三角形的重心 PPT
三角形的重心课件
三角形的重心课件关键信息项:1、课件的使用目的:____________________________2、课件的版权归属:____________________________3、课件的更新与维护责任:____________________________4、课件的适用范围:____________________________5、课件的使用期限:____________________________6、对课件内容的保密要求:____________________________7、违反协议的责任与处罚:____________________________11 协议的背景和目的本协议旨在规范关于三角形的重心课件的使用、传播、更新和维护等相关事宜,以确保该课件能够有效地服务于其预期的教育目的,并保障相关各方的合法权益。
111 三角形的重心课件的定义本协议中所提及的三角形的重心课件,是指一套专门用于讲解三角形重心相关知识的多媒体教学材料,包括但不限于演示文稿、动画、视频、练习题等。
12 协议的适用范围本协议适用于所有获得、使用或传播三角形的重心课件的个人和机构。
21 课件的使用目的该课件仅用于教育和学习目的,不得用于任何商业盈利活动。
使用者可以将其用于课堂教学、自主学习、辅导教学等与教育相关的活动。
211 禁止的使用方式使用者不得对课件进行修改、篡改、反编译或以其他方式破坏其完整性和功能性,不得将其用于非法、有害、淫秽或违背社会公德的目的。
22 课件的版权归属三角形的重心课件的版权归创作者所有,未经版权所有者的明确书面授权,任何人不得擅自复制、分发、传播或对其进行二次创作。
221 授权使用范围版权所有者授予使用者在一定范围内非独家的使用权利,但使用者必须遵守本协议的各项规定。
31 课件的更新与维护责任版权所有者有责任对课件进行必要的更新和维护,以确保其内容的准确性和时效性。
但在合理的范围内,使用者也有义务向版权所有者反馈发现的错误或需要改进的地方。
三角形的重心 ppt课件
3
3
3
重心与一边中点的连线的长
重心与一顶点的连线的长
对应中线长
三角形的重心
尝试练习
分析各部分的面积
分析各部分的长度 A
F
E
O
BD
C
三角形的重心
尝试练习
分析各部分的面积 分析各部分的长度 A
E O
BD
C
三角形的重心
求线段长 课堂检测
如图,在Rt△ABC中,∠A=30°,点 D是斜边AB的中点,当G是Rt△ABC的重 心,GE⊥AC于点E,若BC=6cm,则 GE= cm。
A
三角形的重心
B DG
EC
三角形的重心
今日作业 求面积
在△ABC中,中线AD、BE相交
于点O,若△BOD的面积等于5,求
△ABC的面积。
A
选作
E O
B D பைடு நூலகம்证:顺次连结矩形四边中点所得的三角四形的边重心形是菱形
C
§23.4.2 三角形的重心
三角形的重心
请同学们画出 一个三角形的三条中线
第1、2、3竖排画锐角三角形 第4、5竖排画直角三角形 第6、7、8竖排画钝角三角形
三角形的重心
导入 三条中线相交于几个点?
我们把这个点叫三角形的重心
三角形的重心
学习目 标 1.理解三角形的重心的含义
2.理解掌握三角形重心的性质
3.运用三角形重心的性质解决问题
三角形的重心
试一试
已知:△ABC中,D、E分别是边 BC、AB的中点,AD、CE相交于G。
GE GD1
CE 求AD 证3 :GE GD 1 CE AD 3
A E
G
B
《三角形的四心》课件
三角形的四心定理
三角形的四心定理是指三角形四心之 间的关系定理,它是几何学中的重要 定理之一。
三角形的重心、垂心和内心之间的关 系定理是GAI定理,即重心到顶点的 距离等于2倍的垂心到对边的距离。
三角形的内心和外心之间的距离等于 三角形半周长乘以tan(A/2)和 tan(B/2)的几何平均值,其中A和B是 三角形的两个内角。
内心到三角形三个角的距离相等,且等于内切圆半径。
内心与三角形高的关系
内心到三角形三条高的距离相等,且等于内切圆半径。
内心定理
内心定理
三角形的内心到三角形三边的距离相 等,且等于内切圆半径。
应用
利用内心定理可以求出三角形的面积 ,也可以求出三角形的周长和内切圆 半径。
Part
05
三角形的外心
外心定义
01
三角形外心是三角形外接圆的圆 心,也是三角形三边的垂直平分 线的交点。
02
外心到三角形三个顶点的距离相 等,即外接圆的半径。
外心性质
STEP 01
STEP 02
STEP 03
外心到三角形三个垂足的 距离相等。
外心到三角形三边的垂直 平分线的交点。
外心到三角形三个顶点的 距离相等。
外心定理
外心定理
三角形外心是三角形三边垂直平分线的交点。
外心定理的应用
利用外心到三角形三个顶点的距离相等,可以解决与三角形外接圆相关的问题。
THANKS
感谢您的观看
重心定理
重心定理
三角形的三条中线交于一点,该 点为三角形的重心,且重心到顶 点的距离是中线长度的一半。
应用
利用重心定理可以快速找到三角 形的重心,并利用重心性质解决 一些几何问题。
第八讲 三角形的重心
第八讲三角形的重心-CAL-FENGHAI.-(YICAI)-Company One1第八讲 三角形的重心、垂心、外心和内心初中阶段我们已经学习了关于三角形的边和角的许多性质,也涉及三角形边上中线、高线、垂直平分线以及内角平分线的一些性质。
例如,线段(如三角形的一边)的垂直平分线上的点和这条线段两站点的距离相等。
反之,和一条线段两个端点距离相等的点在这线段的垂直平分线上;角(如三角形的一个内角)的平分线上的点到这个角的两边的距离相等。
反之,到一个角的两边距离相等的点在这个角的平分线上,诸如此类。
涉及一个三角形的三条中线、三条高线、三条边的垂直平分线以及三个内角平分线的性质及相互关系是中学平面几何的重要内容。
在高中学习中,会涉及三角形三条中线交点、三条高线交点、三条边的垂直平分线交点以及三个内角平分线交点,即三角形的几个“巧合点”。
本节将对这些知识作较系统的阐述。
一、三角形的重心如图8-1,在△ABC 中,AD 、BD 是两条中线,记它们的交点为G ,连接DE 、DE 是三角形的中位线。
∴DE ∥AB ,且.21AB DE ∴∠GAB=∠GDE ,∠GBA=∠GED.∴△AGB ∽△DGE ,且相似比为2:1.∴AG=2GD ,BG=2GE. 于是得到关于三角形中线的一个重要性质:三角形的两条中线的交点把这两条中线都分成2:1的两段。
现在再研究第三条中线与其他两条中线交点有什么特殊性质。
图8-1图8-2如图8-2,设△ABC 的两条中线AD 、BE 交于G ,中线CF 、BE 交于G ′.由已知的三角形中线的性质,则有BG=2GE ,且BG ′=2G ′E ,CG ′=2G ′F.∴G ′与G 重合,则三角形的三条中线相交于一点,且该点把三角形的各中线分成长度比为2:1的两段,这个交点称为三角形的重心。
三角形的重心必在三角形的内部。
今后我们也常说:三角形的重心把中线分成2:1的两段。
例1 如图8-3,已知E 、F 分别是平行四边形ABCD 边AD 、CD 的中点,BE 和BF 分别交对角线AC 于M 、N ,求证:AM=MN=NC 。
三角形的重心性质
三角形的重心性质目录1. 三角形的重心性质1.1 重心的定义1.2 重心的位置1.2.1 等边三角形的重心1.2.2 直角三角形的重心1.3 重心和质心的区别1.3.1 定义区别1.3.2 几何性质区别2. 重心与三角形内部区域的关系2.1 重心到顶点的距离比2.2 重心将三角形分割的性质2.2.1 重心将三角形分割成三等面积的三角形2.2.2 重心将三角形分割成六等面积的三角形2.2.3 重心将三角形分割成三个面积比为1:2的三角形三角形的重心性质1.1 重心的定义三角形的重心是指三条中线的交点,即由三条中线交汇形成的点称为三角形的重心。
1.2 重心的位置1.2.1 等边三角形的重心在等边三角形中,三角形的重心和质心重合,且重心距离任何一个顶点和中心的距离都相等。
1.2.2 直角三角形的重心对于直角三角形,重心位于斜边上离直角边的邻边的1/3处。
1.3 重心和质心的区别1.3.1 定义区别重心是在三角形内部的点,是由三条中线交汇形成的点;而质心是三角形的三条边上的距离各角相等的点。
1.3.2 几何性质区别重心是三角形的一个几何中心,质心是三角形的一个几何参数。
重心与三角形内部区域的关系2.1 重心到顶点的距离比三角形的重心到各个顶点的距离比为2:1,即重心到顶点的距离是中位线长度的两倍。
2.2 重心将三角形分割的性质2.2.1 重心将三角形分割成三等面积的三角形三角形的重心将三角形分割成三个面积相等的三角形。
2.2.2 重心将三角形分割成六等面积的三角形三角形的重心将三角形分割成六个面积相等的三角形。
2.2.3 重心将三角形分割成三个面积比为1:2的三角形三角形的重心将三角形分割成三个面积比为1:2的三角形,其中比重心到顶点的距离2/3的那一个三角形面积为整个三角形面积的1/4,另外两个的面积之和为3/4。
第八讲--三角形的重心
第八讲 三角形的重心、垂心、外心和内心初中阶段我们已经学习了关于三角形的边和角的许多性质,也涉及三角形边上中线、高线、垂直平分线以及内角平分线的一些性质。
例如,线段(如三角形的一边)的垂直平分线上的点和这条线段两站点的距离相等。
反之,和一条线段两个端点距离相等的点在这线段的垂直平分线上;角(如三角形的一个内角)的平分线上的点到这个角的两边的距离相等。
反之,到一个角的两边距离相等的点在这个角的平分线上,诸如此类。
涉及一个三角形的三条中线、三条高线、三条边的垂直平分线以及三个内角平分线的性质及相互关系是中学平面几何的重要内容。
在高中学习中,会涉及三角形三条中线交点、三条高线交点、三条边的垂直平分线交点以及三个内角平分线交点,即三角形的几个“巧合点”。
本节将对这些知识作较系统的阐述。
一、三角形的重心如图8-1,在△ABC 中,AD 、BD 是两条中线,记它们的交点为G ,连接DE 、DE 是三角形的中位线。
∴DE ∥AB ,且.21AB DE ∴∠GAB=∠GDE ,∠GBA=∠GED.∴△AGB ∽△DGE ,且相似比为2:1.∴AG=2GD ,BG=2GE. 于是得到关于三角形中线的一个重要性质:三角形的两条中线的交点把这两条中线都分成2:1的两段。
现在再研究第三条中线与其他两条中线交点有什么特殊性质。
图8-1 图8-2如图8-2,设△ABC 的两条中线AD 、BE 交于G ,中线CF 、BE 交于G ′.由已知的三角形中线的性质,则有BG=2GE ,且BG ′=2G ′E ,CG ′=2G ′F.∴G ′与G 重合,则三角形的三条中线相交于一点,且该点把三角形的各中线分成长度比为2:1的两段,这个交点称为三角形的重心。
三角形的重心必在三角形的内部。
今后我们也常说:三角形的重心把中线分成2:1的两段。
例1 如图8-3,已知E 、F 分别是平行四边形ABCD 边AD 、CD 的中点,BE 和BF 分别交对角线AC 于M 、N ,求证:AM=MN=NC 。
53231_三角形的重心[4页]
實驗:
重心探索
得到三角形的三中線交於一點
用手指撐起此點
觀察三角板是否呈現平衡狀態?
ቤተ መጻሕፍቲ ባይዱ
結論: 由此點支撐起來的三角板 可以呈現平衡。 此點為物體重力平衡的中心 所以將此點稱為三角板的重心
1. 三角形三中線必交於同一點 2. 此點稱為三角形的重心
單元結束 5-3-2-3-1
三角形的重心
5-3-2-3-1
問題: 在一個材質均勻的三角板中 是否可以找到一個點 使得利用此點支撐 起來的三角板可以呈現平衡?
重心探索
探索: 將材質均勻的三角形圖板的頂點輪流懸掛 並將各頂點中線畫出來 由此可觀察到 這三條中線都會是過懸掛點的鉛垂線 若任兩條中線交於一點,則 第三條中線會交於同一點嗎?
高考复习三角形的四心重心内心外心垂心PPT课件
OE
C
OD与OE共线且2|OD || OE |, SCOE 2SCOD ,
SAOC
2SCOE
2
2 3
SCDE
2
2 3
1 4
SABC
1 3
SABC
第22页/共25页
思考: 如图,设点O在 ABC 内部,且有OA 2OB 3OC 0,
则 ABC 的面积与 AOC 的面积的比为_____3______.
例2.证明:三角形重心与顶点的距离等于它到对边中点距离的两倍.
另证: 连结EF,则EF为ABC的中位线,EF//BC, 且EF:BC=1:2,由平行线分线段成比例
得 FG:GC=1:2,同样可得 EG:GB=1:2, DG:GA=1:2. A
F E
G
B
D
C
第13页/共25页
重心
四、内心
三角形三内角平分线交于一点,这一点为三角形内切圆的圆心,称内心。
| AB | cos B | AC | cosC
则P的轨迹一定通过△ABC的 _______
解: ∵ BC ( AB AC ) BC AB BC AC
| AB | cos B | AC | cosC | AB | cos B | AC | cosC
| BC | | AB | cos( B) | BC | | AC | cosC | BC | | BC | 0
垂心
同理可得O在CB边的高线上.
5. P是△ABC所在平面上一点,若
PA PB PB PC PC PA, 则P是△ABC的( D )
A.外心 B.内心 第C8.页/重共2心5页 D.垂心
三、重心
三角形三边中线交于一点,这一点叫三角形的重心。
第三节三角形的重心
§3 三角形的重心基础知识性质1 三角形的重心是三角形三条中线的交点.性质2 设G 为ABC ∆的重心,连AG 并延长交BC 于D , 则D 为BC 的中点,AG :GD 2=:1, 且()22224121BC AC AB AD -+=. 性质3 设G 为ABC ∆的重心,过G 作DE ∥BC 交AB 于D , 交AC 于E ,过G 作PF ∥AC 交AB 于P ,交BC 于F , 过G 作KH ∥AB 交AC 于K ,交BC 于H ,则 (1)32===AB KH CA FP BC DE ; (2)2=++ABKH CA FP BC DE . 性质4 设G 为ABC ∆的重心,P 为ABC ∆内任一点,则 (1)22222223PG CG BG AG CP BP AP +++=++; (2)()22222231CA BC AB GC GB GA ++=++. 注 三角形中的莱布尼兹公式:()2222222313CA BC AB PG CP BP AP +++=++ 性质5 设G 为ABC ∆内一点,G 为ABC ∆的重心的充要条件是下列条件之一:(了解必要性即可) (1)ABC GAB GCA GBC S S S S ∆∆∆∆===31; (2)当点G 在三边BC 、CA 、AB 上的射影分别为D 、E 、F 时,GF GE GD ⋅⋅值最大; (3)当AG 、BG 、CG 的延长线交三边于D 、E 、F 时,CEG BDG AFG S S S ∆∆∆==; (4)过G 的直线交AB 于P ,交AC 于Q 时,3=+AQACAP AB ; (5)222222333GC AB GB CA GA BC +=+=+.性质6 设P 是锐角ABC ∆内一点,射线AP 、BP 、CP 分别交边BC 、CA 、AB 于点D 、E 、F ,则P 为ABC ∆重心的 充分必要条件是DEF ∆∽ABC ∆.例题讲解例1 过ABC ∆的重心G 任作一条直线把这个三角形分成两部分.试证:这两部分面积之差不大于整个三角形面积的91.例2 在ABC ∆中,G 为重心,P 为形内一点,直线PG. 求证:3=''+''+''GC PC G B P B G A P A .例3 如图,M 、N 、P 分别为正ABC ∆、正DCE ∆、正BEF ∆的重心.求证:MNP ∆为正三角形.例4 设O 为ABC ∆的外心,AC AB=,D 是AB 的中点,G 是ACD ∆的重心.求证:CD OG ⊥.ABCBCBCEBF例1 过ABC 的重心G 任作一条直线把这个三角形分成两部分.试证:这两部分面积之差不大于整个三角形面积的91. 证明:如图,作三角形三边的两个三等分点,过三等分点作边的平行线,分该三角形为9个等面积的小三角形。
三角形的五心-第3讲重心与垂心学生版
第三讲三角形的重心与垂心一、基础知识1.重心的定义:三角形的三中线(或二中线)的交点叫做三角形的重心.2.重心的性质1)三角形的重心必在三角形的內部;2)三角形的重心到顶点的距离等于过这顶点的中线长的三分之二;3)三角形三中线分原三角形为六个等面积的三角形;4)三角形重心到三顶点的连线分原三角形为三个等面积的三角形;5)到三角形的三个顶点距离的平方和最小的点是这个三角形的重心;3.垂心的定义:三角形的三条高线的交点叫做三角形的垂心.4.垂心的性质1)锐角三角形垂心在三角形内部,直角三角形垂心在三角形直角顶点,钝角三角形垂心在三角形外部;2)垂心会在三角形内部产生很多相似直角三角形;同时会出现四点共圆问题;二、例题部分第一部分重心例1. 如图,已知△ABC与△CDA全等,点G、H分别是△ABC、△CDA的重心,则△AGH 的面积与△ABC的面积的比为 ( )A.4:9 B.2:3 C.1:3 D.1:6例2. 在△ABC中,BC=3,AC=4,BC和AC的中线AE、BD互相垂直,则AB等于 ( )A.36 B.5 C.22 D.7例3. 在直角三角形ABC 中. ∠A=90,G 为重心,且GA=2,则22GB GC += .例4. 设M 是△ABC 的重心,过M 的线段交AB ,AC 于P 、Q ,且AP PB =m ,AQ QC =n ,则11m n + =( )A .2B .1C .12D .13第二部分 垂心例5. (2000年,四川省中考题)如图,已知△ABC 的内切圆0与各边相切于D 、E 、F ,那么点0是△DEF的 ( )A .三条中线的交点B .三条高的交点C .三条角平分线的交点D .三条边的垂直平分线的交点例6. 如图,△ABC 中,高BD 、CE 相交于点F , ∠A=45,△ DEF 的面积为S ,则△BFC 的面积为 .例7. 如图,已知H 是△ABC 的垂心,△ABC 外接圆的半径为R ,那么sin BH BCH∠= .例8. 如图,已知⊙0中,直径AB 与弦CD 垂直,垂足为E ,CH 切⊙0于点C ,且与AB 的延长线交于H ,P 是CD 延长线上一点,PA 交⊙0于F ,AD 平分∠HAP 并交HP 于M .求证:(1)点D 是△AHP 的垂心;(2)AH :AB=AE :AF .第三部分 综合题目例9. (1998年,全国竞赛试题)如图,已知P 为ABCD 内一点,O 为AC 与BD 的交点,M 、N 分别为PB 、PC 的中点,Q 为AN 与DM 的交点,求证:(1)P 、Q 、O 三点在一条直线上;(2)PQ=20Q .例10. 如图,设G 为△ABC 的重心,P 为△ABC 内部的任意一点,直线PG 交BC 、CA 、AB 或其延长线于A '、B '、C '.求证:3A P B P C P A G B G C G'''++='''.三、课后练习1. ABC的中线AD、BE相交于O,F、G分别是OB、OA的中点,则四边形DEGF是( )A.梯形 B.正方形 C.平分四边形 D.菱形2. 在△ABC中,BC=a,AC=b,AB=c,∠C=90,CD和BE是△ABC的两条中线,且CD⊥BE,那么a:b:c=( )A.1:2:3 B.3:2:1 C..3:2:1 D.1:2:33.如图,AD是△ABC的高,G是三角形垂心,∠C=60,则∠BGD= .4. 如图,已知点P是△ABC的垂心,PD⊥AC,垂足D.延长PC交AB于E,连结DE,若BC=2DE,则tanA= .5.在△ABC中,∠A是锐角,0是垂心,AO=BC,则∠0BC+∠0CB=.。
《三角形的四心》课件
三角形的中线和垂线
中线
探讨三角形中线的定义和 性质。
垂线
探索三角形垂线的概念以 及与三角形边的关系。
垂线定理
研究垂心以及和垂线定理 的应用。
三角形的重心和质心
1
重心
了解三角形的重心是如何定义的,并探索其性质。
2
质心
讨论质心和质心定理在实际问题中的应用。
3
重心与重心定理
研究重心与重心定理对三角形的性质的关系。
1角平分线的应用2源自讨论角平分线在实际问题中的应用。
3
定理介绍
了解角平分线定理的表述及其重要 性。
常见三角形中心位置关系
探索内心、外心、重心、垂心在三 角形中的相对位置关系。
勾股定理与三角形
勾股定理
学习勾股定理的表述和证明方法。
勾股定理的应用
探讨勾股定理在解决实际问题中的应用。
闵可夫斯基不等式
介绍闵可夫斯基不等式,了解其应用和重要性。
带权重心的应用
1 带权重心的定义
研究带权重心的概念及其性质。
2 带权重心的应用
探索带权重心在解决实际问题中的应用。
三角形的性质及应用
三角形的性质
总结三角形的各种性质 和特点。
三角形的应用
讨论三角形在几何学和 实际生活中的广泛应用。
例题和练习
通过例题和练习来巩固 学习的知识。
总结和展望
回顾三角形的各个重要概念和定理,展望将来继续研究和探索三角形的更多 奥秘。
三角形的外心及外心定理
外心的定义
介绍三角形的外心及其相关 定理。
外心定理
了解外心定理在三角形中的 应用。
外心与周长关系
探索外心与三角形周长的关 联。
课题学习(三角形的重心)
你知道吗?杂技演员脚上的碗为什么不掉下来? 碟子不从顶杆掉下来是由于碟子保持着一种平衡 怎样才能达到平衡?
试一试:怎样用一个手指平衡地顶起一本书?
手指顶在书本的中心就可以平衡,这个平衡
点叫做书本的重心。
想一想
要把一块均匀的三角形纸板用一根绳子悬挂起 来,并使纸板处在水平位置,你认为纸板上的悬 挂点应选择在何处? 任何有固定形状的物体,不论其在地球表面如 何放置,其平行分布重力的合力(通常所说的物 这一点称为物体的重心。
体的重力)作用线,都通过物体上一个确定的点,
不规则的多边形(物体)的重心的确定方法: 悬挂法
你能用悬挂法找出常见的几何图形的重心吗?
(线段,正方形,菱形,长方形, 三角形,一般的平行四边形, 五边形,圆等)
小结:
物体的重心与物体的形状有关,规则的图形重心就是
它的几何中心。如;线段,平行四边形,三角形,正多边
形,等等。 1.线段重心是线段中点。 2.平行四边形的重心是对角线的交点。 3.三角形的重心是三条中线的交点。 4.正多边形的重心是对称轴的交点。 其他图形(物体)可以通过悬挂法来确定它的重心。
三角形的重心定理
三角形的重心与顶点的距离等于它与对边中点 距离的两倍。
或三角形的重心到一边中点的距离等于这边上中 线长的三分之一。
A
G是ABC的重心
F
E
G
AG BG CG 2 GD GF GE 1 GD : AG : AD 1 : 2 : 3
C
B
D
判断题
1、等边三角形三条高的交点就是它的重心。 2、三角形的重心到一边的距离等于这边上中线长的
三分之一。
三角形的重心到一边中点的距离等于这边上中线长的三分之一。
三角形的重心
三角形的重心在我们的数学世界中,三角形是一个基础而重要的图形。
而三角形的重心,作为三角形的一个重要特性,具有着独特的地位和意义。
首先,咱们来聊聊什么是三角形的重心。
简单来说,三角形的重心就是三角形三条中线的交点。
那什么又是中线呢?就是连接三角形一个顶点和它对边中点的线段。
比如说,在三角形 ABC 中,连接顶点 A 和对边 BC 中点的线段就是中线。
那为什么要研究三角形的重心呢?这是因为它有着很多有趣且实用的性质。
重心有一个非常重要的特点,就是它把每条中线都分成了 1 : 2 的两段。
比如说,假设三角形 ABC 的中线 AD 与重心 G 相交,那么 AG :GD = 2 : 1 。
这意味着,如果中线 AD 的长度是 6 ,那么 AG 的长度就是 4 ,GD 的长度就是 2 。
这个比例关系在解决很多与三角形相关的问题时非常有用。
三角形的重心还有一个有趣的性质,就是它到三角形三个顶点的距离的平方和最小。
这可能有点抽象,咱们来举个例子。
想象一下,有一个质量均匀的三角形薄板,如果你用一个手指去支撑它,让它能够保持平衡,那么你手指支撑的那个点大概率就是三角形的重心。
这是因为重心是这个薄板的“平衡点”,从物理的角度也能反映出它的特殊性质。
在实际生活中,三角形重心的概念也有着广泛的应用。
比如在工程设计中,当设计一个三角形的结构时,如果需要找到一个平衡点来保证结构的稳定性,那么重心就是一个关键的参考点。
在物理学中,研究物体的重心对于理解物体的运动和平衡状态也非常重要。
再来说说如何找到三角形的重心。
对于一个给定的三角形,我们只需要画出它的三条中线,它们的交点就是重心。
这个过程并不复杂,但需要我们仔细和准确地作图。
那么,三角形的重心和其他重要的点,比如外心、内心和垂心,又有什么区别和联系呢?外心是三角形外接圆的圆心,也就是三角形三条边的垂直平分线的交点;内心是三角形内切圆的圆心,是三角形三条角平分线的交点;垂心则是三角形三条高的交点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
请同学们画出 一个三角形的三条中线
第1、2、3竖排画锐角三角形 第4、5竖排画直角三角形 第6、7、8竖排画钝角三角形
导入 三条中线相交于几个点?
我们把这个点叫三角形的重心
学习目 标 1.理解三角形的重心的含义
2.理解掌握三角形重心的性质
3.运用三角形重心的性质解决问题
试一试
已知:△ABC中,D、E分别是边 BC、AB的中点,AD、CE相交于G。
大家有疑问的,可以询问和交流
尝试练习
分析各部分的面积 分析各部分的长度 A
E O
BD
C
求线段长 课堂检测
如图,在Rt△ABC中,∠A=30°,点 D是斜边AB的中点,当G是Rt△ABC的重 心,GE⊥AC于点E,若BC=6cm,则 GE= cm。
B
DG
A
EC
GE GD1
CE 求AD 证3 :GE GD 1 CE AD 3
A E
G
BD
C
归纳
1
重心与一边中点的连线的长是对应中线长的 3
1重心与一顶点的连1 线的长是对应中线长的长
重心与一顶点的连线的长
对应中线长
尝试练习
分析各部分的面积
分析各部分的长度 A
F
E
O
BD
C
大家应该也有点累了,稍作休息