《普通高中课程标准实验教科书·数学1》第一章《集合与函数概念》简介

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《普通高中课程标准实验教科书·数学1》第三章“函数的应用”简介

白涛

在本章,学生将在已学过的函数概念、指数函数、对数函数、幂函数的基础上,结合实际问题,感受运用函数概念建立模型的过程和方法,体会函数在数学和其他学科中的重要性,初步运用函数思想理解和处理现实生活和社会中的简单问题.同时还将学习利用函数的性质求方程的近似解,了解函数的零点与方程根的联系.

一、内容与课程学习目标

本章学习的主要内容是函数与方程(函数的零点与方程根的关系),函数模型及其应用。本章学习的目标是:

1.结合二次函数的图象,判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系.

2.根据具体函数的图象,能够借助计算器用二分法求相应方程的近似解,了解这种方法是求方程近似解的常用方法.

3.利用计算工具,比较指数函数、对数函数以及幂函数间的增长差异;结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义.

4.收集一些社会生活中普遍使用的函数模型(指数函数、对数函数、幂函数、分段函数等)的实例,了解函数模型的广泛应用.

二、内容安排

全章共有2节和一个实习作业,另外还有三个选学内容,教学时间约需8课时,大体分配如下(仅供参考):

3.1 函数与方

程约2

课时

阅读与思考中外历史上的方程求解

信息技术应用借助信息技术求方程的近似解

3.2 函数模型及其应

用约4课时

信息技术应用收集数据并建立函数模型

实习作

约1课时

小结约1课时

本章知识结构如下:

(1)建立函数模型解决问题的过程

(2)本章知识安排的前后顺序

1.本章的主要内容是方程的根与函数的零点的关系、用二分法求方程的近似解、几种不同的函数增长模型、函数模型的应用举例.建立实际问题的函数模型,利用已知函数模型解决问题,作为一条主线贯穿了全章的始终,而方程的根与函数的零点的关系、用二分法求方程的近似解,是在建立和运用函数模型的大背景下展开的.方程的根与函数的零点的关系、用二分法求方程的近似解中均蕴涵了“函数与方程的思想”,建立和运用函数模型中蕴含的“数学建模思想”,是本章渗透的主要数学思想.二分法是本章介绍的主要数学方法.

2.在初中一元二次方程和一元二次函数学习的基础上,教科书通过比较一元二次方程的根与对应的一元二次函数的图象和x轴的交点的横坐标之间的关系,给出了函数的零点的概念,并揭示了方程的根与对应的函数的零点之间的关系.然后,通过探究介绍了判断一个函数在某个给定区间存在零点的方法和二分

法.并且,教科书在“用二分法求函数零点的步骤”中渗透了算法的思想,为学生后续学习算法内容埋下伏笔.

3.教科书运用选自投资方案和制定奖励方案两个问题,引出函数模型增长情况比较的问题,接着运用信息技术从数值和图象两个角度比较了指数函数、对数函数、幂函数的增长情况的差异,说明了不同函数类型增长的含义.

4.函数基本模型的应用是本章的重点内容之一.教科书分别以行程问题、人口增长问题、商品定价问题、未成年人的生长发育问题为例,在丰富的实际背景中对不同的变量关系进行了研究,分别介绍了分段函数、指数型函数、二次函数的应用,在这个过程中渗透了拟合的基本思想.

三、编写中考虑的几个问题

1.问题取材广、立意新,以利于增强学生的应用意识

函数模型的应用主要围绕具体问题展开研究,问题的取材与设计是这部分内容的关键.教科书注意结合不同学生的实际,选择大多数学生熟悉的背景,在例题、练习、习题和复习参考题中,针对不同的函数模型,为学生设计了素材广泛、内容新颖的问题,以利于开阔学生的视野,让学生从中体会函数模型应用的广泛性和重要性.在问题的立意上,教科书从函数模型的特点出发,从不同的侧面提出能激发兴趣的问题.例如行程问题是学生接触较多的,但要说明速度与时间关系图中的部分面积的实际含义,对学生来说却是新颖的;以往学生主要是建立路程、速度、时间的关系式,对建立汽车里程表读数与时间的分段函数,却具有新的挑战性.又如人口问题涉及我国的基本国策,教科书的例题要求根据过去一段时间的人口数据,对何时能达到我国现在的人口数量进行预测,学生就容易对预测的结果进行评价,这对激发学生兴趣有好处.又如桶装水的定价问题,将学生置入一个现实环境中,让他们以一个经营者的身份对身边简单的经营问题进行决策,这有利于学生自觉地将所学的知识用于解决实际的问题.再如建立身高与体重的函数模型,由于学生会急于了解自己的身高与体重是否正常,所以能激起他们探求这个函数模型的欲望,将这一问题的解决过程变为主动的探求过程.通过设计一系列这样的问题,将有利于增强学生的应用意识.

2.以函数模型的应用为主线,多视点宽角度地研究问题

本章除了函数模型的应用之外,还要介绍函数与方程的一些关系,以及几种函数模型在增长上的差异.教科书在处理上,以函数模型的应用这一主要内容为主线,以几个重要的函数模型为对象或工具,将各部分内容紧密结合起来,使之成为一个整体.首先依托二次函数模型,通过研究几个具体的二次函数及其相对应的方程,得到方程的根与函数的零点的关系,然后将此结果化归为一般的结论.在此基础上,进一步利用其他函数模型,研究其对应方程的解,将二分法融入函数模型的应用之中.对不同函数模型在增长差异上的研究,教科书依然围绕函数模型的应用这一核心,结合具体实例展开讨论,让学生在应用函数模型的过程中,体验到指数函数、对数函数、幂函数等函数模型在描述客观世界变化规律时各自的特点.有了这些铺垫,再来具体研究函数模型的应用,在内容上层次分明,系统性强,而学生学习的目的也很明确.全章起于函数模型,终于函数模型,函数模型的应用贯穿始终,使看似零散的内容浑然一体,从不同的方面对典型的问题,多视点宽角度地进行了研究.

3.渗透数学思想方法,关注数学文化

本章不仅重视数学与实际的联系,而且还重视数学思想方法的渗透.本章所涉及的数学思想方法主要包括:由实际问题抽象为函数模型这一过程中蕴涵的符号化、模型化的思想;研究函数与方程关系的过程

相关文档
最新文档