不等式组解集专题训练

合集下载

完整版)解不等式组计算专项练习60题(有答案)

完整版)解不等式组计算专项练习60题(有答案)

完整版)解不等式组计算专项练习60题(有答案)1.解不等式组60题参考答案:1.解:由不等式①得2a-3x+1≥0,即x≤(2a+1)/3;由不等式②得3b-2x-16≥0,即x≤(3b-16)/2.又因为a≤4<b,所以2a+1≤9,3b-16≥8,所以x的取值范围为x≤3或x≥-11/2.2.解:由不等式①得x≤-1或x≥3;由不等式②得x≤4/3或x≥2.综合起来,x的取值范围为x≤-1或x≥3,或者4/3≤x≤2.3.解:由不等式①得x>(a+1)/2;由不等式②得x0,所以a/2>(a+1)/2,所以不等式组的解集为a/2<x<(a+1)/2.4.解:由不等式①得x≥1;由不等式②得x<3.所以不等式组的解集为1≤x<3.5.解:由不等式①得x≤-2;由不等式②得x>-3.所以不等式组的解集为-3<x≤-2.6.解:由不等式①得x>-1;由不等式②得x≤2.所以不等式组的解集为-1<x≤2.7.解:由不等式①得x≤-1;由不等式②得x≥-2.所以不等式组的解集为-2≤x≤-1.8.解:由不等式①得x>-3;由不等式②得x≤1.所以不等式组的解集为-3<x≤1.9.解:由不等式①得x>-1;由不等式②得x≤4.所以不等式组的解集为-1<x≤4.10.解:由不等式①得x-3.所以不等式组的解集为-3<x<2.11.解:由不等式①得x≥1;由不等式②得x<3.所以不等式组的解集为1≤x<3.1.由不等式组的①得x≥-1,由不等式组的②得 x<4,因此不等式组的解集为 -1≤x<4.2.由不等式①得x≤3,由不等式②得 x>0,因此不等式组的解集为0<x≤3.3.解不等式①得x≥1,解不等式②得 x<4,因此不等式组的解集为1≤x<4.4.原不等式组可化为:x+45,x<-1.因此不等式组的解集为-3<x≤3.5.解不等式①得 x<5,解不等式②得x≥-2,因此不等式组的解集为 -2≤x<5.6.解不等式①得x≥1,解不等式②得 x<4,因此不等式组的解集为1≤x<4.7.解不等式①得x≥-1,解不等式②得 x<3,因此不等式组的解集为 -1≤x<3.8.解不等式①得 x<1,解不等式②得x≥-2,因此不等式组的解集为 -2≤x<1.9.解不等式①得 x>-1,解不等式②得x≤4,因此不等式组的解集为 -1<x≤4.10.解不等式①得x≥1,解不等式②得 x<4,因此不等式组的解集为1≤x<4.11.解不等式①得 x>-1,解不等式②得x≤4,因此不等式组的解集为 -1<x≤4.12.解不等式组的①得-∞<x<1,因为②中的不等式没有解,所以不等式组的解集为 -∞<x<1.13.解不等式①得x≥1,解不等式②得 x<4,因此不等式组的解集为1≤x<4.14.原不等式组可化为:x>-3,x≤3.因此不等式组的解集为-3<x≤3.15.解不等式组的①得 x<1,因为②中的不等式没有解,所以不等式组的解集为 -∞<x<1.16.解不等式①得 x<2,解不等式②得x≥-1,因此不等式组的解集为 -1≤x<2.17.解不等式①得x≥1,解不等式②得1≤x<4,因此不等式组的解集为1≤x<4.18.解不等式①得x≥-1,解不等式②得 x<3,因此不等式组的解集为 -1≤x<3.19.解不等式①得 x<1,解不等式②得x≥-2,因此不等式组的解集为 -2≤x<1.20.解不等式①得 x>-1,解不等式②得x≤4,因此不等式组的解集为 -1<x≤4.21.不等式①的解集为x≥1,不等式②的解集为 x<4,因此原不等式的解集为1≤x<4.22.解不等式①得 x<0,解不等式②得x≥3,因此原不等式无解。

初中数学不等式与不等式组练习题目

初中数学不等式与不等式组练习题目

不等式的解与解集(上午班)一、选填题1.下列说法错误的是()A、1不是x≥2的解B、0是x<1的一个解C、不等式x+3>3的解是x>0D、x=6是x-7<0的解集2、不等式x-2>3的解集是()A、x>2B、x>3C、x>5D、x<53、若不等式-3x+n>0的解集是x<2,则不等式-3x+n<0的解集是________.4、若一个角的余角不大于它的补角的1/3,则这个角的范围是()5、某商品进价为800元,售价为1200元,由于受市场供求关系的影响,现准备打折销售,但要求利润率(利润率=售价-进价/进价*100%)不底于5%,则至少可打()A.6折B.7折C.8折D.9折6、在下列不等式中,与3-2x/3≤-1的解集相同的是()A.2x+6≥0B.2x-6≤0C.2x-6≥0D.2x+6≤0二、解答题1.利用不等式的性质解下列不等式,并把解集在数轴上表示出来.(1)4x+3<3x (2)2x-4≥0 (3)-x+2>52.已知不等式5x-2<6x+1的最小正整数解是方程3x-ax=6的解,求a的值.3.已知两个正整数的和与积相等,求这两个正整数.4、在满足x+2y≤3,x≥0,y≥0的条件下,求2x+y能达到的最大值5、根据等式和不等式的基本性质,我们可以得到比较两个数大小的方法:若A-B>0,则A>B;若A-B=0,则A=B;若A-B<0,则A<B,这种比较大小的方法称为“作差比较法”,试比较2x2-2x与x2-2x的大小.5、某校师生要去外地参加夏令营,车站提出2种车票票价,第一种是教师按原价付款,学生按原价的78%付款:第2种方案是师生按原价的80%付款,该校有5名教师,试根据参加夏令营的学生人数,选购票付款的最佳方案8.若不等式2X—M小于等于0只有3个正整数解,求正整数M的取值范围9.已知某电脑公司有A型、B型、C型三种型号的电脑,其价格分别为A型每台6000元,B型每台4000元,C型每台2500元,某中学计划将100500元钱全部用于从该电脑公司购进其中两种不同型号的电脑共36台,请你设计出几种不同的购买方案供该校选择,并说明理由。

(完整word版)中考数学专题练习-不等式的解及解集(含解析)

(完整word版)中考数学专题练习-不等式的解及解集(含解析)

中考数学专题练习-不等式的解及解集(含解析)一、单选题1。

某日我市最高气温是26℃,最低气温是12℃,则当天气温t(℃)的变化范围是() A。

t>26 B。

t≥12C. 12<t<26 D。

12≤t≤262.下列说法正确的是( )A. x=1是不等式-2x<1的解集B。

x=3不是不等式-x<1的解集C. x>-2是不等式-2x<1的解集D。

不等式-x<1的解集是x<-13.不等式组的解集是x>a,则a的取值范围是( )A。

a<﹣2 B. a=﹣2 C。

a>﹣2 D. a≥﹣24.从下列不等式中选择一个与x+1≥2组成不等式组,如果要使该不等式组的解集为x≥1,那么可以选择的不等式可以是()A。

x>﹣1 B。

x>2 C. x<﹣1 D. x<25.若关于x的一元一次不等式组无解,则a的取值范围是( )A. a≥1B。

a>1 C。

a≤﹣1 D。

a<﹣16。

下列式子中,是不等式的有( )①2x=7;②3x+4y;③﹣3<2;④2a﹣3≥0;⑤x>1;⑥a﹣b>1.A. 5个B。

4个 C. 3个D。

1个7.若不等式组有解,则a的取值范围是()A。

a≤3B。

a<3 C. a<2 D. a≤28.某种品牌奶粉合上标明“蛋白质≥20%”,它所表达的意思是( )A. 蛋白质的含量是20%B 。

蛋白质的含量不能是20%C. 蛋白质的含量高于20%D。

蛋白质的含量不低于20%9.对于不等式x﹣3<0,下列说法中不正确的是( )A.x=2是它的一个解B.x=2不是它的解C。

有无数个解D.x<3是它的解集10.若不等式组无解,则a的取值范围是()A. a≥﹣3 B。

a>﹣3 C. a≤﹣3 D. a<﹣311。

某市最高气温是33℃,最低气温是24℃,则该市气温t(℃)的变化范围是( )A. t>33 B. t≤24C。

24<t<33 D。

24≤t≤3312。

已知不等式组的解集是x>2,则a的取值范围是()A。

a≤2B。

中考数学《不等式组》专题训练(附答案解析)

中考数学《不等式组》专题训练(附答案解析)

中考数学《不等式组》专题训练(附答案解析)一、单选题(共10小题 每小题3分 共计30分)1.不等式组23112(2)x x x -≥-⎧⎨-≥-+⎩的解集为( ) A .无解 B .1x ≤ C .1x ≥- D .11x -≤≤【答案】D 分别求出每一个不等式的解集 根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【详解】解:解不等式2−3x≥−1 得:x≤1解不等式x−1≥−2(x +2) 得:x≥−1则不等式组的解集为−1≤x≤1故选:D .【点睛】本题考查的是解一元一次不等式组 正确求出每一个不等式解集是基础 熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.2.不等式组()2222323x x x x ⎧-≤-⎪⎨++>⎪⎩的解集是( )A .0x 2<≤B . 0x 6<≤C . x 0>D .x 2≤【答案】A 分别解不等式组中的两个不等式 再取解集的公共部分即可.【详解】解:()2222323x x x x ⎧-≤-⎪⎨++>⎪⎩①② 由①得:242x x -≤-36,x ∴≤2,x ∴≤由②得:3(2)2(3)x x ++>x ∴>0,∴ 不等式组的解集是0 2.x ≤<故选A .【点睛】本题考查的是解不等式组 掌握解不等式组的方法是解题的关键.3.(贵州贵阳市·)已知a b < 下列式子不一定成立的是( )A .11a b -<-B .22a b ->-C .111122a b +<+D .ma mb > 【答案】D 根据不等式的性质解答.【详解】解:A 、不等式a <b 的两边同时减去1 不等式仍成立 即a−1<b−1 故本选项不符合题意; B 、不等式a <b 的两边同时乘以-2 不等号方向改变 即22a b ->- 故本选项不符合题意; C 、不等式a <b 的两边同时乘以12 不等式仍成立 即:1122a b < 再在两边同时加上1 不等式仍成立 即111122a b +<+ 故本选项不符合题意; D 、不等式a <b 的两边同时乘以m 当m>0 不等式仍成立 即ma mb <;当m<0 不等号方向改变 即ma mb >;当m=0时 ma mb =;故ma mb >不一定成立 故本选项符合题意故选:D .【点睛】本题考查了不等式的性质.应用不等式的性质应注意的问题:在不等式的两边都乘以(或除以)同一个负数时 一定要改变不等号的方向;当不等式的两边要乘以(或除以)含有字母的数时 一定要对字母是否大于0进行分类讨论.4.不等式213x -≤的解集在数轴上表示正确的是( )A .B .C .D .【答案】C 先求出不等式的解集 再在数轴上表示出来即可.【详解】解:移项得 2x ≤3+1合并同类项得 2x ≤4系数化为1得 x ≤2在数轴上表示为:故选:C .【点睛】 本题考查的是在数轴上表示不等式的解集 熟知“小于向左 大于向右 在表示解集时≥ ≤要用实心圆点表示;< >要用空心圆点表示”是解答此题的关键.5.关于x 的不等式0721x m x ->⎧⎨->⎩的整数解只有4个 则m 的取值范围是( ) A .21m -<≤- B .21m -≤≤- C .21m -≤<- D .32m -<≤-【答案】C 不等式组整理后 表示出不等式组的解集 根据整数解共有4个 确定出m 的范围即可.【详解】解:不等式组整理得:3x m x >⎧⎨<⎩ 解集为m <x <3由不等式组的整数解只有4个 得到整数解为2 1 0 -1∴-2≤m<-1故选:C .【点睛】本题主要考查对解一元一次不等式 不等式的性质 解一元一次不等式组 一元一次不等式组的整数解等知识点的理解和掌握 能根据不等式组的解集得到-2≤m<-1是解此题的关键. 6.若关于x 的不等式组35128x x a -⎧⎨-<⎩有且只有3个整数解 则a 的取值范围是( ) A .02a ≤≤ B .02a ≤< C .02a <≤ D .02a <<【答案】C 先求出不等式组的解集(含有字母a ) 利用不等式组有三个整数解 逆推出a 的取值范围即可.【详解】解:解不等式351x -得:2x ≥解不等式28x a -<得:82a x +<∴不等式组的解集为:822a x +≤<∵不等式组35128x x a -⎧⎨-<⎩有三个整数解 ∴三个整数解为:2 3 4 ∴8452a +<≤ 解得:02a <≤故选:C .【点睛】本题考查了解一元一次不等式组 一元一次不等式组的整数解的应用 解此题的关键就是根据整数解的个数得出关于a 的不等式组.7.某单位为响应政府号召 需要购买分类垃圾桶6个 市场上有A 型和B 型两种分类垃圾桶 A 型分类垃圾桶500元/个 B 型分类垃圾桶550元/个 总费用不超过3100元 则不同的购买方式有( ) A .2种 B .3种 C .4种 D .5种【答案】B 设购买A 型分类垃圾桶x 个 则购买B 型垃圾桶(6-x ) 然后根据题意列出不等式组 确定不等式组整数解的个数即可.【详解】解:设购买A 型分类垃圾桶x 个 则购买B 型垃圾桶(6-x )个由题意得:500550631006x x x +-≤⎧⎨≤⎩() 解得4≤x ≤6 则x 可取4、5、6 即有三种不同的购买方式.故答案为B .【点睛】本题考查了一元一次方程组的应用 弄清题意、列出不等式组并确定不等式组的整数解是解答本题的关键.8.不等式组1051x x ->⎧⎨-≥⎩的整数解共有( ) A .1个 B .2个 C .3个 D .4个【答案】C 分别求出每一个不等式的解集 根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集 从而得出答案.【详解】解:解不等式x ﹣1>0 得:x >1解不等式5﹣x ≥1 得:x ≤4则不等式组的解集为1<x ≤4所以不等式组的整数解有2、3、4这3个故选:C .【点睛】此题考查求不等式组的整数解 正确求出每个不等式的解集得到不等式组的解集是解题的关键.9.(山东聊城市·)若不等式组11324x x x m+⎧<-⎪⎨⎪<⎩无解 则m 的取值范围为( )A .2m ≤B .2m <C .2m ≥D .2m >【答案】A 求出第一个不等式的解集 根据口诀:大大小小无解了可得关于m 的不等式 解之可得.【详解】 解不等式1132x x +<- 得:x >8 ∵不等式组无解∴4m≤8解得m≤2故选A .【点睛】本题考查的是解一元一次不等式组 正确求出每一个不等式解集是基础 熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.10.(四川广安市·)若m n > 下列不等式不一定成立的是( )A .33m n ++>B .33m n ﹣<﹣C .33m n >D .22m n >【答案】D 根据不等式的性质:不等式两边加(或减)同一个数(或式子) 不等号的方向不变;不等式两边乘(或除以)同一个正数 不等号的方向不变;不等式两边乘(或除以)同一个负数 不等号的方向改变 即可得到答案.【详解】解:A 、不等式的两边都加3 不等号的方向不变 故A 错误;B 、不等式的两边都乘以﹣3 不等号的方向改变 故B 错误;C 、不等式的两边都除以3 不等号的方向不变 故C 错误;D 、如2223m n m n m n =,=﹣,>,<;故D 正确;故选D .【点睛】主要考查了不等式的基本性质 “0”是很特殊的一个数 因此 解答不等式的问题时 应密切关注“0”存在与否 以防掉进“0”的陷阱.二、填空题(共5小题 每小题4分 共计20分)11.关于x 的不等式组23(3)1324x x x x a <-+⎧⎪⎨+>+⎪⎩有四个整数解 则a 的取值范围是________________. 【答案】-114≤a <-52解不等式组求得不等式组的解集 根据不等式组有四个整数解 进而求出a 的范围.【详解】 ()2331324x x x x a ①②⎧<-+⎪⎨+>+⎪⎩解不等式①得 x >8;解不等式②得 x <2-4a ;∴不等式组的解集为8<x <2-4a.∵不等式组有4个整数解∴12<2-4a ≤13∴-114≤a <-5212.若关于x 的不等式组214322x x x m x--⎧<⎪⎨⎪-≤-⎩有且只有三个整数解 则m 的取值范围是______. 【答案】1≤m <4解不等式组得出其解集为﹣2<x ≤23m + 根据不等式组有且只有三个整数解得出1≤23m +<2 解之可得答案. 【详解】解不等式2143x x--<得:x>﹣2解不等式2x﹣m≤2﹣x得:x≤2 3 m+则不等式组的解集为﹣2<x≤2 3 m+∵不等式组有且只有三个整数解∴1≤23m+<2解得:1≤m<4故答案为:1≤m<4.13.若不等式52x+>﹣x﹣72的解都能使不等式(m﹣6)x<2m+1成立则实数m的取值范围是_______.【答案】236≤m≤6解不等式52x+>﹣x﹣72得x>﹣4据此知x>﹣4都能使不等式(m﹣6)x<2m+1成立再分m﹣6=0和m﹣6≠0两种情况分别求解.【详解】解:解不等式52x+>﹣x﹣72得x>﹣4∵x>﹣4都能使不等式(m﹣6)x<2m+1成立①当m﹣6=0即m=6时则x>﹣4都能使0•x<13恒成立;②当m﹣6≠0则不等式(m﹣6)x<2m+1的解要改变方向∴m﹣6<0即m<6∴不等式(m﹣6)x<2m+1的解集为x>216 mm+-∵x>﹣4都能使x>216mm+-成立∴﹣4≥216 mm+-∴﹣4m+24≤2m+1∴m≥23 6综上所述m的取值范围是236≤m≤6.故答案为:236≤m≤6.14.世纪公园的门票是每人5元一次购门票满40张每张门票可少1元.若少于40人时一个团队至少要有________人进公园买40张门反而合算.【答案】33先求出购买40张票 优惠后需要多少钱 然后再利用5x >160时 求出买到的张数的取值范围再加上1即可.【详解】解:设x 人进公园若购满40张票则需要:40×(5-1)=40×4=160(元) 故5x >160时解得:x >32∴当有32人时 购买32张票和40张票的价格相同则再多1人时买40张票较合算;∴32+1=33(人);则至少要有33人去世纪公园 买40张票反而合算.故答案为:33.15.《西游记》、《三国演义》、《水浒传》和《红楼梦》是中国古典文学瑰宝 并称为中国古典小说四大名著某兴趣小组阅读四大名著的人数 同时满足以下三个条件:(1)阅读过《西游记》的人数多于阅读过《水浒传》的人数;(2)阅读过《水浒传》的人数多于阅读过《三国演义》的人数;(3)阅读过《三国演义》的人数的2倍多于阅读过《西游记》的人数.若阅读过《三国演义》的人数为4 则阅读过《水浒传》的人数的最大值为_____.【答案】6根据题中给出阅读过《三国演义》的人数 则先代入条件(3)可得出阅读过《西游记》的人数的取值范围 然后再根据条件(1)和(2)再列出两个不等式 得出阅读过《水浒传》的人数的取值范围 即可得出答案.【详解】解:设阅读过《西游记》的人数是a 阅读过《水浒传》的人数是b (,a b 均为整数)依题意可得:48a b b a >⎧⎪>⎨⎪<⎩且,a b 均为整数可得:47b <<b ∴最大可以取6;故答案为6.三、解答题(共5小题 每小题10分 共计50分)16.如图 “开心”农场准备用50m 的护栏围成一块靠墙的矩形花园 设矩形花园的长为()a m 宽为()b m .(1)当20a =时 求b 的值;(2)受场地条件的限制 a 的取值范围为1826a ≤≤ 求b 的取值范围.【答案】(1)b=15;(2)1216b ≤≤(1)根据等量关系“围栏的长度为50”可以列出代数式 再将a=20代入所列式子中求出b 的值;(2)由(1)可得a,b 之间的关系式 用含有b 的式子表示a,再结合1826a ≤≤ 列出关于b 的不等式组 接着不等式组即可求出b 的取值范围.【详解】解:(1)由题意 得250a b +=当20a =时 20250b +=.解得15b =.(2)∵1826a ≤≤ 502a b =-∴5021850226b b -≥⎧⎨-≤⎩解这个不等式组 得1216b ≤≤.答:矩形花园宽的取值范围为1216b ≤≤.【点睛】此题主要考查了列代数式 正确理解题意得出关系式是解题关键.还考查了解不等式组 难度不大.17.解不等式组:3512(21)34x x x x -<+⎧⎨--⎩ 并把它的解集在数轴上表示出来.【答案】-2≤x<3 解集在数轴上表示见解析.先求出两个不等式的解集 再求其公共解.【详解】解:3512(21)34x x x x -<+⎧⎨--⎩①② 解不等式① 得x<3.解不等式② 得x ≥-2.所以原不等式组的解集为-2≤x<3.在数轴上表示如下:【点睛】本题主要考查了一元一次不等式组解集的求法 其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大 同小取小 大小小大中间找 大大小小找不到(无解).18.第33个国际禁毒日到来之际 贵阳市策划了以“健康人生绿色无毒”为主题的禁毒宣传月活动 某班开展了此项活动的知识竞赛.学习委员为班级购买奖品后与生活委员对话如下:(1)请用方程的知识帮助学习委员计算一下 为什么说学习委员搞错了;(2)学习委员连忙拿出发票 发现的确错了 因为他还买了一本笔记本 但笔记本的单价已模糊不清 只能辨认出单价是小于10元的整数 那么笔记本的单价可能是多少元?【答案】(1)方程见解析 因为钢笔的数量不可能是小数 所以学习委员搞错了;(2)可能是2元或者6元(1)根据题意列出方程解出答案判断即可;(2)根据题意列出方程得出x 与a 的关系,再由题意中a 的条件即可判断x 的范围,从而得出单价.【详解】解:(1)设单价为6元的钢笔买了x 支 则单价为10元的钢笔买了(100x -)支根据题意 得610(100)1300378x x +-=-解得:19.5x =.因为钢笔的数量不可能是小数 所以学习委员搞错了(2)设笔记本的单价为a 元 根据题意 得610(100)1300378x x a +-+=-整理 得13942x a =+ 因为010a << x 随a 的增大而增大 所以19.522x << ∵x 取整数∴20,21x =.当20x 时 420782a =⨯-=当21x =时 421786a =⨯-=所以笔记本的单价可能是2元或者6元.【点睛】本题考查方程及不等式的列式和计算,关键在于理解题意找到等量关系.19.解不等式31212x x -->. 解:去分母 得2(21)31x x ->-.……(1)请完成上述解不等式的余下步骤:(2)解题回顾:本题“去分母”这一步的变形依据是 (填“A ”或“B ”)A .不等式两边都乘(或除以)同一个正数 不等号的方向不变;B .不等式两边都乘(或除以)同一个负数 不等号的方向改变.【答案】(1)余下步骤见解析;(2)A .(1)按照去括号、移项、合并同类项的步骤进行补充即可; (2)根据不等式的性质即可得.【详解】(1)31212x x --> 去分母 得2(21)31x x ->-去括号 得4231x x ->-移项 得4312x x ->-+合并同类项 得1x >;(2)不等式的性质:不等式两边都乘(或除以)同一个正数 不等号的方向不变31212x x -->两边同乘以正数2 不等号的方向不变 即可得到2(21)31x x ->- 故选:A .【点睛】本题考查了解一元一次不等式、不等式的性质 熟练掌握一元一次不等式的解法是解题关键. 20.某水果店销售苹果和梨 购买1千克苹果和3千克梨共需26元 购买2千克苹果和1千克梨共需22元.(1)求每千克苹果和每千克梨的售价;(2)如果购买苹果和梨共15千克 且总价不超过100元 那么最多购买多少千克苹果?【答案】(1)每千克苹果售价8元 每千克梨6千克;(2)最多购买5千克苹果(1)设每千克苹果售价x 元 每千克梨y 千克 由题意列出x 、y 的方程组 解之即可;(2)设购买苹果a 千克 则购买梨(15-a )千克 由题意列出a 的不等式 解之即可解答.【详解】(1)设每千克苹果售价x 元 每千克梨y 千克 由题意得:326222x y x y +=⎧⎨+=⎩解得:86x y =⎧⎨=⎩ 答:每千克苹果售价8元 每千克梨6千克(2)设购买苹果a 千克 则购买梨(15-a )千克 由题意得:8a+6(15-a)≤100解得:a ≤5∴a 最大值为5答:最多购买5千克苹果.【点睛】本题考查了二元一次方程组的应用、一元一次不等式的应用 解答的关键是认真审题 分析相关信息 正确列出方程组和不等式.。

解不等式组计算专项练习60题 (有答案)

解不等式组计算专项练习60题    (有答案)

解不等式组专项练习60题(有答案) 1. 2..3..4.,5..6..7.8.. 9. 10. 11. 12., 13.. 14., 15. 16. 17.. 18. 19. 20..21.. 22.. 23.24.25.,.26. 27., 28.29..30.已知:2a﹣3x+1=0,3b﹣2x﹣16=0,且a≤4<b,求x的取值范围.31..32..33.已知:a=,b=,并且2b≤<a.请求出x的取值范围.34.35., 36.,并将其解集在数轴上表示出来.37..38.,并把解集在数轴上表示出来.39.已知关于x、y的方程组的解满足x>y>0,化简|a|+|3﹣a|. 40.,并把它的解集在数轴上表示出来.41.42.43..44..45..46..47.关于x、y的二元一次方程组,当m为何值时,x>0,y≤0.48.并将解集表示在数轴上.49.已知关于x、y的方程组的解是一对正数,求m的取值范围. 50.已知方程组的解满足,化简.51..52. 53..54.. 55.. 56.57.58. 59.60.解不等式组60题参考答案:1、 解:,由①得2x≥2,即x≥1;由②得x<3;故不等式组的解集为:1≤x<3.2.解:,由①得:x≤5,由②得:x>﹣2,不等式组的解集为﹣2<x≤5 3.解:解不等式①,得x>1.解不等式②,得x<2.故不等式组的解集为:1<x<2.4.解:,解不等式①得,x>1,解不等式②得,x<3,故不等式的解集为:1<x<3,5.解不等式①,得x≤﹣2,解不等式②,得x>﹣3,故原不等式组的解集为﹣3<x≤﹣2,6. 解:,解不等式①得:x>﹣1,解不等式②得:x≤2,不等式组的解集为:﹣1<x≤2,7.解:,由①得x>﹣3;由②得x≤1故此不等式组的解集为:﹣3<x≤1,8.解:解不等式①,得x<3,解不等式②,得x≥﹣1.所以原不等式的解集为﹣1≤x<3.9.解:∵由①得,x>﹣1;由②得,x≤4,∴此不等式组的解集为:﹣1<x≤4, 10.解:,解不等式①得:x<3,解不等式②得:x≥1,不等式组的解集是1≤x<3 11.解:,由①得,x≥﹣;由②得,x<1,故此不等式组的解集为:﹣<x<1,12.解:∵由①得,x≤3,由②得x>0,∴此不等式组的解集为:0<x≤3,13.解:解不等式①,得x≥1;解不等式②,得x<4.∴1≤x<4.14.解:原不等式组可化为,解不等式①得x>﹣3;解不等式②得x≤3.所以-3<x≤315.解:由(1)得:x+4<4,x<0由(2)得:x﹣3x+3>5,x<﹣1∴不等式组解集是:x<﹣116.解:,解不等式(1),得x<5,解不等式(2),得x≥﹣2,因此,原不等式组的解集为﹣2≤x<5. 17.解:由①得:去括号得,x﹣3x+6≤4,移项、合并同类项得,﹣2x≤﹣2,化系数为1得,x≥1.由②得:去分母得,1+2x>3x﹣3,移项、合并同类项得,﹣x>﹣4,化系数为1得,x<4 ∴原不等式组的解集为:1≤x<4.18.解:解不等式①,得x≥﹣1,解不等式②,得x<3,∴原不等式组的解集为﹣1≤x<3.19.解:解不等式(1)得x<1解不等式(2)得x≥﹣2所以不等式组的解集为﹣2≤x<1.20.解:解不等式①,得x>﹣.解不等式②,得x≤4.所以,不等式组的解集是﹣<x≤4.21.解:①的解集为x≥1②的解集为x<4原不等式的解集为1≤x<4.22.解:解不等式(1),得2x+4<x+4,x<0,不等式(2),得4x≥3x+3,x≥3.∴原不等式无解.23.解:解不等式2x+5≤3(x+2),得x≥﹣1解不等式x﹣1<x,得x<3.所以,原不等式组的解集是﹣1≤x<3.24.解:解不等式①,得x≥﹣1,解不等式②,得x<3,∴原不等式组的解是﹣1≤x<3. 25.解:由题意,解不等式①,得x<2,解不等式②,得x≥﹣1,∴不等式组的解集是﹣1≤x<2.26.:由不等式①得:x≥0由不等式②得:x<4原不等式组的解集为0≤x <427.解:由不等式①得:2x≤8,x≤4.由不等式②得:5x﹣2+2>2x,3x >0,x>0.∴原不等式组的解集为:0<x≤4.28.解:解不等式①,得x≤﹣1,解不等式②,得x>﹣2,所以不等式组的解集为﹣2<x≤﹣1. 29.解:解不等式①,得x≤2.解不等式②,得x>﹣3.所以原不等式组的解集为x≤2.30. 解:由2a﹣3x+1=0,3b﹣2x﹣16=0,可得a=,b=,∵a≤4<b,∴,由(1),得x≤3.由(2),得x>﹣2.∴x的取值范围是﹣2<x≤3. 31.解:由①得:x≤2.由②得:x>﹣1.∴不等式组的解集为﹣1<x≤2.32.解:解不等式①,得x>;解不等式②,得x≤4.∴不等式的解集是<x≤4.33.解:把a,b代入得:2×.化简得:6x﹣21≤15<2x+8.解集为:3.5<x≤6.34.解:解不等式①,得x≤2.5,解不等式②,得x>﹣1,解不等式③,得x≤2,所以这个不等式组的解集是﹣1<x≤2.35.解:解不等式①,得x≥﹣1.解不等式②,得x<2.所以不等式组的解集是﹣1≤x<2.36.解:由①,得x<2.由②,得x≥﹣1.∴这个不等式组的解集为﹣1≤x<2.37.解:由①得:x>﹣1由②得:x所以解集为﹣1<x.38.解:由①得:﹣2x≥﹣2,即x≤1,由②得:4x﹣2<5x+5,即x>﹣7,所以﹣7<x≤1.在数轴上表示为:39.解:由方程组,解得.由x>y>0,得.解得a>2当2<a≤3时,|a|+|3﹣a|=a+3﹣a=3;当a>3时,|a|+|3﹣a|=a+a﹣3=2a﹣3.40.解:由(1)得x<8由(2)得,x≥4故原不等式组的解集为4≤x<8.41.解:由①得2x<6,即x<3,由②得x+8>﹣3x,即x>﹣2,所以解集为﹣2<x<3.42.解:(1)去括号得,10﹣4x+12≥2x﹣2,移项、合并同类项得,﹣6x≥﹣24,解得,x≤4;(2)去分母得,3(x﹣1)>1﹣2x,去括号得,3x﹣3>1﹣2x,移项、合并同类项得,5x>4,化系数为1得,x>.∴不等式组的解集为:<x≤4.43.解:解第一个不等式得:x<;解第二个不等式得:x≥﹣12.故不等式组的解集是:﹣12≤x<.44.解:原方程组可化为:,由(1)得,x<﹣3由(2)得,x≥﹣4根据“小大大小中间找”原则,不等式组的解集为﹣4≤x<﹣3.45.由①得:x<2,由②得:x≥﹣1∴﹣1≤x<2.46.整理不等式组得解之得,x>﹣2,x≤1∴﹣2<x≤147.解:①+②×2得,7x=13m﹣3,即x=③,把③代入②得,2×+y=5m﹣3,解得,y=,因为x>0,y≤0,所以,解得<m≤848. 解不等式①,得x≤,解不等式②,得x≥﹣8.把不等式的解集在数轴上表示出来,如图:所以这个不等式组的解集为﹣8≤x≤.49.解:由题意可解得,解得,故<m<1350.解:由2x﹣2=5得x=,代入第一个方程得+2y=5a;则y=a﹣,由于y<0,则a<(1)当a<﹣2时,原式=﹣(a+2)﹣[﹣(a﹣)]=﹣2;(2)当﹣2<a<时,原式=a+2﹣[﹣(a﹣)]=2a+;(3)当<a<时,原式=a+2﹣(a﹣)=2;51.解不等式(1)得:2﹣x﹣1≤2x+4 ﹣3x≤3 x≥﹣1解不等式(2),得:x2+x>x2+3x ﹣2x>0 x<0 ∴原不等式组的解集为:﹣1≤x<0. 52.解不等式(1)得:x≥-1 解不等式(2),得:x<2 ∴原不等式组的解集为:﹣1≤x<2. 53.解①得x<解②得x≥3,∴不等式组的解集为无解.54.解第一个不等式得x<8解第二个不等式得x≥2∴原不等式组的解集为:2≤x<8.55.解:由①得:1﹣2x+2≤5∴2x≥﹣2即x≥﹣1由②得:3x﹣2<2x+1∴x<3.∴原不等式组的解集为:﹣1≤x<3.56.解:原不等式可化为:即在数轴上可表示为:∴不等式的解集为:1≤x<357.解:,解不等式①,得x<3,解不等式②,得x≥﹣1,把不等式的解集在数轴上表示出来,如图所示.不等式组的解集是﹣1≤x<358.解:由题意,解不等式①得x>2,不等式②×2得x﹣2≤14﹣3x解得x≤4,∴原不等式组的解集为2<x≤4.59.解:解不等式①,得x<2.(2分)解不等式②,得x≥﹣1.(4分)所以,不等式组的解集是﹣1≤x<2.(5分)解集在数轴上表示为:60.解:由①,得x≥﹣,由②,得x<3,所以不等式组的解集为﹣≤x<3.。

解不等式组计算专项练习60题(有答案)

解不等式组计算专项练习60题(有答案)

解不等式组计算专项练习60题(有答案)1.解不等式组专项练60题(附答案)2.解:2x+1≤3x,得x≥1;3x-16≥2x,得x≥16,综合得1≤x<16,即x∈[1,16)。

3.解:|a-1|<1,即-1<a-1<1,解得0<a<2;|a+2|<2,即-2<a+2<2,解得-4<a<-0.5.综合得-4<a<-0.5,0<a<2,即a∈(-4,-0.5)∪(0,2)。

4.解:x+1>0,即x>-1;x-3<0,即x<3,综合得-1<x<3,即x∈(-1,3)。

5.解:x-2≥0,即x≥2;2x+1≤3x-2,得x≥3,综合得x≥3,即x∈[3,∞)。

6.解:x+1>0,即x>-1;2x-3≤x+2,得x≤5,综合得-1<x≤5,即x∈(-1,5]。

7.解:x-3≥0,即x≥3;2x-1≤3x-4,得x≤3,综合得x=3.8.解:x+3>0,即x>-3;x-1≤0,即x≤1,综合得-3<x≤1,即x∈(-3,1]。

9.解:x+1>0,即x>-1;3x-2≤2x+8,得x≤10,综合得-1<x≤10,即x∈(-1,10]。

10.解:x-1≥0,即x≥1;x+2≥0,即x≥-2,综合得x≥1,即x∈[1,∞)。

11.解:x-3<0,即x<3;x-1≥0,即x≥1,综合得x∈(-∞,3)∩[1,∞),即x∈[1,3)。

12.删除此段。

13.解:x-2>0,即x>2;x+1≤0,即x≤-1,综合得x∈(2.-1]。

14.解:x+3≥0,即x≥-3;3x-2≤2x+5,得x≤7,综合得-3≤x≤7,即x∈[-3,7]。

15.解:x+1>0,即x>-1;2x-5≥0,即x≥2.5,综合得x>2.5,即x∈(2.5,∞)。

不等式经典题型专题练习含答案

不等式经典题型专题练习含答案

不等式经典题型专题练习(含答案)姓名: ___________ 班级: _________________________________一、解答题1 -3x 2x 11 {2 5 1.解不等式组: 2x3 _^x,并在数轴上表示不等式组的解集. 3.已知关于x , y 的方程组 的解为非负数,求整数 m 的值. x 2y =14•由方程组 x-2y=a 得到的%、y 的值都不大于1,求a 的取值范围.2 •若不等式组2x - a :: 1 {x-2b 3的解集为-1<x<1,求(a+1)(b-1)的值.5 •解不等式组: 并写出它的所有的整数解.5x 2y = 11a 18x 、y 的方程组.2x -3y =12a -8的解满足x >0, y > 0,求实数a 的取x -20 卜 +1 3x-3 6 .求不等式组 2的最小整数解. 7 .求适合不等式-11 v- 2a - 5<3的a 的整数解.8 .已知关于x 的不等式组x-a > 03-2x>-1的整数解共有5个,求a 的取值范围.6 .已知关于值范围.x -2y = k { °—9•若二元一次方程组 x • 2y =4的解x y ,求k 的取值范围10 •解不等式组 并求它的整数解的和.2x 5 乞 3(x 2)不等式组的非负整数集2x y =m 214 .若方程组x - y = 2m - 5的解是一对正数,则:(1) 求m 的取值范围11.已知x , y 均为负数且满足: 2x y = m- 3 ①x-y =2m ② 求m 的取值范围.2x - 1 3x ::112 .解不等式组 ,把不等式组的解集在数轴上表示出来,并写出(2)化简:1m -4 -|m 2|15 •我市一山区学校为部分家远的学生安排住宿,将部分教室改造成若干间住房•如果每间住5人,那么有12人安排不下;如果每间住8人,那么有一间房还余一些床位,问该校可能有几间住房可以安排学生住宿?住宿的学生可能有多少人?16 •某宾馆一楼客房比二楼少5间,某旅游团有48人,如果全住一楼,若按每间4人安排,则房间不够;若按每间5人安排,则有的房间住不满5人•如果全住在二楼,若按每间3人安排,则房间不够;若按每间4人安排,则有的房间住不满4人,试求该宾馆一楼有多少间客房?17 • 3个小组计划在10天内生产500件产品(计划生产量相同),按原先的生产速度,不能完成任务;如果每个小组每天比原先多生产一件产品,就能提前完成任务。

专题15 不等式的解集(解析版)

专题15 不等式的解集(解析版)

提升训练2.5 不等式的解集一、选择题 1.不等式成立的一个充分不必要条件是( ) A .或B .C .或D .【答案】A 【解析】 由题意,不等式,解得或, 根据充分不必要条件的判定方法,可得或是或成立的充分不必要条件,即或是成立的充分不必要条件,故选A.2.不等式2x ﹣1<1的解集在数轴上表示正确的是( ) A . B . C .D .【答案】C 【解析】不等式移项合并得:2x <2, 解得:x <1,表示在数轴上,如图所示:故选:C .3.不等式组3020x x -≤⎧⎨+>⎩,的解集是( )A .23x -<≤B .23x -≤<C .3x ≥D .2x <-【答案】A 【解析】3020x x ①②-≤⎧⎨+>⎩解不等式①得x≤3, 解不等式②得x>-2所以,不等式组的解集是2x 3-<≤ 故选:A4.设x ∈R ,则“213x -≤”是“10x +≥”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A 【解析】213x -≤12x ⇒-≤≤,10x +≥ 1x ⇒≥-,显然由题设能推出结论,但是由结论不能推出题设,因此“213x -≤”是“10x +≥”的充分不必要条件,故本题选A. 5.已知a R ∈,则“2a ≤”是“|2|||x x a -+>恒成立”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】B 【解析】函数y =|x ﹣2|+|x|的值域为[2,+∞),则当a 2≤时,|x ﹣2|+|x|>a 不恒成立. 若|x ﹣2|+|x|>a 恒成立,则说明a 小于函数y =|x ﹣2|+|x|的最小值2,即a <2. 故“a 2≤”是“|x ﹣2|+|x|>a 恒成立”的必要不充分条件. 故选:B .6.已知条件:|1|2p x +>,条件:>q x a ,且p ⌝是q ⌝的充分不必要条件,则a 的取值范围是( ) A .1a ≤ B .1a ≥ C .1a ≥- D .3a ≤- 【答案】B 【解析】由条件:12p x +>,解得3x <-或1x >;因为p ⌝是q ⌝的充分不必要条件,所以q 是p 的充分不必要条件,则a 的取值范围是1a ≥, 故选B .7.不等式组103412x x x ->⎧⎪⎨-≤-⎪⎩的解集在数轴上应表示为( )A .B .C .D .【答案】C 【解析】x 103x 4x 12①②->⎧⎪⎨-≤-⎪⎩, 解不等式①得:x 1>, 解不等式②得:x 2≤,∴不等式组的解集为1x 2<≤,在数轴上表示不等式组的解集为故选C .8.已知关于x 的不等式组12x m x m -<⎧⎨->-⎩的解集中任意一个x 的值都不在-1≤x≤2的范围内,则m 的取值范围( )A .m <-2或m >4B .-2≤m≤4C .m≤-2或m≥4D .-2<m <4【答案】C 【解析】x −m<1① x −m>2② 解①得:x<m+1, 解②得:x>m-2, 则m-2<x<m+1,因为不等式解集x 的值都不在-1≤x≤2的范围内, ∴m-2≥2,或m+1≤-1. 则m≥4或m≤-2. 因此选C9.不等式组5335x x x a -<+⎧⎨<⎩的解集为4x <,则a 满足的条件是( )A .a<4B .a=4C .a ⩽4D .a ⩾4【答案】D【解析】 解不等式组得4x ax <<⎧⎨⎩ , ∵不等式组5335x ax x <-<+⎧⎨⎩的解集为x<4, ∴a ⩾4. 故选D10.如果关于x 的不等式(a +2)x >a +2的解集为x <1,那么a 的取值范围是( ) A .a >0 B .a <0C .a >﹣2D .a <﹣2【答案】D 【解析】∵(a+2)x >a+2两边都除以(a+2)得x <1, ∴a+2<0, ∴a <﹣2. 故选:D .11.若不等式组2120x xx m ->-⎧⎨+≤⎩有解,则m 的取值范围是( )A .1m >-B .1m ≥-C .1m ≤-D .1m <-【答案】D 【解析】由2120x x x m ->-⎧⎨+≤⎩得1,x x m >≤-因为不等式组2120x xx m ->-⎧⎨+≤⎩有解,则m 的取值范围是-m>1,即m<-1故选:D12.已知关于x 的不等式组200x x a +>⎧⎨-≤⎩的整数解共有4个,则a 的最小值为( )A .1B .2C .2.1D .3【答案】B 【解析】200x x a +>⎧⎨-≤⎩①②解①得x>-2,解②得x≤a. 则不等式组的解集是-2<x≤a.不等式有4个整数解,则整数解是-1,0,1,2. 则a 的范围是2≤a<3.a 的最小值是2. 故答案是:B 二、填空题13.不等式4x ﹣6≥7x ﹣15的正整数解的个数是______. 【答案】3 【解析】不等式的解集是x≤3,故不等式4x-6≥7x -15的正整数解为1,2,3 故答案为:3 14.不等式的解集为_________________;【答案】【解析】 ∵|x+1|<2x ﹣1, ∴或,解得:x >2,故不等式的解集是(2,+∞), 故答案为:(2,+∞).15.若不等式组2322x x x m +≥-⎧⎨-≤⎩无解,则m 的取值范围是______.【答案】m <-4 【解析】2322x x x m +≥-⎧⎨-≤⎩①②∵解不等式①得:x≥-2, 解不等式②得:x≤2+m , 又∵不等式组无解, ∴-2>2+m , 解得:m <-4, 故答案为:m <-4.16.若关于的不等式在[﹣1,1]上恒成立,则实数的取值范围为________;【答案】[-1,1] 【解析】 不等式|ax ﹣1|≤2, ∴﹣2≤ax ﹣1≤2, ∴﹣1≤ax≤3; 又x ∈[﹣1,1],若a >0,则﹣a≤ax≤a ,∴,解得0<a≤1;若a=0,则﹣1≤0≤3,满足条件;若a <0,则a≤ax≤﹣a ,∴,解得﹣1≤a <0;综上,实数a 的取值范围是[﹣1,1]. 故答案为:[﹣1,1]. 三、解答题17.设x ∈R ,解不等式||+|2 1|>2x x -. 【答案】1{|1}3x x x <->或. 【解析】当x <0时,原不等式可化为122x x -+->,解得x <–13: 当0≤x ≤12时,原不等式可化为x +1–2x >2,即x <–1,无解; 当x >12时,原不等式可化为x +2x –1>2,解得x >1. 综上,原不等式的解集为1{|1}3x x x <->或. 18.解不等式133x x +--<. 【答案】5|2x x ⎧⎫<⎨⎬⎩⎭. 【解析】由133x x +--<.当1x ≤-时,原不等式化为()()133x x -++-<,解得1x ≤-;当13x -<≤时,原不等式化为133x x ++-<,解得512x -<<; 当3x >时,原不等式化为()133x x +--<,此时不等式无解.综上可得原不等式的解集为5|2x x ⎧⎫<⎨⎬⎩⎭. 19.关于x 的不等式对任意恒成立,求a 的取值范围.【答案】【解析】 因为,所以原不等式可化为:,,对任意恒成立,,故答案为:.20.解下列不等式(组),并把解集在数轴上表示出来.(1)5(x+1)﹣6>3(x+2);(2)12134(1)34xx x x +⎧-⎪⎨⎪-<-⎩….【答案】(1)72x >,见解析;(2)x <0,见解析. 【解析】(1)∵5(x+1)﹣6>3(x+2) ∴5x+5﹣6>3x+6, 解不等式得x >72. 数轴表示如图:(2)121(1)34(1)34(2)xx x x +⎧-⎪⎨⎪-<-⎩… 解不等式①,得x≤4,解不等式②,得x <0, ∴不等式组的解集为x <0, 数轴表示如图:21.已知关于x 的不等式组9511x x x a +>+⎧⎨<+⎩的解集是x <2,求a 的取值范围.【答案】a ≥1 【解析】9511x x x a +>+⎧⎨<+⎩①②, 解①得x <2, 解②得x <a+1, ∵不等式组9511x x x a +>+⎧⎨<+⎩的解集是x <2,∴a+1≥2, ∴a≥1. 故答案为a≥1 22.已知的解集为.(1)求的值;(2)若,求证:. 【答案】(1).(2)见解析【解析】 (1)解:不等式可化为,解得,所以,,.(2)证明:若,则,即.。

不等式组的练习题及答案

不等式组的练习题及答案

不等式组的练习题及答案不等式组是数学中的一个重要概念,它涉及到多个不等式的组合和求解。

以下是一些不等式组的练习题及其答案,供学生练习和教师参考。

练习题1:解不等式组:\[ \begin{cases}x + 2 > 0 \\3 - x \geq 0\end{cases} \]答案:首先解第一个不等式 \( x + 2 > 0 \),得到 \( x > -2 \)。

接着解第二个不等式 \( 3 - x \geq 0 \),得到 \( x \leq 3 \)。

综合两个不等式的解,不等式组的解集是 \( -2 < x \leq 3 \)。

练习题2:若不等式组:\[ \begin{cases}x - 5 \leq 7 \\2x + 1 > 10\end{cases} \]求 \( x \) 的取值范围。

答案:解第一个不等式 \( x - 5 \leq 7 \),得到 \( x \leq 12 \)。

解第二个不等式 \( 2x + 1 > 10 \),得到 \( x > 4.5 \)。

不等式组的解集是 \( 4.5 < x \leq 12 \)。

练习题3:解不等式组:\[ \begin{cases}3x - 1 \geq 5 \\x + 4 < 7\end{cases} \]答案:解第一个不等式 \( 3x - 1 \geq 5 \),得到 \( x \geq 2 \)。

解第二个不等式 \( x + 4 < 7 \),得到 \( x < 3 \)。

不等式组的解集是 \( 2 \leq x < 3 \)。

练习题4:若不等式组:\[ \begin{cases}-3x + 2 \leq 4 \\5 - 2x > 3x - 5\end{cases} \]求 \( x \) 的解集。

答案:解第一个不等式 \( -3x + 2 \leq 4 \),得到 \( x \geq -\frac{2}{3} \)。

不等式的性质与解集练习题5套(含答案)

不等式的性质与解集练习题5套(含答案)

不等式的解集与性质练习题5套(含答案)(1)一、选择题1.m 与5的和的一半是正数,用不等式表示( ) A.025>+m B.0)5(21≥+m C. 0)5(21>+m D. 0)5(21<+m 2.下列x 的值能使212->+x 成立的有( )-1,2,1,4,3,21--- A.1个 B.2个 C.3个 D.4个3.当x =1时,下列不等式成立的是( )A.75>+xB.452<+-xC.4213>+x D.56>x 4. (2008内蒙古赤峰市)用 ○a 、○b 、○c 表示三种不同的物体,现放在天平上比较两次,情况如图所示,那么○a 、○b 、○c 这三种物体按质量从大到小的顺序排列应为( )A .B .C .D . 5.由n m >到kn km >成立的条件为( )A.0>kB. 0<kC. 0≤kD. 0≥k6.在数轴上,到原点的距离小于3的点对应的x 值应满足( )A. 3<xB.33->>xC. 3≤xD. 3-≥x7.62+a 是负数,则a 的值应为( )A. 3->aB. 3-<aC. 0>aD.0<a8.不等式063≤-a 的整数解为( )A.2个B.3个C.4个D.5个9.若m +p <p ,m -p >m ,则m 、p 满足的不等式是( )A.m <p <0B.m <pC.m <0,p <0D.p <m10.已知x >y 且xy <0,a 为任意实数,下列式子正确的是( )A.-x>yB.a 2x>a 2yC.a -x<a -yD.x>-y二、填空题11. 判断下列各式①x +y ②3x >7 ③5=2x +3 ④x 2≥0 ⑤2x -3y =1 ⑥52是不等式的有 .12. 用适当符号表示下列关系.①a 的7倍与15的和比b 的3倍大;②a 是非正数; .13. 填上适当的不等号.①4x 2+1__________0 ②-x 2__________0③2x 2+2y +1__________x 2+2y ④a 2__________014.若b a <,用“>,<”填 a b c a b c a b c ab c①2a 2b ;②若0≠c ,则2a -c 2b -c;③c-2a c-2b ;15.三个连续奇数的和小于27,则有 组这样的正奇数.三、解答题16. 已知a >0,b <0,且a +b <0,试将a ,-b ,-|a |,-|b |用“<”号按从小到大的顺序连接起来.17.用不等式表示下列语句①m 的2倍不小于n 的31; ②x 的51与y 的和是非负数; 18.解不等式:142117->+x x 19. 通过测量一棵树的树围,(树干的周长)可以计算出它的树龄,通常规定以树干离地面1.5 m 的地方作为测量部位,某树栽种时的树围为5 cm ,以后树围每年增加约3 cm.这棵树至少生长多少年其树围才能超过2.4 m ?请你列出关系式.20. 燃放某种礼花弹时,为了确保安全,人在点燃导火线后要在燃放前转移到10 m 以外的安全区域.已知导火线的燃烧速度为0.02 m/s ,人离开的速度为4 m/s ,导火线的长x (m)应满足怎样的关系式?请你列出.21.某次数学测验中,共有20道选择题.评分办法是:每答对1道题得5分,答错1道题扣1分,不答不给分.若某学生只有1道题没答,那么他至少要答对多少道题,成绩才不会低于80分.请根据题意列出正确的不等式(不求解)22.用甲、乙两种原料配制某种饮料,已知这两种原料的维生素C 含量分别为甲种600单位/千克,乙种100单位/千克..现要配制这种饮料10千克,要求至少含有4200单位的维生素C,请写出所需要甲种原料的质量x 千克应满足的不等式.答案:一、1.C,提示:m 与5的和可表示为5+m ,和的一半可表示为)5(21+m ,正数即大于0,所以应选择C ;2.C ,提示:把每个数代入不等式成立的有-1,,1,21故选C ;3.B ,提示:把x =1分别代到各不等式中去逐一验证成立的只有B ;4.A ;5.C,提示:由于从n m >到kn km >,不等号方向没变,并且两边同时扩大k 倍,所以根据不等式的性质2,两边同时乘以一个非负数,故选C ;6.B ,提示:到原点的距离小于3的点可以记作333<<-∴<x x ,故选B ;7.B ,提示:由题意得,,062<+a 根据不等式的性质得3-<a ;8.D ;9.C ;10.C;二、11. ②④;12.①7a +15>3b ;② a ≤0;13.①>,②≤,③>,④ ≥;14.①<;②<;③>;15.3提示:设这3个连续奇数分别为32,12,12++-k k k (k 为大于0的整数)由题意得4,27321212<<++++-k k k k ,又k 为大于0的整数,故k 为1或2或3所以有3组这样的正奇数,分别为1,3,5;3,5,7;5,7,9;三、16. -|b |<-|a |<a <-b17.①n m 312≥,②051≥+y x 18.解:将不等式两边都减去11+2x ,得255->x ,两边都除以5得,5->x19. 解:设这棵树至少要生长x 年其树围才能超过2.4 m.根据题意得,3x +5>2.4.20.解:41002.0>x . 21.解:设他至少要答对x 道题,根据题意列出正确的不等式80)19(5≥--x x .22.4200)10(100600≥-+x x .c a o b (2)一、选择题1,a 、b 两数在数轴上的位置如图所示,下列结论中,正确的是( )A .a<0,b>0B .a>0,b<0C .ab>0D .│a│>│b│2,设“○”,“□”,“△”分别表示三种不同的物体,用天平比较它们质量的大小,两次情况如图所示,那么每个“○”,“□”, “△”这样的物体,按质量由小到大的顺序排列为( )A .○□△B .○△□C .□○△D .△□○3,已知实数a ,b ,c 在数轴上对应的点如图所示,则下列式子中,正确的是(• )A .cb<abB .ac>abC .cb>abD .c+b>a+b4,若a<0,b>0且│a│<│b│,则a-b=( )A .│a│-│b│B .│b│-│a│C .-│a│-│b│D .│a│+│b│5,若0<a<1,则下列四个不等式中正确的是( )A .a<1<1aB .a<1a <1C .1a <a<1D .1<1a<a 6,已知x>y ,且xy<0,│x│<│y│,a 为任意有理数,下列式子正确的是( )A .-x>-yB .a 2x>a 2yC .-x+a<-y+aD .x>-y二、填空题7,规定一种新的运算:a △b=a·b-a+b+1加3△4=3×4-3+4+1,•请比较(-3)•△5______5△(-3)(填“<”“=”“>”).8,若│a -3│=3-a ,则a 的取值范围是_________.9,有理数a 、b 在数轴上的位置如图所示,用不等式表示:①a+b_____0 ②│a│____│b│ ③ab_____ ④a-b____0.10,设a ,b ,c 为有理数,且满足用a ,b ,c 分别去乘不等式的两边,•会使不等号依次为不变方向,变成等号,改变方向,则a ,b ,c 的大小关系是______.11,不等式m-5<1的正整数解是_______.12,若3a-2b<0,化简│3a -2b-2│-│4-3a+2b│的结果是_______.三、解答题13,若方程(a+2)x=2的解为x=2想一想不等式(a+4)x>-3的解集是多少?•试判断-2,-1,0,1,2,3这6个数中哪些数是该不等式的解.14,已知2(1-x )<-3x ,化简│x+2│-│-4-2x│.15,已知关于x 的不等式2x-m>-3的解集如图所示求m 值.16,(2008新疆建议兵团)某社区计划购买甲、乙两种树苗共600棵,甲、乙两种树苗单价及成活率见下表:种类单价(元) 成活率 甲60 88% 乙 80 96%(1)若购买树苗资金不超过44000元,则最多可购买乙树苗多少棵?(2)若希望这批树苗成活率不低于90%,并使购买树苗的费用最低,应如何选购树苗?购买树苗的最低费用为多少?17,某童装加工企业今年五月份每个工人平均加工童装150套,•最不熟练的工人加工童装套数为平均套数的60%,为了提高工人的劳动积极性,•按时完成外商订货任务,企业计划从今年六月起进行工资改革,改革后每个工人的工资分两部分:•一部分为每人每月基本工资200元;另一部分为每加工一套童装奖励若干元.(1)为了保证所有工人的每月工资收入不低于市有关部门规定的最低标准450元,按五月份工人加工的童装套数的计算,工人每加工1•套童装企业至少应该奖励多少元?(精确到分)(2)根据经营情况,企业决定每加工1套童装奖励5元,•工人小张争取六月份工资不少于1200元.问小张六月份应至少加工多少套童装?答案一、1,B.解析:数轴上原点右边的数是正数,原点左边的数是负数,故选项B正确,而选项C中ab<0,故C错误,选项D中│a│<│b│故选项D错误.2,D.解析:由第一个图可知1个○的质量大于1个□的质量,由第二个图可知1个□的质量等于2个△的质量,因此1个□质量大于1个△质量,故选D.3,C.解析:由数轴可知c<b<0<a,当c<b两边同乘以a,则由不等式基本性质2,ca<ab;同理当c<a两边都乘以b则由不等式基本性质3,cb>ab则已经c<a,两边都加上1,•则由不等式基本性质1,c+b<a+b,因此四个选项只有C正确.4,C.解析:利用绝对值性质│a│=00a aaa a>⎧⎪=⎨⎪-<⎩,从而将四个选项中代数式化简看哪一个结果为a-b.5,A .正确:因为0<a<1,设a=12,1a=2,所以a<1<1a,另外由0<a<1中a<1•利用不等式基本性质2,两边都除以a得1<1a,∴a<1<1a,故答案选A.6,C.解析:x>y利用不等式基本性质3,两边都乘以-1得-x<-y则A错误,而-x<-y,利用不等式基本性质1,两边都加上a,得-x+a<-y+a,因此选项C正确,而A错误,另外由x>y,xy<0,则x>0,y<0又│x│<│y│可得x<-y,不是x>-y故D错误;又x>y•利用不等式基本性质2,两边都乘以a2(a≠0)可得a2x>a2y,而这里没有确定a是≠0的,故a2x>a2y•不一定成立,因此B错误.二、7,<.解析:依据新运算a△b=a·b-a+b+1计算-3△5,5△(-3)再比较结果大小.8,a≤3.解析:根据│a│=-a时a≤0,因此│a-3│=3-a,则a-3≤0,a≤3.9,①<②<③>④> 解析:由数轴上的数可知:a<0,b<0且│b│>│a│,因此a+b<0,ab>0,a-b>0.10,a>b>c.解析:由不等式基本性质②和③可知a>0,b=0,c<0,所以a>b>c11,1,2,3,4,5.解析:不等式m-5<1,利用不等式基本性质1,两边都加上5得m<6,其中正整数解1,2,3,4,512,-2.解析:由3a-2b<0则3a-2b-2<0故│3a-2b-2│=-(3a-2b-2),同理│4-3a+2b│=4-3a+2b,原式=-(3a-2b-2)-(4-3a+2b)=-3a+2b+2-4+3a-2b=-2.三、13,解:把x=2代入方程(a+2)x=2得2(a+2)=2,a+2=1,a=-1,然后把a=-1代入不等式(a+4)x>-3得3x>-3,把x=-2代入左边3x=-6,右边=-3,-6<-3,∴x=-2不是3x>-3的解;同理把x=-1,x=0,x=1,x=2,x=3分别代入不等式,可知x=0,x=1,x=2,x=3这4个数为不等式的解.14,解:2(1-x)<-3x,2-2x<-3x,根据不等式基本性质1,两边都加上3x,2+x<0,根据不等式基本性质1,两边都减去2,x<-2,∴x+2<0,-2x>4,∴-4-2x>0,∴│x+2│-│-4-2x│=-(x+2)-(-4-2x)=-x-2+4+2x=x+2.点拨:先利用不等式基本性质化简得x<-2,再根据代数式中要确定x+2,-4-2x•的正负性,从而将x<-2不等式利用不等式基本性质变形可得:x+2<0,-4-2x<0•最后化简得出结果.15,解:2x-m>-3,根据不等式基本性质1,两边都加上m,2x>m-3,根据不等式基本性质2,两边都除以2,x>32m -,又∵x>-2,∴32m -=-2,∴m=-1.点拨:解不等式x>32m -,再根据解集得32m -=-2,本题将一元一次方程和一元一次不等式有机地结合起来,同时还利用了数形结合的方法,从数轴上观察一元一次不等式的解集x>-2.16,解:(1)设最多可购买乙树苗x 棵,则购买甲树苗(600 x -)棵60(600)8044000x x -+≤400x ≤.答:最多可购买乙树苗400棵.(2)设购买树苗的费用为y则60(600)80y x x =-+2036000y x =+根据题意 0.88(600)0.960.9600x x -+⨯≥150x ≥∴当150x =时,y 取最小值.min 2015036000y =⨯+39000=.答:当购买乙树苗150棵时费用最低,最低费用为39000元.17,解:(1)设工人每加工1套童装企业至少要奖励x 元,依题意可得:200+150×60%·x≥450,解这个不等式得x≥2.78,所以工人每加工1套童装企业至少应奖励2.78元.(2)设小张在六月份加工x 套童装,依题意可得200+5x≥1200,解这个不等式得x≥200,所以小张在六月份应至少加工200套童装.(3)一、选择题1,下列不等式,不成立的是( )A .-2>-12B .5>3C .0>-2D .5>-1 2,a 与-x 2的和的一半是负数,用不等式表示为( )A .12a-x 2>0B .12a-x 2<0C .12(a-x 2)<0D .12(a-x 2)>0 3,用不等式表示如图所示的解集,其中正确的是( )A .x>-2B .x<-2C .x≥-2D .x≤-24,不等式的解集中,不包括-3的是( )A .x<-3B .x>-7C .x<-1D .x<05,已知a<-1,则下列不等式中,错误的是( )A .-3a>+3B .1-4a>4+1C .a+2>1D .2-a>36,(2008年广州市数学中考试题)四个小朋友玩跷跷板,他们的体重分别为P 、Q 、R 、S ,如图3所示,则他们的体重大小关系是()A P R S Q >>>B Q S P R >>>C S P Q R >>>D S P R Q >>>二、填空题7,数学表达式中:①a 2≥0 ②5p-6q<0 ③x-6=1 ④7x+8y ⑤-1<0 ⑥x ≠3.不等式是________(填序号)8,若m>n ,则-3m____-3n ;3+13m____3+13n ;m-n_____0. 9,若a<b<0,则-a____-b ;│a│_____│b│;1a ____1b . 10,组成三角形的三根木棒中有两根木棒长为3cm 和10cm ,•则第三根棒长的取值范围是_______,若第三根木棒长为奇数,则第三根棒长是_______.11,在下列各数-2,-2.5,0,1,6中是不等式23x>1的解有______;•是-23x>1•的解有________. 12,x≥7的最小值为a ,x≤9的最大值为b ,则ab=______.三、解答题13,用不等式表示:①x 的2倍与5的差不大于1;②x 的13与x 的12的和是非负数; ③a 与3的和的30%不大于5;④a 的20%与a 的和不小于a 的3倍与3的差.14,说出下列不等式变形依据:①若x+2005>2007,则x>2;②若2x>-13,则x>-16; ③若-3x>2,则x<-23;④若-7x >-3,则x<21. 15,利用不等式的基本性质求下列不等式的解集,并在数轴上表示出来:①x+13<12;②6x-4≥2;③3x-8>1;④3x-8<4-x. 16,若一件商品的进价为500元,标价为750元,商店要求以利润率不低于5%•的售价打折出售,问售货员最低打几折出售此商品?设最低打x 折,用不等式表示题目中的不等关系.17,比较下列算式结果的大小(在横线上填“>”“<”“=”)42+32_____2×4×3; (-2)2+12_____2×(-2)×1; (164)2+(12)2______2×164×12; (-3)2+(-3)2______2×(-3)×(-3). 通过观察归纳,写出能反映规律的一般性结论.参考答案:一、1,A.解析:此题主要依据有理数的大小比较,正数大于所有负数,零大于所有负数,两个负数大小比较时,绝对值大的反而小,因此-2<-12故选项A 这个不等式是不成立的,所以答案为A . 2,C.解析:先表示a 与-x 2的和即是a-x 2,再表示和的一半即12(a-x 2),依题意12(a-x 2)负数,用不图3等式表示即为12(a-x 2)<0. 3,C.4,A.解析:可以把这些解集用数轴表示出来,通过观察可以确定-3不包括在x<-3中,所以选A . 5,C.解析:可以把这些不等式的解集求出,从而发现a+2>1的解集为a>-1,不是a<-1,故应该选C . 6,D二、7,①②⑤⑥.8,<、>、<.9,>、>、>.解析:由a<b<0,则a ,b 都为负数,设a=-3,b=-2,则1a =-13,1b =-12,所以1a >1b ,同理-a ,-b ,•及│a││b│大小都可以确定.10,7<第三根木棒<13;9,11.解析:根据三角形的边长关系定理,•三角形第三边大于两边之差而小于两边之和,可得第三边的取值范围.11,6,-2,-2.5.解析:分别把这些数代入不等式中看是否使不等式成立就可判断是否为不等式的解. 12,63.解析:x ≥7时x 的最小值就是7,而x≤9中x 的最大值就是x=9,故a=7,b=9,所以ab=63. 三、13,①2x-5≤1.②13x+12x≥0.③30100(a+3)≤5.④20100a+a≥3a -3.解:①不大于即“≤”.②非负数即正数和0也即大于等于0的数.③不小于即“≥”. 14,①若x+2005>2007,则x>2.变形依据:由不等式基本性质1,两边同减去2005;②若2x>-13,则x>-16.变形依据:由不等式基本性质2,两边都同除以2或(同乘以12);③若-3x>2则x<-23.变形依据:利用不等式基本性质3,两边都除以-3或(同乘以-13);④若-7x >-3则x<21.变形依据:利用不等式基本性质3,两边都除以-17或(同乘以-7). 15,①x+13<12.解:根据不等式基本性质1,两边都减去得:x+13-13<12-13即x<16.②6x-4≥2.解:根据不等式基本性质1,两边都加上4得:6x≥6.根据不等式基本性质2,两边都除以6得,x≥1.③3x-8>1.解:根据不等式基本性质1,两边都加上8得:3x>9.根据不等式基本性质2,两边都除以3得:x>3.④3x-8<4-x.解:根据不等式基本性质1,两边都加上8,得3x<12-x.根据不等式基本性质1,两边都加上x 得4x<12,根据不等式基本性质2,两边都除以4得:x<316,解:设最低打x 折,列不等式为:750×10x -500≥500×5100.解析:依据不等式关系售价-进价≥500×5100列不等式,不低于就是大于等于.17,解:> > > = a 2+b 2≥2ab .解析:前面那些具体算式左边都是a 2+b 2的形式;而右边对应都是2ab ,•因此由比较大小结果可发现规律性质的结论是a 2+b 2≥2ab .(4)一、选择题1.下列式子①3x =5;②a >2;③3m -1≤4;④5x +6y ;⑤a +2≠a -2;⑥-1>2中,不等式有( )个A 、2B 、3C 、4D 、52.下列不等关系中,正确的是( )A 、 a 不是负数表示为a >0;B 、x 不大于5可表示为x >5C 、x 与1的和是非负数可表示为x +1>0;D 、m 与4的差是负数可表示为m -4<03.若m <n ,则下列各式中正确的是( )A 、m -2>n -2B 、2m >2nC 、-2m >-2nD 、22n m > 4.下列说法错误的是( )A 、1不是x ≥2的解B 、0是x <1的一个解C 、不等式x +3>3的解是x >0D 、x =6是x -7<0的解集5.下列数值:-2,-1.5,-1,0,1.5,2能使不等式x +3>2成立的数有( )个.A 、2B 、3C 、4D 、56.不等式x -2>3的解集是( )A 、x >2 B 、x >3 C 、x >5 D 、x <57.如果关于x 的不等式(a +1)x >a +1的解集为x <1,那么a 的取值范围是( )A 、a >0B 、a <0C 、a >-1D 、a <-18.已知关于x 的不等式x -a <1的解集为x <2,则a 的取值是( )A 、0B 、1C 、2D 、39.满足不等式x -1≤3的自然数是( )A 、1,2,3,4B 、0,1,2,3,4C 、0,1,2,3D 、无穷多个10.下列说法中:①若a >b ,则a -b >0;②若a >b ,则ac 2>bc 2;③若ac >bc ,则a >b ;④若ac 2>bc 2,则a >b .正确的有( )A 、1个B 、2个C 、3个D 、4个11.下列表达中正确的是( )A 、若x 2>x ,则x <0B 、若x 2>0,则x >0C 、若x <1则x 2<xD 、若x <0,则x 2>x12.如果不等式ax <b 的解集是x <ab ,那么a 的取值范围是( ) A 、a ≥0 B 、a ≤0 C 、a >0 D 、a <0二、填空题1.不等式2x <5的解有________个.2.“a 的3倍与b 的差小于0”用不等式可表示为_______________.3.如果一个三角形的三条边长分别为5,7,x ,则x 的取值范围是______________.4.在-2<x ≤3中,整数解有__________________.5.下列各数0,-3,3,-0.5,-0.4,4,-20中,______是方程x +3=0的解;_______是不等式x +3>0的解;___________________是不等式x +3>0.6.不等式6-x ≤0的解集是__________.7.用“<”或“>”填空:(1)若x >y ,则-2_____2y x -; (2)若x +2>y +2,则-x______-y ; (3)若a >b ,则1-a ________ 1-b ;(4)已知31x -5<31y -5,则x ___ y . 8.若∣m -3∣=3-m ,则m 的取值范围是__________.9.不等式2x -1>5的解集为________________.10.若6-5a >6-6b ,则a 与b 的大小关系是____________.11.若不等式-3x +n >0的解集是x <2,则不等式-3x +n <0的解集是________.12.三个连续正整数的和不大于12,符合条件的正整数共有________组.13.如果a <-2,那么a 与a1的大小关系是___________. 14.由x >y ,得ax ≤ay ,则a ______0三、解答题1.根据下列的数量关系,列出不等式(1)x 与1的和是正数(2)y 的2倍与1的和大于3(3)x 的31与x 的2倍的和是非正数 (4)c 与4的和的30%不大于-2(5)x 除以2的商加上2,至多为5(6)a 与b 的和的平方不小于22.利用不等式的性质解下列不等式,并把解集在数轴上表示出来.(1)4x +3<3x (2)4-x ≥4 (3) 2x -4≥0 (4)-31x +2>53.已知有理数m 、n 的位置在数轴上如图所示,用不等号填空.(1)n -m ____0; (2)m +n _____0; (3)m -n ____0;(4)n +1 ____0; (5)mn ____0; (6)m -1____0.4.已知不等式5x -2<6x +1的最小正整数解是方程3x -23ax =6的解,求a 的值.5.试写出四个不等式,使它们的解集分别满足下列条件:(1) x =2是不等式的一个解;(2) -2,-1,0都是不等式的解;(3) 不等式的正整数解只有1,2,3;(4) 不等式的整数解只有-2,-1,0,1.6.已知两个正整数的和与积相等,求这两个正整数.解:不妨设这两个正整数为a 、b ,且a ≤b ,由题意得:ab =a +b ①则ab =a +b ≤b +b =2b ,∴a ≤2∵a 为正整数,∴a =1或2.(1) 当a =1时,代入①式得1·b =1+b 不存在(2) 当a =2时,代入①式得2·b =2+b ,∴b =2.因此,这两个正整数为2和2.仔细阅读以上材料,根据阅读材料的启示,思考:是否存在三个正整数,它们的和与积相等?试说明你的理由.7.根据等式和不等式的基本性质,我们可以得到比较两个数大小的方法:若A -B >0,则A >B ;若A -B =0,则A =B ;若A -B <0,则A <B ,这种比较大小的方法称为“作差比较法”,试比较2x 2-2x 与x 2-2x 的大小.(5)1.(黑龙江校级月考)下列式子:①1x <y +5;②1>-2;③3m -1≤4;④a +2≠a -2中,不等式有(C ) A .2个 B .3个 C .4个 D .1个2.“数x 不小于2”是指(B )A .x ≤2B .x ≥2C .x <2D .x >23.(陕西校级期末)若m 是非负数,则用不等式表示正确的是(D )A .m <0B .m >0C .m ≤0D .m ≥04.2016年2月1日武汉市最高气温是8 ℃,最低气温是-2 ℃,则当天武汉市气温变化范围t(℃)是(D )A .t >8B .t <2C .-2<t <8D .-2≤t ≤85.用适当的符号表示下列关系:(1)a -b 是负数:a -b <0;(2)a 比5大:a >5;(3)x 是非负数:x ≥0;(4)m 不大于-3:m ≤-3.6.“b 的12与c 的和是负数”用不等式表示为12b +c<0. 7.下列说法中,错误的是(C )A .x =1是不等式x <2的解B .-2是不等式2x -1<0的一个解C .不等式-3x >9的解集是x =-3D .不等式x <10的整数解有无数个8.用不等式表示如图所示的解集,其中正确的是(C )A .x>-2B .x<-2C .x ≥-2D .x ≤-29.以下所给的数值中,是不等式-2x +3<0的解的是(D )A .-2B .-1C .32D .210.(长春中考改编)不等式x <-2的解集在数轴上表示为(D )11.在下列各数:-2,-2.5,0,1,6中,不等式23x>1的解有6;不等式-23x>1的解有-2,-2.5. 12.把下列不等式的解集在数轴上表示出来.(1)x ≥-3;(2)x >-1;(3)x ≤3;(4)x<-32. 解:(1)(2)(3)(4) 13.不等式的解集x<3与x ≤3有什么不同?在数轴上表示它们时怎样区别?分别在数轴上把这两个解集表示出来.解:x<3的解集是小于3的所有数,在数轴上表示出来是空心圆圈;而x ≤3的解集是小于且等于3的所有数,在数轴上表示出来是实心圆点,包括3这个数,把它们表示在数轴上为:14.x 与3的和的一半是负数,用不等式表示为(C )A .12x +3>0 B .12x +3<0 C .12(x +3)<0 D .12(x +3)>015.(桂林中考)下列数值中不是不等式5x ≥2x +9的解的是(D )A .5B .4C .3D .216.(潍坊中考)对于实数x ,我们规定[x]表示不大于x 的最大整数,例如[1.2]=1,[3]=3,[-2.5]=-3.若[x +410]=5,则x 的取值可以是(C ) A .40 B .45 C .51 D .5617.某饮料瓶上有这样的字样:Eatable Date 18 months .如果用x(单位:月)表示Eatable Date (保质期),那么该饮料的保质期可以用不等式表示为x ≤18.18.用不等式表示:(1)a 与5的和是非负数;解:a +5≥0.(2)a 与2的差是负数;解:a -2<0.(3)b 的10倍不大于27.解:10b ≤27.19.下列数值中哪些是不等式3x -1≥5的解?哪些不是?100,98,51,12,2,0,-1,-3,-5.解:100,98,51,12,2是不等式3x -1≥5的解;0,-1,-3,-5不是不等式3x -1≥5的解.20.直接写出下列各不等式的解集:(1)x +1>0;解:x >-1.(2)3x <6.解:x <2.21.由于小于6的每一个数都是不等式12x -1<6的解,所以这个不等式的解集是x <6.这种说法对不对? 解:这种说法是错的.22.学校要购买2 000元的图书,包括名著和辞典,名著每套65元,辞典每本40元,现已购买名著20套,问最多还能买几本辞典?(列式即可)解:设还能买x 本辞典,得20×65+40x ≤2 000.综合题23.阅读下列材料,并完成填空.你能比较2 0152 016和2 0162 015的大小吗?为了解决这个问题,先把问题一般化,比较n n +1和(n +1)n (n ≥1,且n 为整数)的大小.然后从分析n=1,n =2,n =3…的简单情形入手,从中发现规律,经过归纳、猜想得出结论.(1)通过计算(可用计算器)比较下列①~⑦组两数的大小:(在横线上填上“>”“=”或“<”)①12<21;②23<32;③34>43;④45>54;⑤56>65;⑥67>76;⑦78>87;(2)归纳第(1)问的结果,可以猜想出n n +1和(n +1)n 的大小关系;(3)根据以上结论,可以得出2 0162 017和2 0172 016的大小关系.解:(2)当n =1或2时,n n +1<(n +1)n ;当n ≥3时,n n +1>(n +1)n .(3)2 0162 017>2 0172 016.。

初中数学解不等式与不等式组精选计算题专题训练含答案

初中数学解不等式与不等式组精选计算题专题训练含答案

初中数学解不等式与不等式组精选计算题专题训练含答案姓名:__________ 班级:__________考号:__________一、计算题(共30题)1、解不等式3x+2>2 (x-1),并将解集在数轴上表示出来:2、解不等式,并把它的解集表示在数轴上。

3、解不等式并把解集在数轴上表示出来:4、解不等式:≥70.5、解不等式< 0,并把它的解集表示在数轴上.6、解不等式:5x-3<1-3x7、解不等式:2(x+)-1≤-x+9.8、(1)解不等式:x-1<0,并把它的解集在数轴上表示出来;解不等式:5x12≤2(4x-3)10、解不等式:11、解不等式:,并在数轴上表示解集.12、解不等式:,并在数轴上表示解集.13、-1<+.14、解不等式,并将解集在数轴上表示出来.15、解不等式≤1,并把它的解集在数轴上表示出来.16、解不等式:,并求它的非负整数解.17、解不等式:18、解不等式19、 2(2x-3)<5(x-1).20、 10-3(x+6)≤1.21、22、23、24、解不等式,并把解集表示在数轴上。

25、解不等式,并把它的解集在数轴上表示出来.26、(2) 解不等式:27、解不等式,并把解集在数轴上表示出来。

28、解不等式10-4(x-3)<2(x-1),并把它的解集在数轴上表示出来。

29、解不等式并将解集在数轴上表示出来..30、解下列不等式,并把解集表示在数轴上============参考答案============一、计算题1、解:原不等式可化为:3x+2>2x-2.解得x>-4,∴原不等式的解集为x>-4.在数轴上表示如下:2、解:去分母,得去括号,得移项、合并同类项,得两边都除以-1,得这个不等式的解集在数轴上表示如下:3、,图略4、解:≥,≥,∴≥.5、 x>在数轴上表示略。

6、解:移项得 5x+3x<1+3,合并同类项得 8x<4,两边同除以8得x<7、解:去括号得 2x+1-1≤-x+9,移项、合并同类项得3x≤9,两边都除以3得x≤3.8、解:(1)去分母,移项,得x<3.这个不等式的解集在数轴上表示如下:解:5x-12≤8x-6-3x≤6x≥-210、解:x-3≥2x-4-x≥-1X≤111、解:3x-x>22x>2x>1.12、解:3x-x>22x>2x>1.13、y >.14、解:15、解:2(2x-1)-3(5x+1)≤6.4x-2-15x-3≤6.4x-15x≤6+2+3.-11x≤11.x≥-1.这个不等式的解集在数轴上表示如下:16、解:………………………1分………………………2分………………………4分它的非负整数解为0,1,2. ………………………6分17、解:将不等式两边都减去11+2,得,两边都除以5得,18、.19、x>-1,解集表示为20、x≥-3,解集表示为21、y≤3,解集表示为22、y<5.23、x<9.24、解:去分母,得:25(x-2) -10 <8(1 + x)去括号,移项,合并,得:17x<68系数化为1,得:x <4则原不等式的解集为:x<4这个不等式的解集在数轴上表示如图:25、解:去括号,得.移项,得.合并,得.系数化为1,得.不等式的解集在数轴上表示如下:26、 x<-327、解:28、解得x>429、解:(2分)(1分)∴原不等式的解集为.(1分)30、x≥-8。

含参数一元一次不等式组的解集专题训练

含参数一元一次不等式组的解集专题训练

含参数一元一次不等式组的解集专题训练含参数一元一次不等式组的解集专题训练一、填空题(共22小题)1.不等式组。

的整数解是。

2.不等式组。

的整数解是。

3.不等式组。

的最大整数解为。

4.不等式组。

的最小整数解是。

5.不等式组的整数解的和为。

6.不等式组的最大整数解为。

7.不等式组的整数解的个数为。

8.不等式组的整数解是。

9.不等式组的负整数解是。

10.不等式组的非负整数解的个数是。

11.不等式组的整数解为。

12.不等式组的非负整数解有。

个。

13.关于x的不等式组。

14.不等式组。

恰有3个整数解,则实数m的取值范围为。

15.已知关于x的不等式组。

16.若不等式组。

17.不等式组。

18.若不等式组。

19.已知不等式组。

20.已知,关于x的不等式组。

21.已知关于x的不等式组。

22.关于x的不等式组。

二、解一元一次不等式组1.解不等式组。

的解集中至少有5个整数解,则正数a的最小值是。

2.解不等式组。

3.解不等式组。

4.解不等式组。

5.解不等式组。

6.解不等式组。

7.解不等式组。

8.解不等式组。

9.解关于x的不等式组。

10.解关于x的不等式组。

11.(1) 已知不等式组的解集为1≤x<2,求a、b的值。

(2) 已知关于x的不等式组。

12.已知方程无解,试化简|a+1|﹣|3﹣a|。

的解满足条件x >,y<,求m的取值范围。

13.试求出所有的实数对a、b,使得关于x的不等式组。

14.解关于x的不等式组。

三、实际问题与不等式组1.某学校准备购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买2个足球和3个篮球共需340元,购买5个足球和2个篮球共需410元。

(1) 购买一个足球、一个篮球各需多少元?(2) 根据学校的实际情况,需购买足球和篮球共96个,并且总费用不超过5720元。

问最多可以购买多少个篮球?2.某电脑经销商计划同时购进10台电脑机箱和8台液晶显示器,共需要资金7000元;若购进2台电脑机箱和5台液晶显示器,共需要资金4120元。

《方程(组)与不等式相结合的解集问题》专题(含解析)

《方程(组)与不等式相结合的解集问题》专题(含解析)

《方程(组)与不等式相结合的解集问题》专题姓名:__________________ 班级:______________ 得分:_________________ 1.(2020春•常熟市期末)已知关于x、y的方程组(m是常数).(1)若x+y=1,求m的值;(2)若1≤x﹣y≤15.求m的取值范围;(3)在(2)的条件下,化简:|2m+1|﹣|m﹣7|=.2.(2020春•鼓楼区期末)已知4x+y=1.(1)y=.(用含x的代数式表示)(2)当y为非负数时,x的取值范围是.(3)当﹣1<y≤2时,求x的取值范围.3.(2020春•仪征市期末)已知关于x、y的方程组.(1)求该方程组的解(用含a的代数式表示);(2)若方程组的解满足x<0,y>0,求a的取值范围.4.(2020春•张家港市期末)已知关于x、y的方程组.(1)求方程组的解(用含m的代数式表示);(2)若方程组的解满足x≤0,y<0,且m是正整数,求m的值.5.(2020春•相城区期末)已知方程组的解x、y的值均大于零.(1)求a的取值范围;(2)化简:|2a+2|﹣2|a﹣3|.6.(2020春•汕尾期末)已知关于x,y的二元一次方程组(1)用含有m的代数式表示方程组的解;(2)如果方程组的解x,y满足x+y>0,求m的取值范围.7.(2020春•东丽区期末)已知方程组的解x,y满足x+y<1,且m为非负数,求m的取值范围.8.(2020春•高州市期末)已知关于x,y的二元一次方程组的解满足不等式x+y为非负数,求实数m的取值范围.9.(2020春•定襄县期末)已知关于x、y的方程组.(1)若a=2,求方程组的解;(2)若方程组的解x、y满足x>y,求a的取值范围.10.(2019春•三门县期末)已知关于x,y的二元一次方程组.(1)当a=2时,求方程组的解;(2)当a为何值时,y≥0?11.(2020春•张家港市校级月考)已知关于x,y的方程组.(1)求方程组的解(用含a的代数式表示);(2)若方程组的解满足xy<0,求a的取值范围.12.(2018春•开福区校级期中)已知关于x、y的方程组的解满足不等式x+y <3.(1)求实数a的取值范围;(2)在(1)的条件下,解关于a的方程|a﹣1|2.13.(2019春•新野县期中)已知关于x的二元一次方程组(k为常数).(1)求这个二元一次方程组的解(用k的代数式表示).(2)若方程组的解满足x+y>5,求k的取值范围.14.(2018春•宽城区期中)感知:解方程组,下列给出的两种方法中,最佳的方法是(A)由①,得x代入②,先消去x,求出y,再代入求解;(B)将①代入②,得4×7﹣y=27,解得y=1,再代入求解.探究:利用最佳的方法解方程组应用:若关于x、y的二元一次方程组的解中x的值是正数,则a的取值范围为.15.(2019春•房山区期中)关于x,y的二元一次方程组的解满足x+y >5.求m的取值范围.16.(2016春•衡阳县校级期末)已知x=1满足不等式组,求a的取值范围.17.(2019春•雁江区期末)已知方程组的解满足x为非正数,y为负数.(1)求m的取值范围;(2)化简:|m﹣3|﹣|m+2|;(3)在m的取值范围内,当m为何整数时,不等式2mx+x<2m+1的解集为x>1.18.(2020春•南关区月考)感知:解方程组,下列给出的两种方法中,方法简单的是.(A)由①,得x,代入②,先消去x,求出y,再代入求解.(B)将①代入②,得4×7﹣y=27,解得y=1,再代入求解.探究:解方程组.应用:若关于x,y的二元一次方程组的解中的x是正数,则a的取值范围为.19.(2020春•荔城区校级月考)已知关于x、y的方程组.(1)若此方程组的解是二元一次方程2x+3y=16的一组解,求m的值;(2)若此方程组的解满足不等式x+3y>6,求m的取值范围.20.(2020春•宝应县期末)已知关于x,y的二元一次方程组.(1)若满足方程x﹣2y=k,请求出此时这个方程组的解;(2)若该方程组的解满足x>y,求k的取值范围.21.(2020春•万州区期末)已知方程组的解满足x﹣2y<8.(1)求m的取值范围;(2)当m为正整数时,求代数式2(m2﹣m+1)﹣3(m2+2m﹣5)的值.22.(2020春•叙州区期末)若关于x、y的二元一次方程组.(1)若方程组的解满足x﹣y=1,求k的值;(2)若x+y≤﹣1,求k的取值范围.23.(2014春•福清市校级期末)已知不等式组(1)当k=﹣2时,不等式组的解集是:;当k=3时,不等式组的解集是:(2)由(1)可知,不等式组的解集随k的值变化而变化,若不等式组有解,求k的取值范围并求出解集.24.(2020春•海淀区校级期中)已知关于x,y的方程组的解满足x<y,求p的取值范围?25.(2020春•沭阳县期末)关于x、y的方程组的解满足x+y.(1)求k的取值范围;(2)化简:|5k﹣1|﹣|4﹣5k|.1.(2020春•常熟市期末)已知关于x、y的方程组(m是常数).(1)若x+y=1,求m的值;(2)若1≤x﹣y≤15.求m的取值范围;(3)在(2)的条件下,化简:|2m+1|﹣|m﹣7|=3m﹣6.【分析】(1)①+②,化简得出x+y,由x+y=1列出关于m的方程,解之可得答案;(2)①﹣②,得:x﹣y=2m+2,结合1≤x﹣y≤15得出关于m的不等式组,解之可得;(3)利用绝对值的性质去绝对值符号,再去括号、合并即可得.【解析】(1),①+②,得:3x+3y=8m﹣2,则x+y,∵x+y=1,∴1,解得m;(2)①﹣②,得:x﹣y=2m+2,∵1≤x﹣y≤15,∴1≤2m+2≤15,解得2m+2≥1,得:m≥﹣0.5,解2m+2≤15,得m≤6.5,则﹣0.5≤m≤6.5;(3)∵﹣0.5≤m≤6.5,∴2m+1≥0,m﹣7≤﹣0.5,则原式=2m+1﹣(7﹣m)=2m+1﹣7+m=3m﹣6,故答案为:3m﹣6.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集和等式、不等式的基本性质、绝对值的性质是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.2.(2020春•鼓楼区期末)已知4x+y=1.(1)y=1﹣4x.(用含x的代数式表示)(2)当y为非负数时,x的取值范围是x.(3)当﹣1<y≤2时,求x的取值范围.【分析】(1)根据等式的性质移项即可;(2)根据题意得出不等式,求出不等式的解集即可;(3)根据题意得出不等式组,求出不等式组的解集即可.【解析】(1)4x+y=1,移项得:y=1﹣4x,故答案为:1﹣4x;(2)∵y为非负数,∴y=1﹣4x≥0,解得:x,故答案为:x;(3)∵﹣1<y≤2,∴﹣1<﹣4x+1≤2,∴﹣2<﹣4x≤1,∴x,即x的取值范围是:x.【点评】本题考查了解二元一次方程,解一元一次不等式,解一元一次不等式组等知识点,能根据等式的性质进行变形是解(1)的关键,能得出不等式或不等式组是进而(2)(3)的关键.3.(2020春•仪征市期末)已知关于x、y的方程组.(1)求该方程组的解(用含a的代数式表示);(2)若方程组的解满足x<0,y>0,求a的取值范围.【分析】(1)利用加减消元法求解可得;(2)根据题意列出关于a的不等式组,解之可得.【解析】(1),②﹣①,得:x=﹣2a+1,将x=﹣2a+1代入①,得:﹣2a+1﹣y=﹣a﹣1,解得y=﹣a+2,所以方程组的解为;(2)根据题意知,解不等式﹣2a+1<0,得,解不等式﹣a+2>0,得a<2,解得:.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.4.(2020春•张家港市期末)已知关于x、y的方程组.(1)求方程组的解(用含m的代数式表示);(2)若方程组的解满足x≤0,y<0,且m是正整数,求m的值.【分析】(1)利用加减消元法求解可得;(2)根据题意列出不等式组,解之求出m的取值范围,从而得出答案.【解析】(1),由①,得2x+2y=2m﹣18.③,由②+③,得5x=10m﹣20,x=2m﹣4;将x=2m﹣4代入①,得y=﹣m﹣5,∴原方程组的解为;(2)∵,∴,解得﹣5<m≤2,且m是正整数,∴m=1或m=2.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.5.(2020春•相城区期末)已知方程组的解x、y的值均大于零.(1)求a的取值范围;(2)化简:|2a+2|﹣2|a﹣3|.【分析】(1)把a看做已知数表示出方程组的解,根据x与y同号求出a的范围即可;(2)由a的范围判断绝对值里边式子的正负,利用绝对值的代数意义化简,计算即可得到结果.【解析】(1),①+②得:5x=15﹣5a,即x=3﹣a,代入①得:y=2+2a,根据题意得:解得﹣1<a<3;(2)∵﹣1<a<3,∴|2a+2|﹣2|a﹣3|=2a+2+2a﹣6=4a﹣4.【点评】此题考查了二元一次方程组的解,解一元一次不等式组,绝对值的性质,是基础题,难度不大.6.(2020春•汕尾期末)已知关于x,y的二元一次方程组(1)用含有m的代数式表示方程组的解;(2)如果方程组的解x,y满足x+y>0,求m的取值范围.【分析】(1)将m看做已知数求出方程组的解即可;(2)根据已知不等式求出m的范围即可.【解析】(1)①﹣②,得3y=12﹣3m,解得y=4﹣m.将y=4﹣m代入②,得x﹣(4﹣m)=3m,解得x=2m+4.故方程组的解可表示为;(2)∵x+y>0,∴2m+4+4﹣m>0,解得m>﹣8.故m的取值范围是m>﹣8.【点评】此题考查了解一元一次不等式,二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.7.(2020春•东丽区期末)已知方程组的解x,y满足x+y<1,且m为非负数,求m的取值范围.【分析】根据消元法,得出x、y的值,再根据x+y<1,且m为非负数,可得答案.【解析】,①+②,得:3x+3y=2+2m,∴x+y,∵x+y<1,即1,解得,m,又∵m≥0,∴.【点评】本题考查了二元一次方程组的解,先求出二元一次方程组的解,再求出m的取值范围.8.(2020春•高州市期末)已知关于x,y的二元一次方程组的解满足不等式x+y为非负数,求实数m的取值范围.【分析】解此题时可以解出二元一次方程组中x,y关于a的式子,代入x+y>0,然后解出a的取值范围.【解析】方程组中两个方程相加得3x+3y=3+m,即x+y=1m,又x+y≥0,即1m≥0,解一元一次不等式得m≥﹣3.【点评】本题是综合考查了二元一次方程组和一元一次不等式的综合运用,灵活运用二元一次方程组的解法是解决本题的关键.9.(2020春•定襄县期末)已知关于x、y的方程组.(1)若a=2,求方程组的解;(2)若方程组的解x、y满足x>y,求a的取值范围.【分析】(1)将a=2代入,解利用加减消元法求解可得;(2)解方程组得出x、y,再根据x>y得出关于a的不等式,解之可得.【解析】(1)当a=2时,,①﹣②,得:3y=6,y=2,将y=2代入①,得:x+2=11,x=9,则方程组的解为;(2)解方程组得,∵x>y,∴,解得a.【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.10.(2019春•三门县期末)已知关于x,y的二元一次方程组.(1)当a=2时,求方程组的解;(2)当a为何值时,y≥0?【分析】(1)用加减消元法求解即可;(2)解出二元一次方程组中y关于a的式子,然后即可解出a的范围.【解析】(1)当a=2时,方程组为,②×3﹣①×2得,17y=17,解得y=1,把y=1代入①得,3x﹣4=2,解得x=2,所以,方程组的解是;(2)①×2﹣②×3得,﹣17y=5a﹣27,即y,解0,得,a,∴当a时,y≥0.【点评】此题考查的是二元一次方程组和解一元一次不等式,明确解题步骤是关键.11.(2020春•张家港市校级月考)已知关于x,y的方程组.(1)求方程组的解(用含a的代数式表示);(2)若方程组的解满足xy<0,求a的取值范围.【分析】(1)利用加减消元法解之可得;(2)根据xy<0得出关于a的不等式组,解之可得.【解析】(1)两个方程相加,得:3x=6a+3,解得x=2a+1,将x=2a+1代入2x+y=5a,得:4a+2+y=5a,解得y=a﹣2,∴方程组的解为;(2)根据题意,得:或,解得a<2.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.12.(2018春•开福区校级期中)已知关于x、y的方程组的解满足不等式x+y <3.(1)求实数a的取值范围;(2)在(1)的条件下,解关于a的方程|a﹣1|2.【分析】(1)先用a表示出x、y的值,再代入不等式x+y<3即可得出关于a的不等式,进而得出a的取值范围.(2)先取绝对值,再解一元一次方程即可求解.【解析】,①+②得3x=6a+3,解得x=2a+1;把x=2a+1代入①得2a+1﹣y=3,解得y=2a﹣2,∵x+y<3,∴2a+1+2a﹣2<3,解得a<1.故实数a的取值范围为a<1;(2)∵a<1,∴|a﹣1|2可以变形为﹣a+12,解得a.【点评】本题考查的是解二元一次方程组及一元一次不等式,先根据题意用a表示出x、y的值是解答此题的关键.13.(2019春•新野县期中)已知关于x的二元一次方程组(k为常数).(1)求这个二元一次方程组的解(用k的代数式表示).(2)若方程组的解满足x+y>5,求k的取值范围.【分析】(1)利用加减消元法求解可得;(2)由方程组的解满足x+y>5,得5,解之可得.【解析】(1)①+②得4x=2k﹣1,∴,代入①得,所以方程组的解为;(2)方程组的解满足x+y>5,所以5,∴.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.14.(2018春•宽城区期中)感知:解方程组,下列给出的两种方法中,最佳的方法是(B)(A)由①,得x代入②,先消去x,求出y,再代入求解;(B)将①代入②,得4×7﹣y=27,解得y=1,再代入求解.探究:利用最佳的方法解方程组应用:若关于x、y的二元一次方程组的解中x的值是正数,则a的取值范围为a>4.【分析】感知:根据题目中的解答过程可知(B)种方法简答;探究:根据感知中的解答方法可以解答此方程组;应用:根据感知中的方法,可以用含a的代数式表示出x,再根据方程组的解中x是正数,从而可以求得a的取值范围.【解析】感知:由题目中的解答过程可知,最佳的方法是(B),故答案为:(B);探究:,将①代入②,得2×2018﹣5y=3951,解得,y=17,将y=17代入①,得x=2001,故原方程组的解是;应用:,将①代入②,得,解得,x,∵关于x、y的二元一次方程组的解中x的值是正数,∴0,解得,a>4,故答案为:a>4.【点评】本题考查解一元一次不等式、解二元一次方程组,解答本题的关键是明确它们各自的解答方法.15.(2019春•房山区期中)关于x,y的二元一次方程组的解满足x+y >5.求m的取值范围.【分析】将两个方程相加得出3x+3y=﹣2m+2,结合x+y>5知3x+3y>15,据此列出关于m的不等式,解之可得.【解析】两个方程相加可得3x+3y=﹣2m+2,∵x+y>5,∴3x+3y>15,则﹣2m+2>15,解得m.【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.16.(2016春•衡阳县校级期末)已知x=1满足不等式组,求a的取值范围.【分析】首先对不等式组进行化简,根据不等式的解集的确定方法,就可以得出a的范围.【解析】将x=1代入3x﹣5≤2x﹣4a,得4a≤4,解得a≤1;将x=1代入3(x﹣a)<4(x+2)﹣5,得a.不等式组解集是a≤1,a的取值范围是a≤1.【点评】主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).17.(2019春•雁江区期末)已知方程组的解满足x为非正数,y为负数.(1)求m的取值范围;(2)化简:|m﹣3|﹣|m+2|;(3)在m的取值范围内,当m为何整数时,不等式2mx+x<2m+1的解集为x>1.【分析】首先对方程组进行化简,根据方程的解满足x为非正数,y为负数,就可以得出m的范围,然后再化简(2),最后求得m的值.【解析】(1)解原方程组得:,∵x≤0,y<0,∴,解得﹣2<m≤3;(2)|m﹣3|﹣|m+2|=3﹣m﹣m﹣2=1﹣2m;(3)解不等式2mx+x<2m+1得(2m+1)x<2m+1,∵x>1,∴2m+1<0,∴m,∴﹣2<m,∴m=﹣1.【点评】主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).18.(2020春•南关区月考)感知:解方程组,下列给出的两种方法中,方法简单的是B.(A)由①,得x,代入②,先消去x,求出y,再代入求解.(B)将①代入②,得4×7﹣y=27,解得y=1,再代入求解.探究:解方程组.应用:若关于x,y的二元一次方程组的解中的x是正数,则a的取值范围为a>4.【分析】感知:根据题目中的解答过程可知(B)种方法简答;探究:根据感知中的解答方法可以解答此方程组;应用:根据感知中的方法,可以用含a的代数式表示出x,再根据方程组的解中x是正数,从而可以求得a的取值范围.【解析】感知:由题目中的解答过程可知,最佳的方法是(B),故答案为:(B);探究:,将①代入②,得1009﹣5y=1094,解得,y=﹣17,将y=﹣17代入①,得x=2035,故原方程组的解是;应用:,将①代入②,得,解得,x,∵关于x,y的二元一次方程组的解中的x是正数,∴0,解得,a>4,故答案为:a>4.【点评】本题考查解一元一次不等式、解二元一次方程组,解答本题的关键是明确它们各自的解答方法.19.(2020春•荔城区校级月考)已知关于x、y的方程组.(1)若此方程组的解是二元一次方程2x+3y=16的一组解,求m的值;(2)若此方程组的解满足不等式x+3y>6,求m的取值范围.【分析】(1)根据方程组的解法解答即可;(2)根据不等式的解法解答即可.【解析】(1),①﹣②得:3y=﹣6m,解得:y=﹣2m,①+②×2得:3x=21m,解得:x=7m,将x=7m,y=﹣2m代入2x+3y=16得:14m﹣6m=16,解得m=2;(2)由(1)知:x=7m,y=﹣2m,代入x+3y>6,得(﹣6m)>6,∴m.【点评】此题考查解一元一次不等式问题,关键是根据一元一次不等式的解法解答.20.(2020春•宝应县期末)已知关于x,y的二元一次方程组.(1)若满足方程x﹣2y=k,请求出此时这个方程组的解;(2)若该方程组的解满足x>y,求k的取值范围.【分析】(1)把x与y的值代入已知方程求出k的值,进而求出方程组的解即可;(2)表示出方程组的解,根据x>y,求出k的范围即可.【解析】(1)把代入x﹣2y=k得:k=3+4=7,方程组为,①﹣②×2得:y=﹣9,把y=﹣9代入①得:x=﹣11,则方程组的解为;(2),①﹣②得:x﹣y=5﹣k,∵x>y,即x﹣y>0,∴5﹣k>0,解得:k<5.【点评】此题考查了解一元一次不等式,解二元一次方程组,熟练掌握各自的解法是解本题的关键.21.(2020春•万州区期末)已知方程组的解满足x﹣2y<8.(1)求m的取值范围;(2)当m为正整数时,求代数式2(m2﹣m+1)﹣3(m2+2m﹣5)的值.【分析】(1)解方程组得出x=2m+1,y=1﹣2m,代入不等式x﹣2y<8,可求出m的取值范围;(2)根据题意求出m=1,化简原式即可得出答案.【解析】(1)解方程组得,,∵x﹣2y<8,∴2m+1﹣2(1﹣2m)<8,解得,m.(2)∵m,m为正整数,∴m=1,∴原式=2m2﹣2m+2﹣3m2﹣6m+15=﹣m2﹣8m+17.当m=1时,原式=﹣1﹣8+17=8.【点评】本题考查了解二元一次方程组和一元一次不等式的解法,熟练掌握二元一次方程组的解法是解题的关键.22.(2020春•叙州区期末)若关于x、y的二元一次方程组.(1)若方程组的解满足x﹣y=1,求k的值;(2)若x+y≤﹣1,求k的取值范围.【分析】(1)先利用加减消元法解方程组得到,则利用x﹣y=1得到﹣17k﹣15﹣(9k+10)=1,然后解关于k的方程即可;(2)利用x+y≤﹣1得到﹣17k﹣15+9k+10≤﹣1,然后解关于k的不等式即可.【解析】(1)解方程组得,∵x﹣y=1,∴﹣17k﹣15﹣(9k+10)=1,∴k=﹣1;(2)∵x+y≤﹣1,∴﹣17k﹣15+9k+10≤﹣1,∴k.【点评】本题考查了解一元一次不等式:根据不等式的性质解一元一次不等式.也考查了解二元一次方程组.23.(2014春•福清市校级期末)已知不等式组(1)当k=﹣2时,不等式组的解集是:﹣1<x<1;当k=3时,不等式组的解集是:无解(2)由(1)可知,不等式组的解集随k的值变化而变化,若不等式组有解,求k的取值范围并求出解集.【分析】(1)把k=﹣2和k=3分别代入已知不等式组,分别求得三个不等式的解集,取其交集即为该不等式组的解集;(2)当k为任意有理数时,要分1﹣k<﹣1,1﹣k>1,﹣1<1﹣k<1三种情况分别求出不等式组的解集.【解析】(1)把k=﹣2代入,得,解得﹣1<x<1;把k=3代入,得,无解.故答案是:﹣1<x<1;无解;(2)若k为任意实数,不等式组的解集分以下三种情况:当1﹣k≤﹣1即k≥2时,原不等式组可化为,故原不等式组的解集为无解;当1﹣k≥1即k≤0时,原不等式组可化为,故原不等式组的解集为﹣1<x<1;当﹣1<1﹣k<1即0<k<2时,原不等式组可化为,故原不等式组的解集为﹣1<x<1﹣k.【点评】本题考查的是不等式的解集,特别注意在解(2)时要分三种情况求不等式组的解集.24.(2020春•海淀区校级期中)已知关于x,y的方程组的解满足x<y,求p的取值范围?【分析】解不等式组求出,再根据x<y得出关于p的不等式,解之可得答案.【解析】解方程组,得:,∵x<y,∴p+5<﹣p﹣7,解得p<﹣6.【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.25.(2020春•沭阳县期末)关于x、y的方程组的解满足x+y.(1)求k的取值范围;(2)化简:|5k﹣1|﹣|4﹣5k|.【分析】(1)两方程相加、化简得出x+y,结合x+y知,解之可得答案;(2)根据绝对值的性质去绝对值符号,再去括号、合并即可得.【解析】(1)将两个方程相加可得3x+3y=k+1,则x+y,∵x+y,∴,解得k;(2)原式=5k﹣1﹣(5k﹣4)=5k﹣1﹣5k+4=3.【点评】本题主要考查解一元一次不等式,基本操作方法与解一元一次方程基本相同,都有如下步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1.。

《含参数的不等式解集问题》专题(含解析)

《含参数的不等式解集问题》专题(含解析)

《含参数的不等式解集问题》专题一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2018春•宿豫区期末)已知不等式组无解,则a的取值范围是()A.a≤1 B.a≥1 C.a<1 D.>12.(2020春•江都区期末)已知x=4是关于x的方程kx+b=0(k≠0,b>0)的解,则关于x的不等式k(x﹣3)+2b>0的解集是()A.x>11 B.x<11 C.x>7 D.x<7 3.(2020春•吴江区期末)已知关于x的不等式(a﹣1)x>1,可化为x,试化简|1﹣a|﹣|a﹣2|,正确的结果是()A.﹣2a﹣1 B.﹣1 C.﹣2a+3 D.14.(2020春•龙华区校级期末)关于x的不等式:a<x<2有两个整数解,则a的取值范围是()A.0<a≤1 B.0≤a<1 C.﹣1<a≤0 D.﹣1≤a<0 5.(2020•寿光市二模)若不等式组有三个整数解,则a的取值范围是()A.2≤a<3 B.2<a≤3 C.2<a<3 D.a<3 6.(2020春•济源期末)已知关于x的不等式3(x+1)﹣2mx>2m的解集是x<﹣1,则m 的取值范围在数轴上可表示为()A.B.C.D.7.(2020春•蓬溪县期末)关于x的不等式组无解,则a的取值范围是()A.a≤5 B.a≥5 C.a<5 D.a>58.(2020春•东西湖区期末)若关于x的不等式mx﹣n>0的解集是x,则关于x的不等式(m+n)x<n﹣m的解集是()A.x B.x C.x D.x9.(2020春•南岗区校级月考)如果一元一次不等式(m+2)x>m+2的解集为x<1,则m 必须满足的条件是()A.m<﹣2 B.m≤﹣2 C.m>﹣2 D.m≥﹣2 10.(2020秋•武汉月考)对于三个数字a,b,c,用min{a,b,c}表示这三个数中最小数,例如min{﹣2,﹣1,0}=﹣2,min{﹣2,﹣1,x}.如果min{﹣3,8﹣2x,3x﹣5}=﹣3,则x的取值范围是()A.B.C.D.二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.(2019春•沭阳县期末)已知不等式组只有一个整数解,则a的取值范围为.12.(2020春•丛台区校级期末)对任意有理数a,b,c,d,规定ad﹣bc,若10,则x的取值范围为.13.(2020春•仁寿县期末)若关于x的不等式组有四个整数解,则m的取值范围是.14.(2020春•番禺区校级月考)若关于x的不等式组的解集为x>a,则a取值范围是.15.(2020春•渝中区校级期末)若关于x,y的方程组的解都是正数,则m的取值范围是.16.(2020春•金水区校级月考)若不等式组有两个整数解,则a的取值范围是.17.(2020秋•高新区校级月考)已知关于x的不等式x m<0有5个自然数解,则m的取值范围是.18.(2020春•高邮市期末)若不等式1≤2﹣x的解集中x的每一个值,都能使关于x的不等式3(x﹣1)+5>5x+2(m+x)成立,则m的取值范围是.三.解答题(共7小题)19.(2016•大庆)关于x的两个不等式①1与②1﹣3x>0(1)若两个不等式的解集相同,求a的值;(2)若不等式①的解都是②的解,求a的取值范围.20.(2015春•乐平市期末)已知一元一次不等式mx﹣3>2x+m.(1)若它的解集是x,求m的取值范围;(2)若它的解集是x,试问:这样的m是否存在?如果存在,求出它的值;如果不存在,请说明理由.21.(2016春•衡阳县校级期末)已知x=1满足不等式组,求a的取值范围.22.(2020春•麦积区期末)(1)解不等式x+12,并把解集在数轴上表示出来;(2)关于x的不等式组恰有两个整数解,试确定a的取值范围.23.(2014春•福清市校级期末)已知不等式组(1)当k=﹣2时,不等式组的解集是:;当k=3时,不等式组的解集是:(2)由(1)可知,不等式组的解集随k的值变化而变化,若不等式组有解,求k的取值范围并求出解集.24.(2017•江阴市自主招生)已知关于x的不等式的解集是x,求m 的值.25.(2017•呼和浩特)已知关于x的不等式x﹣1.(1)当m=1时,求该不等式的解集;(2)m取何值时,该不等式有解,并求出解集.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2018春•宿豫区期末)已知不等式组无解,则a的取值范围是()A.a≤1 B.a≥1 C.a<1 D.>1【分析】根据不等式的解集的定义即可求出答案.【解析】由不等式组无解可知,两不等式在数轴上没有公共部分,即a≤1故选:A.【点评】本题考查不等式的解集,解题的关键是熟练运用不等式的解集的定义,本题属于基础题型.2.(2020春•江都区期末)已知x=4是关于x的方程kx+b=0(k≠0,b>0)的解,则关于x的不等式k(x﹣3)+2b>0的解集是()A.x>11 B.x<11 C.x>7 D.x<7【分析】将x=4代入方程,求出b=﹣4k>0,求出k<0,把b=﹣4k代入不等式,再求出不等式的解集即可.【解析】∵x=4是关于x的方程kx+b=0(k≠0,b>0)的解,∴4k+b=0,即b=﹣4k>0,∴k<0,∵k(x﹣3)+2b>0,∴kx﹣3k﹣8k>0,∴kx>11k,∴x<11,故选:B.【点评】本题考查了解一元一次不等式和一元一次方程的解,能求出b=﹣4k和k<0是解此题的关键.3.(2020春•吴江区期末)已知关于x的不等式(a﹣1)x>1,可化为x,试化简|1﹣a|﹣|a﹣2|,正确的结果是()A.﹣2a﹣1 B.﹣1 C.﹣2a+3 D.1【分析】由不等式的基本性质3可得a﹣1<0,即a<1,再利用绝对值的性质化简可得.【解析】∵(a﹣1)x>1可化为x,∴a﹣1<0,解得a<1,则原式=1﹣a﹣(2﹣a)=1﹣a﹣2+a=﹣1,故选:B.【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.4.(2020春•龙华区校级期末)关于x的不等式:a<x<2有两个整数解,则a的取值范围是()A.0<a≤1 B.0≤a<1 C.﹣1<a≤0 D.﹣1≤a<0【分析】根据题意可知:两个整数解是0,1,可以确定a取值范围.【解析】∵a<x<2有两个整数解,∴这两个整数解为0,1,∴a的取值范围是﹣1≤a<0,故选:D.【点评】此题考查了一元一次不等式组的整数解.解题时特别要注意取值范围中等号的确定.5.(2020•寿光市二模)若不等式组有三个整数解,则a的取值范围是()A.2≤a<3 B.2<a≤3 C.2<a<3 D.a<3【分析】首先解不等式,根据解的情况确定a的取值范围.特别是要注意不等号中等号的取舍.【解析】,解不等式x+a≥0得:x≥﹣a,解不等式1﹣2x>x﹣2得:x<1,∴﹣a≤x<1.∵此不等式组有3个整数解,∴这3个整数解为﹣2,﹣1,0,∴﹣3<﹣a≤﹣2,∴2≤a<3.故选:A.【点评】此题考查了一元一次不等式组的解法.解题中要注意分析不等式组的解集的确定.6.(2020春•济源期末)已知关于x的不等式3(x+1)﹣2mx>2m的解集是x<﹣1,则m 的取值范围在数轴上可表示为()A.B.C.D.【分析】根据已知不等式的解集确定出m的范围即可.【解析】不等式3(x+1)﹣2mx>2m变形为:(3﹣2m)x>﹣(3﹣2m),∵关于x的不等式3(x+1)﹣2mx>2m的解集是x<﹣1,∴3﹣2m<0,解得:m,在数轴上表示:故选:C.【点评】此题考查了解一元一次不等式,以及在数轴上表示不等式的解集,熟练掌握解一元一次不等式的方法,以及在数轴上表示不等式的解集的方法是解本题的关键.7.(2020春•蓬溪县期末)关于x的不等式组无解,则a的取值范围是()A.a≤5 B.a≥5 C.a<5 D.a>5【分析】关于x的不等式组无解,根据:同大取较大,同小取较小,小大大小中间找,大大小小解不了,求出a的取值范围是多少即可.【解析】关于x的不等式组无解,则a的取值范围是a≥5.故选:B.【点评】此题主要考查了不等式的解集,要熟练掌握,解答此题的关键是要明确:同大取较大,同小取较小,小大大小中间找,大大小小解不了.8.(2020春•东西湖区期末)若关于x的不等式mx﹣n>0的解集是x,则关于x的不等式(m+n)x<n﹣m的解集是()A.x B.x C.x D.x【分析】先根据第一个不等式的解集求出m<0、n<0,m=3n,再代入第二个不等式,求出不等式的解集即可.【解析】∵mx﹣n>0,∴mx>n,∵关于x的不等式mx﹣n>0的解集是x,∴m<0,,∴m=3n,n<0,∴n﹣m=﹣2n,m+n=4n,∴关于x的不等式(m+n)x<n﹣m的解集是x,故选:C.【点评】本题考查了解一元一次不等式,能求出m、n的值是解此题的关键.9.(2020春•南岗区校级月考)如果一元一次不等式(m+2)x>m+2的解集为x<1,则m 必须满足的条件是()A.m<﹣2 B.m≤﹣2 C.m>﹣2 D.m≥﹣2【分析】根据解集中不等号的方向发生了改变,得出m+2<0,求出即可.【解析】∵不等式(m+2)x>m+2的解集是x<1,∴m+2<0,∴m<﹣2,故选:A.【点评】本题考查了解一元一次不等式和一元一次不等式的解集的应用,关键是能根据题意得出m+2<0.10.(2020秋•武汉月考)对于三个数字a,b,c,用min{a,b,c}表示这三个数中最小数,例如min{﹣2,﹣1,0}=﹣2,min{﹣2,﹣1,x}.如果min{﹣3,8﹣2x,3x﹣5}=﹣3,则x的取值范围是()A.B.C.D.【分析】根据题中的新定义列出不等式组,求出x的范围即可.【解析】根据题意得:,解得:x,故选:A.【点评】此题考查了解一元一次不等式组,弄清题意是解本题的关键.二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.(2019春•沭阳县期末)已知不等式组只有一个整数解,则a的取值范围为2<a≤3.【分析】先根据不等式组有解,确定不等式组的解集为1<x<a,再根据不等式组只有一个整数解,可知整数解为2,从而可求得a的取值范围.【解析】不等式组有解,则不等式的解集一定是1<x<a,若这个不等式组只有一个整数解即2,则a的取值范围是2<a≤3.故答案为:2<a≤3【点评】此题考查不等式的解集问题,正确解出不等式组的解集,正确确定a的范围,是解决本题的关键.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了..12.(2020春•丛台区校级期末)对任意有理数a,b,c,d,规定ad﹣bc,若10,则x的取值范围为x>﹣3.【分析】根据新定义可知﹣4x﹣2<10,求不等式的解即可.【解析】根据规定运算,不等式10化为﹣4x﹣2<10,解得x>﹣3.故答案为x>﹣3.【点评】本题考查了利用一种新型定义转化为解一元一次不等式的问题,理解题意是解题的关键.13.(2020春•仁寿县期末)若关于x的不等式组有四个整数解,则m的取值范围是﹣3≤m<﹣2.【分析】解不等式组的两个不等式,根据其整数解的个数得出1≤4+m<2,解之可得.【解析】解不等式2x+5>0,得:x,解不等式x≤2,得:x≤4+m,∵不等式组有4个整数解,∴1≤4+m<2,解得:﹣3≤m<﹣2,故答案为:﹣3≤m<﹣2.【点评】本题主要考查不等式组的整数解问题,根据不等式组的整数解的个数得出关于m的不等式组是解题的关键.14.(2020春•番禺区校级月考)若关于x的不等式组的解集为x>a,则a取值范围是a≥2.【分析】分别求出每一个不等式的解集,根据口诀:同大取大并结合不等式组的解集可得a的范围.【解析】解不等式2(x﹣1)>2,得:x>2,解不等式a﹣x<0,得:x>a,∵不等式组的解集为x>a,∴a≥2,故答案为:a≥2.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.15.(2020春•渝中区校级期末)若关于x,y的方程组的解都是正数,则m 的取值范围是6<m<15.【分析】解方程组得出,根据题意列出不等式组,解之可得.【解析】解方程组得,根据题意,得:,解不等式①,得:m<15,解不等式②,得:m>6,∴6<m<15,故答案为:6<m<15.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.16.(2020春•金水区校级月考)若不等式组有两个整数解,则a的取值范围是0<a≤1.【分析】先求出每个不等式的解集,再求出不等式组的解集,即可得出关于a的不等式组即可.【解析】,解不等式①得:x≥a,解不等式②得:x<3,∴不等式组的解集为a≤x<3,∵不等式组有两个整数解,∴0<a≤1,故答案为:0<a≤1.【点评】本题考查了解一元一次不等式组,不等式组的整数解的应用,解此题的关键是能根据不等式组的整数解和已知得出关于a的不等式组.17.(2020秋•高新区校级月考)已知关于x的不等式x m<0有5个自然数解,则m的取值范围是8<m≤10.【分析】首先解不等式求得不等式的解集,然后根据不等式有5个自然数解即可得到一个关于m的不等式,求得m的值.【解析】解不等式x m<0得:x m,不等式有5个自然数解,一定是0,1,2,3,4,根据题意得:4m≤5,解得:8<m≤10.故答案是:8<m≤10.【点评】本题考查了不等式的整数解,正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.18.(2020春•高邮市期末)若不等式1≤2﹣x的解集中x的每一个值,都能使关于x的不等式3(x﹣1)+5>5x+2(m+x)成立,则m的取值范围是m.【分析】求出不等式1≤2﹣x的解,再求出不等式3(x﹣1)+5>5x+2(m+x)的解集,得出关于m的不等式,求出m即可.【解析】解不等式1≤2﹣x得:x,解关于x的不等式3(x﹣1)+5>5x+2(m+x),得x,∵不等式1≤2﹣x的解集中x的每一个值,都能使关于x的不等式3(x﹣1)+5>5x+2(m+x)成立,∴,解得:m,故答案为m.【点评】本题主要对解一元一次不等式组,不等式的性质等知识点的理解和掌握,能根据已知得到关于m的不等式是解此题的关键.三.解答题(共7小题)19.(2016•大庆)关于x的两个不等式①1与②1﹣3x>0(1)若两个不等式的解集相同,求a的值;(2)若不等式①的解都是②的解,求a的取值范围.【分析】(1)求出第二个不等式的解集,表示出第一个不等式的解集,由解集相同求出a的值即可;(2)根据不等式①的解都是②的解,求出a的范围即可.【解析】(1)由①得:x,由②得:x,由两个不等式的解集相同,得到,解得:a=1;(2)由不等式①的解都是②的解,得到,解得:a≥1.【点评】此题考查了不等式的解集,根据题意分别求出对应的值利用不等关系求解.20.(2015春•乐平市期末)已知一元一次不等式mx﹣3>2x+m.(1)若它的解集是x,求m的取值范围;(2)若它的解集是x,试问:这样的m是否存在?如果存在,求出它的值;如果不存在,请说明理由.【分析】(1)根据不等式的解集,利用不等式的性质确定出m的范围即可;(2)由解集确定出m的范围,求出m的值即可作出判断.【解析】(1)不等式mx﹣3>2x+m,移项合并得:(m﹣2)x>m+3,由解集为x,得到m﹣2<0,即m<2;(2)由解集为x,得到m﹣2>0,即m>2,且,解得:m=﹣18<0,不合题意,则这样的m值不存在.【点评】此题考查了不等式的解集,熟练掌握运算法则是解本题的关键.21.(2016春•衡阳县校级期末)已知x=1满足不等式组,求a的取值范围.【分析】首先对不等式组进行化简,根据不等式的解集的确定方法,就可以得出a的范围.【解析】将x=1代入3x﹣5≤2x﹣4a,得4a≤4,解得a≤1;将x=1代入3(x﹣a)<4(x+2)﹣5,得a.不等式组解集是a≤1,a的取值范围是a≤1.【点评】主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).22.(2020春•麦积区期末)(1)解不等式x+12,并把解集在数轴上表示出来;(2)关于x的不等式组恰有两个整数解,试确定a的取值范围.【分析】(1)依次去分母、移项、合并同类项、系数化为1可得答案;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解析】(1)∵x+12,∴2x+2≥x+4,2x﹣x≥4﹣2,x≥2,将不等式的解集表示在数轴上如下:(2)解不等式0,得x,解不等式x(x+1)+a,得x<2a.因为该不等式组恰有两个整数解,所以1<2a≤2,所以a≤1.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.23.(2014春•福清市校级期末)已知不等式组(1)当k=﹣2时,不等式组的解集是:﹣1<x<1;当k=3时,不等式组的解集是:无解(2)由(1)可知,不等式组的解集随k的值变化而变化,若不等式组有解,求k的取值范围并求出解集.【分析】(1)把k=﹣2和k=3分别代入已知不等式组,分别求得三个不等式的解集,取其交集即为该不等式组的解集;(2)当k为任意有理数时,要分1﹣k<﹣1,1﹣k>1,﹣1<1﹣k<1三种情况分别求出不等式组的解集.【解析】(1)把k=﹣2代入,得,解得﹣1<x<1;把k=3代入,得,无解.故答案是:﹣1<x<1;无解;(2)若k为任意实数,不等式组的解集分以下三种情况:当1﹣k≤﹣1即k≥2时,原不等式组可化为,故原不等式组的解集为无解;当1﹣k≥1即k≤0时,原不等式组可化为,故原不等式组的解集为﹣1<x<1;当﹣1<1﹣k<1即0<k<2时,原不等式组可化为,故原不等式组的解集为﹣1<x<1﹣k.【点评】本题考查的是不等式的解集,特别注意在解(2)时要分三种情况求不等式组的解集.24.(2017•江阴市自主招生)已知关于x的不等式的解集是x,求m 的值.【分析】不等式组整理后表示出解集,根据已知解集确定出m的值即可.【解析】原不等式可化为:4m+2x≤12mx﹣3,即(12m﹣2)x≥4m+3,又因原不等式的解集为x,则12m﹣2>0,m,比较得:,即24m+18=12m﹣2,解得:m(舍去).故m无值.【点评】此题考查了不等式的解集,熟练掌握运算法则是解本题的关键.25.(2017•呼和浩特)已知关于x的不等式x﹣1.(1)当m=1时,求该不等式的解集;(2)m取何值时,该不等式有解,并求出解集.【分析】(1)把m=1代入不等式,求出解集即可;(2)不等式去分母,移项合并整理后,根据有解确定出m的范围,进而求出解集即可.【解析】(1)当m=1时,不等式为1,去分母得:2﹣x>x﹣2,解得:x<2;(2)不等式去分母得:2m﹣mx>x﹣2,移项合并得:(m+1)x<2(m+1),当m≠﹣1时,不等式有解,当m>﹣1时,不等式解集为x<2;当m<﹣1时,不等式的解集为x>2.【点评】此题考查了不等式的解集,熟练掌握不等式的基本性质是解本题的关键.。

专题15 不等式的解集(原卷版)

专题15 不等式的解集(原卷版)

提升训练2.5 不等式的解集一、选择题1.不等式成立的一个充分不必要条件是( )A .或B .C .或D .2.不等式2x ﹣1<1的解集在数轴上表示正确的是( )A .B .C .D .3.不等式组3020x x -≤⎧⎨+>⎩,的解集是( )A .23x -<≤B .23x -≤<C .3x ≥D .2x <-4.设x ∈R ,则“213x -≤”是“10x +≥”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件5.已知a R ∈,则“2a ≤”是“|2|||x x a -+>恒成立”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6.已知条件:|1|2p x +>,条件:>q x a ,且p ⌝是q ⌝的充分不必要条件,则a 的取值范围是( )A .1a ≤B .1a ≥C .1a ≥-D .3a ≤-7.不等式组103412x x x ->⎧⎪⎨-≤-⎪⎩的解集在数轴上应表示为( )A .B .C .D .8.已知关于x 的不等式组12x m x m -<⎧⎨->-⎩的解集中任意一个x 的值都不在-1≤x≤2的范围内,则m 的取值范围( ) A .m <-2或m >4 B .-2≤m≤4C .m≤-2或m≥4D .-2<m <4 9.不等式组5335x x x a -<+⎧⎨<⎩的解集为4x <,则a 满足的条件是( ) A .a<4 B .a=4 C .a ⩽4 D .a ⩾4 10.如果关于x 的不等式(a +2)x >a +2的解集为x <1,那么a 的取值范围是( ) A .a >0B .a <0C .a >﹣2D .a <﹣2 11.若不等式组2120x x x m ->-⎧⎨+≤⎩有解,则m 的取值范围是( ) A .1m >- B .1m ≥- C .1m ≤- D .1m <- 12.已知关于x 的不等式组200x x a +>⎧⎨-≤⎩的整数解共有4个,则a 的最小值为( ) A .1B .2C .2.1D .3二、填空题 13.不等式4x ﹣6≥7x ﹣15的正整数解的个数是______.14.不等式的解集为_________________; 15.若不等式组2322x x x m +≥-⎧⎨-≤⎩无解,则m 的取值范围是______. 16.若关于的不等式在[﹣1,1]上恒成立,则实数的取值范围为________; 三、解答题17.设x ∈R ,解不等式||+|2 1|>2x x -.18.解不等式133x x +--<.19.关于x 的不等式对任意恒成立,求a 的取值范围. 20.解下列不等式(组),并把解集在数轴上表示出来.(1)5(x+1)﹣6>3(x+2);(2)12134(1)34x x x x +⎧-⎪⎨⎪-<-⎩….21.已知关于x的不等式组9511x xx a+>+⎧⎨<+⎩的解集是x<2,求a的取值范围.22.已知的解集为. (1)求的值;(2)若,求证:.。

专题07 不等式(组)(专项训练)(解析版)

专题07 不等式(组)(专项训练)(解析版)

专题07 不等式(组)一、单选题1.(2021·沙坪坝区·重庆八中九年级)若数a使关于x的不等式组3124(2)53x xx a-≤-⎧⎨-<⎩有且仅有4个整数解,且使关于y的分式方程31222y ay y++--=1有正整数解,则满足条件的a的个数是()A.0个B.1个C.2个D.3个【答案】B【分析】不等式组变形后,根据有且仅有四个整数解确定出a的范围,再表示出分式方程的解,由分式方程有整数解,确定出满足条件a的值.【详解】解:解不等式组3124(2) 53x xx a-≤-⎧⎨-<⎩,解得:435xax≥-⎧⎪+⎨<⎪⎩,∵不等式组3124(2)53x xx a-≤-⎧⎨-<⎩有且仅有4个整数解,∵﹣1<35a+≤0,∵﹣8<a≤﹣3.解分式方程31222y ay y++--=1,得y=102a+,∵y=102a+≠2为整数,∵a≠﹣6,∵所有满足条件的只有﹣4,故选:B.【点睛】本题考查了解分式方程,解一元一次不等式组,熟练掌握解分式方程和一元一次不等式组的方法是解题的关键.2.(2021·珠海市九洲中学九年级)不等式组2131x xx+≤+⎧⎨>⎩的解集在数轴上表示正确的是()A.B.C.D.【答案】D【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【详解】解:解不等式2x+1≤x+3,得:x≤2,∵不等式组的解集为1<x≤2,故答案选D.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.3.(2021·重庆北碚·西南大学附中九年级)若关于x的二次函数21y x ax=-+,当2x-≤时,y随着x的增大而减小,且关于x的分式方程11222axx x-=+--有正数解,那么所有满足条件的整数a的值有()A.6个B.5个C.4个D.3个【答案】B【分析】先解分式方程求出22xa=-,关于x的分式方程有正数解满足2﹣a>0利用二次函数21y x ax=-+,当x≤﹣2时,y随x的增大而减小,求出对称轴x=﹣-2a≥﹣2,求出a的范围﹣4≤a<2,且a≠1即可.【详解】解:∵112 22axx x--= --∵1+1﹣a x=2(2﹣x)∵(2﹣a)x=2∵22xa =-关于x的分式方程有正数解∵22a->0∵2﹣a>0∵a<2但该分式方程当x=2时显然是增根,故当a=1时不符合题意,舍去.∵二次函数21y x ax=-+,当x≤﹣2时,y随x的增大而减小∵其对称轴x=﹣-2a≥﹣2∵a≥﹣4∵﹣4≤a<2,且a≠1符合条件的整数a的值有﹣4、﹣3、﹣2、﹣1、0,共5个故选B.【点睛】本题考查分式方程的解法,抛物线的增减性,不等式的解法,掌握分式方程的解法,抛物线的性质,会求抛物线的对称轴,会利用分式方程的解为正数构造不等式,结合函数的增减性解决问题.4.(2021·陕西师大附中)已知一次函数y=(3﹣2k)x+6(k为常数)的图象经过A(x1,y1),B(x2,y2),若x1>x2,y1<y2,则k的值可能是()A.﹣1B.0C.1D.2【答案】D【分析】利用一次函数y随x的增大而减小的性质,得3﹣2k<0,通过求解一元一次不等式,即可得到答案.【详解】∵一次函数y=(3﹣2k)x+6(k为常数)的图象经过A(x1,y1),B(x2,y2),若x1>x2,y1<y2,∵3﹣2k<0,解得k>32,∵A、B、C不符合题意,D符合题意故选:D.【点睛】本题考查了一次函数、一元一次不等式的知识;解题的关键是熟练掌握一次函数的性质,从而完成求解.5.(2021·山东日照·中考真题)若不等式组643x x x m +<-⎧⎨>⎩的解集是3x >,则m 的取值范围是( ) A .3m >B .3m ≥C .3m ≤D .3m <【答案】C【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【详解】解:解不等式643x x +<-,得:3x >,x m >且不等式组的解集为3x >,3m ∴, 故选:C .【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.6.(2021·辽宁鞍山·)不等式32x x -的解集在数轴上表示正确的是( )A .B .C .D .【答案】B【分析】 求出不等式的解集,将解集在数轴上表示出来.【详解】解:∵32x x -≤,∵23x x --≤-,∵33x -≤-,解得:1≥x ,∵不等式的解集为:1≥x ,表示在数轴上如图:故选B .【点睛】本题主要考查了解一元一次不等式,并在数轴上表示不等式的解集,解题的关键在于能够熟练掌握相关知识进行求解.7.(2021·辽宁朝阳·中考真题)不等式﹣4x ﹣1≥﹣2x +1的解集,在数轴上表示正确的是( ) A .B .C .D .【答案】D【分析】不等式移项,合并,把x 系数化为1,求出解集,表示在数轴上即可.【详解】解:不等式﹣4x ﹣1≥﹣2x +1,移项得:﹣4x +2x ≥1+1,合并得:﹣2x ≥2,解得:x ≤﹣1,数轴表示,如图所示:故选:D .【点睛】此题考查了解一元一次不等式,以及在数轴上表示不等式的解集,熟练掌握不等式的解法是解本题的关键. 8.(2021·山东滨州·中考真题)把不等式组622154x x x x -<⎧⎪+-⎨≥⎪⎩中每个不等式的解集在同一条数轴上表示出来,正确的为( )A .B .C .D .【答案】B【分析】先解出不等式组中的每一个不等式的解集,然后即可写出不等式组的解集,再在数轴上表示出每一个不等式的解集即可.【详解】 解:622154x x x x -<⎧⎪⎨+-≥⎪⎩①②,解不等式∵,得:x >-6,解不等式∵,得:x ≤13,故原不等式组的解集是-6<x ≤13,其解集在数轴上表示如下:故选:B .【点睛】本题考查解一元一次不等式组、在数轴上表示不等式组的解集,解答本题的关键是明确解一元一次不等式组的方法,会在数轴上表示不等式组的解集.9.(2021·贵州遵义·)小明用30元购买铅笔和签字笔,已知铅笔和签字笔的单价分别是2元和5元,他买了2支铅笔后,最多还能买几支签字笔?设小明还能买x 支签字笔,则下列不等关系正确的是( ) A .5×2+2x ≥30B .5×2+2x ≤30C .2×2+2x ≥30D .2×2+5x ≤30【答案】D【分析】设小明还能买x 支签字笔,则小明购物的总数为22+5x ⨯元,再列不等式即可.【详解】解:设小明还能买x 支签字笔,则:22530,x ⨯+≤故选:.D【点睛】本题考查的是一元一次不等式的应用,确定购物的总金额不大于所带钱的数额这个不等关系是解题的关键.10.(2021·湖南湘潭·中考真题)不等式组12480xx+≥⎧⎨-<⎩的解集在数轴上表示正确的是()A.B.C.D.【答案】D【分析】先解不等式组,再按照大于向右拐,小于向左拐,有等于号用实心点表示,没有用空心圈表示,画好图即可.【详解】解:12 480 xx+≥⎧⎨-<⎩①②由∵得:1,x≥由∵得:4x<8,解得:x<2,所以不等式组的解集在数轴上表示如下:所以不等式组的解集为:1x≤<2,故选:.D【点睛】本题考查的是一元一次不等式组的解法,在数轴上表示不等式组的解集,注意实心点与空心圈的使用是解本题的易错点.二、填空题11.(2021·辽宁盘锦·)从不等式组3(2)42213x xxx--≤⎧⎪+⎨≥-⎪⎩的所有整数解中任取一个数,它是偶数的概率是________【答案】2 5【分析】首先求得不等式组3(2)42213x xxx--≤⎧⎪+⎨≥-⎪⎩的所有整数解,然后由概率公式求得答案.【详解】解:∵3(2)42213x xxx--≤⎧⎪⎨+≥-⎪⎩①②,由∵得:x≥1,由∵得:x≤5,∵不等式组的解集为:1≤x≤5,∵整数解有:1,2,3,4,5;∵它是偶数的概率是25.故答案为:25.【点睛】此题考查了概率公式的应用以及不等式组的解集.用到的知识点为:概率=所求情况数与总情况数之比.12.(2021·湖北荆门·)如果关于x的不等式组()31213x axx--<⎧⎪+⎨-⎪⎩恰有2个整数解,则a的取值范围是________.【答案】56a <【分析】求出不等式组的解集,得到其取值范围,再根据不等式组有整数解解答.【详解】解:()31213x axx--<⎧⎪⎨+-⎪⎩①②,由∵得,x>a-3;由∵得,x≤4;∵关于x的不等式组恰有2个整数解,∵整数解为3,4,∵2≤a-3<3;∵56a<.故答案为:56a<【点睛】本题考查了一元一次不等式组的整数解,根据x的取值范围,得出x的整数解,然后解不等式即可解出a 的值.13.(2021·湖南常德·中考真题)刘凯有蓝、红、绿、黑四种颜色的弹珠,总数不超过50个,其中16为红珠,14为绿珠,有8个黑珠.问刘凯的蓝珠最多有_________个.【答案】20【分析】设弹珠的总数为x个, 蓝珠有y个,根据总数不超过50个列出不等式求解即可.【详解】解:设弹珠的总数为x个, 蓝珠有y个,根据题意得,{16x+14x+8+y=x①x≤50②,由∵得,x=96+12y7,结合∵得,96+12y7≤50解得,y≤2116,又因为总的弹珠数量、红珠数量和绿珠数量都是整数,所以,刘凯的蓝珠最多有20个.故答案为:20.【点睛】此题主要考查了一元一次不等式的应用,能够找出不等关系是解答此题的关键.14.(2021·辽宁丹东·中考真题)不等式组213xx m-<⎧⎨>⎩无解,则m的取值范围_________.【答案】2m≥【分析】先求出每个不等式的解集,再根据已知得出关于m的不等式,求出不等式的解集即可.【详解】解:213 xx m-<⎧⎨>⎩①②解不等式∵得:2x<由∵式知:x m>∵不等式组无解∵2m≥故答案为:2m≥【点睛】本题主要考查了解一元一次不等式组,能够根据不等式的解集和已知得出关于m的不等式是解题的关键.15.(2021·贵州黔东南·中考真题)不等式组()5231131722x xx x⎧+>-⎪⎨-≤-⎪⎩的解集是__________.【答案】54 2x-<≤【分析】分别求出各不等式的解集,再求出其公共解集.【详解】解:解不等式5x+2>3(x﹣1),得:x52>-,解不等式131722x x-≤-,得:4x≤,则不等式组的解集为542x-<≤,故答案为542x-<≤.【点睛】本题考查了解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的法则是解答此题的关键.三、解答题16.(2021·山东济南·中考真题)端午节吃粽子是中华民族的传统习俗.某超市节前购进了甲、乙两种畅销口味的粽子.已知购进甲种粽子的金额是1200元,购进乙种粽子的金额是800元,购进甲种粽子的数量比乙种粽子的数量少50个,甲种粽子的单价是乙种粽子单价的2倍.(1)求甲、乙两种粽子的单价分别是多少元?(2)为满足消费者需求,该超市准备再次购进甲、乙两种粽子共200个,若总金额不超过1150元,问最多购进多少个甲种粽子?【答案】(1)乙种粽子的单价为4元,则甲种粽子的单价为8元;(2)最多购进87个甲种粽子【分析】(1)设乙种粽子的单价为x元,则甲种粽子的单价为2x元,然后根据“购进甲种粽子的金额是1200元,购进乙种粽子的金额是800元,购进甲种粽子的数量比乙种粽子的数量少50个”可列方程求解;(2)设购进m个甲种粽子,则购进乙种粽子为(200-m)个,然后根据(1)及题意可列不等式进行求解.【详解】解:(1)设乙种粽子的单价为x元,则甲种粽子的单价为2x元,由题意得:1200800+=,502x x解得:4x=,经检验4x=是原方程的解,答:乙种粽子的单价为4元,则甲种粽子的单价为8元.(2)设购进m个甲种粽子,则购进乙种粽子为(200-m)个,由(1)及题意得:()+-≤,m m842001150解得:87.5m≤,∵m为正整数,∵m的最大值为87;答:最多购进87个甲种粽子.【点睛】本题主要考查分式及一元一次不等式的应用,熟练掌握分式方程的解法及一元一次不等式的解法是解题的关键.17.(2021·西宁市教育科学研究院中考真题)城乡学校集团化办学已成为西宁教育的一张名片.“五四”期间,西宁市某集团校计划组织乡村学校初二年级200名师生到集团总校共同举办“十四岁集体生日”.现需租用A,B两种型号的客车共10辆,两种型号客车的载客量(不包括司机)和租金信息如下表:若设租用A 型客车x 辆,租车总费用为y 元.(1)请写出y 与x 的函数关系式(不要求写自变量取值范围);(2)据资金预算,本次租车总费用不超过11800元,则A 型客车至少需租几辆?(3)在(2)的条件下,要保证全体师生都有座位,问有哪几种租车方案?请选出最省钱的租车方案. 【答案】(1)30012000y x =-+;(2)1辆;(3)租车方案有3种:方案一:A 型客车租1辆,B 型客车租9辆;方案二:A 型客车租2辆,B 型客车租8辆;方案三:A 型客车租3辆,B 型客车租7辆;最省钱的租车方案是A 型客车租3辆,B 型客车租7辆 【分析】(1)根据租车总费用=每辆A 型号客车的租金单价×租车辆数+每辆B 型号客车的租金单价×租车辆数,即可得出y 与x 之间的函数解析式,再由全校共200名师生需要坐车及x ≤10可求出x 的取值范围; (2)由租车总费用不超过11800元,即可得出关于x 的一元一次不等式,解之即可得出x 的取值范围,取其中的整数即可找出各租车方程,再利用一次函数的性质即可找出最省钱的租车方案; (3)由题意得出()162210200x x +-≥,求出x 的取值范围,分析得出即可. 【详解】解:(1)()90012001030012000y x x x =+-=-+, ∵30012000y x =-+;(2)根据题意,得:3001200011800x -+≤, 解得23x ≥, ∵x 应为正整数, ∵1≥x∵A 型客车至少需租1辆;(3)根据题意,得()162210200x x +-≥, 解得103x, 结合(2)的条件,21033x , ∵x 应为正整数,∵x 取1,2,3, ∵租车方案有3种:方案一:A 型客车租1辆,B 型客车租9辆; 方案二:A 型客车租2辆,B 型客车租8辆;方案三:A 型客车租3辆,B 型客车租7辆. ∵30012000y x =-+,0k < ∵y 随x 的增大而减小, ∵当3x =时,函数值y 最小,∵最省钱的租车方案是A 型客车租3辆,B 型客车租7辆 【点睛】本题考查一次函数的应用、一元一次不等式的应用等知识,解题的关键是理解题意,学会利用函数的性质解决最值问题.18.(2021·广西河池·)在平面直角坐标系中,抛物线()214y x =--+与x 轴交于A ,B 两点(A 在B 的右侧),与y 轴交于点C .(1)求直线CA 的解析式;(2)如图,直线x m =与抛物线在第一象限交于点D ,交CA 于点E ,交x 轴于点F ,DG CA ⊥于点G ,若E 为GA 的中点,求m 的值.(3)直线y nx n =+与抛物线交于()11,M x y ,()22,N x y 两点,其中12x x <.若213x x ->且210y y ->,结合函数图象,探究n 的取值范围.【答案】(1)3y x =-+;(2)2m =;(3)01n <<或7n >. 【分析】(1)由()214y x =--+中,得()3,0A ,()1,0B -,()0,3C ,利用待定系数法即可得,直线CA 的解析式为3y x =-+;(2)根据直线x m =与抛物线在第一象限交于点D ,交CA 于点E ,交x 轴于点F ,可得()()2,14D m m --+,且03m <<,(),3E m m -+,(),0F m ,从而3AF m =-,23DE m m =-+,而EAF △是等腰直角三角形,可得AE =,DEG △是等腰直角三角形,即可列)23m m -+=,解得m =2或m =3(舍去);(3)由()214y nx ny x =+⎧⎪⎨=--+⎪⎩得:10x y =-⎧⎨=⎩或234x n y n n =-⎧⎨=-+⎩,∵若31n ->-,即4n <,根据213x x ->且210y y ->,可得()313n --->,且2400n n -+->,即解得01n <<;∵若31n -<-,即4n >,可得:()133n --->且()2040n n --+>,即解得7n >,综合可得结果.【详解】解:(1)在()214y x =--+中, 令0x =得3y =,令0y =得11x =-或23x =, ∵()3,0A ,()1,0B -,()0,3C ,设直线CA 的解析式为y kx b =+,则033k bb =+⎧⎨=⎩,解得13k b =-⎧⎨=⎩,∵直线CA 的解析式为3y x =-+;(2)∵直线x =m 与抛物线在第一象限交于点D ,交CA 于点E ,交x 轴于点F , ∵()()2,14D m m --+,且03m <<,(),3E m m -+,(),0F m , ∵3AF m =-,()()221433DE m m m m =--+--+=-+, ∵()3,0A ,()0,3C ,∵45EAF ∠=︒,EAF △是等腰直角三角形,∵AE ==,45DEG AEF ∠=∠=︒, ∵DEG △是等腰直角三角形, ∵DE =, ∵E 为GA 的中点, ∵GE AE ==,∵)23m m -+=,解得2m =或3m =,∵3m =时,D 与A 重合,舍去, ∵2m =;(3)由()214y nx ny x =+⎧⎪⎨=--+⎪⎩得:10x y =-⎧⎨=⎩或234x n y n n =-⎧⎨=-+⎩, ∵若31n ->-,即4n <, ∵213x x ->且210y y ->,∵()313n --->,且2400n n -+->, 解得01n <<;∵若31n -<-,即4n >,可得:()133n --->且()2040n n --+>,解得7n >.综上所述,n 的取值范围是01n <<或7n >.【点睛】本题考查二次函数综合应用,涉及待定系数法、等腰三角形性质等知识,用含m 的代数式表示相关点坐标和相关线段的长度及分类讨论思想的应用是解题的关键.19.(2021·广西河池·)为庆祝中国共产党成立100周年,某校组织九年级全体师生前往广西农民运动讲习所旧址列宁岩参加“学党史、感党恩、听党话、跟党走”的主题活动,需要租用甲、乙两种客车共6辆.已知甲、乙两种客车的租金分别为450元/辆和300元/辆,设租用乙种客车x 辆,租车费用为y 元. (1)求y 与x 之间的函数关系式(写出自变量的取值范围);(2)若租用乙种客车的数量少于甲种客车的数量,租用乙种客车多少辆时,租车费用最少?最少费用是多少元?【答案】(1)1502700y x =-+(06)x ≤≤;(2)乙种客车2辆时, 租车费用2400 【分析】(1)根据题意列出函数表达式即可; (2)根据一次函数的性质,求得最值. 【详解】(1)设租用乙种客车x 辆,租车费用为y 元, 甲、乙两种客车共6辆,∴租用甲种客车(6)x -辆,60x -≥,0x ≥,06x ∴≤≤,(6)4503001502700y x x x ∴=-⨯+=-+,∴1502700y x =-+(06)x ≤≤;(2) 租用乙种客车的数量少于甲种客车的数量, 即6x x <-, 解得3x <,x 是正整数,x 最大为2,1502700y x =-+,1500-<,∴y 随x 的增大而减小,当x 取最大值时候,y 取得最小值. ∴当2x =时,租车费用最少为150227002400y =-⨯+=.答:租用乙种客车2辆时,租车费用最少,费用为2400元. 【点睛】本题考查了一次函数的应用,一次函数的性质,掌握一次函数的性质是解题的关键.20.(2021·建昌县教师进修学校九年级)某加工厂甲、乙两人加工机器零件,已知甲每天加工的数量是乙每天加工数量的1.2倍,甲加工900个这种零件比乙加工500个这种零件多用10天. (1)求甲、乙每天各加工多少个机器零件?(2)甲、乙两人每天加工这种机器零件的加工费分别是160元和120元,现有1500个这种零件的加工任务,若工厂要求总加工费用不超过7500元,求乙至少加工多少天(取整数).【答案】(1)甲每天加工30个机器零件,乙每天加工25个机器零件;(2)乙至少加工38天 【分析】(1)设乙每天加工x 个零件,则甲每天加工1.2x 个零件,根据甲加工900个这种零件比乙加工500个这种零件多用10天,列分式方程求解; (2)设乙加工m 天,乙加工了15002530m-天,根据加工费分别是160元和120元,总加工费不超过7500元,列不等式,求解即可. 【详解】解:(1)设乙每天加工x 个机器零件,则 900500101.2x x-=, 解方程得25x =经检验,25x =是原方程的解,这时1.230x =答:甲每天加工30个机器零件,乙每天加工25个机器零件 (2)设乙加工m 天,则 15002512016030mm -+⨯≤7500, 解得m ≥1372∵m 取整数,∵m 最小值为38(或m ≥38) 答:乙至少加工38天 【点睛】本题是分式方程与不等式的实际应用题,题目数量关系清晰,难度不大. 21.(2021·银川市第三中学)解不等式组:()2732131234x x x x ⎧+≥-⎪⎨---<⎪⎩【答案】513x -<≤. 【分析】分别解出两个不等式的解集,再将解集表示在数轴上,找到公共解集即可. 【详解】解不等式组:()2732,1312.34x x x x ⎧+≥-⎪⎨---<⎪⎩解:()2732,1312.34x x x x ⎧+≥-⎪⎨---<⎪⎩①② 解不等式∵得13x ≤,解不等式∵得5x >-,将不等式的解集表示在数轴上:所以不等式组的解集为513x -<≤. 【点睛】本题考查解一元一次方程组、将不等式的解集表示在数轴上,是重要考点,掌握相关知识是解题关键. 22.(2021·沙坪坝区·重庆八中九年级)某文具店去年8月底购进了一批文具1160件,预计在9月份进行试销.购进价格为每件10元.若售价为12元/件,则可全部售出.若每涨价1元.销售量就减少20件. (1)求该文具店在9月份销售量不低于1100件,则售价应不高于多少元?(2)由于销量好,10月份该文具进价比8月底的进价每件增加20%,该店主增加了进货量,并加强了宣传力度,结果10月份的销售量比9月份在(1)的条件下的最低销售量增加了m %,但售价比9月份在(1)的条件下的最高售价减少215m %.结果10月份利润达到3168元,求m 的值. 【答案】(1)售价应不高于15元;(2)60 【分析】(1)设售价应为x 元,根据不等关系:该文具店在9月份销售量不低于1100件,列出不等式求解即可; (2)先求出10月份的进价,再根据等量关系:10月份利润达到3168元,列出方程求解即可. 【详解】解:(1)设售价应为x 元,依题意有 1160﹣20(x ﹣12)≥1100, 解得:x ≤15.答:售价应不高于15元.(2)10月份的进价:10(1+20%)=12(元), 由题意得:1100(1+m %)[15(1﹣215m %)﹣12]=3168,设m%=t,化简得50t2﹣25t﹣3=0,解得:t1=0.6,t2=﹣0.1(舍去),所以m=60.答:m的值为60.【点睛】此题考查了一元一次不等式的应用,一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的不等关系和等量关系,列出不等式和方程,再求解.23.(2021·重庆实验外国语学校九年级)永川黄瓜山,林场万亩、环境优美,山势雄伟、地貌奇特,现已成为全国面积最大的南方早熟梨基地,品种以黄花梨为主,还有黄冠、圆黄、红梨、鄂梨2号等.永川梨香甜,脆嫩,皮薄,多汁.2020年,永川梨入选第一批全国名特优新农产品名录.(1)某水果经销商第一批购进黄花梨5000千克,黄冠梨2000千克,黄冠梨每千克的进价比黄花梨的进价每千克多2元,经销商所花费的费用不超过60000元,求黄花梨每千克进价最多为多少元?(2)在第(1)问最高进价的基础上,随着梨大量成熟,该水果经销商第二批购进的黄花梨的数量比第一批的数量增加了2a%,第二批购进的黄冠梨的数量不变,黄花梨的进价减少了12a%,黄冠梨的进价减少了2a%,第二批购进梨的总成本与第一批购进梨的总成本相同,求a的值.【答案】(1)8元;(2)50【分析】(1) 设黄花梨的进价每千克x元,黄冠梨每千克的进价为(x+2)元,由经销商所花费的费用不超过60000元,得出不等式求解即可;(2)根据题意列出方程式15000(12%)8(1%)200010(12%)600002a a a+⨯-+⨯-=求解即可.【详解】解:(1)设黄花梨的进价每千克x元,黄冠梨每千克的进价为(x+2)元,所以5000x+2000(x+2)≤60000,解得:x≤8,答:黄花梨每千克进价最多为8元;(2)由(1)得:15000(12%)8(1%)200010(12%)600002a a a+⨯-+⨯-=,解得:a=50,(0a=舍去)答:a得值为50.【点睛】本题考查了一元一次不等式得实际应用,一元二次方程得实际应用问题,掌握一元二次方程的实际应用是解题的关键.。

不等式方程组的解集计算练习题

不等式方程组的解集计算练习题

不等式方程组的解集计算练习题1. 题目描述:解下列不等式方程组,并将其解集用图像表示出来:a) 3x + 2y ≥ 6x - 2y < 4b) 2x - 3y ≤ 123x + 4y > 10c) 5x + 2y > 86x - 3y ≤ 122. 解答:a) 第一步我们要将每个不等式方程写成一般式:3x + 2y ≥ 6 => y ≥ -3/2x + 3x - 2y < 4 => y > 1/2x - 2首先,我们画出第一个不等式的解集图形:以斜率-3/2和截距3为直线,然后在直线上面的区域上色。

由于不等号是大于等于,因此要将直线上的点也算在解集之中。

接下来,我们画出第二个不等式的解集图形:不等号是大于,因此将直线上的点排除在解集之外。

最后,我们将两个解集的交集即为最终的解集。

图片b) 第一步我们要将每个不等式方程写成一般式:2x - 3y ≤ 12 => y ≥ 2/3x - 43x + 4y > 10 => y > -3/4x + 5/2首先,我们画出第一个不等式的解集图形:以斜率2/3和截距-4为直线,然后在直线下面的区域上色。

由于不等号是小于等于,因此要将直线上的点也算在解集之中。

接下来,我们画出第二个不等式的解集图形:以斜率-3/4和截距5/2为直线,然后在直线上面的区域上色。

由于不等号是大于,因此将直线上的点排除在解集之外。

最后,我们将两个解集的交集即为最终的解集。

图片c) 第一步我们要将每个不等式方程写成一般式:5x + 2y > 8 => y > -5/2x + 46x - 3y ≤ 12 => y ≥ 2x - 4首先,我们画出第一个不等式的解集图形:不等号是大于,因此将直线上的点排除在解集之外。

接下来,我们画出第二个不等式的解集图形:以斜率2和截距-4为直线,然后在直线下面的区域上色。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

不等式组解集专题训练
姓名:
一、引入:
1、画出下列不等式的解集
x>−3; x<4; x≥1; x≤−5 x>a; x<−b; x≥a+2; x≤1−2a 2、画出下列不等式组的解集
{x≤2
x<−1 {x>−2
x>0 {
x≤−3
x>−7 {
x≥−3
x<5 {
x≤−2
x>1
{x<2
x<a {x>2a−1
x>−3 {
x≤2
x>1−a
二、练习
例1:如果不等式组731x x x n
+<-⎧⎨>⎩的解集是4>x ,则n 的取值范围是 1、如果不等式组x a x b >⎧⎨<⎩
无解,那么不等式组的解集是
2、若不等式组⎩
⎨⎧->+<121m x m x 无解,则m 的取值范围是 .
3、若关于x 的不等式组无解,求a 的取值范围
4、若不等式组2123x a x b -<⎧⎨->⎩
的解集为-1<x <1,那么(a +1)(b -1)的值等于________.
5、若不等式组4050
a x x a ->⎧⎨
+->⎩无解,则a 的取值范围是_______________.
6、若不等式组⎩⎨⎧b x a x 无解,则不等式组⎩⎨⎧--b
x a x 22 的解集是
例2:如果关于x 的不等式06 +--x k 有3个正整数解,,求 k 的取值? 3(2)432x x x a x --<⎧⎨-<⎩
1、关于x 的不等式3x-a≤0,只有两个正整数解,求a 的取值范围
例3:关于x 的不等式的整数解共有4个,求m 的取值范围。

1、 试确定实数a 的取值范围.使不等式组 恰好有两个整数解
2、关于x 的不等式{x −a ≥03−2x >−1
的整数解共有5个,求m 的取值范围。

0721x m x -<⎧⎨-≤⎩
1023544(1)33x x a x x a +⎧+>⎪⎪⎨+⎪+>++⎪⎩
例4:⑴不等式{x >−1x ≤2
与 x ≤a 有解,求a 的取值范围。

⑵不等式{x >−1x ≤2
与 x ≤a 无解,求a 的取值范围。

相关文档
最新文档