推理、定义和命题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
精锐教育学科教师辅导教案学员编号:年级:八年级课时数: 3课时学员姓名:杨宇智辅导科目:数学学科教师:高银波授课类型T-知识梳理T-巩固训练T-达标检测
授课主题推理定义和命题
授课日期及时段2013
教学内容
1.推理证明的必要性
我们认识事物,可能有偏差,有时是“想当然”,过于草率,有时是乱花渐欲迷人眼,观察产生了错觉,但无论哪一种情况,没有严格的证明都是不能令人放心和信服的。
2.检验数学结论是否正确的常用方法
实验验证法、举出反例、推理论证等。
3.定义的概念
对一些术语和名称的含义加以描述,作出明确的规定,也就是给出它们的定义。例如:“两点之间线段的长度,叫做这两点之间的距离”是“两点之间的距离的定义”;“在一个方程中,只含有一个未知数,并且未知数的指数是1,这样的方程叫做一元一次方程”是“一元一次方程”的定义;“对应角相等、对应边成比例的三角形叫做相似三角形”的定义。
4.命题的概念
命题的定义包括两层含义:(1)命题必须是一个完整的句子,常为陈述句;(2)命题必须对某件事情作出肯定或否定的判断。
5.命题的结构
每个命题都有条件和结论两部分组成。条件是已知的事项,结论是由已知事项推断出来的事项。一般地,命题都可以写成“如果......那么......”的形式,其中,如果引出的部分的部分是条件,那么引出的部分是结论。有些命题的题设和结论不够明显,这是要认真分析,先把命题改写成如果......那么......再找条件和结论。在改写时应适当地补充一些修饰成分,但内容要保持不变。
6.真命题、假命题、反例的概念
正确的命题称为真命题,不正确的命题称为假命题。
要说明一个命题是假命题,通常可以举出一个例子,若具备命题的条件,而不具备命题的结论,这种例子称为反例。
7.公理、定理、证明的概念
公认的真命题称为公理。
有些命题的正确性是通过推理的方法证实的,这样的真命题叫做定理。
推理的过程称为证明
对于公理,它是不需要推理论证的真命题,它可以作为判定其他命题真假的依据,对于定理,它是经过证明的真命题,但并不是所有的真命题都是定理,定理可以作为判定其它命题真假的依据。
1.写出下列命题的题设和结论.
(1)对顶角相等.
(2)如果a2=b2,那么a=b.
(3)同角或等角的补角相等.
(4)同旁内角互补,两直线平行.
(5)过两点有且只有一条直线.
2.下列语句不是命题的是()
A.鲸鱼是哺乳动物 B.植物都需要水 C.你必须完成作业 D.实数不包括零
3.下列说法中,正确的是()
A.经过证明为正确的真命题叫公理
B.假命题不是命题
C.要证明一个命题是假命题,只要举一个反例,即举一个具备命题的条件,而不具备命题结论的命题即可D.要证明一个命题是真命题,只要举一个例子,说明它正确即可.
4.下列选项中,真命题是().
A.a>b,a>c,则b=c
B.相等的角为对顶角
C.过直线l外一点,有且只有一条直线与直线l平行
D.三角形中至少有一个钝角
5.下列命题中,是假命题的是()
A.互补的两个角不能都是锐角 B.如果两个角相等,那么这两个角是对顶角
C.乘积为1的两个数互为倒数 D.全等三角形的对应角相等,对应边相等.
6.下列命题中,真命题是()
A.任何数的绝对值都是正数 B.任何数的零次幂都等于1
C.互为倒数的两个数的和为零 D.在数轴上表示的两个数,右边的数比左边的数大
7.把下列命题改写成“如果……,那么……”的形式.
(1)在同一平面内,垂直于同一条直线的两条直线平行.
(2)等边对等角.
(3)绝对值相等的两个数一定相等.
(4)每一个有理数都对应数轴上的一个点.
(5)直角三角形的两锐角互余.
8.举反例说明下面命题是假命题
(1)互补的两个角一定是一个锐角,一个钝角.
(2)两个负数的差一定是负数.
(3)两直线被第三条直线所截,同位角相等.
(4)一正一负两个数的和为0.
三、能力提升
9.下列语句中,是命题的是( )
A.两点确定一条直线吗? B.在线段AB上任取一点
C.作∠A的平分线AM D.两个锐角的和大于直角
10.下列命题中,属于定义的是( )
A.两点确定一条直线 B.同角或等角的余角相等
C.两直线平行,内错角相等 D.点到直线的距离是该点到这条直线的垂线段的长度
11.下列命题中,是真命题的是( )
A.内错角相等 B.同位角相等,两直线平行
C.互补的两角必有一条公共边 D.一个角的补角大于这个角
12.下列命题中,假命题是( )
A .垂直于同一条直线的两直线平行
B .已知直线a 、b 、c ,若a ⊥b ,a ∥c ,则b ⊥c
C .互补的角是邻补角
D .邻补角是互补的角 13.命题“对顶角相等”是( )
A .角的定义
B .假命题
C .公理
D .定理 14.指出下列命题的题设和结论:
(1)若a ∥b ,b ∥c ,则a ∥c ;(2)如果两个角相等,那么这两个角是对顶角;(3)同一个角的补角相等.
15.判断下列命题是真命题,还是假命题;如果是假命题,举一个反例.
(1)若a 2
>b 2
,则a >b .
(2)同位角相等,两直线平行.
(3)一个角的余角小于这个角.
16.用语言叙述这个命题:如图AB∥CD,EF 交AB 于点G ,交CD 于点H ,GM 平分∠BGH,HM 平分∠GHD,则GM⊥HM.
17. 如图,下面四个条件:(1)AD AE =,(2)AC AB =(3)OC OB =,(4)C B ∠=∠,请你写出满足两个作为已知条件,第三个为结论的命题,并判断其真假?
D
A
B
C
E
O M
H
G
F
E D C
B
A