++n x x x ,则2016201520162015220151=+⋅⋅⋅++x x x .13.【第21届华杯赛决赛卷第4题】解析:【知识点】计算20818199=-+--y x xy ,则101)9)(9(=--y x ,101是质数,则只有两种情况,1019,19=-=-y x 或19,1019=-=-y x ,则110,10==y x 或10,110==x y ,则1220012100100110102222=+=+=+y x .14.【第21届华杯赛决赛卷第6题】解析:【知识点】计算25222)(2222=+++++=++yz xz xy z y x z y x ,5111=++=++xyzyz xz xy z y x ,则5=++yz xz xy ,152525222=⨯-=++z y x .15.【第21届华杯赛决赛卷第7题】解析:【知识点】方程组根据x 的取值,分类讨论,当0≥x 时,⎪⎪⎩⎪⎪⎨⎧-=+=⇒⎪⎩⎪⎨⎧=-=+31323232121a y a x y x a y x 当0<x 时,⎩⎨⎧=--=⇒⎪⎩⎪⎨⎧=--=+a y a x y x a y x 222121只有一组解,则1223232-=⇒--=+a a a .16.【第22届华杯赛决赛卷第1题】解析:【知识点】计算,2,9,1,8,2,7,1,6,2,5,1,4,2,3,1,2,2,19108978675645342312=-==-==-==-==-==-==-==-==-=a a i a a i a a i a a i a a i a a i a a i a a i a a i 14,811016+=+=a a a a ,则6610=-a a .17.【第22届华杯赛决赛卷第3题】解析:【知识点】计算50803050510065052100915052100720151009100752011320131201510071010)12016()1(2015220161=⨯=⨯+-⨯+=-+⋅⋅⋅+-+-+-=⨯+⋅⋅⋅++-⨯-+⋅⋅⋅-⨯+⨯-m m m 则个位数字为0.第三章计数1.【第18届华杯赛决赛A卷第8题】【第18届华杯赛决赛B卷第6题】解析:【知识点】计数分两种情况考虑,第一种以对边中点的连线为对称轴,由于竖直方向旋转90度与水平方向重合,所以只考虑竖直方向即可,如下图,总共有24种情况;第二种以对角线为对称轴,由于一条对角线旋转90度与另一条对角线重合,所以只考虑一条对角线即可,没有符合题意的拼法;2.【第18届华杯赛决赛B卷第4题】解析:【知识点】计数青蛙跳三次即可到达D 点,第一种情况,青蛙按D C B A →→→的路线到达D 点,中间不折回,只有一种跳法,青蛙也可以选择在C B A 、、三点处折回,往回跳一个点再继续前进,总共有3种跳法,那么按D C B A →→→的路线到达D 点总共4种跳法;同理,青蛙按D E F A →→→的路线到达D 点,也是4种跳法;那么青蛙从开始到抓住飞虫总共有8种跳法。

第二十届“华罗庚金杯”少年数学邀请赛决赛试卷(小高组c卷)

第二十届“华罗庚金杯”少年数学邀请赛决赛试卷(小高组c卷)

2015年第二十届“华罗庚金杯”少年数学邀请赛决赛试卷(小高组C卷)一、填空题(每小题10分,共80分)1.(10分)计算:+=.2.(10分)将自然数1至8分为两组,使两组的自然数各自之和的差等于16,共有种不同的分法.3.(10分)将2015的十位、百位和千位的数字相加,得到的和写在2015个位数字之后,得到一个自然数20153;将新数的十位、百位和千位数字相加,得到的和写在20153个位数字之后,得到201536;再次操作2次,得到201536914,如此继续下去,共操作了2015次,得到一个很大的自然数,这个自然数所有数字的和等于.4.(10分)如图,四边形ABCD是边长为11厘米的正方形,G在CD上,四边形CEFG是边长为 9 厘米的正方形,H在AB上,∠EDH是直角,三角形EDH的面积是平方厘米.5.(10分)如图是网格为3×4的长方形纸片,长方形纸片正面是灰色,反面是红色,网格是相同的小正方形.沿网格线将长方形裁剪为两个形状相同的卡片,如果形状和正反面颜色相同,则视为相同类型的卡片,则能裁剪出种不同类型的卡片.6.(10分)一个长方体,棱长都是整数厘米,所有棱长之和是 88 厘米,问这个长方体总的侧面积最大是平方厘米.7.(10分)[x﹣]=3x﹣5,这里[x]表示不超过x的最大整数,则x =.8.(10分)右边是一个算式,9个汉字代表数字1至9,不同的汉字代表不同的数字,则该算式可能的最大值是.二、解答下列各题(每小题10分,共40分,要求写出简要过程)9.(10分)已知C地为A,B两地的中点.上午7点整,甲车从A出发向B 行进,乙车和丙车分别从B和C出发向A行进.甲车和丙车相遇时,乙车恰好走完全程的,上午10点丙车到达A地,10点30分当乙车走到A 地时,甲车距离B地还有84千米,那么A和B两地距离是多少千米?10.(10分)将2015个分数,,…,,化成小数,共有多少个有限小数?11.(10分)a,b 为正整数,小数点后第3位经四舍五入后,式子+=1.51,求a+b=?12.(10分)已知算式abcd=aad×e,式中不同字母代表不同的数码,问四位数abcd最大值是多少?三、解答下列各题(每题15分,共30分,要求写出详细过程)13.(15分)在图中,ABCD是平行四边形,F在AD上,△AEF的面积=8cm2,△DEF的面积=12cm2,四边形BCDF的面积=72cm2,求出△CDE的面积?14.(15分)将530本书分给48名学生,至少有几名学生分到的数量相同?2015年第二十届“华罗庚金杯”少年数学邀请赛决赛试卷(小高组C卷)参考答案与试题解析一、填空题(每小题10分,共80分)1.(10分)计算:+= 1 .【分析】把繁分数的分子分母中的算式分别化简,然后根据分数的基本性质解答即可.【解答】解:+=+=+=1;故答案为:1.2.(10分)将自然数1至8分为两组,使两组的自然数各自之和的差等于16,共有8 种不同的分法.【分析】根据题意,分成的两组之和为(1+8)×8÷2=36,因为两组的自然数各自之和的差等于16,因此和较大的一组等于(36+16)÷2=26,较小的一组是36﹣26=10,由此即可解答.【解答】解:分成的两组之和为:(1+8)×8÷2=9×8÷2=36和较大的一组等于:(36+16)÷2=52÷2=26较小的一组是:36﹣26=10因为10=2+8=3+7=4+6=1+2+7=1+3+6=1+4+5=2+3+5=1+2+3+4相应地26=1+3+4+5+6+7=1+2+4+5+6+8=1+2+3+5+7+8=3+4+5+6+8=2+4+5+7+8=2+3+6+7+8=1+4+6+7+8=5+6+7+8所以共有8种不同的分法故答案为:8.3.(10分)将2015的十位、百位和千位的数字相加,得到的和写在2015个位数字之后,得到一个自然数20153;将新数的十位、百位和千位数字相加,得到的和写在20153个位数字之后,得到201536;再次操作2次,得到201536914,如此继续下去,共操作了2015次,得到一个很大的自然数,这个自然数所有数字的和等于8479 .【分析】按题设条件,操作16次后,如上图,发现数字的规律为:从7次开始数字为11、3、3、5、7,从第12次开始为11、3、3、5、7,这5个数字重复出现.根据整个规律,推出操作了2015次,得到的数,再求和即可.【解答】解:按题设条件,操作16次后,如下:数字的规律为:从7次开始数字为11、3、3、5、7,从第12次开始为11、3、3、5、7,这5个数字重复出现,则操作2015次:(2015﹣6)÷5=401…4,则2015次操作的对应的数字是5;则所有自然数和为:前4位:2+0+1+5=8,后6为:3+6+9+1+4+1+6+6=36,重复的数字和为:1+1+1+3+3+5+7=21,重复401次后,和为401×21=8421,余数4,对应数字的和为:1+1+1+3+3+5=14,以上数字相加即为所有自然数和=8+36+8421+14=8479.故:应该填:8479.4.(10分)如图,四边形ABCD是边长为11厘米的正方形,G在CD上,四边形CEFG是边长为 9 厘米的正方形,H在AB上,∠EDH是直角,三角形EDH的面积是101 平方厘米.【分析】1、延长EF、AD交于点K;2、将△DEK和△ADH面积相等,所以,HB=2;3、S阴影=S ABEK﹣S DEK﹣S ADH﹣S BHE【解答】根据上述分析故答案是:S阴影=S ABEK﹣S DEK﹣S ADH﹣S BHE=11×(11+9)﹣0.5×9×11﹣0.5×9×11﹣0.5×2×(11+9)=1015.(10分)如图是网格为3×4的长方形纸片,长方形纸片正面是灰色,反面是红色,网格是相同的小正方形.沿网格线将长方形裁剪为两个形状相同的卡片,如果形状和正反面颜色相同,则视为相同类型的卡片,则能裁剪出8 种不同类型的卡片.【分析】可首先分析向左的减法,然后根据左右对称情况得出向右的剪法,减去重合的剪法,从而得出总的不同剪法.【解答】解:先考虑从正面剪,中间那条粗线是一定要剪开的,剪开后,从点1有三种选择,向上向左向右;1、向上:,属于第1种类型;2、向左:剪至点3,又有3种选择,向上向左向下,(1)向上(黑线):,红线是和黑线对称的情况,但按红线剪出的图形旋转后和黑线相同,属于第2种类型;(2)向左:,按红线剪出的图形旋转后和黑线不同,是两种不同的类型,属于第3、4种类型;(3)向下:向下剪至点6,有两种选择,向左,向下,①向左:,按红线剪出的图形旋转后和黑线不同,是两种不同的类型,属于第5、6种类型;②向下:,按红线剪出的图形旋转后和黑线不同,是两种不同的类型,属于第7、8种类型;综上可得,总共有8种类型.故答案是:8.6.(10分)一个长方体,棱长都是整数厘米,所有棱长之和是 88 厘米,问这个长方体总的侧面积最大是224 平方厘米.【分析】长宽高的和是:88÷4=22厘米,长方体的总侧面积最大,长宽高的长度必须最接近,即22=8+7+7,然后再利用长方体的侧面积公式,也就是用底面周长乘高,据此解答即可.【解答】解:长宽高的和是:88÷4=22(厘米),长方体的总侧面积最大,长宽高的长度必须最接近,即22=8+7+7,(7+7)×2×8=28×8=224(平方厘米);答:这个长方体的总侧面积最大是224平方厘米.故答案为:224.7.(10分)[x﹣]=3x﹣5,这里[x]表示不超过x的最大整数,则x=2 .【分析】按题意,要使原式成立,则[x﹣]≤x﹣,⇒3x﹣5≤x﹣,而3x﹣5为整数,不难求得x=2.【解答】解:根据分析,要使原式成立,则[x﹣]≤x﹣,⇒3x﹣5≤x﹣,⇒x≤,∵3x﹣5≥0∴x=2而3x﹣5为整数,不难求得x=2.故答案是:28.(10分)右边是一个算式,9个汉字代表数字1至9,不同的汉字代表不同的数字,则该算式可能的最大值是8569 .【分析】观察这个算式,要使这个算式的值最大,那么两位数与两位数的乘积就要尽可能的大,所以天空=96,则湛蓝=87;同理,两位数与一位数的乘积也要尽可能的大,所以翠绿=43,则树=5;那么盼=1,望=2;据此解答即可.【解答】解:根据分析可得,1×2+43×5+96×87=2+215+8352=8569;故答案为:8569.二、解答下列各题(每小题10分,共40分,要求写出简要过程)9.(10分)已知C地为A,B两地的中点.上午7点整,甲车从A出发向B 行进,乙车和丙车分别从B和C出发向A行进.甲车和丙车相遇时,乙车恰好走完全程的,上午10点丙车到达A地,10点30分当乙车走到A 地时,甲车距离B地还有84千米,那么A和B两地距离是多少千米?【分析】首先根据甲丙相遇走完全程的一半,乙走完全程的即可列出一组甲乙丙速度的关系式,再根据丙3小时走一半路程,乙3.5小时走完全程可以列出乙丙的速度关系式.重点求出甲乙的速度比,根据甲车距离B 地84千米,求得对应的份数,即可求出所求.【解答】解:根据题意可知,当甲丙相遇时走完全程的一半,乙走完全程的,即(V甲+V丙)=V乙.①再根据丙3小时走了全程的一半,乙3.5小时走完全程,即6V丙=3.5V乙.②根据①②得:V甲:V乙=3:4.所以甲乙路程之比就是3:4.一份量是:84÷(4﹣3)=84千米.全程是:84×4=336千米.故答案为:336千米.10.(10分)将2015个分数,,…,,化成小数,共有多少个有限小数?【分析】先找出分母中只有因数2,5,同时有2和5的数的个数,即可得出结论.【解答】解:在2015个分数,,…,,的分母中,只有因数2的数有2,4,8,16,32,64,128,256,512,1024共10个数,只有因数5的数有5,25,125,625共4个数,既有因数2,也有因数5的数有10,20,40,50,80,100,160,200,250,320,400,500,640,800,1000,1250,1280,1600,2000共19个数,所以总有10+4+19=33个有限小数,答:共有33个有限小数.11.(10分)a,b 为正整数,小数点后第3位经四舍五入后,式子+=1.51,求a+b=?【分析】根据条件,代入验证,求出a,b,即可得出结论.【解答】解:由题意,a=7,则取b=1,+=1.4+0.143≈1.54,不符合题意;a=6,则取b=3,+=1.2+0.429≈1.63,不符合题意;a=5,则取b=4,+=1+0.571≈1.57,不符合题意;a=4,则取b=5,+=0.8+0.714≈1.51,符合题意;∴a+b=9.12.(10分)已知算式abcd=aad×e,式中不同字母代表不同的数码,问四位数abcd最大值是多少?【分析】aad×e=abcd中,d×e的个位数仍为d(1~9)×1=(1~9)(2、4、6、8)×6=(12、24、36、48)5×(3、5、7、9)=(15、25、35、45)【解答】解:从上面的分析可以看出e可能为1、6、(3、5、7、9)设:e为9,希望得最大值,则d为5从a=(1~9)检测,得115×9=1035225×9=2025335×9=3015…通过检测,∴abcd的最大值为3015答:这个四位数最大是3015.三、解答下列各题(每题15分,共30分,要求写出详细过程)13.(15分)在图中,ABCD是平行四边形,F在AD上,△AEF的面积=8cm2,△DEF的面积=12cm2,四边形BCDF的面积=72cm2,求出△CDE的面积?【分析】连接BD(如下图),若△AEF以AF为底、△EFD以FD为底,他们的高相等,则底边比等于面积比,可以求出AF:DF=2:3;若△ABF、△BFD分别以AF、FD为底,他们高相同,则S△ABF=0.2×S▱ABCD、而S△BDF=0.6×S△ABD=0.3×S▱ABCD;S△BCDF=S△BFD+S△BCD,求出S▱ABCD;由S△ABF=0.2×S▱ABCD,求出S△ABF;,根据S△AEB=S△ABF﹣S△AEF,可以S△AEB;S△AEB与S△ECD之和为平行四边形面积的一半,可以求出S△ECD.【解答】解:连接BD(如上图),根据△AEF的面积=8cm2,△DEF的面积=12cm2,求出AF:DF=8:12=2:3;S△BCDF=S△BFD+S△BCD=0.5S▱ABCD+0.3S▱ABCD=0.8S▱ABCD=72,所以:S▱ABCD=90;S△ABF=0.2S▱ABCD=18,S△ABE=S△ABF﹣S△AEF=10;S△ABE+S△ECD=0.5×S▱ABCD=45;故S△ECD=45.答:S△ECD的面积为45cm2.14.(15分)将530本书分给48名学生,至少有几名学生分到的数量相同?【分析】①若48名学生分到的数量互不相同,则至少要:0+1+2+3+…+47=1128>530,不满足条件;②若只有2名学生分到的书数量相同,则至少要:(0+1+2+3+…+23)×2=552>530,不满足条件;③若只有3名学生分到的书数量相同,则至少要:(0+1+2+3+…+15)×3=360<530,满足条件;所以至少3名学生分到的书数量相同,据此解答即可.【解答】解:①若48名学生分到的数量互不相同,则至少要:0+1+2+3+…+47=1128>530,不满足条件;②若只有2名学生分到的书数量相同,则至少要:(0+1+2+3+…+23)×2=552>530,不满足条件;③若只有3名学生分到的书数量相同,则至少要:(0+1+2+3+…+15)×3=360<530,满足条件;所以至少3名学生分到的书数量相同.答:至少3名学生分到的书数量相同.声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2019/5/7 10:59:44;用户:小学奥数;邮箱:pfpxxx02@;学号:20913800。

2015 20届华罗庚金杯小高组卷A解析

2015 20届华罗庚金杯小高组卷A解析

【考点】比例模型 【难度】☆☆☆ 【答案】
80 9
【分析】由风筝模型,
1 1 1 2 1 BH S BME 2 3 2 1 BG S BDF 4 , 3 2 1 1 HN S NME 3 GN S NDF 1 1 1 1 2 2 2 3 2
由鸟头模型
7.一次数学竞赛有 A、 B、 C 三题,参赛的 39 个人中,每个至少答对了一道题.在答对 A 的 人中, 只答对 A 的比还答对其它题目的多 5 人; 在没答对 A 的人中, 答对 B 的是答对 C 的 2 倍;又知道只答对 A 的等于只答对 B 的与只答对 C 的人数之和,那么答对 A 的最多有 ______________人. 【考点】组合、容斥原理、最值问题 【难度】☆☆☆☆ 【答案】23 【分析】根据题意得,如下图所示:只答对 A 的人数是 3b a ,答对 A 还答对其他题目的人 数是 3b a 5 . 所有有: 3b a 3b a 5 3b 2 a 39 .
a 2 a 11 化简得 4 a 9b 44 ,解得 或 , b 4 b 0
答对 A 的人共 3b a 3b a 5 6b 2 a 5 ,最大值是 6 4 2 2 5 23 (人).
8.甲、乙进行乒乓球比赛,三局两胜制,每局比赛中,先得 11 分且对方少于 10 分者胜; 10 平后多得 2 分者胜.甲、乙二人得分总和都是 30 分,在不计比分先后顺序时,三局的比 分共有种情况. 【考点】计数、体育比赛的数学问题 【难度】☆☆☆ 【答案】16 【分析】 30 3 11 ,三局中其中一个人胜了两局,所以至少有两个分数不小于 11,甲得分 总和是 30: 30 11 9 10 ,乙对应的得分是: 30 7 10 12 ;对应的比分是:

第20届全国高中化学竞赛决赛(冬令营)理论试题与答案

第20届全国高中化学竞赛决赛(冬令营)理论试题与答案

中国化学会第 20 届全国高中学生化学竞赛(决赛)理论试题参考答案及评分细则第 1 题(14 分)1-1 当g G m< 0时,反应可正向进行,由此解得T1>1186K, T2>1500 K,T3>1761K,故只有反应①在 1500K 以下可自动正向进行。

(计算2分,结果1分,共3分)Ti O2+ 2Cl2= Ti Cl4+2CO(1 分)1-2(方程式未配平不得分 )1-3 VOCl 3与 TiCl 4沸点相近(1分)Cu+ VOCl 3= VOCl 2+CuCl(1 分)1-4 TiCl 4 +2Mg=Ti+2MgCl 2(1分)1-5(1)Mg C O=Mg O + C O(1分)32Mg O + Cl+ C=Mg Cl+ C O(1分)22(2)阴极反应:Mg 2+-= Mg( 0.5 分)+2e阳极反应:--( 0.5 分)2Cl = Cl 2+2e电解反应: MgCl 2= Mg +Cl 2(1 分)1( 0.5分)(3)r H m = ∑v B f H m = 596.32 kJ molr S m =∑v B S m = 77.30+268.20-231.02=114.48(J·K-1·mol-1)( 0.5分)r G m = r H m —T r S m =596.32—1023×114.48×10-3=479.21(kJ·mol-1)(1 分)E = –r G m/ZF=–479210/(2×96500)= -2.48(V)E理 =2.48V(1分)第2 题2-12-2 ( 1) ZnS + 2H 2SO4=ZnSO 4+SO2+S+2H 2OCuS + 2H 2 SO4=CuSO4+SO2+S+2H 2O 加水的目的是浸取反应生成的可溶性硫酸盐。

(2) As2S3 +3Na 2S=2Na3AsS3SnS2 +Na 2S=NaSnS3加入氢氧化钠的目的是防止硫化钠水解2-3(1)S2O42-+Fe2O3+2H+=2SO32-+2Fe2++H2O (2) Na4[FeA 2]第 3 题(10 分)3-1[(3++ H O[(] )2++F e H) ]2= F e O H H O 2O6 2O5+ H 33-2(3 分)(1 分)(1 分)(0.5 分)(1 分)(1 分)(2 分)(1 分)H4 + O2[F e O H(H]) 2 +=(H2O)4 F e F e( H 2 O )4+ 2 H O(12分)2O5OHH 2 O H H 2 O H 2OH H 2 OH 2 O O.....OF e F e F e F eH 2 O O.....OH 2 O H 2OH 2 OH 2 O H H3-3Al 2O3+6HCl+9H 2O=2[Al(H 2O)6]Cl 3 [Al(H2O)6]Cl 3= [Al(OH) 2(H2O)4]Cl+2HCl[Al(OH) 2(H2 O)4]Cl+NH 3 H·2O=Al(OH) 3+NH 4Cl+4H 2O (nm-4m)Al(OH) 3+(6m-nm)[Al(OH) 2(H 2O)4]Cl=[Al 2(OH) n Cl 6-n] m+(24m-4nm)H2O 3-4第 4 题(22 分)4-1n NaBH 4 +4n CH 3CH2OH =[NaB(OC 2H5 )4] n +4n H 2↑(分子式错误,方程式未配平不得分;未写n 不扣分)4-2 A 属于混合晶体4-3[NaB(OC 2H 5)4]n 的一维结构示意图及一维点阵如下:m +O H 2O H 2(2分)(1 分)(1 分)(1 分)(1 分)(2分)4-4 Na 的配位数为4, B 原子采取SP3杂化(2分)H O2[F e O H(H]) 2 +=(H2O)4 F e F e( H 2 O )4+ 2 H O(12分)2O5OHH 2 O H H 2 O H 2OH H 2 OH 2 O O.....OF e F e F e F eH 2 O O.....OH 2 O H 2OH 2 OH 2 O H H3-3Al 2O3+6HCl+9H 2O=2[Al(H 2O)6]Cl 3 [Al(H2O)6]Cl 3= [Al(OH) 2(H2O)4]Cl+2HCl[Al(OH) 2(H2 O)4]Cl+NH 3 H·2O=Al(OH) 3+NH 4Cl+4H 2O (nm-4m)Al(OH) 3+(6m-nm)[Al(OH) 2(H 2O)4]Cl=[Al 2(OH) n Cl 6-n] m+(24m-4nm)H2O 3-4第 4 题(22 分)4-1n NaBH 4 +4n CH 3CH2OH =[NaB(OC 2H5 )4] n +4n H 2↑(分子式错误,方程式未配平不得分;未写n 不扣分)4-2 A 属于混合晶体4-3[NaB(OC 2H 5)4]n 的一维结构示意图及一维点阵如下:m +O H 2O H 2(2分)(1 分)(1 分)(1 分)(1 分)(2分)4-4 Na 的配位数为4, B 原子采取SP3杂化(2分)H O2[F e O H(H]) 2 +=(H2O)4 F e F e( H 2 O )4+ 2 H O(12分)2O5OHH 2 O H H 2 O H 2OH H 2 OH 2 O O.....OF e F e F e F eH 2 O O.....OH 2 O H 2OH 2 OH 2 O H H3-3Al 2O3+6HCl+9H 2O=2[Al(H 2O)6]Cl 3 [Al(H2O)6]Cl 3= [Al(OH) 2(H2O)4]Cl+2HCl[Al(OH) 2(H2 O)4]Cl+NH 3 H·2O=Al(OH) 3+NH 4Cl+4H 2O (nm-4m)Al(OH) 3+(6m-nm)[Al(OH) 2(H 2O)4]Cl=[Al 2(OH) n Cl 6-n] m+(24m-4nm)H2O 3-4第 4 题(22 分)4-1n NaBH 4 +4n CH 3CH2OH =[NaB(OC 2H5 )4] n +4n H 2↑(分子式错误,方程式未配平不得分;未写n 不扣分)4-2 A 属于混合晶体4-3[NaB(OC 2H 5)4]n 的一维结构示意图及一维点阵如下:m +O H 2O H 2(2分)(1 分)(1 分)(1 分)(1 分)(2分)4-4 Na 的配位数为4, B 原子采取SP3杂化(2分)H O2[F e O H(H]) 2 +=(H2O)4 F e F e( H 2 O )4+ 2 H O(12分)2O5OHH 2 O H H 2 O H 2OH H 2 OH 2 O O.....OF e F e F e F eH 2 O O.....OH 2 O H 2OH 2 OH 2 O H H3-3Al 2O3+6HCl+9H 2O=2[Al(H 2O)6]Cl 3 [Al(H2O)6]Cl 3= [Al(OH) 2(H2O)4]Cl+2HCl[Al(OH) 2(H2 O)4]Cl+NH 3 H·2O=Al(OH) 3+NH 4Cl+4H 2O (nm-4m)Al(OH) 3+(6m-nm)[Al(OH) 2(H 2O)4]Cl=[Al 2(OH) n Cl 6-n] m+(24m-4nm)H2O 3-4第 4 题(22 分)4-1n NaBH 4 +4n CH 3CH2OH =[NaB(OC 2H5 )4] n +4n H 2↑(分子式错误,方程式未配平不得分;未写n 不扣分)4-2 A 属于混合晶体4-3[NaB(OC 2H 5)4]n 的一维结构示意图及一维点阵如下:m +O H 2O H 2(2分)(1 分)(1 分)(1 分)(1 分)(2分)4-4 Na 的配位数为4, B 原子采取SP3杂化(2分)H O2[F e O H(H]) 2 +=(H2O)4 F e F e( H 2 O )4+ 2 H O(12分)2O5OHH 2 O H H 2 O H 2OH H 2 OH 2 O O.....OF e F e F e F eH 2 O O.....OH 2 O H 2OH 2 OH 2 O H H3-3Al 2O3+6HCl+9H 2O=2[Al(H 2O)6]Cl 3 [Al(H2O)6]Cl 3= [Al(OH) 2(H2O)4]Cl+2HCl[Al(OH) 2(H2 O)4]Cl+NH 3 H·2O=Al(OH) 3+NH 4Cl+4H 2O (nm-4m)Al(OH) 3+(6m-nm)[Al(OH) 2(H 2O)4]Cl=[Al 2(OH) n Cl 6-n] m+(24m-4nm)H2O 3-4第 4 题(22 分)4-1n NaBH 4 +4n CH 3CH2OH =[NaB(OC 2H5 )4] n +4n H 2↑(分子式错误,方程式未配平不得分;未写n 不扣分)4-2 A 属于混合晶体4-3[NaB(OC 2H 5)4]n 的一维结构示意图及一维点阵如下:m +O H 2O H 2(2分)(1 分)(1 分)(1 分)(1 分)(2分)4-4 Na 的配位数为4, B 原子采取SP3杂化(2分)H O2[F e O H(H]) 2 +=(H2O)4 F e F e( H 2 O )4+ 2 H O(12分)2O5OHH 2 O H H 2 O H 2OH H 2 OH 2 O O.....OF e F e F e F eH 2 O O.....OH 2 O H 2OH 2 OH 2 O H H3-3Al 2O3+6HCl+9H 2O=2[Al(H 2O)6]Cl 3 [Al(H2O)6]Cl 3= [Al(OH) 2(H2O)4]Cl+2HCl[Al(OH) 2(H2 O)4]Cl+NH 3 H·2O=Al(OH) 3+NH 4Cl+4H 2O (nm-4m)Al(OH) 3+(6m-nm)[Al(OH) 2(H 2O)4]Cl=[Al 2(OH) n Cl 6-n] m+(24m-4nm)H2O 3-4第 4 题(22 分)4-1n NaBH 4 +4n CH 3CH2OH =[NaB(OC 2H5 )4] n +4n H 2↑(分子式错误,方程式未配平不得分;未写n 不扣分)4-2 A 属于混合晶体4-3[NaB(OC 2H 5)4]n 的一维结构示意图及一维点阵如下:m +O H 2O H 2(2分)(1 分)(1 分)(1 分)(1 分)(2分)4-4 Na 的配位数为4, B 原子采取SP3杂化(2分)。

18~22届华杯赛【小高组】决赛试题打印版

18~22届华杯赛【小高组】决赛试题打印版

18~22届华杯赛决赛试题【小高组】目录计算篇 (1)计数篇 (6)几何篇 (16)数论篇 (30)应用题 (40)行程篇 (46)组合篇 (50)第一部分:计算篇1、【第18届华杯赛决赛B A 、卷第1题】 计算:______5.1281281125.019=-⨯+⨯.2、【第18届华杯赛决赛C 卷第1题】计算:______2785111111131322=÷⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+÷⎪⎭⎫ ⎝⎛-⨯.3、【第19届华杯赛决赛D B A 、、卷第5题】 如果54□711○<<成立,则“○”与“□”中可以填入的非零自然数之和最大为______.4、【第19届华杯赛决赛C 卷第1题】 计算:______5213.23.0241225.095.22.3=-⨯++⨯-.5、【第20届华杯赛决赛B 卷第1题】 计算:______2110804.1451848.28586.57=+⨯-⨯+⨯.6、【第20届华杯赛决赛C 卷第1题】 计算:______528.11.03.0441225.175.01=-+⨯++-.7、【第20届华杯赛决赛D 卷第1题】 计算:______8.0195105375.119484=⨯+⨯.8、【第21届华杯赛决赛A 卷第1题】计算:______107143214.2317=÷⎪⎭⎫ ⎝⎛⨯+-.9、【第21届华杯赛决赛B 卷第1题】计算:_____4.213453611753971=-÷⨯⎪⎪⎪⎪⎭⎫ ⎝⎛-.10、【第21届华杯赛决赛B 卷第8题】现有算式:甲数□乙数○1,其中□,○是符号+,-,×,÷中的某两个.李雷对四组甲数、乙数进行了计算,结果见右表,那么,A ○B =______.11、【第21届华杯赛决赛B 卷第9题】 计算:201620152016201420152014201635343201624232201613121+⎪⎭⎫ ⎝⎛++⋅⋅⋅+⎪⎭⎫ ⎝⎛+⋅⋅⋅+++⎪⎭⎫ ⎝⎛+⋅⋅⋅+++⎪⎭⎫ ⎝⎛+⋅⋅⋅++12、【第21届华杯赛决赛C 卷第1题】计算:______525125.022143225.0412=-⨯+-+.13、【第21届华杯赛决赛C 卷第3题】 大于20161且小于20151的真分数有______个.14、【第22届华杯赛决赛A 卷第1题】用][x 表示不超过x 的最大整数,例如3]14.3[=,则⎥⎦⎤⎢⎣⎡⨯+⎥⎦⎤⎢⎣⎡⨯+⎥⎦⎤⎢⎣⎡⨯+⎥⎦⎤⎢⎣⎡⨯+⎥⎦⎤⎢⎣⎡⨯+⎥⎦⎤⎢⎣⎡⨯118201711720171162017115201711420171132017的值为_____.15、【第22届华杯赛决赛A 卷第2题】从4个整数中任意选出3个,求出它们的平均值,然后再求这个平均值和余下1个数的和,这样可以得到4个数:8,12,3210和319,则原来给定的4个整数的和为______.16、【第22届华杯赛决赛B 卷第1题】______2017120161201512017120151514131513131211311=⨯⨯-+⋅⋅⋅+⨯⨯-+⨯⨯-.第二部分:计数篇1、【第18届华杯赛决赛B A 、卷第13题】用八个右图所示的2×1的小长方形可以拼成一个4×4的正方形.若一个拼成的正方形图形经过旋转与另一个拼成的正方形图形相同,则认为两个拼成的正方形相同.问:在所有可能拼成的正方形图形中,上下对称、第一行有两个空白小方格且空白小方格相邻的图形有多少种?2、【第18届华杯赛决赛B 卷第9题】 右图中,不含“*”的长方形有多少个?3、【第18届华杯赛决赛C 卷第3题】 最简单分数b a 满足4151<<b a ,且b 不超过19,那么b a +的最大可能值与最小可能值之积为______.4、【第18届华杯赛决赛C 卷第12题】一次数学竞赛中,参赛各队每题的得分只有0分,3分和5分三种可能.比赛结束时,有三个队的总得分之和为32分.若任何一个队的总得分都可能达到32分,那么这三个队的总得分共有多少种不同的情况?5、【第18届华杯赛决赛C 卷第14题】用八个右图所示的1×2的小长方形可以拼成一个4×4的正方形.若一个拼成的正方形图形经过旋转与另一个拼成的正方形图形相同,则认为两个拼成的正方形相同.问:有几种拼成的正方形图形仅以一条对角线为对称轴?6、【第19届华杯赛决赛D B A 、、卷第3题】从1~8这八个自然数中任取三个数,其中没有连续自然数的取法有______种.7、【第19届华杯赛决赛A 卷第9题】把n 个相同的正方形纸片无重叠地放置在桌面上,拼成至少两层的多层长方形(含正方形)组成的图形,并且每一个上层正方形纸片要有两个顶点各自在某个下层的正方形纸片一边的中点上.下图给出了6=n 时所有的不同放置方法,那么9=n 时有多少种不同放置方法?8、【第19届华杯赛决赛D B 、卷第9题】把n 个相同的正方形纸片无重叠地放置在桌面上,拼成至少两层的多层长方形(含正方形)组成的图形,并且每一个上层正方形纸片要有两个顶点各自在某个下层的正方形纸片一边的中点上.下图给出了6=n 时所有的不同放置方法,那么8=n 时有多少种不同放置方法?9、【第19届华杯赛决赛C卷第7题】1的小正方块堆成一立体,其俯视图如右图所示,问共有用八块棱长为cm种不同的堆法(经旋转能重合的算一种堆法).10、【第19届华杯赛决赛C卷第11题】a、和c.现有5块上面有一颗星、两颗星和三颗星的积木分别见下图的b一颗星,2块两颗星和1块三颗星的积木,如果用若干个这些积木组成一个五颗星的长条,那么一共有多少种不同的摆放方式?(下图d是其中一种摆放方式).(a)(b)(c)(d)11、【第20届华杯赛决赛B卷第5题】贝塔星球有7个国家,每个国家恰有四个友国和两个敌国,没有三个国家两两都是敌国,对于一种这样的星球局势,共可以组成______个两两都是友国的三国联盟.12、【第20届华杯赛决赛B卷第12题】两人进行乒乓球比赛,三局两胜制,每局比赛中,先得11分且对方少于10分者胜,10平后,多得两分者胜,两人的得分总和都是31分,一人赢了第一局且赢得比赛,那么第二局的比分共有多少种可能?13、【第20届华杯赛决赛C卷第2题】将自然数1至8分成两组,使两组的自然数各自之和的差等于16,共有______种不同的分法.14、【第20届华杯赛决赛C卷第5题】如图,3×4的长方形网格纸片,长方形纸片正面是灰色,反面是红色,网格是相同的小正方形,沿网格线将长方形裁剪为两个形状相同的卡片,如果形状和正反面颜色相同,则视为相同类型的卡片,则能裁剪出______种不同类型的卡片.15、【第20届华杯赛决赛D 卷第7题】一次数学竞赛有C B A 、、三题,参赛的39个人中,每人至少答对了一道题,在答对A 的人中,只答对A 的比还答对其他题目的多5人,在没答对A 的人中,答对B 的是答对C 的2倍;又知道只答对A 的等于只答对B 的 与只答对C 的人数之和,那么答对A 的最多有______人.16、【第20届华杯赛决赛D 卷第8题】甲,乙两人进行乒乓球比赛,三局两胜制,每局比赛中,先得11分且对方少于10分者胜,10平后,多得两分者胜,两人的得分总和都是30分,在不计比分先后顺序时,三局的比分共有______种情况.17、【第21届华杯赛决赛A 卷第4题】在9×9的格子纸上,1×1小方格的顶点叫做格点.如右图,三角形ABC 的三个顶点都是格点.若一个格点P 使得三角形PAB 与三角形PAC 的面积相等,就称P 点为“好点”.那么在这张格子纸上共有______个“好点”.18、【第21届华杯赛决赛A 卷第5题】对于任意一个三位数n ,用 表示删掉n 中为0的数位得到的数,例如 102=n 时, 12=那么满足 n <,且 是n 的约数的三位数n 有 ______个.19、【第21届华杯赛决赛A 卷第9题】复活赛上,甲乙二人根据投票结果决出最后一个参加决赛的名额.投票人数 固定,每票必须投给甲乙二人之一.最后,乙的得票数为甲的得票数的2120,甲胜出.但是,若乙得票数至少增加4票,则可胜甲.请计算甲乙所得的票数.20、【第21届华杯赛决赛A 卷第13题】如右图,有一张由四个1×1的小方格组成的凸字形纸片和一张5×6的方格纸.现将凸字形纸片粘到方格纸上,要求凸字形纸片的每个小方格都要与方格纸的某个小方格重合,那么可以粘出多少种不同的图形?(两图形经旋转后相同看作相同图形)21、【第21届华杯赛决赛C 卷第11题】如图,是一个等边三角形,等分为4个小的等边三角形,用红和黄两种颜色涂染它们的顶点,要求每个顶点必须涂色,且只能涂一种颜色.涂完后,如果经过旋转,等边三角形的涂色相同,则认为是相同的涂色,则共有多少种不同的涂法?22、【第22届华杯赛决赛B A 、卷第3题】在3×3的网格中(每个格子是个1×1的正方形)放两枚相同的棋子,每个格子最多放一枚棋子,共有______种不同的摆放方法.(如果两种放法能够由旋转而重合,则把它们视为同一种摆放方法).23、【第22届华杯赛决赛A 卷第5题】某校开设了书法和朗诵两个兴趣小组,已知两个小组都参加的人数是只参加书法小组人数的72,是只参加朗诵小组人数的51,那么书法小组与朗诵小组的人数比是______.24、【第22届华杯赛决赛B A 、卷第8题】如右图,六边形的六个顶点分别标志为F E D C B A 、、、、、.开始的时候“华罗庚金杯赛”六个汉字分别位于F E D C B A 、、、、、顶点处.将六个汉字在顶点处任意摆放,最终结果是每个顶点处仍各有一个汉字,每个字在开始位置的相邻顶点处,则不同的摆放方法共有______种.25、【第22届华杯赛决赛A 卷第10题】某校给学生提供苹果、香蕉和梨三种水果,用作课间加餐.每名学生至少选择一种,也可以多选.统计结果显示:70%的学生选择苹果,40%的学生选了香蕉,30%的学生选了梨.那么三种水果都选的学生数占学生总数至多是百分之几.26、【第22届华杯赛决赛B 卷第4题】小于1000的自然数中,有______个数的数字组成中最多有两个不同的数字.27、【第22届华杯赛决赛B卷第7题】一个两位数,其数字和是它的约数,数字差(较大数减去较小数)也是它的约数,这样的两位数的个数共有______个.28、【第22届华杯赛决赛B卷第11题】从1001,1002,1003,1004,1005,1006,1007,1008,1009中任意选出四个数,使它们的和为偶数,则共有多少种不同的选法.第三部分:几何篇1、【第18届华杯赛决赛A卷第4题】如右图,在边长为12厘米的正方形ABCD中,以AB为底边作腰长为10厘米的等腰三角形PAB.则三角形PAC的面积等于______平方厘米.2、【第18届华杯赛决赛A卷第4题、B卷第6题】两个大小不同的正方体积木粘在一起,构成右图所示的立体图形,其中,小积木的粘贴面的四个顶点分别是大积木的粘贴面各边的一个三等分点.如果大积木的棱长为3,则这个立体图形的表面积为______.3、【第18届华杯赛决赛A卷第8题,B卷第12题】由四个完全相同的正方体堆积成如右图所示的立体,则立体的表面上(包括底面)所有黑点的总数至少是______.4、【第18届华杯赛决赛B 卷第4题】如图所示,Q P 、分别是正方形ABCD 的边AD 和对角线AC 上的点,且4:1:=PD AP ,2:3:=QC AQ ,如果正方形ABCD 的面积为25,那么三角形PBQ 的面积是______.5、【第18届华杯赛决赛B 卷第10题】如右图,三角形ABC 中,BD AD 2=,EC AD =,18=BC ,三角形AFC 的面积和四边形DBEF 的面积相等,那么AB 的长度是多少?6、【第18届华杯赛决赛C 卷第4题】如图所示,Q P 、分别是正方形ABCD 的边AD 和对角线AC 上的点,且3:1:=PD AP ,1:4:=QC AQ ,如果正方形ABCD 的面积为100,那么三角形PBQ 的面积是______.7、【第18届华杯赛决赛C卷第6题】两个较小的正方体积木分别粘在一个大正方体积木的两个面上,构成右图所示的立体图形,其中,每个小积木粘贴面的四个顶点分别是大积木粘贴面各边的一个五等分点.如果三个积木的棱长互不相同且最大的棱长为5,那么这个立体图形的表面积是______.8、【第18届华杯赛决赛C卷第8题】由四个完全相同的正方体堆积成如右图所示的立体,则立体的表面上(包括底面)所有黑点的总数至少是______.9、【第18届华杯赛决赛C卷第9题】右图中,大正方形的周长比小正方形的周长多80厘米,阴影部分的面积为880平方厘米.那么,大正方形的面积是多少平方厘米?10、【第18届华杯赛决赛C 卷第13题】在等腰直角三角形ABC 中,90=∠A 度,1==AC AB ,矩形EHGF 在三 角形ABC 内,且H G 、在边BC 上.求矩形EHGF 的最大面积.11、【第19届华杯赛决赛D B A 、、卷第1题】如右图,边长为12米的正方形池塘的周围是草地,池塘边D C B A 、、、处各有一根木桩,且3===CD BC AB 米.现用长4米的绳子将一头羊拴在其中的某根木桩上.为了使羊在草地上活动区域的面积最大,应将绳子拴在______处的木桩.12、【第19届华杯赛决赛A 卷第4题】如右图所示,网格中每个小正方格的面积都为1平方厘米.小明在网格纸上 画了一匹红鬃烈马的剪影(马的轮廓由小线段组成,小线段的端点在格子点上或在格线上),则这个剪影的面积为______平方厘米.13、【第19届华杯赛决赛A 卷第8题】平面上的五个点E D C B A 、、、、满足:8=AB 厘米,4=BC 厘米, 5=AD 厘米,1=DE 厘米,12=AC 厘米,6=AE 厘米.如果三角形EAB 的面积为24平方厘米,则点A 到CD 的距离等于______厘米.14、【第19届华杯赛决赛A 卷第12题】如右图,在三角形ABC 中,D 为BC 的中点,BF AF 2=,AE CE 3=.连接CF 交DE 于P 点,求DPEP 的值.15、【第19届华杯赛决赛D B 、卷第4题】如右图所示,网格中每个小正方格的面积都为1平方厘米.小明在网格纸上画了一匹红鬃烈马的剪影(马的轮廓由小线段组成,小线段的端点在格子点上或在格线上),则这个剪影的面积为______平方厘米.16、【第19届华杯赛决赛B 卷第8题】平面上的五个点E D C B A 、、、、满足:16=AB 厘米,8=BC 厘米, 10=AD 厘米,2=DE 厘米,24=AC 厘米,12=AE 厘米.如果三角形EAB 的面积为96平方厘米,则点A 到CD 的距离等于______厘米.17、【第19届华杯赛决赛D B 、卷第12题】如右图,在三角形ABC 中,BF AF 2=,AE CE 3=,BD CD 2=.连接CF 交DE 于P 点,求DPEP 的值.18、【第19届华杯赛决赛C 卷第3题】如右图,在直角三角形ABC 中,点F 在AB 上且BF AF 2=,四边形EBCD 是平行四边形,那么EF FD :为______.19、【第19届华杯赛决赛C 卷第4题】右图是由若干块长12厘米、宽4厘米、高2厘米的积木搭成的立体的正视图,上面标出了若干个点.一只蚂蚁从立体的左侧地面经过所标出的点爬到右侧的地面.如果蚂蚁向上爬行的速度为每秒2厘米,向下爬行的速度为每秒3厘米,水平爬行的速度为每秒4厘米,则蚂蚁至少爬行了______秒.20、【第19届华杯赛决赛C 卷第8题】如右图,在三角形ABC 中,BF AF 2=,AE CE 3=,BD CD 4=.连接CF 交DE 于P 点,求DPEP 的值.21、【第19届华杯赛决赛D 卷第8题】长为4的线段AB 上有一动点C ,等腰三角形ACD 和等腰三角形BEC 在过AB 的直线同侧,DC AD =,EB CE =,则线段DE 的长度最小为______.22、【第20届华杯赛决赛B 卷第7题】如图,三角形ABC 的面积为1,3:1:=OB DO ,5:4:=OA EO ,则三角 形DOE 的面积为______.23、【第20届华杯赛决赛B 卷第10题,D 卷第6题】如图,从长、宽、高为15,5,4的长方体中切割走一块长、宽、高为y , 5,x 的长方体(y x 、为整数),余下部分的体积为120,求x 和y 的值.24、【第20届华杯赛决赛B 卷第13题】如图,点M 是平行四边形ABCD 的边CD 上的一点,且2:1:=MC DM ,四边形EBFC 为平行四边形,FM 与BC 交于点G ,若三角形FCG 的面积与三角形MED 的面积之差为13平方厘米,求平行四边形ABCD 的面积?25、【第20届华杯赛决赛C卷第4题】如图,四边形ABCD是边长为11厘米的正方形,G在CD上,四边形CEFG是直角,三角形EDH的是边长为9厘米的正方形,H在AB上,EDH面积是______.26、【第20届华杯赛决赛C卷第6题】一个长方体,棱长都是整数厘米,所有棱长之和是88厘米,问这个长方体总的侧面积最大是______平方厘米.27、【第20届华杯赛决赛C卷第13题】如图,ABCD是平行四边形,F在AD上,三角形AEF的面积是8平方厘米,三角形DEF的面积是12平方厘米,四边形BCDF的面积是72平方厘米,求三角形CDE的面积?28、【第20届华杯赛决赛D 卷第2题】如图,用六个正方形,六个三角形,一个正六边形组成的图案,正方形边 长都是cm 2,这个图案的周长是______.29、【第20届华杯赛决赛D 卷第11题】如图,长方形ABCD 的面积为2m 56,cm 3=BE ,cm 2=DF ,求:三角形AEF 的面积是多少?30、【第20届华杯赛决赛D 卷第13题】如图,ABCD 是平行四边形,MB AM =,CN DN =,FC EF BE ==四边形EFGH 的面积是1,求平行四边形ABCD 的面积.31、【第21届华杯赛决赛A 卷第3题】右图中,5=AB 厘米,85=∠ABC °,45=∠BCA °,20=∠DBC °, 则______=AD 厘米.32、【第21届华杯赛决赛A 卷第10题】如右图,三角形ABC 中,180=AB 厘米,204=AC 厘米,F D 、是AB 上的点,G E 、是AC 上的点,连结FG EF DE CD 、、、,将三角形ABC 分 成面积相等的五个小三角形.则AG AF +为多少厘米?33、【第21届华杯赛决赛B 卷第2题】如右图,30个棱长为1的正方体粘成一个四层的立体,这个立体的表面积等于______.34、【第21届华杯赛决赛B 卷第4题】如右图所示,将一个三角形纸片ABC 折叠,使得点C 落在三角形ABC 所在平面上,折痕为DE .已知74=∠ABE °,70=∠DAB °,20=∠CEB °,那么CDA ∠等于______.35、【第21届华杯赛决赛B 卷第1题】如右图,正方形ABCD 的边长为5,F E 、为正方形外两点,满足4==CF AE ,3==DF BE ,那么______2=EF .36、【第21届华杯赛决赛B 卷第11题】如右图,等腰直角三角形ABC 与等腰直角三角形DEF 之间的面积为20,2=BD ,4=EC ,求三角形ABC 的面积.37、【第21届华杯赛决赛B 卷第13题】如右图,正方形ABCD 的面积为1,M 是CD 边的中点,F E 、是BC 边上的两点,且FC EF BE ==.连接DF AE 、分别交BM 分别于G H 、.求四边形EFGH 的面积.38、【第21届华杯赛决赛卷第5题】如图,AD AB =,21=∠DBC °,39=∠ACB °,则______=∠ABC .39、【第21届华杯赛决赛C 卷第1题】如图,ABCD 是直角梯形,上底2=AD ,下底6=BC ,E 是DC 上一点,三角形ABE 的面积是15.6,三角形AED 的面积是4.8,则梯形ABCD 的面积是______.40、【第22届华杯赛决赛A 卷第6题、B 卷第5题】右图中,三角形ABC 的面积为100平方厘米,三角形ABD 的面积为72平方厘米.M 为CD 边的中点,90=∠MHB °.已知20=AB 厘米.则MH 的长度为______厘米.【几何天地】求阴影面积是正方形面积的几分之几?第四部分:数论篇1、【第18届华杯赛决赛B A 、卷第3题】 某些整数分别被119977553,,,除后,所得的商化作带分数时,分数部分分别是92725232,,,,则满足条件且大于1的最小整数是______.2、【第18届华杯赛决赛A 卷第3题】有一筐苹果,甲班分,每人3个还剩11个;乙班分,每人4个还剩10个;丙班分,每人5个还剩12个.那么这筐苹果至少有______个.3、【第18届华杯赛决赛A 卷第7题】设n 是小于50的自然数,那么使得54+n 和67+n 有大于1的公约数的所有n 的可能值之和为______.4、【第18届华杯赛决赛A 卷第14题】不为零的自然数n 既是2010个数字和相同的自然数之和,也是2012个数 字和相同的自然数之和,还是2013个数字和相同的自然数之和,那么n 最 小是多少?5、【第18届华杯赛决赛B卷第5题】有一箱苹果,甲班分,每人3个还剩10个;乙班分,每人4个还剩11个;丙班分,每人5个还剩12个.那么这箱苹果至少有______个.6、【第18届华杯赛决赛B卷第8题】用“学”和“习”代表两个不同的数字,四位数“学学学学”与“习习习习”的积是一个七位数,且它的个位和百万位数字与“学”所代表的数字相同,那么“学习”所能代表的两位数共有______个.7、【第18届华杯赛决赛B卷第14题】对于155个装有红、黄、蓝三种颜色球的盒子,有三种分类方法:对于每种颜色,将该颜色的球数目相同的盒子归为一类.若从1到30之间所有的自然数都是某种分类中一类的盒子数.1)求三种分类的类数之和?2)说明,可以找到三个盒子,其中至少有两种颜色的球,它们的数目分别相同.8、【第18届华杯赛决赛C卷第5题】四位数abcd与cdab的和为3333,差为693,那么四位数abcd为______.9、【第18届华杯赛决赛C 卷第7题】设c b a 、、分别是0~9中的数字,它们不同时都为0也不同时都为9.将循环小数⋅⋅⋅c b a .0化成最简分数后,分子有______不同情况.10、【第18届华杯赛决赛C 卷第11题】设n 是小于50的自然数,求使得53+n 和45+n 有大于1的公约数的所有n .11、【第19届华杯赛决赛A 卷第2题】在所有是20的倍数的正整数中,不超过2014并且是14的倍数的数之和是______.12、【第19届华杯赛决赛A 卷第13题】从连续自然数1,2,3,…,2014中取出n 个数,使这n 个数满足:任意取其中两个数,不会有一个数是另一个数的5倍.求n 的最大值,并说明理由.13、【第19届华杯赛决赛D B 、卷第2题】在所有是20的倍数的正整数中,不超过3000并且是14的倍数的数之和是______.14、【第19届华杯赛决赛D B 、卷第14题】从连续自然数1,2,3,…,2014中取出n 个数,使这n 个数满足:任意取其中两个数,不会有一个数是另一个数的7倍.求n 的最大值,并说明理由.15、【第19届华杯赛决赛C 卷第5题】设e d c b a 、、、、均是自然数,并且e d c b a <<<<,3005432=++++e d c b a ,则b a +的最大值为______.16、【第19届华杯赛决赛C 卷第10题】 把20142013201420122014220141,,,,⋅⋅⋅中的每个分数都化成最简分数,最后得到的以2014为分母的所有分数的和是多少?17、【第19届华杯赛决赛B 卷第12题】某自然数减去39是一个完全平方数,减去144也是一个完全平方数,求此自然数.18、【第19届华杯赛决赛B 卷第14题】 将每个最简分数m n (其中n m 、为互质的非零自然数)染成红色或蓝色,染色规则如下:1)将1染成红色;2)相差为1的两个数颜色不同;3)不为1的数与其倒数颜色不同.问:20142013和72分别染成什么颜色?19、【第20届华杯赛决赛B 卷第4题】某个三位数是2的倍数,加1是3的倍数,加2是4的倍数,加3是5的倍数,加4是6的倍数,那么这个数最小是______.20、【第20届华杯赛决赛B卷第6题】由四个互不相同的非零数字组成的没有重复数字的所有四位数之和为106656,则这些四位数中最大的是______,最小的是______.21、【第20届华杯赛决赛B卷第8题】三个大于1000的正整数满足:其中任意两个数之和的个位数字都等于第三个数的个位数字,那么3个数之积的末尾3位数有______种可能数值.22、【第20届华杯赛决赛B卷第9题】将1234567891011的某两位的数字交换能否得到一个完全平方数?请说明理由.23、【第20届华杯赛决赛B卷第14题】设“一家之言”,“言扬行举”,“举世皆知”,“知行合一”四个成语中的每个汉字代表11个连续的非零自然数中的一个,相同的汉字代表相同的数,不同的汉字代表不同的数,如果每个成语中四个汉字所代表的数之和都是21,则“行”可以代表的数最大是多少?24、【第20届华杯赛决赛C 卷第7题】5321-=⎥⎦⎤⎢⎣⎡-x x ,这里的[]x 表示不超过x 的最大整数,则______=x .25、【第20届华杯赛决赛C 卷第10题】将2015个分数2016120151413121,,,,,⋅⋅⋅化成小数,共有多少个有限小数?26、【第20届华杯赛决赛C 卷第11题】 b a 、为正整数,小数点后三位经四舍五入后,式子51.175≈+b a ,求 =+b a27、【第20届华杯赛决赛C 卷第12题】 已知原式e aad abcd ⨯=,式中不同字母代表不同的数字,问四位数abcd 的最大值是多少?28、【第20届华杯赛决赛D 卷第5题】由四个非零数字组成的没有重复数字的所有四位数的和为73326,则这些四位数中最大的是______.29、【第20届华杯赛决赛D 卷第9题】两个自然数之和为667,它的最小公倍数除以最大公约数所得的商等于120,求这两个数?30、【第20届华杯赛决赛D 卷第12题】当n 取遍1,2,3,…,2015中的所有的数时,形如33n n 的数中能够被7整除的有多少个?31、【第20届华杯赛决赛D 卷第14题】“虚有其表”,“表里如一”,“一见如故”,“故弄玄虚”四个成语中每个汉字代表11个非零连续自然数中的一个,相同的汉字代表相同的数,不同的汉字代表不同的数,且“表”>“一”>“故”>“如”>“虚”,且 各个成语中四个汉字所代表的数的和都是21,则“弄”可以代表的数最大 是多少?32、【第21届华杯赛决赛B A 、卷第7题】如果832⨯能表示成k 个连续正整数的和,则k 的最大值为______.33、【第21届华杯赛决赛A 卷第14题】设n 是正整数.若从任意n 个非负整数中一定能找到四个不同的数d c b a 、、、使得d c b a --+能被20整除,则n 的最小值是多少?34、【第21届华杯赛决赛B 卷第12题】试找出这样的最大的五位正整数,它不是11的倍数,通过划去它的若干数字也不能得到可被11整除的数.35、【第21届华杯赛决赛C 卷第7题】n 为正整数,形式为12-n 的质数称为梅森数,例如:712,31232=-=-是梅森数.最近,美国学者刷新了最大梅森数,74207281=n ,这个梅森数也是目前已知的最大的质数,它的个位数字是______.36、【第22届华杯赛决赛B A 、卷第12题】 使1523++n n 不为最简分数的三位数n 之和等于多少.37、【第22届华杯赛决赛B 卷第10题】求能被7整除且各位数字均为奇数,各位数字和为2017的最大正整数.第五部分:应用题篇1、【第18届华杯赛决赛A卷第10题】小明与小华同在小六(1)班,该班学生人数介于20和30之间,且每个人的出生日期均不相同.小明说:“本班比我大的人数是比我小的人数的两倍”,小华说:“本班比我大的人数是比我小的人数的三倍”问这个班的有多少名学生?2、【第18届华杯赛决赛B卷第11题】若干人完成了植树2013棵的任务,每人植树的棵数相同.如果有5人不参加植树,其余的人每人多植2棵不能完成任务,而每人多植3棵可以超额完成任务.问:共有多少人参加了植树?3、【第18届华杯赛决赛C卷第10题】某高中根据入学考试成绩确定了录取分数线,录取了四分之一的考生.所有被录取者的成绩平均分比录取分数线高10分,所有没有被录取的平均分比录取分数线低26分,所有考生的平均成绩是70分.求录取分数线是多少?4、【第19届华杯赛决赛A卷第7题】学校组织1511人去郊游,租用42座大巴和25座中巴两种汽车.如果要求恰好每人一座且每座一人,则有______种租车方案.5、【第19届华杯赛决赛A卷第10题】有一杯子装满了浓度为16%的盐水.有大、中、小铁球各一个,它们的体积比为10:4:3.首先将小球沉入盐水杯中,结果盐水溢出10%,取出小球;其次把中球沉入盐水杯中,又将它取出;接着将大球沉入盐水杯中后取出;最后在杯中倒入纯水至杯满为止.此时杯中盐水的浓度是多少?(保留一位小数)B、卷第7题】6、【第19届华杯赛决赛D学校组织482人去郊游,租用42座大巴和20座中巴两种汽车.如果要求每人一座且每座一人,则有______种租车方案.。

2020年第20届全国高中学生化学知识竞赛(决赛)理论试题及答案

2020年第20届全国高中学生化学知识竞赛(决赛)理论试题及答案

2020年第20届全国高中学生化学知识竞赛(决赛)理论试题及答案● 本竞赛试题共8题,总分120分,竞赛时间4小时。

迟到超过30分钟者不得进入考场,考试开始后1小时内不得离开考场。

解答完毕,将试卷和答卷及草稿纸折好,背面朝上放于桌面,撤离考场。

● 试卷和答卷已分别装订成册,不得拆散,所有解答必须写在答卷的指定位置,写于其他位置无效.● 选手营号写在答卷每页左边指定位置,不得写所属地区,学校名称和姓名,否则按废卷论。

● 使用黑色墨水钢笔或圆珠笔答题,不得使用铅笔(包括作图)。

使用提供的草稿纸.不得携带任何其他纸张进入考场。

● 允许使用非编程计算器及直尺,橡皮、涂改液等文具,不得将文具盒以及手机、小灵通、BP机等通讯工具带入考场,一经发现将严肃处理。

原予量:H 1.008 B 10.81 C 2.01 N 14.01 O 16.00第1题(14分)钛及其合金具有密度小、强度高、耐腐蚀等优良性能,被广泛用于航天、航空、航海、石油、化工、医药等部门。

我国四川省有大型钒钛磁铁矿。

从由钒钛磁铁矿经“选矿”得到的钛铁矿提取金属钛(海绵钛)的主要工艺过程如下:钛铁矿还原熔炼生铁高钛渣氯化、精制焦炭氯气还原镁海面钛TiCl4碳l-1 钛铁矿的主要成分为FeTiO3。

控制电炉熔炼温度(<1500K),用碳还原出铁,而钛则进入炉渣浮于熔融铁之上,使钛与铁分离,钛被富集。

已知:FeTiO3C TiO2TiCFe COFeTiO3 FeTiO3+=++++++CC43==Fe CO3Ti++Fe3CO①②③G mrJ.mol-1===G mrJ.mol-1G mrJ.mol-1190900-161T750000--500T913800519T通过计算判断在电炉熔炼中主要发生以上哪个反应? (3分)1-2 写出在1073—1273K下氯化反应的化学方程式。

(1分)1-3 氯化得到的TiCl4中含有的VOCl3必须用高效精馏的方法除去,为什么? 实际生产中常在409 K下用Cu还原VOCl3,反应物的摩尔比为1:l,生成氯化亚铜和难溶于TiCl4的还原物,写出还原反应方程式。

《小学数学报》第2020届数学竞赛决赛试题及答案

《小学数学报》第2020届数学竞赛决赛试题及答案

第六届数学竞赛决赛试题及答案(满分120分)一、计算题(能用简便方法计算的,要用简便算法。

每题4分,共12分。

)2. 77×13+255×999+510二、填空题(1~9题每空 4分,10~12题每空 3分,共 54分。

)1.a=8.8+8.98+8.998+8.9998+8.99998,a的整数部分是____。

2.xx的约数共有____。

3.等式“学学×好好+数学=xx”,表示两个两位数的乘积,再加上一个两位数,所得的和是xx。

式中的“学、好、数”3个汉字各代表3个不同数字,其中“数”代表____。

4.如图1,“好、伙、伴、助、手、参、谋”这7个汉字代表1~7这7个数字。

已知3条直线上的3个数相加、2个圆圈上3个数相加所得的5个和都相等。

图中间的“好”代表____。

5.农民叔叔阿根想用20块长2米、宽1.2米的金属网建一个靠墙的长方形鸡窝(如图2)。

为了防止鸡飞出,所建鸡窝高度不得低于2米。

要使所建的鸡窝面积最大,BC的长应是米。

7.小胡和小涂计算甲、乙两个两位数的乘积,小胡看错了甲数的个位数字,计算结果为1274;小涂看错了甲数的十位数字,计算结果为819。

甲数是____。

8.xx年“世界杯”足球赛中,甲、乙、丙、丁4支队分在同一小组。

在小组赛中,这4支队中的每支队都要与另3支队比赛一场。

根据规定:每场比赛获胜的队可得3分;失败的队得0分;如果双方踢平,两队各得1分。

已知:(1)这4支队三场比赛的总得分为4个连续奇数;(2)乙队总得分排在第一;(3)丁队恰有两场同对方踢平,其中有一场是与丙队踢平的。

根据以上条件可以推断:总得分排在第四的是____队。

9.一块空地上堆放了216块砖(如图3),这个砖堆有两面靠墙。

现在把这个砖堆的表面涂满石灰,被涂上石灰的砖共有____块。

10.南方某城市的一家企业有90%的员工是股民,80%的员工是“万元户”,60%的员工是打工仔。

2003年第20届全国中学生物理竞赛复赛试题及参考答案

2003年第20届全国中学生物理竞赛复赛试题及参考答案

第20届全国中学生物理竞赛复赛试题全卷共七题,总分140分。

一、(15分)图中a 为一固定放置的半径为R 的均匀带电球体,O 为其球心。

己知取无限远处的电势为零时,球表面处的电势为1000U V =。

在离球心O 很远的O '点附近有一质子b ,它以2000k E eV =的动能沿与O O '平行的方向射向a 。

以l 表示b 与O O '线之间的垂直距离,要使质子b 能够与带电球体a 的表面相碰,试求l 的最大值。

把质子换成电子,再求l 的最大值。

二、(15分)U 形管的两支管A 、B 和水平管C 都是由内径均匀的细玻璃管做成的,它们的内径与管长相比都可忽略不计。

己知三部分的截面积分别为221.010A S cm -=⨯、223.010B S cm -=⨯、222.010C S cm -=⨯,在C 管中有一段空气柱,两侧被水银封闭。

当温度为127t C =︒时,空气柱长为30l cm=(如图所示),C 中气柱两侧的水银柱长分别为 2.0a cm =, 3.0b cm =,A 、B 两支管都很长,其中的水银柱高均为12h cm =。

大气压强保持为076p cmHg =不变。

不考虑温度变化时管和水银的热膨胀。

试求气柱中空气温度缓慢升高到97t C =︒时空气的体积。

三、(20分)有人提出了一种不用火箭发射人造地球卫星的设想。

其设想如下:沿地球的一条弦挖一通道,如图所示。

在通道的两个出口处A和B,分别将质量为M的物体和质量为m的待发射卫星同时自由释放,只要M比m足够大,碰撞后,质量为m的物体,即待发射的卫星就会从通道口B冲出通道;设待发卫星上有一种装置,在待发卫星刚离开出口B时,立即把待发卫星的速度方向变为沿该处地球切线的方向,但不改变速度的大小。

这样待发卫星便有可能绕地心运动,成为一个人造卫星。

若人造卫星正好沿地球表面绕地心做圆周运动,则地心到该通道的距离为多少?己知20M m=,地球半径06400R km=。

2007年全国高中化学竞赛决赛(决赛)理论试题、参考答案、评分细则

2007年全国高中化学竞赛决赛(决赛)理论试题、参考答案、评分细则

加氢氧化钠溶液?
(2.5 分)
2-3 若膨润土中含 Fe2O3 时,白度就会受到影响,须进行漂白处理:在硫酸介质中用连
二亚硫酸钠作漂白剂进行漂白;加水漂洗后加入氨基三乙酸钠(Na3A),结合残留的亚铁离子,
以维持产品的白度。
(1) 写出漂白过程的离子反应方程式。
(2 分)
(2) 写出氨基三乙酸钠与亚铁离子结合生成的 2:1 型单核配合物的化学式及阴离子的结
(2 分)
(2)写出电解熔融 MgCl2的电极反应式和电解反应式。
(2 分)
(3)已知 1023K MgCl2(l) 的标准摩尔生成焓 ΔfHm为–596.32 kJ ⋅ mol −1 ,MgCl2(l) 、Mg(l)、
Cl2(g)的标准摩尔熵 Sm分别为 231.02、77.30、268.20 kJ ⋅ mol −1 。计算 MgCl2的理论分解电
氨水中和得到凝胶;将此凝胶溶于另一份溶液,pH 调高至 4,充分反应,即可制得 PAC。写
出制备过程的化学反应方程式。
中国化学会第 20 届全国高中学生化学竞赛(决赛)
理论试题
2007 年 1 月 17 日
● 本竞赛试题共 8 题,总分 120 分,竞赛时间 4 小时。迟到超过 30 分钟者不得进入考场,考 试开始后 1 小时内不得离开考场。解答完毕,将试卷和答卷及草稿纸折好,背面朝上放于桌
面,撤离考场。
● 试卷和答卷已分别装订成册,不得拆散,所有解答必须写在答卷的指定位置,写于其他 位置无效.
压。(3 分)
第 2 题(14 分)
自然界中许多金属和非金属形成的矿物微粒的粒度介于纳米-微米之间,并呈现出不同的晶
体形貌和特殊的物理化学性能,我国已发现多个储量丰富的大型天然纳米非金属矿床。

第十四讲 狭义相对论

第十四讲  狭义相对论

第十四讲 狭义相对论一、竞赛内容提要1、狭义相对论的两个基本假设 (1)相对性原理 所有惯性参照系都是等价的,物理规律对于所有惯性参照系都可以表示为相同形式。

无论通过什麽物理现象,都不能觉察出参照系的任何“绝对运动”。

(2)光速不变原理 真空中的光速相对于任何惯性系沿任一方向都为c ,并与光源运动无关。

若光速在所有惯性系中数值相同,那麽电磁学与光学定律在所有惯性系也都相同。

2、洛仑兹坐标变换 如图所示为两个对应轴互相平行的坐标系S 和S ′,S ′相对S 的速度为u ,方向沿x 轴正方向,从O 与O ′重合时开始计时,设(x,y,z,t )表示在t 时刻发生在S 系中(x,y,z )处的事件p ,而同一事件在S ′系中是在t ′时刻出现在(x ′,y ′,z ′)处,则表示同一事件的两坐标系中的时、空坐标之间的关系为:x ′=()21c u ut x --,y ′=y ,z ′=z ,t ′=()221c u c ux t --。

或x=()21c u t u x -'+',y=y ′,z=z ′,t=()221c u c x u t -'+'。

(不证)3、速度变换公式若在S ′系中有质点沿X ′、Y ′、Z ′正方向分别以速度v x ′、v y ′、v z ′匀速运动,则该质点对于S 系的速度v x ′=21cu v uv x x --,v y ′=2211c uv v x y --β,v z ′=2211c uv v x z --β。

其逆变换为:v x =21c uv uv x x '++',v y =2211c uv v x y '+-'β ,v z =2211cuv v x z '+-'β 。

其中,β=u/c 。

当速度u 、v 远小于c时,相对论的变换公式即转化为伽利略速度变换式。

v x ′=v x -u 。

利用速度变换公式,可证明光速在任何惯性系中都是c 。

2020年第二十届“无悔金杯”少年数学邀请赛决赛试卷(小高组b卷)

2020年第二十届“无悔金杯”少年数学邀请赛决赛试卷(小高组b卷)


棵.
3.(10 分)某个三位数是 2 的倍数,加 1 是 3 的倍数,加 2 是 4 的倍数,加 3 是 5 的倍数,
加 4 是 6 的倍数,那么这个数最小为

4.(10 分)贝塔星球有七个国家,每个国家恰有四个友国和两个敌国,没有三个国家两两
都是敌国,对于一种这样的星球局势,共可以组成
个两两都是友国的三国联盟.
11.(10 分)两人进行乒乓球比赛,三局两胜制,每局比赛中,先得 11 分且对方少于 10 分 者胜,10 平后多得 2 分者胜.两人的得分总和都是 31 分,一人赢了第一局并且赢得了比 赛,那么第二局的比分共有多少种可能?
三、解答下列各题(每小题 15 分,共 30 分,要求写出详细过程) 12.(15 分)如图所示,点 M 是平行四边形 ABCD 的边 CD 上的一点,且 DM:MC=1:2,
x 的长方体(x,y 为整数),余下部分的体积为 120,求 x 和 y.
第 1页(共 12页)
10.(10 分)圆形跑道上等距插着 2015 面旗子,甲与乙同时同向从某个旗子出发,当甲与 乙再次同时回到出发点时,甲跑了 23 圈,乙跑了 13 圈.不算起始点旗子位置,则甲正 好在旗子位置追上乙多少次?
第 2页(共 12页)
2015 年第二十届“华罗庚金杯”少年数学邀请赛决赛试 卷(小高组 B 卷)
参考答案与试题解析
一、填空题(每小题 10 分,共 80 分) 1.(10 分)计算:57.6× +28.8× ﹣14.4×80+10 .
【分析】把算式中的 28.8× 变成 57.6× ,14.4×80 变成 57.6×20,然后根据乘法 的分配律简算. 【解答】解:57.6× +28.8× ﹣14.4×80+10
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

20届决赛试题
一、5个质量相等的匀质球,其中4个半径均为a 的球,静止放在半径为R 的半球形碗内,它们的球心在同一水平面内.另1个半径为b 的球放在4球之上.设接触面都是光滑的,试求碗的半径R 的值满足什么条件时下面的球将相互分离.
二、一人造地球卫星绕地球做椭圆运动,地心是椭圆的一个焦点,在直角坐标系中,椭圆的轨迹方程为 22x a 22x a +22y b =1
A 、b 分别是椭圆的长半轴和短半轴,为已知常数.当该人造卫星在轨道的远地点时,突然以很大的能量沿卫星运行方向从卫星上发射出一个质量为m 的太空探测器,这探测器在地球引力作用下做双曲线运动,此双曲线的焦点位于地心,实
半轴的长度正好等于原来椭圆远地点到地心的距离.试问
在发射时,给探测器的能量为多大?设地球的质量m E 、万
有引力常量G 为已知,不计地球以外星体的影响.
三、如图决20-3所示,金属飞轮具有n 条辐条,每条辐条长l ,可绕转轴OO /旋转.飞轮处在匀强磁场中,磁场方向与转轴平行,磁感强度为B .转轴与飞轮边缘通过电刷与电阻R 、电感L 连成闭合回路.飞轮及转轴的电阻和转动过程的摩擦均不计.
1.现用一恒定的外力矩M 作用于飞轮,使它由静止开始转动,求当飞轮转动达到稳定时,转动角速度Ω。

和通过电阻R 的电流I O .
2.在飞轮转速达到稳定后,突然撤去外力矩M ,则飞轮的角速度Ω和通过电阻R 的电流I 都将随时间变化.当R 取不同值时,角速度随时间变化的图线Ω(t )和电流随时间变化的图线I (t )将不同.
现给出了Ω(t )图线各6条(附本题后),
各图中都把刚撤去外力矩M 的时刻作为起始时
刻,即t =0的时刻,此时刻的角速度Ω=Ω0,
电流I=I 0.角速度Ω各图的纵坐标单位相同,
电流I 各图的纵坐标单位相同,各图的时间轴
横坐标的单位均相同.试从这些图线中选出可能正确表示飞轮的角速度Ω随时间变化的图线Ω(t)以及与所选图线对应的最接近正确的电流I随时间变化的图线I(t)。

把你选出的图线Ω(t)与对应的I(t)图线在下面的图线符号之间用直的实线连接起来.
注意:只有全部连接正确的才能得全分,连对但不全的可得部分分,有连错的得零分.
四、如图决 20-4所示,y轴右边存在磁感强度为2 B。

的匀强磁场,y轴左边存
的匀强磁场,它们的方向皆垂直于纸面向里.在原点O处,一在磁感强度为B
个带正电的电量为q、质量为m的粒子a,在t=0时以大小为2v
的初速度沿x
轴方向运动.在粒子a开始运动后,另一质量和电荷量都与a
的初速度沿负X轴方向开始运
相同的粒子b从原点O以大小v
动.要想使a和b能在运动过程中相遇,试分析和计算它们出
发的时间差的最小值应为多大,并求出与此对应的相遇地点的
坐标.设整个磁场区域都处于真空中,且不考虑重力及a、b
两粒子之间相互作用力。

五、一位近视眼朋友不戴眼镜时,能看清的物体都在距眼睛a=20 cm以内.他发现,如果在眼前靠近眼睛处放一个有小圆孔的卡片,通过小圆孔不戴眼镜看远处的物体时也能看得清晰些。

1.若小圆孔直径为D,试根据几何光学原理求出当近视眼直视远处的一个点物时,眼的视网膜上产生的光斑的直径.
2.再考虑小圆孔的衍射效应,求小圆孔直径最恰当的大小.计算时可取可见光的平均波长为600 nrn.
【提示】
1.人眼是一个结构比较复杂的光学系统,在本题中,可
将人眼简化成一个焦距f可调的薄透镜和一个可成像的视网
膜,透镜的边缘为瞳孔,两侧介质均为空气,视网膜与透镜的
距离为b.
2.小圆孔的存在对透镜成像的影响介绍如下:在几何光学中,从远处物点射向透镜的、平行于光轴的平行光束将会聚于透镜的焦点上,这就是像.如果在透镜前放一直径为D的小圆孔,则将发生光的衍射,在焦点处像屏上将出现如图决20-5-1所示的衍射图样,其中央是一个明亮的圆斑,圆斑外周是一组亮度逐渐减弱的亮暗相间的同心圆环,由于这些圆环亮度比中央圆斑弱得多,观察时可以不予考虑.中央圆斑的半径对薄透镜中心的张角Δθ的大小与D有关.理论计算得至
Δθ=1.22
D
式中λ是所用光的波长,这圆斑就是有小圆孔时观察到的物点的“像”,如图决20-5-2所示.由上式可见,D越大,像斑就越小,点物的像就越接近一个点,物体的像越清晰;反之D越小,点物的衍射像斑就越大,物体的像就越不清晰.如果观察屏不在焦点处而在焦点附近,屏上将出现类似的衍射图样,其中央亮斑对透镜中心的张角Δθ可近似地用上式计算.
六、设地球是一个半径为6370km的球体.在赤道上空离地面1千多公里处
和赤道共面的圆与赤道形成的环形区域内,地磁场可看作是均匀的,其磁感强度为B=3.20×10-6 T。

某种带电宇宙射线粒子,其静质量为m。

= 6.68×10-27kg,其电荷量q=3.20×10-19C,在地球赤道上空的均匀地磁场中围绕地心做半径为 R=7 370 km的圆周运动.
已知在相对论中只要作用于粒子的力F的方向始终与粒子运动的速度v的方向垂直,则运动粒子的质量m和加速度a与力F的关系仍为F=ma,但式中的质量m为粒子的相对质量。

问:
1.该粒子的动能多大?
2.该粒子在圆形轨道上运动时与一个不带电的静质量为m
2 = 4m
的静止粒
子发生碰撞,并被其吸收形成一个复合粒子,试求复合粒子的静质量m
1。

相关文档
最新文档