高中数学人教A版选修(2-1)3.1.1《空间向量及其运算》word导学案

合集下载

人教A版高中数学选修2-1课件高二:3-1-1空间向量及其线性运算

人教A版高中数学选修2-1课件高二:3-1-1空间向量及其线性运算

4.理解空间向量的正交分解及其坐标的表示,掌握空间 向量的坐标运算及数量积的坐标表示,会判断两个向量平行或 垂直;掌握两个向量的夹角公式和向量长度的坐标计算公式, 并会用这些公式解决有关问题.
5.理解平面的法向量,能用向量语言表述线线、线面、 面面的垂直、平行关系.
6.能用向量方法证明有关线、面位置关系,能够用向量 方法解决线线、线面、面面的夹角及其长度问题.
向量那样,从某点
O








→ OA1

a1

→ A1A2

a2,……An-1An=an,于是以所得折线 OA1A2……的起点 O 为
起点,终点 An 为终点的向量O→An,就是 a1,a2,……,an 的和,

O→An=O→A1+A→1A2+……An-1An=a1+a2+……+an. 用折线作向量的和时,有可能折线的终点恰恰重合到起点 上,这时的和向量就为零向量. 2.向量减法满足三角形法则:“同始连终、指向被减”. 即以同一点 O 作始点,作O→A=a,O→B=b,连结终点 A,B, 则A→B=b-a,B→A=a-b.
[答案] B
[分析] 给出的命题都是对向量的有关概念及加减法的理 解,解答本题应紧扣向量及其加减运算的有关概念进行.
[解析] |a|=|b|,说明 a 与 b 模相等,但方向不确定,由 a 的相反向量 b=-a,故|a|=|b|,从而 B 正确.只定义加法具有 结合律,减法不具有结合律,一般的四边形不具有A→B+A→D= A→C,只有平行四边形才能成立.故 A、C、D 均不正确.
[解析] B→C1=B→C+B→B1=A→A1+A→D=b+c, A→C1=A→C+C→C1=A→B+A→D+C→C1=a+b+c, B→D1=A→D1-A→B=A→D+A→A1-A→B=b+c-a, C→O=C→C1+C→1O=A→A1+12C→1A1 =A→A1+12(C→1D1+C→1B1) =A→A1+12(-A→B-A→D)=c-12a-12b.

1.1.1+空间向量及其线性运算+教学设计-高二上学期数学人教A版(2019)选择性必修第一册

1.1.1+空间向量及其线性运算+教学设计-高二上学期数学人教A版(2019)选择性必修第一册

《1.1.1空间向量及其线性运算》教学设计一、教学内容解析《1.1空间向量及其运算》是人教A版《普通高中教科书·数学(选择性必修)》第一册(以下简称“教科书”) 第一章《空间向量与立体几何》的第一节内容,包括“空间向量及其线性运算”和“空间向量的数量积运算”两小节内容,其中第1课时“空间向量及其线性运算”要学习的核心知识有: 空间向量的概念;零向量、单位向量、相等向量、相反向量、共线向量、共面向量;空间向量的加法、减法以及数乘运算.这些核心知识是后续学习空间向量基本定理、空间向量运算的坐标表示、应用空间向量解决立体几何图形位置关系与度量关系的基石.二、学情分析在学习本节课内容之前,学生已在人教A版必修第二册中学习了《平面向量及其应用》和《立体几何初步》内容.大致了解了平面向量的基本研究思路与框架即“实际背景→基本概念→向量运算( 线性运算、数量积) →向量基本定理及坐标表示→向量的应用”,这也是研究和学习空间向量的基本研究思路.三、教学目标(1)了解空间向量的实际背景;理解空间向量及相关概念;掌握空间向量的加法、减法和数乘运算;(2)经历由平面向量的概念、运算推广到空间向量的过程;通过空间向量加法结合律的证明体会维数增加对向量推广带来的变化;(3)在借助几何图形解释空间向量相关概念中进一步发展直观想象核心素养,领悟数形结合的思想方法,提升数学运算和逻辑推理能力; 从平面向量推广得到空间向量、空间向量问题转化为平面向量问题的过程中提升数学抽象素养,领悟类比、特殊与一般、转化与化归等思想.四、教学重难点重点: 空间向量及其相关概念,空间向量的线性运算;难点: 空间向量加法结合律的证明,空间向量的线性运算.五、教学策略分析本节课采用创设问题情境,设置问题链引导学生类比平面向量层层深入学习空间向量的概念、线性运算、运算律和位置关系等内容.学生通过自主探究、交流、师生互动等教学活动参与学习过程,突破学习中的难点和疑点.利用PPT等教学软件绘制图形、平移图形、展示图片,借助几何直观图形帮助学生分析和理解概念.六、教学过程设计1、情境引入如图所示,一只蚂蚁从A点出发,一直沿着棱爬行,先爬行到B点,再爬行到C点,那么它的实际位移是什么?若蚂蚁继续沿着棱从C点向上爬行到C1点,那么它的实际位移是什么?追问:位移在数学中可以用什么概念表示?这些向量是否位于同一平面?【设计意图】通过学生情境引入,引导学生回忆熟悉的平面向量,同时发现空间向量,感受到与平面向量的差异,进而激发学生的求知欲.师:通过平面向量及其应用的学习,我们知道平面内的点、直线可以通过平面向量及其运算来表示,他们之间的平行、垂直、夹角、距离等关系,可以通过平面向量运算得到,从而有关平面图形的问题可以利用平面向量的方法解决。

2021年高中数学3.1.3空间向量的数量积运算学案含解析人教A版选修2_1

2021年高中数学3.1.3空间向量的数量积运算学案含解析人教A版选修2_1

3.1.3 空间向量的数量积运算[目标] 1.掌握空间向量夹角的概念及表示方法,掌握两个向量的数量积概念、性质和计算方法及运算规律.2.掌握两个向量的数量积的主要用途,会用它解决立体几何中一些简单的问题.[重点] 空间向量的数量积运算.[难点] 利用空间向量解决夹角、距离等问题.知识点一 空间向量的夹角[填一填]1.定义:(1)条件:a ,b 是空间的两个非零向量.(2)作法:在空间任取一点O ,作OA →=a ,OB →=b . (3)结论:∠AOB 叫做向量a ,b 的夹角,记作a ,b .2.范围:a ,b∈[0,π],其中,(1)当a ,b =0时,a 与b 的方向相同. (2)当a ,b =π时,a 与b 的方向相反. (3)当a ,b=π2时,a 与b 互相垂直,记作a ⊥b . [答一答]1.若a ,b 是空间的两个非零向量,则-a ,b =a ,-b =a ,b ,对吗?提示:不对.∵-a 与a ,-b 与b 分别是互为相反向量,∴-a ,b=a ,-b =π-a ,b .知识点二 空间向量的数量积[填一填]1.空间向量的数量积 (1)定义:已知两个非零向量a ,b ,则|a ||b |cos a ,b 叫做a ,b 的数量积,记作a ·b .即a ·b=|a ||b |cosa ,b .(2)运算律:①(λa )·b =λ(a ·b ); ②交换律:a ·b =b ·a ;③分配律:a ·(b +c )=a ·b +a ·c . 2.空间向量数量积的性质[答一答]2.类比平面向量,你能说出a ·b 的几何意义吗?提示:数量积a ·b 等于a 的长度|a |与b 在a 的方向上的投影|b |·cos θ的乘积. 3.对于向量a ,b ,c ,由a ·b =a ·c ,能得到b =c 吗?提示:不能,若a ,b ,c 是非零向量,则a ·b =a ·c 得到a ·(b -c )=0,即可能有a ⊥(b -c )成立.4.对于向量a ,b ,若a ·b =k ,能不能写成a =k b? 提示:不能,向量没有除法,k b无意义. 5.为什么(a ·b )c =a (b ·c )不一定成立? 提示:由定义得(a ·b )c =(|a ||b |cosa ,b )c ,即(a ·b )c =λ1c ;a (b ·c )=a (|b ||c |cos b ,c ),即a (b ·c )=λ2a ,因此,(a ·b )c 表示一个与c 共线的向量,而a (b ·c )表示一个与a 共线的向量,而a 与c 不一定共线,所以(a ·b )c =a (b ·c )不一定成立.1.求两向量的数量积时,关键是搞清楚两个向量间的夹角,在求两个向量间的夹角时,可用平移向量的方法,把一个向量平移到另一个向量的起点.2.利用向量的数量积求两点间的距离,可以转化为求向量的模的问题,其基本思路是将此向量表示为几个已知向量的和的形式,求出这几个已知向量的两两之间的夹角以及它们的模,利用公式|a |=a ·a 求解即可.3.利用空间向量的数量积解决几何中的夹角垂直关系,其思路是将直线的方向向量用已知向量表示,然后进行数量积的运算.类型一 空间向量的数量积运算【例1】 如下图所示,已知正三棱锥A ­BCD 的侧棱长和底面边长都是a ,点E 、F 、G 分别是AB 、AD 、DC 的中点.求下列向量的数量积.(1)AB →·AC →;(2)AD →·BD →; (3)GF →·AC →;(4)EF →·BC →.【解】 (1)由题知|AB →|=|AC →|=a ,且〈AB →,AC →〉=60°, ∴AB →·AC →=a ·a ·cos60°=12a 2.(2)|AD →|=a ,|BD →|=a ,且〈AD →,BD →〉=60°. ∴AD →·BD →=a ·a ·cos60°=12a 2.(3)|GF →|=12a ,|AC →|=a ,又GF →∥AC →,∴〈GF →,AC →〉=180°.∴GF →·AC →=12a ·a ·cos180°=-12a 2.(4)|EF →|=12a ,|BC →|=a ,又EF →∥BD →,∴〈EF →,BC →〉=〈BD →,BC →〉=60°. ∴EF →·BC →=12a ·a ·cos60°=14a 2.在几何体中求空间向量的数量积,首先要充分利用向量所在的图形,将各向量分解成已知模和夹角的向量的组合形式;其次利用向量的运算律将数量积展开,转化为已知模和夹角的向量的数量积;最后利用数量积的定义求解即可.注意挖掘几何体中的垂直关系或者特殊角.已知正四面体OABC 的棱长为1.求:(1)OA →·OB →;(2)(OA →+OB →)·(CA →+CB →). 解:如图所示,(1)OA →·OB →=|OA →||OB →|cos ∠AOB =1×1×cos60°=12;(2)(OA →+OB →)·(CA →+CB →)=(OA →+OB →)·(OA →-OC →+OB →-OC →)=(OA →+OB →)·(OA →+OB →-2OC →)=12+1×1×cos60°-2×1×1×cos60°+1×1×cos60°+12-2×1×1×cos60°=1.类型二 利用数量积求夹角【例2】 如图,在直三棱柱ABC ­A 1B 1C 1中,∠ABC =90°,AB =BC =1,AA 1=2,求异面直线BA 1与AC 所成角的余弦值.【分析】 求异面直线BA 1与AC 所成的角,可转化为求向量BA 1→与AC →所成的角,因此可先求BA 1→·AC →,再求|BA 1→|,|AC →|,最后套用夹角公式求得,但要注意两直线夹角与两向量夹角的区别.【解】 因为BA 1→=BA →+AA 1→=BA →+BB 1→,AC →=BC →-BA →,且BA →·BC →=BB 1→·BA →=BB 1→·BC →=0, 所以BA 1→·AC →=(BA →+BB 1→)·(BC →-BA →)=BA →·BC →-BA→2+BB 1→·BC →-BB 1→·BA →=-1. 又|AC →|=2,|BA 1→|=1+2= 3.所以cos 〈BA 1→,AC →〉=BA 1→·AC→|BA 1→||AC →|=-16=-66.则异面直线BA 1与AC 所成角的余弦值为66.如图所示,在正方体ABCD ­A 1B 1C 1D 1中,求异面直线A 1B 与AC 所成的角.解:不妨设正方体的棱长为1, 设AB →=a ,AD →=b ,AA 1→=c , 则|a |=|b |=|c |=1,a ·b =b ·c =c ·a =0,A 1B →=a -c ,AC →=a +b .∴A 1B →·AC →=(a -c )·(a +b ) =|a |2+a ·b -a ·c -b ·c =1.而|A 1B →|=|AC →|=2,∴cos 〈A 1B →,AC →〉=12×2=12,∴〈A 1B →,AC →〉=60°.∴异面直线A 1B 与AC 所成的角为60°. 类型三 利用数量积求距离【例3】 在正四面体ABCD 中,棱长为a .M ,N 分别是棱AB ,CD 上的点,且|MB |=2|AM |,|CN |=12|ND |,求|MN |.【分析】 转化为求向量MN →的模,然后将向量MN →分解,再根据数量积运算性质进行求解. 【解】 因为MN →=MB →+BC →+CN →=23AB →+(AC →-AB →)+13(AD →-AC →)=-13AB →+13AD →+23AC →,所以MN →·MN →=⎝ ⎛⎭⎪⎫-13AB →+13AD →+23AC →·⎝ ⎛⎭⎪⎫-13AB →+13AD →+23AC →=19AB →2-29AD →·AB →-49AB →·AC →+49AC →·AD →+19AD →2+49AC →2=19a 2-19a 2-29a 2+29a 2+19a 2+49a 2=59a 2. 所以|MN |=53a .求两点间的距离或某条线段的长度的方法:先将此线段用向量表示,然后用其他已知夹角和模的向量表示此向量,最后利用|a |2=a ·a ,通过向量运算去求|a |,即得所求距离.如下图,在平行四边形ABCD 中,AB =AC =1,∠ACD =90°,将它沿对角线AC 折起,使直线AB 与CD 成60°角,求B ,D 间的距离.解:∵∠ACD =90°, ∴AC →·CD →=0,同理BA →·AC →=0.∵AB 与CD 成60°角,∴〈BA →,CD →〉=60°或120°. ∵BD →=BA →+AC →+CD →, ∴BD →2=BA →2+AC →2+CD→2+2BA →·AC →+2BA →·CD →+2AC →·CD →=BA→2+AC→2+CD→2+2BA →·CD →=3+2·1·1·cos〈BA →,CD →〉=⎩⎪⎨⎪⎧4 〈BA →,CD →〉=60°, 2〈BA →,CD →〉=120°.∴|BD →|=2或2,即B ,D 间的距离为2或 2. 类型四 利用数量积证明垂直问题【例4】 如下图,正方体ABCD ­A 1B 1C 1D 1中,P 为DD 1的中点,O 是底面ABCD 的中心.求证:B 1O ⊥平面PAC .【分析】 本题考查利用a ⊥b ⇔a ·b =0求证线面垂直,关键是在平面PAC 中找出两相交向量与向量B 1O →垂直.【证明】 不妨设正方体的棱长为1,AB →=a ,AD →=b ,AA 1→=c ,则|a |=|b |=|c |=1,a ·b=b ·c =a ·c =0.由题图得:PA →=PD →+DA →=-12AA 1→-AD →=-b -12c ,PC →=PD →+DC →=-12AA 1→+AB →=a -12c ,B 1O →=B 1B →+BO →=-c +12(-a +b )=-12a +12b -c .∵PA →·B 1O →=⎝ ⎛⎭⎪⎫-b -12c ·⎝ ⎛⎭⎪⎫-12a +12b -c=12a ·b -12b 2+b ·c +14a ·c -14b ·c +12c 2, PC →·B 1O →=⎝⎛⎭⎪⎫a -12c ·⎝ ⎛⎭⎪⎫-12a +12b -c=-12a 2+12a ·b -a ·c +14a ·c -14b ·c +12c 2,又∵|a |=|b |=|c |=1,a ·b =a ·c =b ·c =0,∴PA →·B 1O →=0,PC →·B 1O →=0.∴PA →⊥B 1O →,PC →⊥B 1O →. ∴PA ⊥B 1O ,PC ⊥B 1O .又∵PA ∩PC =P ,∴B 1O ⊥平面PAC .用向量法证明线面垂直,离不开线面垂直的判定定理,需将线面垂直转化为线线垂直,然后利用向量法证明线线垂直即可.已知空间四边形ABCD 中,AB ⊥CD ,AC ⊥BD ,求证:AD ⊥BC . 证明:如图.方法一:∵AB ⊥CD ,AC ⊥BD , ∴AB →·CD →=0,AC →·BD →=0.AD →·BC →=(AB →+BD →)·(AC →-AB →)=AB →·AC →+BD →·AC →-AB→2-AB →·BD →=AB →·AC →-AB→2-AB →·BD →=AB →·(AC →-AB →-BD →)=AB →·DC →=0. ∴AD →⊥BC →,从而AD ⊥BC .方法二:设AB →=a ,AC →=b ,AD →=c , ∵AB ⊥CD ,∴AB →·CD →=0,即AB →·(AD →-AC →)=0,a ·(c -b )=0,即a ·c =b ·a . ∵AC ⊥BD ,∴AC →·BD →=0,即AC →·(AD →-AB →)=0,b ·(c -a )=0, 即b ·c =b ·a .∴a ·c =b ·c ,c ·(b -a )=0, 即AD →·(AC →-AB →)=0,AD →·BC →=0. ∴AD →⊥BC →,从而AD ⊥BC.1.如图所示,正方体ABCD ­A 1B 1C 1D 1的棱长为a ,对角线AC 1和BD 1相交于点O ,则有( C)A.AB →·A 1C 1→=2a 2B.AB →·AC 1→=2a 2C.AB →·AO →=12a 2D.BC →·DA 1→=a 2解析:∵AB →·AO →=AB →·12AC 1→=12AB →·(AB →+AD →+AA 1→)=12(AB →2+AB →·AD →+AB →·AA 1→)=12AB →2=12|AB →|2=12a 2. 2.已知a ,b ,c 是两两垂直的单位向量,则|a -2b +3c |=( B ) A .14 B.14 C .4 D .2解析:|a -2b +3c |2=|a |2+4|b |2+9|c |2-4a ·b +6a ·c -12b ·c =14,∴|a -2b +3c |=14.3.已知i 、j 、k 是两两垂直的单位向量,a =2i -j +k ,b =i +j -3k ,则a·b 等于-2.解析:a·b =(2i -j +k )·(i +j -3k )=2i 2-j 2-3k 2=-2. 4.已知向量a 、b 、c 两两之间的夹角都为60°,其模都为1,则 |a -b +2c |等于 5.解析:(a -b +2c )2=a 2+b 2+4c 2-2a·b +4a·c -4b ·c =1+1+4-2cos60°=5,∴|a -b +2c |= 5.5.如图所示,已知△ADB 和△ADC 都是以D 为直角顶点的直角三角形,且AD =BD =CD ,∠BAC =60°.求证:BD ⊥平面ADC .证明:不妨设AD =BD =CD =1,则AB =AC = 2. BD →·AC →=(AD →-AB →)·AC →=AD →·AC →-AB →·AC →,由于AD →·AC →=AD →·(AD →+DC →)=AD →·AD →=1,AB →·AC →=|AB →|·|AC →|cos60°=2×2×12=1.∴BD →·AC →=0,即BD ⊥AC ,又已知BD ⊥AD , ∴BD ⊥平面ADC .。

(新课程)高中数学《3.1.1空间向量及其运算》导学案 新人教a版选修2-1

(新课程)高中数学《3.1.1空间向量及其运算》导学案 新人教a版选修2-1

§3.1.1空间向量及其运算1. 理解空间向量的概念,掌握其表示方法;2. 会用图形说明空间向量加法、减法、数乘向量及它们的运算律;3. 能用空间向量的运算意义及运算律解决简单的立体几何中的问题.8486复习1:平面向量基本概念:具有 和 的量叫向量, 叫向量的模(或长度); 叫零向量,记着 ; 叫单位向量. 叫相反向量, a 的相反向量记着 . 叫相等向量. 向量的表示方法有 , ,和 共三种方法.复习2:平面向量有加减以及数乘向量运算:1. 向量的加法和减法的运算法则有 法则 和 法则.2. 实数与向量的积:实数λ与向量a 的积是一个 量,记作 ,其长度和方向规定如下:(1)|λa |= .(2)当λ>0时,λa 与A. ;当λ<0时,λa 与A. ;当λ=0时,λa = .3. 向量加法和数乘向量,以下运算律成立吗?加法交换律:a +b =b +a加法结合律:(a +b )+c =a +(b +c )数乘分配律:λ(a +b )=λa +λb二、新课导学※ 学习探究探究任务一:空间向量的相关概念问题: 什么叫空间向量?空间向量中有零向量,单位向量,相等向量吗?空间向量如何表示?新知:空间向量的加法和减法运算:空间任意两个向量都可以平移到同一平面内,变为两个平面向量的加法和减法运算,例如右图中, OB = , AB = ,试试:1. 分别用平行四边形法则和三角形法则求,.a b a b +- a .2. 点C 在线段AB 上,且52AC CB =,则 AC = AB , BC = AB .反思:空间向量加法与数乘向量有如下运算律吗?⑴加法交换律:A. + B. = B. + a ;⑵加法结合律:(A. + b ) + C. =A. + (B. + c );⑶数乘分配律:λ(A. + b ) =λA. +λb .※ 典型例题例1 已知平行六面体''''ABCD A B C D -(如图),化简下列向量表达式,并标出化简结果的向量: AB BC + ⑴;'AB AD AA ++ ⑵;1'2AB AD CC ++ ⑶ 1(')2AB AD AA ++ ⑷.变式:在上图中,用',,AB AD AA 表示'',AC BD 和'DB .小结:空间向量加法的运算要注意:首尾相接的若干向量之和,等于由起始向量的起点指向末尾向量的终点的向量,求空间若干向量之和时,可通过平移使它们转化为首尾相接的向量.例2 化简下列各式: ⑴ AB BC CA ++ ; ⑵;AB MB BO OM +++ ⑶;AB AC BD CD -+- ⑷ OA OD DC -- .变式:化简下列各式: ⑸ OA OC BO CO +++ ; ⑹ AB AD DC -- ; ⑺ NQ QP MN MP ++- .小结:化简向量表达式主要是利用平行四边形法则或三角形法则,遇到减法既可转化成加法,也可按减法法则进行运算,加法和减法可以转化.※ 动手试试练1. 已知平行六面体''''ABCD A B C D -, M 为A 1C 1与B 1D 1的交点,化简下列表达式: ⑴ 111AA A B + ; ⑵ 11111122A B A D + ; ⑶ 111111122AA A B A D ++ ⑷ 1111AB BC CC C A A A ++++ .三、总结提升※ 学习小结1. 空间向量基本概念;2. 空间向量加法、减法、数乘向量及它们的运算律※ 知识拓展平面向量仅限于研究平面图形在它所在的平面内的平移,而空间向量研究的是空间的平移,它们的共同点都是指“将图形上所有点沿相同的方向移动相同的长度”,空间的平移包含平面的平移.).A. 很好B. 较好C. 一般D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 下列说法中正确的是( ) A. 若∣a ∣=∣b ∣,则a ,b 的长度相同,方向相反或相同; B. 若a 与b 是相反向量,则∣a ∣=∣b ∣;C. 空间向量的减法满足结合律;D. 在四边形ABCD 中,一定有AB AD AC += . 2. 长方体''''ABCD A B C D -中,化简'''''AA A B A D ++ =3. 已知向量a ,b 是两个非零向量,00,a b 是与a ,b 同方向的单位向量,那么下列各式正确的是( ) A. 00a b = B. 00a b = 或00a b =- C. 01a = D. ∣0a ∣=∣0b ∣ 4. 在四边形ABCD 中,若AC AB AD =+ ,则四边形是( )A. 矩形B. 菱形C. 正方形D. 平行四边形5. 下列说法正确的是( )A. 零向量没有方向B. 空间向量不可以平行移动C. 如果两个向量不相同,那么它们的长度不相等D. 同向且等长的有向线段表示同一向量1. 在三棱柱中,M,N 分别为BC ,B'C'的中点,化简下列式子: ⑴ AM + BN ⑵'A N -'MC + 'BB2. 如图,平行六面体1111ABCD A B C D -中,点M 为AC 与的BD 的交点,AB a = ,AD b = ,1A A c = , 则下列向量中与1B M 相等的是( )A. 1122a b c -++ B. 1122a b c ++ C. 1122a b c -+ D. 1122a b c --+。

2019-2020学年高中数学人教A版选修2-1精讲优练_3.1空间向量及其运算3.1.2空间向量的数乘运算

2019-2020学年高中数学人教A版选修2-1精讲优练_3.1空间向量及其运算3.1.2空间向量的数乘运算

【方法技巧】 证明空间三点共线的三种思路
对于空间三点P,A,B可通过证明下列结论来证明三点 共线. (1)存在实数λ ,使 PA PB 成立.
(2)对空间任一点O,有 OP OA tABt R. (3)对空间任一点O,有 OP xOA yOBx y 1.
【变式训练】 已知A,B,C三点共线,O为直线外空间任意一点,若 OC mOA nOB,求m+n的值.

A1E

2ED1,点F在对角线A1C上,且
A1F

2 3
FC. 求
证:E,F,B三点共线.
【证明】设 AB a,AD b,AA1 c.
因为
A1E

2ED1,A1F

2 3
FC,
所以
A1E

2 3
A1D1,A1F

2 5
A1C,
所以
A1E

2 3
AD

2 3
b,
A1F

OP OA n OB OA AP nAB.
因为 AB≠0,所以 AP和AB 共线,即点A,P,B共线.
2.如图,在三棱柱ABC-A1B1C1中,已知M,N分别是A1B,B1C1 上的点,且BM=2A1M,C1N=2B1N.设 AB =a, AC =b,AA1=c, 则MN=________(用a,b,c表示).
2
【延伸探究】本题条件不变,若 PA=xPO+yPQ+PD. 求 x,y的值. 【解析】因为O为AC的中点,Q为CD的中点, 所以 PA+PC=2PO,PC+PD=2PQ, 所以 PA=2PO-PC,PC=2PQ-PD.
从而有 PA=2PO-(2PQ-PD)=2PO-2PQ+PD. 所以x=2,y=-2.

选修2-1 空间向量导学案

选修2-1    空间向量导学案

§3.1.1 空间向量及其加减运算【学习要求】1.经历向量及其运算由平面向空间推广的过程,了解空间向量的概念.2.掌握空间向量的加法、减法运算.【学法指导】结合平面向量的相关性质,类比学习空间向量的概念与运算.通过对空间向量的学习进一步体会数形结合的思想.【知识要点】1.空间向量(1)空间向量的定义在空间,把具有______和______的量叫做空间向量,向量的大小叫做向量的________或______. (2)空间向量及其模的表示方法空间向量用有向线段表示,有向线段的________表示向量的模.如图,a 的起点是A ,终点是B ,则a 也可记作________,其模记为_____或________. (3)特殊向量 名称 定义及表示零向量 规定长度为0的向量叫______,记为____ 单位向量 ______的向量叫单位向量相反向量 与向量a 长度____而方向____的向量,记为____相等向量方向____且模____的向量称为相等向量,____且____的有向线段表示同一向量或相等向量2.空间向量的加法、减法类似平面向量,定义空间向量的加、减法运算(如图): OB →=OA →+OC →=__________;CA →=OA →-OC →=__________. 3.空间向量加法的运算律(1)交换律 a +b =________;(2)结合律 (a +b )+c =__________.【问题探究】探究点一 空间向量的概念问题1 观察正方体中过同一个顶点的三条棱所表示的三个向量OA →,OB →,OC →,它们和以前所学的向量有什么不同?问题2 空间向量和平面向量有什么区别?它有什么作用?问题3 向量可以用有向线段表示,是否可以说向量就是有向线段? 问题4 “空间中任何两个向量都是共面向量”,这个结论是否正确? 例1 给出下列命题:①两个空间向量相等,则它们起点相同,终点也相同; ②若空间向量a ,b ,满足|a |=|b |,则a =b ;③在正方体ABCD —A 1B 1C 1D 1中,必有AC →=A 1C 1→; ④若空间向量m ,n ,p 满足m =n ,n =p ,则m =p ; ⑤空间中任意两个单位向量必相等. 其中不正确的命题的个数是 ( )A .1B .2C .3D .4 跟踪训练1 下列说法中正确的是( )A .若|a |=|b |,则a 、b 的长度相同,方向相同或相反B .若向量a 是向量b 的相反向量,则|a |=|b |C .空间向量的减法满足结合律D .在四边形ABCD 中,一定有AB →+AD →=AC →探究点二 空间向量的加减运算问题1 怎样计算空间两个向量的和与差?问题2 使用三角形法则和平行四边形法则有哪些要求?例2 如图,已知长方体ABCD —A ′B ′C ′D ′,化简下列向量表达式,并在图中标出化简结果的向量.(1)AA ′→-CB →; (2)AA ′→+AB →+B ′C ′→.跟踪训练2 化简:(1)(AB →-CD →)-(AC →-BD →); (2)(AB →+CD →)-(AC →+BD →).【当堂检测】1.下列命题中,假命题是 ( )A .向量AB →与BA →的长度相等 B .两个相等的向量,若起点相同,则终点也相同 C .只有零向量的模等于0 D .共线的单位向量都相等2.如图所示,平行四边形ABCD 的对角线交点是O ,则下列等式成立的是 ( )A .OA →+OB →=AB → B .OA →+OB →=BA →C .AO →-OB →=AB →D .OA →-OB →=CD →3.下列说法中正确的是 ( )A .若|a |<|b |,则a <bB .若向量a 是向量b 的相反向量,则a +b =0C .如果两向量平行,则两向量相等D .在四边形ABCD 中,一定有AB →-AD →=DB →4.在正方体ABCD —A 1B 1C 1D 1中,已知下列各式:①(AB →+BC →)+CC 1→;②(AA 1→+A 1D 1→)+D 1C 1→;③(AB →+BB 1→)+B 1C 1→;④(AA 1→+A 1B 1→)+B 1C 1→.其中运算的结果为AC 1→的有( ) A .1个 B .2个 C .3个 D .4个【课堂小结】1.空间向量的概念和平面向量类似,向量的模,零向量,单位向量,相等向量等都可以结合平面向量理解. 2.向量可以平移,任意两个向量都是共面向量.因此空间两个向量的加减法运算和平面向量完全相同,可以利用平行四边形法则和三角形法则来进行.§3.1.2 空间向量的数乘运算【学习要求】1.掌握空间向量数乘运算的定义和运算律,了解共线(平行)向量、共面向量的意义.2.能理解共线向量定理和共面向量定理及其推论,并能运用它们证明空间向量的共线和共面问题.【学法指导】利用空间向量的数乘运算,理解和表示共线向量和共面向量,充分体现向量的工具性.【知识要点】1.空间向量的数乘运算 (1)向量的数乘:实数λ与空间向量a 的乘积仍然是一个向量,记作_______,称为_______________.当λ>0时,λa 与向量a 方向________;当λ<0时,λa 与向量a 方向________;λa 的长度是a 的长度的________倍. (2)空间向量的数乘运算满足分配律与结合律:分配律:________________,结合律:______________ 2.共线向量(1)共线向量定义表示空间向量a ,b 的有向线段所在的直线_______,则向量a ,b 叫做______或_______,记作________. (2)两向量共线的充要条件对于空间任意两个向量a ,b (b ≠0),a ∥b 的充要条件是存在实数λ,使__________ (3)共线向量的推论如果l 为经过点A 平行于已知非零向量a 的直线,那么对于空间任一点O ,点P 在直线l 上的充要条件是存在实数t ,使OP →=OA →+ta ,①其中a 叫直线l 的____________.在l 上取AB →=a ,则①式可化为____________.此推论可以用来判断三点共线. 3.共面向量(1)共面向量的概念平行于______________的向量,叫做共面向量. (2)三个向量共面的充要条件若两个向量a ,b 不共线,则向量p 与向量a ,b 共面的充要条件是存在惟一的有序实数对(x ,y ),使_____【问题探究】探究点一 空间向量的数乘运算问题1 思考实数λ和空间向量a 的乘积λa 的意义? 问题2 空间向量的数乘运算满足哪些运算律?例1 设A 是△BCD 所在平面外的一点,G 是△BCD 的重心.求证:AG →=13(AB →+AC→+AD →).探究点二 向量共线问题问题1(1)两向量共线时,它们的方向有什么关系? (2)在两向量共线的充要条件中,为什么要求b ≠0? 问题2 向量共线在几何中有什么应用?例2 如图所示,在正方体ABCD —A 1B 1C 1D 1中,E 在A 1D 1上,且A 1E →=2ED 1→,F 在对角线A 1C 上,且A 1F →=23FC →. 求证:E ,F ,B 三点共线. 跟踪训练2 如图所示,四边形ABCD 是空间四边形,E ,H 分别是边AB ,AD 的中点, F ,G 分别是边CB ,CD 上的点,且CF →=23CB →,CG →=23CD →.求证:四边形EFGH 是梯形.探究点三 向量共面问题问题1 如何理解向量与平面平行?问题2 在三个向量共面的充要条件中,若两向量a 、b 共线,那么结论是否还成立?问题3 已知空间任意一点O 和不共线的三点A ,B ,C ,满足向量关系式OP →=xOA →+yOB →+zOC →(其中x +y +z =1)的点P 与点A ,B ,C 是否共面? 问题4 向量共面在几何中有什么应用?问题5 已知A 、B 、M 三点不共线,对于平面ABM 外的任一点O ,确定在下列各条件下,点P 是否与A 、B 、M 一定共面?(1)OB →+OM →=3OP →-OA →; (2)OP →=4OA →-OB →-OM →.例3 如图所示,已知平行四边形ABCD ,过平面AC 外一点O 作射线OA ,OB , OC ,OD ,在四条射线上分别取点E ,F ,G ,H ,并且使OE OA =OF OB =OG OC =OHOD =k ,求证:E ,F ,G ,H 四点共面.跟踪训练3 如图所示,已知矩形ABCD 和矩形ADEF 所在的平面互相垂直,点M ,N 分别在对角线BD ,AE 上,且BM =13BD ,AN =13AE .求证:向量MN →,CD →,DE →共面.【当堂检测】1.下列命题中是真命题的是( )A .分别表示空间向量的有向线段所在的直线是异面直线,则这两个向量不是共面向量B .若|a |=|b |,则a ,b 的长度相等而方向相同或相反C .若向量AB →,CD →满足|AB →|>|CD →|,且AB →与CD →同向,则AB →>CD →D .若两个非零向量AB →与CD →满足AB →+CD →=0,则AB →∥CD →2.空间的任意三个向量a ,b,3a -2b ,它们一定是 ( )A .共线向量B .共面向量C .不共面向量D .既不共线也不共面向量3.对于空间任意一点O 和不共线的三点A ,B ,C 有6OP →=OA →+2OB →+3OC →,则( ) A .四点O ,A ,B ,C 必共面 B .四点P ,A ,B ,C 必共面 C .四点O ,P ,B ,C 必共面 D .五点O ,P ,A ,B ,C 必共面4.在平行四边形ABCD 中,AC 与BD 交于点O ,E 是线段OD 的中点,AE 的延长线与CD 交于点F .若AC →=a ,BD →=b ,则AF →=______________【课堂小结】空间向量的数乘运算和平面向量完全相同;利用数乘运算可判定两个向量共线,三个向量共面问题,在几何中可以解决一些点共线、点共面、线面平行问题.§3.1.3 空间向量的数量积运算【学习要求】1.掌握空间向量夹角的概念及表示方法,掌握两个向量的数量积的概念、性质和计算方法及运算规律.2.掌握两个向量的数量积的主要用途,会用它解决立体几何中一些简单的问题.【学法指导】数量积是向量最重要的运算,利用数量积可以求向量的模、两个向量的夹角;通过类比平面向量的数量积,学习空间两向量的数量积,通过向量积的运用,培养数学应用意识.【知识要点】1.空间向量的夹角定义 已知两个非零向量a ,b ,在空间任取一点O ,作OA →=a ,OB →=b ,则∠AOB 叫做向量a ,b 的夹角 记法 _______范围〈a ,b 〉∈________.当〈a ,b 〉=π2时,a ______b想一想:〈a ,b 〉与〈b ,a 〉相等吗?〈a ,b 〉与〈a ,-b 〉呢? 2.空间向量的数量积(1)定义:已知两个非零向量a ,b ,则_________________叫做a ,b 的数量积,记作a·b . (2)数量积的运算律数乘向量与向量数量积的结合律 (λa )·b =__________ 交换律 a·b =________分配律a ·(b +c )=________________(3)数量积的性质两个向量数量积的性质①若a ,b 是非零向量,则a ⊥b ⇔___________②若a 与b 同向,则a·b =________;若反向,则a·b =________. 特别地,a·a =________或|a |=a·a ③若θ为a ,b 的夹角,则cos θ=________ ④|a·b |≤|a |·|b |【问题探究】探究点一 空间向量的数量积运算问题1 空间两个向量的夹角是怎样定义的,范围怎样规定? 问题2 类比平面向量的数量积,说出空间向量的数量积a·b 的定义? 问题3 请你类比平面向量说出a·b 的几何意义. 问题4 给出下列各式:①|a·b |=|a||b |;②(a·b )c =a (b·c );③m·(a -b )=m·a -m·b ;④m·a =m·b ⇒a =b ;⑤若a·b =3,则a =3b.其中正确的式子是________例1 已知长方体ABCD —A 1B 1C 1D 1中,AB =AA 1=2,AD =4,E 为侧面AB 1的中心,F 为A 1D 1的中点.试计算:(1)BC →·ED 1→;(2)BF →·AB 1→;(3)EF →·FC 1→. 跟踪训练1 已知正四面体OABC 的棱长为1.求:(1)OA →·OB →; (2)(OA →+OB →)·(CA →+CB →); (3)|OA →+OB →+OC →|.探究点二 利用数量积求夹角问题1 怎样利用数量积求直线夹角或余弦值? 问题2 利用数量积怎样证明两个向量垂直?证明:(三垂线定理)在平面内的一条直线,如果和这个平面的一条斜线的射影垂 直,那么它也和这条斜线垂直.已知:如图,PO ,P A 分别是平面α的垂线、斜线,AO 是P A 在平面α内的射影,l ⊂α,且l ⊥OA ,求证:l ⊥P A .跟踪训练2 如图所示,已知平行六面体ABCD —A 1B 1C 1D 1的底面ABCD 是菱形, 且∠C 1CB =∠C 1CD =∠BCD =60°. 求证:CC 1⊥BD .探究点三 利用数量积求距离问题 类比平面向量,说出利用数量积求长度或距离的方法.例3 已知a ,b ,c 中每两个的夹角都是π3,且|a |=4,|b |=6,|c |=2,试计算|a +b +c |.跟踪训练3 如图所示,已知线段AB 在平面α内,线段AC ⊥α,线段BD ⊥AB ,线段DD′⊥α于D′,如果∠DBD′=30°,AB=a,AC=BD=b,求CD的长.【当堂检测】1.设a、b、c是任意的非零平面向量,且它们相互不共线,下列命题:①(a·b)·c-(c·a)·b=0;②|a|-|b|<|a-b|;③(b·a)·c-(c·a)·b与c垂直;④(3a+2b)·(3a-2b)=9|a|2-4|b|2.其中正确的有()A.①②B.②③C.③④D.②④2.已知a,b 均为单位向量,它们的夹角为60°,那么|a+3b|等于()A.7 B.10 C.13 D.43.如图所示,已知P A⊥平面ABC,∠ABC=120°,P A=AB=BC=6,则PC等于()A.6 2 B.6 C.12 D.144【课堂小结】空间向量的数量积要找到两个向量的模和夹角;利用数量积求两异面直线所成的角,关键在于在异面直线上构造向量,找出两向量的关系;证明两向量垂直可转化为证明两个向量的数量积为零,求线段长度转化为求向量的数量积.§3.1.4空间向量的正交分解及其坐标表示【学习要求】1.理解空间向量基本定理,并能用基本定理解决一些几何问题.2.理解基底、基向量及向量的线性组合的概念.3.掌握空间向量的坐标表示,能在适当的坐标系中写出向量的坐标.【学法指导】从空间向量的正交分解到空间向量基本定理,是特殊到一般的思想.把空间向量用不共面的三个向量表示是利用向量解决几何问题的基础.【知识要点】1.空间向量基本定理定理:如果三个向量a,b,c________,那么对于空间任一向量p,存在有序实数组{x,y,z},使得p =_________.其中__________叫做空间的一个基底,__________都叫做基向量.2.空间向量的正交分解及其坐标表示(1)单位正交基底三个有公共起点O的____________的单位向量e1,e2,e3称为单位正交基底.(2)空间直角坐标系以e1,e2,e3的公共起点O为______,分别以___________的方向为x轴,y轴,z轴的正方向建立空间直角坐标系Oxyz.(3)空间向量的坐标表示对于空间任意一个向量p,一定可以把它________,使它的起点与原点O重合,得到向量OP→=p.由空间向量基本定理可知,存在有序实数组{x,y,z},使得p=______________把__________称作向量p在单位正交基底e1,e2,e3下的坐标,记作____________.【问题探究】探究点一空间向量的基底问题1平面向量的基底要求二个基向量不共线,那么构成空间向量基底的三个向量有什么条件?问题2基向量和基底一样吗?0能否作为基向量?问题3类比平面向量的正交分解,空间向量也可以正交分解,请思考此时的基底应满足什么条件?例1若{a,b,c}是空间的一个基底.试判断{a+b,b+c,c+a}能否作为该空间的一个基底?跟踪训练1设x=a+b,y=b+c,z=c+a,且{a,b,c}是空间的一个基底,给出下列向量组:①{a,b,x},②{x,y,z},③{b,c,z},④{x,y,a+b+c},其中可以作为空间的基底的向量组有 ()A.1个B.2个C.3个D.4个探究点二用基底表示向量问题1和平面向量基本定理类似,请你思考怎样用空间的基底来表示任何一个空间向量?问题2用基底表示向量应注意哪些问题?例2如图所示,空间四边形OABC中,G、H分别是△ABC、△OBC的重心,设OA→=a,OB→=b,OC→=c.试用向量a,b,c表示向量GH→.跟踪训练2在平行六面体ABCD-A′B′C′D′中,AB→=a,AD→=b,AA′→=c,P是CA′的中点,M是CD′的中点,N是C′D′的中点,点Q是CA′上的点,且CQ∶QA′=4∶1,用基底{a,b,c}表示以下向量:(1)AP→;(2)AM→;(3)AN→;(4)AQ→.探究点三空间向量的坐标表示问题1怎样把空间向量用坐标表示?问题2空间向量的坐标表示和利用空间向量基本定理表示向量是什么关系?例3已知P A垂直于正方形ABCD所在的平面,M、N分别是AB、PC的中点,并且P A=AD=1,求向量MN→、DC→的坐标.跟踪训练3在直三棱柱ABO—A1B1O1中,∠AOB=π2,AO=4,BO=2,AA1=4,D为A1B1的中点,则在如图所示的空间直角坐标系中,求DO→,A1B→的坐标.【当堂检测】1.O 、A 、B 、C 为空间四点,且向量OA →,OB →,OC →不能构成空间的一个基底,则 ( ) A .OA →、OB →、OC →共线 B .OA →、OB →共线 C .OB →、OC →共线D .O 、A 、B 、C 四点共面2.已知e 1,e 2,e 3是空间直角坐标系中分别与x 轴、y 轴、z 轴同向的单位向量,且p =e 1+2e 2-3e 3,则p 的坐标是 ( )A .(1,2,3)B .(-1,-2,3)C .(1,2,-3)D .(1,-2,-3)3.已知点A 在基底{a ,b ,c }下的坐标为(8,6,4),其中a =i +j ,b =j +k ,c =k +i ,则点A 在基底{i ,j ,k }下的坐标是 ( )A .(12,14,10)B .(10,12,14)C .(14,12,10)D .(4,3,2)4.从空间一点P 引出三条射线P A ,PB ,PC ,在P A ,PB ,PC 上分别取PQ →=a ,PR →=b ,PS →=c ,点G 在PQ 上,且PG =2GQ ,H 为RS 的中点,则GH →=______________.(用a ,b ,c 表示)【课堂小结】1.空间任意三个不共面的向量都可以作为空间向量的一个基底;基底选定后,任一向量可由基底唯一表示. 2.向量的坐标是在单位正交基底下向量的表示.在表示向量时,要结合图形的几何性质,充分利用向量的线性运算.§3.2 立体几何中的向量方法第1课时 空间向量与平行关系【学习要求】1.理解直线的方向向量和平面的法向量.2.能用向量语言表述线线、线面、面面平行关系.【学法指导】在学习用空间向量方法证明平行关系、垂直关系时,应先复习必修二中学习的线面、面面平行与垂直的判定定理,将这种位置关系的判断转化为向量间的代数运算,体现向量的工具性作用.【知识要点】1.直线的方向向量和平面的法向量直线的方向向量能平移到直线上的________向量,叫做直线的一个方向向量平面的法向量直线l ⊥α,取直线l 的__________n ,叫做平面α的法向量2.空间中平行关系的向量表示设直线l ,m 的方向向量分别为a ,b ,平面α,β的法向量分别为μ,v ,则线线平行 l ∥m ⇔________⇔a =kb (k ∈R) 线面平行 l ∥α⇔________⇔________ 面面平行 α∥β⇔________⇔____________ 线线垂直 l ⊥m ⇔a ⊥b ⇔a·b =0 线面垂直 l ⊥α⇔a ∥u ⇔a =ku ,k ∈R 面面垂直α⊥β⇔u ⊥v ⇔u·v =0.【问题探究】探究点一 利用方向向量和法向量判定线面的位置关系问题1 对于一条确定的直线和一个确定的平面,它的方向向量及法向量有几个? 问题2 怎样求一个平面的法向量?试一试 已知A (1,0,1),B (0,1,1),C (1,1,0),求平面ABC 的一个法向量. 例1 根据下列条件,判断相应的线、面位置关系:(1)直线l 1,l 2的方向向量分别是a =(1,-3,-1),b =(8,2,2); (2)平面α,β的法向量分别是u =(1,3,0),v =(-3,-9,0);(3)直线l 的方向向量,平面α的法向量分别是a =(1,-4,-3),u =(2,0,3); (4)直线l 的方向向量,平面α的法向量分别是a =(3,2,1),u =(-1,2,-1). 跟踪训练1 根据下列条件,判断相应的线、面位置关系:(1)直线l 1与l 2的方向向量分别是a =(2,3,-1),b =(-6,-9,3); (2)直线l 1与l 2的方向向量分别是a =(-2,1,4),b =(6,3,3); (3)平面α与β的法向量分别是u =(1,-1,2),v =⎝⎛⎭⎫3,2,-12; (4)平面α与β的法向量分别是u =(2,-3,4),v =(4,-2,1);(5)直线l 的方向向量,平面α的法向量分别是a =(0,-8,12),u =(0,2,-3).探究点二 用向量法证明立体几何定理例2 证明:一个平面内的两条相交直线与另一个平面平行,则这两个平面平行.已知:直线l ,m 和平面α,β,其中l ,m ⊂α,l 与m 相交,l ∥β,m ∥β,求证:α∥β. 跟踪训练2 用向量方法证明:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行.已知:直线l ,m 和平面α,其中l ⊄α,m ⊂α,且l ∥m ,求证:l ∥α.探究点三 利用空间向量证明平行关系问题 怎样利用向量证明空间中的平行关系?例3 已知正方体ABCD —A 1B 1C 1D 1的棱长为2,E 、F 分别是BB 1、DD 1的中点, 求证:(1)FC 1∥平面ADE ; (2)平面ADE ∥平面B 1C 1F .跟踪训练3 如图,在四棱锥S —ABCD 中,底面ABCD 为正方形,侧棱SD ⊥底面ABCD ,E 、F 分别为AB 、SC 的中点.证明:EF ∥平面SAD .【当堂检测】1.若a =(1,2,3)是平面γ的一个法向量,则下列向量中能作为平面γ的法向量的是 ( )A .(0,1,2)B .(3,6,9)C .(-1,-2,3)D .(3,6,8)2.若A (-1,0,1),B (1,4,7)在直线l 上,则直线l 的一个方向向量为( ) A .(1,2,3) B .(1,3,2) C .(2,1,3) D .(3,2,1)3.若两个不同平面α,β的法向量分别为u =(1,2,-1),v =(-3,-6,3),则 ( ) A .α∥β B .α⊥β C .α,β相交但不垂直 D .以上均不正确 4.已知l ∥α,且l 的方向向量为(2,m,1),平面α的法向量为⎝⎛⎭⎫1,12,2,则m =______ 5.正方体ABCD —A 1B 1C 1D 1中,证明:平面A 1BD ∥平面CB 1D 1.【课堂小结】1.利用向量解决立体几何问题的“三步曲”:(1)建立立体图形与空间向量的联系,用空间向量表示问题中涉及的点、直线、平面,把立体几何问题转化为向量问题;(2)进行向量运算,研究点、直线、平面之间的关系(距离和夹角等); (3)根据运算结果的几何意义来解释相关问题.2.证明线面平行问题,可以利用直线的方向向量和平面的法向量之间的关系;也可以转化为线线平行,利用向量共线来证明.第2课时 空间向量与垂直关系【学习要求】1.能利用向量叙述线线、线面、面面的垂直关系. 2.进一步体会直线的方向向量,平面法向量的作用.【学法指导】在平行关系的基础上,利用直线的方向向量和平面的法向量判定立体几何中的垂直关系,体现了转化的数学思想.【知识要点】空间垂直关系的向量表示空间中的垂直关系 线线垂直线面垂直面面垂直设直线l 的方向向量为a =(a 1,a 2,a 3),直线m 的方向向量为b =(b 1,b 2,b 3),则l ⊥m ⇔___ 设直线l 的方向向量是a=(a 1,b 1,c 1),平面α的法向量为u =(a 2,b 2,c 2),则l ⊥α⇔________若平面α的法向量为u =(a 1,b 1,c 1),平面β的法向量为v =(a 2,b 2,c 2),则α⊥β⇔____________【问题探究】探究点一 证明线线垂直问题 怎样证明两条直线互相垂直?例1 如图,在直三棱柱ABC —A 1B 1C 1中,AC =3,BC =4,AB =5,AA 1=4,求证:AC ⊥BC 1.跟踪训练1 在棱长为a 的正方体OABC —O 1A 1B 1C 1中,E 、F 分别是AB 、BC 上的动点,且AE =BF ,求证:A 1F ⊥C 1E .探究点二 证明线面垂直问题 怎样利用向量方法证明线面垂直?例2 如图所示,在正方体ABCD —A 1B 1C 1D 1中,O 为AC 与BD 的交点,G 为CC 1的中点.求证:A 1O ⊥平面GBD .跟踪训练2 如图所示,在正方体ABCD — A 1B 1C 1D 1中,E ,F 分别是BB 1,D 1B 1的 中点.求证:EF ⊥平面B 1AC . 探究点三 证明面面垂直问题 怎样证明两个平面垂直?例3 在四面体ABCD 中,AB ⊥平面BCD ,BC =CD ,∠BCD =90°,∠ADB =30°,E 、F 分别是AC 、AD 的中点,求证:平面BEF ⊥平面ABC . 跟踪训练3 如图所示,在六面体ABCD —A 1B 1C 1D 1中,四边形ABCD 是边长为2的正方形,四边形A 1B 1C 1D 1是边长为1的正方形,DD 1⊥平面A 1B 1C 1D 1,DD 1⊥平面ABCD ,DD 1=2. 求证:(1)A 1C 1与AC 共面,B 1D 1与BD 共面;(2)平面A 1ACC 1⊥平面B 1BDD 1.【当堂检测】1.若直线l 1、l 2的方向向量分别为a =(1,2,-2),b =(-2,3,2),则 ( ) A .l 1∥l 2 B .l 1⊥l 2 C .l 1、l 2相交但不垂直 D .不能确定 2.若直线l 的方向向量为a =(1,0,2),平面α的法向量为u =(-2,0,-4),则 ( ) A .l ∥α B .l ⊥α C .l ⊂α D .l 与α斜交3.平面α的一个法向量为(1,2,0),平面β的一个法向量为(2,-1,0),则平面α与平面β的位置关系是 ( ) A .平行 B .相交但不垂直 C .垂直 D .不能确定4.如图,在四棱锥P -ABCD 中,底面ABCD 是矩形,P A ⊥平面ABCD ,AP =AB =2, BC =22,E ,F 分别是AD ,PC 的中点.证明:PC ⊥平面BEF .【课堂小结】1.用空间向量法解决立体几何中的垂直问题,主要是运用直线的方向向量与平面的法向量,同时也可借助空间中已有的一些关于垂直的定理.2.用法向量来解决有关直线与平面、平面与平面的关系问题,思路清楚,不必考虑图形的位置关系,只需通过向量运算,就可得到要证明的结果.第3课时空间向量与空间角【学习要求】1.理解直线与平面所成角的概念.2.能够利用向量方法解决线线、线面、面面的夹角求法问题.【学法指导】空间中的各种角都可以转化为两条直线所成的角,可以通过两个向量的夹角求得,体现了数学中的转化与化归思想.通过本节的学习进一步体会空间向量解决立体几何问题的三步曲.【知识要点】1.两条异面直线所成的角设两条异面直线a,b所成的角为θ,它们的方向向量分别为a,b,则cos θ=_______.2.直线和平面所成的角设直线和平面所成的角为θ,且直线的方向向量为a,平面的法向量为b,则sin θ=_______3.二面角的平面角设二面角α—l—β的锐二面角大小为θ,且两个半平面的法向量分别为a,b,则cos θ=_______.【问题探究】探究点一求两条异面直线所成的角问题1怎样求两条异面直线所成的角?问题2两条异面直线所成的角和两条异面直线的方向向量夹角有什么区别?例1如图所示,三棱柱OAB—O1A1B1中,平面OBB1O1⊥平面OAB,∠O1OB=60°,∠AOB=90°,且OB=OO1=2,OA=3,求异面直线A1B与AO1所成角的余弦值的大小.跟踪训练1长方体ABCD—A1B1C1D1中,AB=4,BC=BB1=2,E,F分别是面A1B1C1D1与面B1BCC1的中心,求异面直线AF与BE所成角的余弦值.探究点二求直线和平面所成的角问题1直线和平面所成角的范围是什么?问题2直线与平面所成的角θ和直线方向向量a与平面法向量b的夹角有什么关系?例2如图所示,已知直角梯形ABCD,其中AB=BC=2AD,AS⊥平面ABCD,AD∥BC,AB⊥BC,且AS=AB.求直线SC与底面ABCD的夹角θ的余弦值.跟踪训练2如图所示,在四棱锥P—ABCD中,底面为直角梯形,AD∥BC,∠BAD=90°,P A⊥底面ABCD,且P A=AD=AB=2BC,M、N分别为PC、PB的中点.(1)求证:PB⊥DM;(2)求BD与平面ADMN所成的角.探究点三求二面角问题怎样利用向量法求两个平面所成的二面角的大小?例3在底面为平行四边形的四棱锥P—ABCD中,AB⊥AC,P A⊥平面ABCD,且P A=AB,E是PD的中点,求平面EAC与平面ABCD的夹角.跟踪训练3如图,已知四棱锥P—ABCD中,P A⊥底面ABCD,且ABCD为正方形,P A=AB=a,点M是PC的中点.(1)求BP与DM所成的角的大小;(2)求二面角M—DA—C的大小.例4甲站在水库底面上的点A处,乙站在水坝斜面上的点B处.从A,B到直线l(库底与水坝的交线)的距离AC和BD分别为a和b,CD的长为c,AB的长为d.求库底与水坝所成二面角的余弦值.跟踪训练4已知矩形ABCD中,AB=1,BC=3,将矩形ABCD沿对角线AC折起,使平面ABC与ACD 垂直,则B与D之间的距离为________【当堂检测】1.若直线l1的方向向量与l2的方向向量的夹角是150°,则l1与l2这两条异面直线所成的角等于() A.30°B.150°C.30°或150°D.以上均错2.已知向量m,n分别是直线l和平面α的方向向量,法向量,若cos〈m,n〉=-12,则l与α所成的角() A.30°B.60°C.120°D.150°3.正方体ABCD—A1B1C1D1中,直线BC1与平面A1BD所成的角的正弦值为()A.24B.23C.63D.324.二面角α—l—β中,平面α的一个法向量n1=⎝⎛⎭⎫32,-12,-2,平面β的一个法向量n2=⎝⎛⎭⎫0,12,2,则二面角α—l—β的大小为()A.120°B.150°C.30°或150°D.60°或120°5.P A⊥平面ABC,AC⊥BC,P A=AC=1,BC= 2.求二面角A—PB—C的余弦值.【课堂小结】利用空间向量求角的基本思路是把空间角转化为求两个向量之间的关系.首先要找出并利用空间直角坐标系或基向量(有明显的线面垂直关系时尽量建系)表示出向量;其次理清要求角和两个向量夹角之间的关系.习题课立体几何中的向量方法【学习要求】通过利用向量方法解决综合性较强的问题,进一步体会空间向量在解决立体几何问题中的广泛作用.【学法指导】结合例题的解题过程,对立体几何中的三种方法(综合法、向量法、坐标法)进行比较,进一步体会向量方法与坐标方法相结合的优越性.【知识要点】设直线l ,m 的方向向量分别为a ,b ,平面α,β的法向量分别为u ,v ,则 线线平行 l ∥m ⇔a ∥b ⇔_____________ 线面平行 l ∥α⇔________⇔________ 面面平行 α∥β⇔u ∥v ⇔______________ 线线垂直 l ⊥m ⇔a ⊥b ⇔__________ 线面垂直 l ⊥α⇔a ∥u ⇔____________ 面面垂直 α⊥β⇔u ⊥v ⇔__________线线夹角 l ,m 的夹角为θ(0≤θ≤π2),cos θ=__________线面夹角 l ,α的夹角为θ(0≤θ≤π2),sin θ=__________面面夹角 α,β的夹角为θ (0≤θ≤π2),cos θ=__________【问题探究】题型一 立体几何中的综合性问题 例1 如图,在四棱锥P —ABCD 中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD , PD =DC ,点E 是PC 的中点,作EF ⊥PB 交PB 于点F . (1)求证:P A ∥平面EDB ; (2)求证:PB ⊥平面EFD ;(3)求二面角C —PB —D 的大小.跟踪训练1 如图所示,正方形ABCD 所在平面与四边形ABEF 所在平面互相垂直,△ABE 是等腰直角三角形,AB =AE ,F A =FE ,∠AEF =45°. (1)求证:EF ⊥平面BCE ;(2)设线段CD 、AE 的中点分别为P 、M ,求证:PM ∥平面BCE .题型二 立体几何中的探索性问题立体几何中的探索性问题,在命题中多以解答题的一步出现,试题有一定的难度.这类题型常以适合某种条件的结论“存在”、“不存在”、“是否存在”等语句表述.解答这类问题,一般要先对结论作出肯定的假设,然后由此肯定的假设出发,结合已知条件进行推理论证,若导致合理的结论,则存在性也随之解决;若导致矛盾,则否定了存在性.例2 如图,在三棱锥P -ABC 中,AB =AC ,D 为BC 的中点,PO ⊥平面ABC ,垂足O 落在线段AD 上,已知BC =8,PO =4,AO =3,OD =2. (1)证明:AP ⊥BC .(2)在线段AP 上是否存在点M ,使得二面角A -MC -B 为直二面角?若存在,求出AM 的长;若不存在,请说明理由.跟踪训练2 如图,在长方体ABCD -A 1B 1C 1D 1中,AA 1=AD =1,E 为CD 的中点. (1)求证:B 1E ⊥AD 1.(2)在棱AA 1上是否存在一点P ,使得DP ∥平面B 1AE ?若存在,求AP 的长;若不存在,说明理由.(3)若二面角A -B 1E -A 1的大小为30°,求AB 的长.【当堂检测】1.在如图所示的几何体中,四边形ABCD 是等腰梯形,AB ∥CD ,∠DAB =60°, FC ⊥平面ABCD ,AE ⊥BD ,CB =CD =CF . (1)求证:BD ⊥平面AED ;(2)求二面角F -BD -C 的余弦值. 2.如图,四边形ABCD 是边长为1的正方形,MD ⊥平面ABCD ,NB ⊥平面ABCD ,且MD =NB =1,E 为BC 的中点.在线段AN 上是否存在点S ,使得ES ⊥平面AMN?【课堂小结】1.解决立体几何问题一般有三种方法:综合法、向量法、坐标法.综合法以逻辑推理作为工具解决问题;向量法利用向量的概念及其运算解决问题;坐标法利用数及其运算来解决问题.一般情况下,我们遵循的原则是:以综合法为基础,以向量法为主导,以坐标法为中心.2.对于探索性问题,一般先假设存在,利用空间坐标系,结合已知条件,转化为代数方程是否有解的问题,若有解满足题意则存在,若没有满足题意的解则不存在.章末复习课【知识网络】。

2021年高中数学3.1.1空间向量及其加减运算学案含解析人教A版选修2_1

2021年高中数学3.1.1空间向量及其加减运算学案含解析人教A版选修2_1

3.1.1 空间向量及其加减运算[目标] 1.了解空间向量的概念,掌握空间向量的几何表示和字母表示.2.掌握空间向量的加减运算及其运算律,理解向量减法的几何意义.[重点] 空间向量加减运算及其几何意义.[难点] 向量加减运算由平面向空间的推广.知识点一空间向量的有关概念[填一填]1.定义:在空间,把具有大小和方向的量叫做空间向量.2.长度:向量的大小叫做向量的长度或模.4.几类特殊向量[答一答]1.向量可以用有向线段表示,那么有向线段是向量吗?提示:不是.虽然有向线段既有大小又有方向,但它不是一个量.2.如何理解零向量的方向?提示:由于零向量的长度为零,可以理解为表示零向量的有向线段长度为零,因此可以理解为零向量不是没有方向,而是方向是任意的.3.你能说出平面向量与空间向量的区别与联系吗?提示:(1)区别:平面向量研究的是二维平面的向量,空间向量研究的是三维空间的向量.(2)联系:空间向量的定义、表示方法及零向量、单位向量、相反向量和相等向量的概念都与平面向量相同.知识点二空间向量的加减运算[填一填][答一答]4.空间两向量的加减法与平面内两向量的加减法完全一样吗?提示:因为空间中任意两个向量均可平移到同一个平面内,所以空间向量与平面向量加减法均可以用三角形或平行四边形法则,是一样的.5.共起点的两个不共线向量的和向量所对应的线段是平行四边形的对角线,那么三个不共面的向量的和向量与这三个向量有什么关系?提示:如图,将三个不共面的向量平移至同一起点,以这三个向量所对应的线段为棱作平行六面体,则这三个向量的和向量所对应的线段即为从该起点出发的平行六面体的体对角线.1.零向量的方向是任意的,同平面向量中的规定一样,0与任何空间向量平行.2.单位向量的模都相等且为1,而模相等的向量未必是相等向量.3.空间任意两个向量都可以平移到同一个平面内,成为同一个平面内的两个向量,因而空间任意两个向量都是共面的,它们的加、减法运算类似于平面向量的加、减法运算.类型一 空间向量的有关概念 【例1】 给出以下命题:①若a ,b 是空间向量,则|a |=|b |是a =b 的必要不充分条件; ②若向量a 是向量b 的相反向量,则|a |=|b |; ③两个空间向量相等,则它们的起点相同,终点也相同; ④若空间向量m ,n ,p 满足m =n ,n =p ,则m =p ;⑤在正方体ABCD ­A 1B 1C 1D 1中,必有AC →=A 1C 1→;⑥空间中任意两个单位向量必相等. 其中,正确的命题序号是________. 【分析】 用空间向量的有关概念进行判断.【解析】 以上命题①②④⑤正确.两向量若相等,必须方向相同且模相等.但相等的向量起点不一定相同,故③错;两个单位向量虽模相等,但方向不一定相同,故⑥错.【答案】 ①②④⑤与平面向量一样,空间向量也有向量的模、向量的夹角、单位向量、零向量、相等向量、相反向量、平行向量的概念.两个向量是否相等,要看方向是否相同,模是否相等,与起点和终点位置无关.(1)把空间所有单位向量归结到一个共同的始点,那么这些向量的终点所构成的图形是( C )A .一个圆B .两个孤立的点C .一个球面D .以上均不正确(2)下列命题中正确的个数是( C ) ①如果a ,b 是两个单位向量,则|a |=|b |; ②两个空间向量共线,则这两个向量方向相同; ③若a ,b ,c 为非零向量,且a ∥b ,b ∥c ,则a ∥c ; ④空间任意两个非零向量都可以平移到同一平面内. A .1个 B .2个 C .3个 D .4个解析:(1)单位向量的模为1,把所有空间单位向量移到共同起点后,向量的终点到起点的距离均为1,构成了一个球面.(2)对于①:由单位向量的定义即得|a |=|b |=1,故①正确;对于②:共线不一定同向,故②错;对于③:正确;对于④:正确,在空间任取一点,过此点引两个与已知非零向量相等的向量,而这两个向量所在的直线相交于此点,两条相交直线确定一个平面,所以两个非零向量可以平移到同一平面内.类型二 空间向量的加减运算【例2】 如图,已知正方体ABCD ­A ′B ′C ′D ′,点E 是上底面A ′B ′C ′D ′的中心,求下列各式中x 、y 、z 的值.(1)BD ′→=xAD →+yAB →+zAA ′→; (2)AE →=xAD →+yAB →+zAA ′→.【解】 (1)∵BD ′→=BD →+DD ′→=BA →+BC →+DD ′→=-AB →+AD →+AA ′→, 又BD ′→=xAD →+yAB →+zAA ′→,∴x =1,y =-1,z =1.(2)∵AE →=AA ′→+A ′E →=AA ′→+12A ′C ′→=AA ′→+12(A′B ′→+A ′D ′→)=AA ′→+12A ′B ′→+12A ′D ′→=12AD →+12AB →+AA ′→, 又AE →=xAD →+yAB →+zAA ′→, ∴x =12,y =12,z =1.灵活运用空间向量的加法与减法法则,尽量走边路即沿几何体的边选择途径,多个向量运算时,先观察分析“首尾相接”的向量,使之结合,使用减法时,把握“共起点,方向指向被减向量”.如图所示,在正方体ABCD ­A 1B 1C 1D 1中,下列各式中运算的结果为向量AC 1→的共有( D )①(AB →+BC →)+CC 1→;②(AA 1→+A 1D 1→)+D 1C 1→; ③(AB →+BB 1→)+B 1C 1→; ④(AA 1→+A 1B 1→)+B 1C 1→. A .1个 B .2个 C .3个 D .4个解析:①(AB →+BC →)+CC 1→=AC →+CC 1→=AC 1→; ②(AA 1→+A 1D 1→)+D 1C 1→=AD 1→+D 1C 1→=AC 1→; ③(AB →+BB 1→)+B 1C 1→=AB 1→+B 1C 1→=AC 1→; ④(AA 1→+A 1B 1→)+B 1C 1→=AB 1→+B 1C 1→=AC 1→.所以,所给4个式子的运算结果都是AC 1→.故选D. 类型三 有关向量的证明问题【例3】 求证:平行六面体的体对角线交于一点,并且在交点处互相平分. 【分析】 解决这个问题要充分利用课本上的一个结论,即平行六面体体对角线向量AC ′→=AB →+AD →+AA ′→.【证明】 如下图,平行六面体ABCD ­A ′B ′C ′D ′,设点O 是AC ′的中点,则AO →=12AC ′→=12(AB →+AD →+AA ′→).设P 、M 、N 分别是BD ′、CA ′、DB ′的中点.则AP →=AB →+BP →=AB →+12BD ′→=AB →+12(BA →+BC →+BB ′→)=AB →+12(-AB →+AD →+AA ′→)=12(AB →+AD →+AA ′→).同理可证:AM →=12(AB →+AD →+AA ′→),AN →=12(AB →+AD →+AA ′→).由此可知O 、P 、M 、N 四点重合.故平行六面体的体对角线相交于一点,且在交点处互相平分.利用向量解决立体几何问题的一般思路是:将要解决的问题用向量表示,用已知向量表示所需向量,对表示出的所需向量进行目标运算,再将运算结果转化为要解决的问题.如图,设A 是△BCD 所在平面外的一点,G 是△BCD 的重心.求证:AG →=13(AB →+AC →+AD →).解:如图,连结BG ,延长后交CD 于E ,由G 为△BCD 的重心,知BG →=23BE →.∵E 为CD 的中点, ∴BE →=12BC →+12BD →.∴AG →=AB →+BG →=AB →+23BE →=AB →+13(BC →+BD →)=AB →+13[(AC →-AB →)+(AD →-AB →)]=13(AB →+AC →+AD →).1.判断下列命题中为真命题的是( A )A .向量AB →与BA →的长度相等B .将空间中所有的单位向量移到同一个起点,则它们的终点构成一个圆C .空间向量就是空间中的一条有向线段D .不相等的两个空间向量的模必不相等解析:|AB →|=|BA →|,故选项A 对;选项B 应为球面;选项C ,空间向量可以用有向线段来表示,但不等同于有向线段;选项D ,向量不相等有可能模相等.2.设A 、B 、C 为空间任意三点,则下列命题为假命题的是( C ) A.AB →+BC →=AC → B.AB →+BC →+CA →=0 C.AB →-AC →=BC →D.AB →=-BA →3.如右图,在平行六面体ABCD ­A ′B ′C ′D ′中,AB →=a ,AD →=b ,AA ′→=c ,则BD ′→=b-a +c ,A ′C →=a +b -c .解析:BD ′→=BD →+DD ′→=AD →-AB →+AA ′→=b -a +c ,A ′C →=A ′A →+AC →=AB →+AD →+A ′A →=a +b -c .4.在正方体ABCD ­A 1B 1C 1D 1中,化简AB →-CD →+BC →-DA →的结果是2AC →.5.如图所示,已知空间四边形ABCD ,连接AC 、BD ,E 、F 、G 分别是BC 、CD 、DB 的中点,请化简(1)AB →+BC →+CD →;(2)AB →+GD →+EC →,并标出化简结果的向量.解:(1)AB →+BC →+CD →=AC →+CD →=AD →,如图中向量AD →;(2)∵E 、F 、G 分别为BC 、CD 、DB 的中点,∴GD →=BG →,GF →=12BC →=EC →,∴AB →+GD →+EC →=AB→+BG →+EC →=AG →+GF →=AF →,如图中向量AF →.。

高中数学人教A版选修(2-1)3.1.2《空间向量的数乘运算》word导学案

高中数学人教A版选修(2-1)3.1.2《空间向量的数乘运算》word导学案

3.1.2 空间向量的数乘运算【学习目标】理解空间向量共线、共面的充要条件 【自主学习】 1.共线向量与平面向量类似,如果表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行向量,记作b a //.当向量a 、b 共线(或a //b )时,表示a 、b的有向线段所在的直线位置关系如何?2.共线向量定理及其推论:类比平面向量共线定理,请写出空间向量共线定理.______________________________________________________________________. 请证明下面的推论:推论:如果l 为经过已知点A 且平行于已知非零向量a的直线,那么对于任意一点O ,点P在直线l 上的充要条件是存在实数t 满足等式 t +=a .其中向量a叫做直线l 的方向向量.由此可见,与利用平面向量判断三点共线一样,可以利用空间向量之间的关系判断空间三点共线.3. 共面向量:一般地,能平移到同一个平面内的向量叫共面向量. 探究:对空间任意两个不共线的向量b a ,,如果b y x p +=,那么p b α与,有什么位置关系?反过来,p b α与,有什么位置关系时,y x +=?由此得:共面向量定理 : 如果两个向量,不共线,那么向量与向量,共面的充要条件是存在有序实数组),(y x ,使得y x +=α.4.回答课本88页的思考。

【典例分析】例1如图,已知平行四边形ABCD ,过平面AC 外一点O 作射线OA,OB,OC,OD ,在四条射线上分别取点E ,F ,G ,H ,并且使,k ODOHOC OGOB OF OA OE ====求证:E,F,G,H 四点共面。

D【目标检测】已知矩形ABCD 和矩形ADEF 所在平面互相垂直,点M,N 分别在对角线BD,AE 上,且AE AN BD BM 31,31==.求证:MN//平面CDE证明:______________MN =______________= ______________= ______________= ______________= ______________=又与不共线,,,MN CD DE ∴共面.由于MN ⊄平面CDE ,所以________________.【总结提升】特别注意共面向量: 若,为不共线且同在平面α内,则与,共面的意义是p 在α内或//p α.。

2021秋高中数学人教A版选修2-1学案3.1.1空间向量及其加减运算 3.1.2空间向量的数乘运算

2021秋高中数学人教A版选修2-1学案3.1.1空间向量及其加减运算 3.1.2空间向量的数乘运算

第三章空间向量与立体几何向量是一种重要的数学工具,它不仅在解决几何问题中有着广泛的应用,而且在物理学、工程科学等方面也有着广泛的应用,如鸟巢体育场的钢结构、北斗卫星定位系统示意图等.本章是在必修2中学习了立体几何初步以及必修4中学习了平面向量的基础上,学习空间向量及其运算,把平面向量推广到空间向量,并利用空间向量的运算解决有关的立体几何问题.由于空间向量具有代数形式与几何形式的“双重身份”,使之成为中学数学知识的一个交汇点.学习目标1.空间向量及其运算(1)了解空间向量的概念、空间向量基本定理及其意义,掌握空间向量的正交分解及其坐标表示.(2)掌握空间向量的线性运算及其坐标表示.(3)掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线与垂直.2.空间向量的应用(1)理解直线的方向向量与平面的法向量.(2)能用向量语言表述线线、线面、面面的垂直、平行关系.(3)能用向量方法证明有关线面位置关系的一些定理(包括三垂线定理).(4)能用向量方法解决直线与直线、直线与平面、平面与平面的夹角计算问题,了解向量方法在研究立体几何问题中的应用.本章重点空间向量的基本概念和基本运算;以空间向量为工具判断或证明立体几何中的线面位置关系;求空间角和空间的距离.本章难点用空间向量表示点、直线、平面的位置;用空间向量的运算表示空间直线与平面间的平行、垂直关系以及夹角的大小等;用空间向量解决立体几何问题.3.1空间向量及其运算3.1.1空间向量及其加减运算3.1.2空间向量的数乘运算自主预习·探新知情景引入1987年11月台湾开放台胞来大陆探亲,开始时要从香港绕道,比如从台北到上海的路径是:台北→香港→上海.2008年7月开始两岸直航后,从台北到上海的路径是:台北→上海.如果把台北→香港的位移记为向量a,香港→上海的位移记为向量b,台北→上海的位移记为向量c,那么a+b与c有怎样的关系呢?新知导学1.空间向量(1)定义:在空间,具有__大小__和__方向__的量叫做空间向量.(2)长度或模:向量的__大小__.(3)表示方法:①几何表示法:空间向量用__有向线段__表示;②字母表示法:用字母a,b,c,…表示;若向量的起点是A,终点是B,也可记作:____,其模记为__|a|__或__||__.2.几类常见的空间向量名称方向模记法零向量__任意____0____0__单位向量任意__1__相反向量__相反__相等a的相反向量:__-a__ 的相反向量:____相等向量相同__相等__a=b(1)加法:=__+__=a+b.(2)减法:=__-__=a-b.(3)加法运算律:①交换律:a+b=__b+a__;②结合律:(a+b)+c=__a+(b+c)__.4.空间向量的数乘运算(1)定义:实数λ与空间向量a的乘积λa仍然是一个__向量__,称为向量的数乘运算.(2)向量a与λa的关系:λ的范围方向关系模的关系λ>0方向__相同__λa的模是a的模的__|λ|__倍λ=0λa=__0__其方向是任意的λ<0方向__相反__①分配律:λ(a+b)=__λa+λb__;②结合律:λ(μa)=__(λμ)a__5.平行(共线)向量与共面向量平行(共线)向量共面向量定义位置关系表示空间向量的有向线段所在的直线的位置关系:__互相平行或重合__ 平行于同一个__平面__的向量特征方向__相同或相反__特例零向量与__任意向量__共线充要条件对空间任意两个向量a,b(b≠0),a∥b的充要条件是存在实数λ,使__a=λb__向量p与不共线向量a,b共面的充要条件是存在__唯一__的有序实数对(x,y)使__p=x a+y b__推论对空间任意一点O,点P在直线l上的充要条件是存在实数t满足等式__=+t a__,向量a为直线l的__方向向量__或在直线l上取向量=a,则=__+t__点P位于平面ABC内的充要条件是存在有序实数对(x,y),使=__x+y__或对空间任意一点O,有=__+x+y__预习自测1.下列命题中,假命题的是(D)A.向量与的长度相等B.两个相等的向量,若起点相同,则终点也相同C.只有零向量的模等于0D.在同一条直线上的单位向量都相等[解析]在同一条直线上的单位向量方向可能相同,也可能相反.2.下列命题中正确的是(C)A.若a与b共线,b与c共线,则a与c共线B.向量a、b、c共面即它们所在的直线共面C.零向量没有确定的方向D.若a∥b,则存在唯一的实数λ,使a=λb[解析]由零向量定义知选C.而A中b=0,则a与c不一定共线;D中要求b≠0;B中a,b,c所在的直线可能异面.3.化简下列各式:(1)++;(2)-+;(3)++-.结果为零向量的个数是(D)A.0个B.1个C.2个D.3个[解析]对于(1),++=+=0;对于(2),-+=+=0;对于(3),++-=(+)+(-)=+=0.4.(内蒙古赤峰市宁城县2019-2020学年高二期末)在平行六面体ABCD-A1B1C1D1中,点M为AC与BD的交点,=a,=b,=c则下列向量中与相等的是(A) A.-a+b+cB.a+b+cC.a-b+cD.-a-b+c[解析]因为利用向量的运算法则:三角形法则、平行四边形法则表示出=+=c+(-)=c-a+b,选A.5.已知A、B、C三点不共线,O是平面ABC外任一点,若由=++λ确定的一点P 与A、B、C三点共面,则λ=____.[解析]由P与A、B、C三点共面,∴++λ=1,解得λ=.互动探究·攻重难互动探究解疑命题方向❶空间向量的有关概念典例1(1)给出下列命题:①单位向量没有确定的方向;②空间向量是不能平行移动的;③有向线段可用来表示空间向量,有向线段长度越长,其所表示的向量的模就越大;④如果两个向量不相同,那么它们的长度也不相等.其中正确的是(C)A.①②B.②③C.①③D.①③④(2)如图,在以长、宽、高分别为AB=4,AD=2,AA1=1的长方体ABCD-A1B1C1D1中的八个顶点的两点为起点和终点的向量中,单位向量共有__8__个,模为的所有向量为__,,,,,,,__.[思路分析](1)依据空间向量的基本概念逐一进行分析;(2)单位向量的模为1,根据长方体的左右两侧的对角线长均为写出相应向量.[规范解答](1)①正确,单位向量的方向是任意的.②错误,空间向量可以平行移动.③正确,向量的模可以比较大小,有向线段长度越长,其所表示的向量的模就越大.④错误,如果两个向量不相同,它们的长度可以相等.(2)由于长方体的高为1,所以长方体的4条高所对应的向量,,,,,,,共8个单位向量.而其余向量模均不为1,故单位向量共8个.长方体的左、右两侧面的对角线长均为,故模为的向量有,,,,,,,.『规律总结』处理向量概念问题需注意两点①向量:判断与向量有关的命题时,要抓住向量的大小与方向,两者缺一不可.②单位向量:方向虽然不一定相同,但长度一定为1.┃┃跟踪练习1__■如图所示,以长方体ABCD-A1B1C1D1的八个顶点的两点为始点和终点的向量中.(1)试写出与相等的所有向量;(2)试写出的相反向量;(3)若AB=AD=2,AA1=1,求向量的模.[解析](1)与向量相等的所有向量(除它自身之外)有,及共3个.(2)向量的相反向量为,,,.(3)||=|++|∴||2=2+2+2=9∴||=3.命题方向❷空间向量的加减运算典例2如图,已知长方体ABCD—A′B′C′D′,化简下列向量表达式,并在图中标出化简结果的向量.(1)-;(2)++.[思路分析](1)分析题意,将等价转化为,转化为-,平行四边形法则得出结论.(2)应用平行四边形法则先求+,再应用三角形法则求+.[规范解答](1)-=-=+=.(2)++=(+)+=+=.向量、如图所示.『规律总结』化简向量表达式主要是利用平行四边形法则或三角形法则进行化简,在化简过程中遇到减法时可灵活应用相反向量转化成加法,也可按减法法则进行运算,加减法之间可相互转化.┃┃跟踪练习2__■(山东潍坊2018-2019学年高二期末)已知四棱锥P-ABCD的底面ABCD是平行四边形,设=a,=b,=c,则=(B)A.a+b+c B.a-b+cC.a+b-c D.-a+b+c[解析]如图所示,四棱锥P-ABCD的底面ABCD是平行四边形,=a,=b,=c,则=+=+=+(-)=-+=a-b+c.故选B.命题方向❸空间向量的数乘运算典例3已知四边形ABCD为正方形,P是ABCD所在平面外一点,P在平面ABCD上的射影恰好是正方形ABCD的中心O.Q是CD的中点,求下列各式中x、y的值:(1)=+x+y;(2)=x+y+.[思路分析]由题目可以获取以下主要信息:①四边形ABCD是正方形,O为中心,PO⊥平面ABCD,Q为CD中点;②用已知向量表示指定向量.解答本题需先画图,利用三角形法则或平行四边形法则表示出指定向量,再根据对应向量的系数相等,求出x、y即可.[规范解答]如图,(1)∵=-=-(+)=--,∴x=y=-.(2)∵+=2,∴=2-.又∵+=2,∴=2-.从而有=2-(2-)=2-2+.∴x=2,y=-2.『规律总结』 1.用已知向量表示未知向量是一项重要的基本功,直接关系到本章学习的成败,应认真体会,并通过训练掌握向量线性运算法则和运算律.2.空间向量的数乘运算定义,运算律与平面向量一致.┃┃跟踪练习3__■如图所示,在平行六面体ABCD-A1B1C1D1中,设=a,=b,=c,M、N、P分别是AA1、BC、C1D1的中点,试用a、b、c表示以下各向量:(1);(2);(3)+.[解析](1)∵P是C1D1的中点,∴=++=a++=a+c+=a+c+b.(2)∵N是BC的中点,∴=++=-a+b+=-a+b+=-a+b+c.(3)∵M是AA1的中点,∴=+=+=-a+(a+c+b)=a+b+c.又=+=+=+=c+a,∴+=(a+b+c)+(a+c)=a+b+c.命题方向❹共线向量典例4如图所示,ABCD-ABEF都是平行四边形,且不共面,M、N分别是AC、BF的中点,判断与是否共线?[思路分析]要判断与是否共线,由共线向量定理就是判定是否存在实数λ,使=λ.若存在,则与共线,否则与不共线.[规范解答]M、N分别是AC、BF的中点,而四边形ABCD、ABEF都是平行四边形,∴=++=++.又∵=+++=-+--,∴++=-+--.∴=+2+=2(++).∴=2,∴∥,即与共线.『规律总结』 1.判断向量共线的策略(1)熟记共线向量充要条件:①a∥b,b≠0,则存在唯一实数λ使a=λb;②若存在唯一实数λ,使a=λb,b≠0,则a∥b.(2)判断向量共线的关键是找到实数λ.2.证明空间三点共线的三种思路对于空间三点P、A、B可通过证明下列结论来证明三点共线.(1)存在实数λ,使=λ成立.(2)对空间任一点O,有=+t(t∈R).(3)对空间任一点O,有=x+y(x+y=1).┃┃跟踪练习4__■e1,e2为不共线的非零向量,如果a=4e1-e2,b=e1-e2,试判断a,b是否共线.[解析]∵a=4e1-e2,b=e1-e2,∴a=4(e1-e2)=4b,∴a,b为共线向量.命题方向❺共面问题典例5正方体ABCD-A1B1C1D1中,M、N、P、Q分别为A1D1、D1C1、AA1、CC1的中点,用向量方法证明M、N、P、Q四点共面.[思路分析]要证M、N、P、Q四点共面,只需证明、、共面,即寻求实数λ、μ、k,使得λ+μ+k=0.为此,令=a,=b,=c,将、、都用a、b、c线性表示,再寻求它们系数之间关系或者令=λ+μ,建立λ、μ的方程组解之.[规范解答]令=a,=b,=c,∵M、N、P、Q均为棱的中点,∴=b-a,=+=a+c,=++=-a+b+c.令=λ+μ,则-a+b+c=(μ-λ)a+λb+μc,∴,∴.∴=2+,因此向量、、共面,∴四点M、N、P、Q共面.『规律总结』 1.证明点P在平面ABC内,可以用=x+y,也可以用=+x+y,若用=x+y+z,则必须满足x+y+z=1.2.判定三个向量共面一般用p=x a+y b,证明点线共面常用=x+y,证明四点共面常用=x+y+z(其中x+y+z=1).┃┃跟踪练习5__■如图,已知E、F、G、H分别为空间四边形ABCD的边AB、BC、CD、DA的中点,用向量法证明E、F、G、H四点共面.[思路分析]要证E、F、G、H四点共面,根据共面向量定理,只需探求存在实数x,y,使=x+y成立.[解析]如图,连接BG、EG,则=,=,=(+),所以=+=+(+)=++=+.由共面向量定理的推论知E、F、G、H四点共面.学科核心素养空间向量的线性运算在立体几何中的应用(1)立体几何中的线线平行可转化为两向量的平行,即证明两向量具有数乘关系即可.证明线面平行、面面平行均可转化为证明线线平行,然后根据空间向量的共线定理进行证明.特别地,线面平行可转化为该直线的方向向量能用平面内的两个不共线向量表示.(2)在学习空间向量后,求解立体几何问题又增加了新的思路和方法.利用向量证明平行的关键是构造向量之间的线性关系.(3)解题时,应结合已知和所求,观察图形,联想相关的运算法则和公式,就近表示所需向量,再对照条件,将不符合要求的向量用新形式表示,如此反复,直到所有向量都符合目标要求为止.典例6如图所示,已知矩形ABCD和矩形ADEF所在平面互相垂直,点M,N分别在对角线BD,AE上,且BM=BD,AN=AE.求证:MN∥平面CDE.[思路分析]根据共面向量定理,证明向量平面CDE内两个不共线的向量共面即说明MN∥平面CDE.[规范解答]∵点M在BD上,且BM=BD,∴==+.同理,=+.∴=++=++=+=+.由于与不共线,根据向量共面的充要条件可知,,共面.因为MN不在平面CDE内,所以MN∥平面CDE.『规律总结』解答本题要注意向量共面与直线平行于平面的联系与区别,如果没有充分理解定义、定理的实质,本题容易漏掉MN不在平面CDE内而致错.┃┃跟踪练习6__■已知AB,CD是异面直线,CD⊂α,AB∥α,M,N分别是AC,BD的中点.求证MN∥α.[思路分析]运用共面向量定理先证出与平面α内两个不共线的向量共面,进而说明MN∥α.[证明]因为CD⊂α,AB∥α,且AB,CD是异面直线,所以在平面α内存在向量a,b,使得=a,=b,且两个向量不共线.由M,N分别是AC,BD的中点,得=(+++++)=(+)=(a+b).所以,a,b共面,所以MN∥α或MN⊂α.若MN⊂α,则AB,CD必在平面α内,这与已知AB,CD是异面直线矛盾.故MN∥α.易混易错警示典例7如图所示,已知空间四边形OABC,其对角线为OB,AC,M,N分别为OA,BC的中点,点G在线段MN上,且=2,若=x+y+z,则x,y,z的值分别为__,,__.[错解]因为M为OA的中点,所以=,因为=2,所以=,所以=OM+=+=+(-)=+=×+(+)=++所以x,y,z的值分别为,,.[辨析]错误的根本原因是空间向量的数乘运算与加法运算的几何意义综合应用不当.实际上,本题中由N是BC的中点知=(+).[正解]∵M为OA中点,∴=,∵=,∴=∴=+=+M=+=·+·(+)=++∴x,y,z的值为,,.。

人教版高中数学教案-空间向量及其运算

人教版高中数学教案-空间向量及其运算

3. 1.1空間向量及其運算(一)教學目標:㈠知識目標:⒈空間向量;⒉相等的向量;⒊空間向量的加減與數乘運算及運算律;㈡能力目標:⒈理解空間向量的概念,掌握其表示方法;⒉會用圖形說明空間向量加法、減法、數乘向量及它們的運算律;⒊能用空間向量的運算意義及運算律解決簡單的立體幾何中的問題.㈢德育目標:學會用發展的眼光看問題,認識到事物都是在不斷的發展、進化的,會用聯繫的觀點看待事物.教學重點:空間向量的加減與數乘運算及運算律.教學難點:應用向量解決立體幾何問題.教學方法:討論式.教學過程:Ⅰ.複習引入[師]在必修四第二章《平面向量》中,我們學習了有關平面向量的一些知識,什麼叫做向量?向量是怎樣表示的呢?[生]既有大小又有方向的量叫向量.向量的表示方法有:①用有向線段表示;②用字母a、b等表示;③用有向線段的起點與終點字母:AB.[師]數學上所說的向量是自由向量,也就是說在保持向量的方向、大小的前提下可以將向量進行平移,由此我們可以得出向量相等的概念,請同學們回憶一下.[生]長度相等且方向相同的向量叫相等向量.[師]學習了向量的有關概念以後,我們學習了向量的加減以及數乘向量運算:⒈向量的加法:⒉向量的減法:⒊實數與向量的積:實數λ與向量a的積是一個向量,記作λa,其長度和方向規定如下:(1)|λa|=|λ||a|(2)當λ>0時,λa 與a 同向; 當λ<0時,λa 與a 反向; 當λ=0時,λa =0.[師]關於向量的以上幾種運算,請同學們回憶一下,有哪些運算律呢? [生]向量加法和數乘向量滿足以下運算律 加法交換律:a +b =b +a加法結合律:(a +b )+c =a +(b +c ) 數乘分配律:λ(a +b )=λa +λb[師]今天我們將在必修四第二章平面向量的基礎上,類比地引入空間向量的概念、表示方法、相同或向等關係、空間向量的加法、減法、數乘以及這三種運算的運算率,並進行一些簡單的應用.請同學們閱讀課本Ⅱ.新課講授[師]如同平面向量的概念,我們把空間中具有大小和方向的量叫做向量.例如空間的一個平移就是一個向量.那麼我們怎樣表示空間向量呢?相等的向量又是怎樣表示的呢?[生]與平面向量一樣,空間向量也用有向線段表示,並且同向且等長的有向線段表示同一向量或相等的向量.[師]由以上知識可知,向量在空間中是可以平移的.空間任意兩個向量都可以用同一平面內的兩條有向線段表示.因此我們說空間任意兩個向量是共面的.[師]空間向量的加法、減法、數乘向量各是怎樣定義的呢?[生]空間向量的加法、減法、數乘向量的定義與平面向量的運算一樣:AB OA OB +==a +b ,OA OB AB -=(指向被減向量), =OP λa )(R ∈λ[師]空間向量的加法與數乘向量有哪些運算律呢?請大家驗證這些運算律.[生]空間向量加法與數乘向量有如下運算律: ⑴加法交換律:a + b = b + a ;⑵加法結合律:(a + b ) + c =a + (b + c );(課件驗證) ⑶數乘分配律:λ(a + b ) =λa +λb .[師]空間向量加法的運算律要注意以下幾點:⑴首尾相接的若干向量之和,等於由起始向量的起點指向末尾向量的終點的向量.即:n n n A A A A A A A A A A 11433221=++++-因此,求空間若干向量之和時,可通過平移使它們轉化為首尾相接的向量. ⑵首尾相接的若干向量若構成一個封閉圖形,則它們的和為零向量.即:011433221=+++++-A A A A A A A A A A n n n .⑶兩個向量相加的平行四邊形法則在空間仍然成立.因此,求始點相同的兩個向量之和時,可以考慮用平行四邊形法則. 例1已知平行六面體''''D C B A ABCD -(如圖),化簡下列向量運算式,並標出化簡結果的向量:;⑴BC AB + ;⑵'AA AD AB ++'21CC AD AB ++⑶.⑷)'(31AA AD AB ++ 說明:平行四邊形ABCD 平移向量 a 到A’B’C’D’的軌跡所形成的幾何體,叫做平行六面體.記作ABCD —A’B’C’D’.平行六面體的六個面都是平行四邊形,每個面的邊叫做平行六面體的棱.說明:由第2小題可知,始點相同且不在同一個平面內的三個向量之和,等於以這三個向量為棱的平行六面體的以公共始點為始點的對角線所表示的向量,這是平面向量加法的平行四邊形法則向空間的推廣.例2、如圖中,已知點O 是平行六面體ABCD -A 1B 1C 1D 1體對角線的交點,點P 是任意一點,則.分析:將要證明等式的左邊分解成兩部分:與,第一組向量和中各向量的終點構成平行四邊形ABCD,第二組向量和中的各向量的終點構成平行四邊形A1B1C1D1,於是我們就想到了應該先證明:將以上所述結合起來就產生了本例的證明思路.解答:設E,E1分別是平行六面體的面ABCD與A1B1C1D1的中心,於是有點評:在平面向量中,我們證明過以下命題:已知點O是平行四邊形ABCD對角線的交點,點P是平行四邊形ABCD所在平面上任一點,則,本例題就是將平面向量的命題推廣到空間來.Ⅲ.鞏固練習Ⅳ.教學反思平面向量僅限於研究平面圖形在它所在的平面內的平移,而空間向量研究的是空間的平移,它們的共同點都是指“將圖形上所有點沿相同的方向移動相同的長度”,空間的平移包含平面的平移.關於向量算式的化簡,要注意解題格式、步驟和方法.Ⅴ.課後作業⒈課本1、2、⒉預習下一節:⑴怎樣的向量叫做共線向量?⑵兩個向量共線的充要條件是什麼?⑶空間中點在直線上的充要條件是什麼?⑷什麼叫做空間直線的向量參數表示式?⑸怎樣的向量叫做共面向量?⑹向量p與不共線向量a、b共面的充要條件是什麼?⑺空間一點P在平面MAB內的充要條件是什麼?3.1.1空間向量及其運算(一)課前預習學案預習目標:⒈理解空間向量的概念,掌握其表示方法;⒉會用圖形說明空間向量加法、減法、數乘向量及它們的運算律;預習內容:1.———————————————叫空間向量.空間向量的表示方法有: -------------------2. --------------------------叫相等向量3.空間向量的運算法則:—————————————————— 提出疑惑:同學們,通過你的自主學習,你還有哪些疑惑,請把它填在下面的表格中疑惑點 疑惑內容課內探究學案 學習目標:㈠知識目標:⒈空間向量;⒉相等的向量;⒊空間向量的加減與數乘運算及運算律; ㈡能力目標:⒈理解空間向量的概念,掌握其表示方法;⒉會用圖形說明空間向量加法、減法、數乘向量及它們的運算律; ⒊能用空間向量的運算意義及運算律解決簡單的立體幾何中的問題.學習重點:空間向量的加減與數乘運算及運算律. 學習難點:應用向量解決立體幾何問題. 學習過程:例1已知平行六面體''''D C B A ABCD -(如圖),化簡下列向量運算式,並標出化簡結果的向量:;⑴BC AB + ;⑵'AA AD AB ++'21CC AD AB ++⑶.⑷)'(31AA AD AB ++ 例2、如圖中,已知點O 是平行六面體ABCD -A 1B 1C 1D 1體對角線的交點,點P 是任意一點,則.當堂檢測:1、下列說法中正確的是( )A .兩個有共同起點且相等的向量,其終點可能不同B .若非零向量與是共線向量,則A 、B 、C 、D 四點共線C .若D .四邊形ABCD 是平行四邊形的充要條件是=2、已知空間四邊形ABCD ,連AC ,BD ,設M 、G 分別是BC 、CD 中點,則( )A .B .C .D .3、如圖:在平行六面體1111D C B A ABCD -中,M 為11C A 與11D B 的交點。

高中数学人教A版选修2-1第三章 空间向量与立体几何

高中数学人教A版选修2-1第三章 空间向量与立体几何

高中数学学习材料(灿若寒星 精心整理制作)第三章 空间向量与立体几何§3.1 空间向量及其运算3.1.1 空间向量及其加减运算 课时目标1.理解空间向量的概念,掌握空间向量的几何表示和字母表示.2.掌握空间向量的加减运算及其运算律,能借助图形理解空间向量及其运算的意义.2.几类特殊向量(1)零向量:____________的向量叫做零向量,记为________.(2)单位向量:________的向量称为单位向量.(3)相等向量:方向________且模________的向量称为相等向量.在空间,同向且等长的有向线段表示同一向量或相等向量.(4)相反向量:与向量a 长度______而方向________的向量,称为a 的相反向量,记为________. 3.空间向量的加减法与运算律空间向量的加减法 类似平面向量,定义空间向量的加、减法运算(如图):OB →=OA →+AB →=__________;CA →=OA →-OC →=________.加法运算律 (1)交换律:a +b =________ (2)结合律:(a +b )+c =____________.;一、选择题1.下列命题中,假命题是( )A. 向量AB →与BA →的长度相等B .两个相等的向量,若起点相同,则终点也相同C .只有零向量的模等于0D .共线的单位向量都相等2.如图所示,平行四边形ABCD 的对角线的交点为O ,则下列等式成立的是( )A. OA →+OB →=AB →B. OA →+OB →=BA →C. AO →-OB →=AB →D. OA →-OB →=CD →3.已知O 是△ABC 所在平面内一点,D 为BC 边中点且2OA →+OB →+OC →=0,则AO →等于( )A. OB →B. OC →C. OD → D .2OD → 4.已知向量AB →,AC →,BC →满足|AB →|=|AC →|+|BC →|,则( )A. AB →=AC →+BC →B. AB →=-AC →-BC →C. AC →与BC →同向D. 与AC →与CB →同向5.在正方体ABCD —A 1B 1C 1D 1中,向量表达式DD 1→-AB →+BC →化简后的结果是( )A. BD 1→B. 1D BC.1B DD. 1DB6.平行六面体ABCD —A 1B 1C 1D 1中,E ,F ,G ,H ,P ,Q 分别是A 1A ,AB ,BC ,CC 1,C 1D 1,D 1A 1的中点,则( )A.EF →+GH →+PQ →=0B. EF→-GH →-PQ →=0 C.EF→+GH →-PQ →=0 D.EF →-GH →+PQ →=0 二、填空题7.在平行六面体ABCD -A ’B’C ’D ’中,与向量''A B 的模相等的向量有________个.8.若G 为△ABC 内一点,且满足AG +BG →+CG →=0,则G 为△ABC 的________.(填“外心”“内心”“垂心”或“重心”)9.判断下列各命题的真假:①向量AB →的长度与向量BA →的长度相等;②向量a 与b 平行,则a 与b 的方向相同或相反;③两个有共同起点而且相等的向量,其终点必相同;④两个有公共终点的向量,一定是共线向量;⑤有向线段就是向量,向量就是有向线段.其中假命题的个数为________.三、解答题10.判断下列命题是否正确,若不正确,请简述理由.①向量AB →与CD →是共线向量,则A 、B 、C 、D 四点必在一条直线上;②单位向量都相等;③任一向量与它的相反向量不相等;④四边形ABCD 是平行四边形的充要条件是AB →=DC →;⑤模为0是一个向量方向不确定的充要条件.11.如图所示,已知空间四边形ABCD ,连结AC,BD,E,F,G 分别是BC,CD,DB 的中点,请化简:AB →+BC →+CD →,(2)AB →+GD →+EC →,并标出化简结果的向量.能力提升12.在平行四边形ABCD 中,AC 与BD 交于点O ,E 是线段OD 的中点,AE 的延长线与CD 交于点F.若AC →=a ,BD →=b ,则AF →等于( )A.14a +12bB.13a +23b C.12a +14b D.23a +13b 13.证明:平行六面体的对角线交于一点,并且在交点处互相平分.1.在掌握向量加减法的同时,应首先掌握有特殊位置关系的两个向量的和或差,如共线、共起点、共终点等.2.通过掌握相反向量,理解两个向量的减法可以转化为加法.3.注意向量的三角形法则和平行四边形法则的要点.对于向量加法运用平行四边形法则要求两向量有共同起点,运用三角形法则要求向量首尾顺次相连.对于向量减法要求两向量有共同的起点.4.a -b 表示的是由b 的终点指向a 的终点的一条有向线段.第三章 空间向量与立体几何§3.1 空间向量及其运算3.1.1 空间向量及其加减运算知识梳理1.大小 方向 (2)大小 模 (3)①有向线段②AB →2.(1)长度为0 0 (2)模为1 (3)相同 相等(4)相等 相反 -a3.a +b a -b (1)b +a (2)a +(b +c )作业设计1.D [共线的单位向量是相等向量或相反向量.]2.D [OA →-OB →=BA →=CD →.]3.C [∵D 为BC 边中点,∴OB →+OC →=2OD →,∴OA →+OD →=0,∴AO →=OD →.]4.D [由|AB →|=|AC →|+|BC →|=|AC →|+|CB →|,知C 点在线段AB 上,否则与三角形两边之和大于第三边矛盾,所以AC →与CB →同向.]5.A[如图所示,∵DD 1→=AA 1→,DD →1-AB →=AA 1→-AB →=BA 1→,BA 1→+BC →=BD →1,∴DD 1→-AB →+BC →=BD 1→.]6.A [观察平行六面体ABCD —A 1B 1C 1D 1可知,向量EF →,GH →,PQ →平移后可以首尾相连,于是EF →+GH →+PQ →=0.]7.7解析 |D'C'→|=|DC →|=|C'D'→|=|CD →|=|BA →|=|AB →|=|B'A'→|=|A'B'→|.8.重心解析如图,取BC 的中点O ,AC 的中点D ,连结OG 、DG .由题意知AG →=-BG →-CG →=GB →+GC →=2GO →,同理BG →=2GD →,故G 为△ABC 的重心.9.3解析 ①真命题;②假命题,若a 与b 中有一个为零向量时,其方向是不确定的;③真命题;④假命题,终点相同并不能说明这两个向量的方向相同或相反;⑤假命题,向量可用有向线段来表示,但并不是有向线段.10.解 ①不正确,共线向量即平行向量,只要求两个向量方向相同或相反即可,并不要求两个向量AB ,CD 在同一条直线上.②不正确,单位向量模均相等且为1,但方向并不一定相同.③不正确,零向量的相反向量仍是零向量,但零向量与零向量是相等的.④正确.⑤正确.11.解 (1) AB →+BC →+CD →=AC →+CD →=AD →.(2)∵E ,F ,G 分别为BC ,CD ,DB 的中点.∴BE →=EC →,EF →=GD →.∴AB →+GD →+EC →=AB →+EF →+BE →=AF →.故所求向量AD →,AF →,如图所示.12.D [AF →=AC →+CF →=a +23CD → =a +13(b -a )=23a +13b .]13.证明如图所示,平行六面体ABCD —A ′B ′C ′D ′,设点O 是AC ′的中点,则AO →=12AC'→ =12(AB →+AD →+AA'→). 设P 、M 、N 分别是BD ′、CA ′、DB ′的中点.则AP =AB →+BP →=AB →+12BD'→ =AB →+12(BA →+BC →+B B'→) =AB →+12(-AB →+AD →+AA'→) =12(AB →+AD →+AA'→). 同理可证:AM →=12(AB →+AD →+AA'→) AN →=12(AB →+AD →+AA'→). 由此可知O ,P ,M ,N 四点重合.故平行六面体的对角线相交于一点,且在交点处互相平分.。

人教课标版高中数学选修2-1:《空间向量的数量积运算》教案-新版

人教课标版高中数学选修2-1:《空间向量的数量积运算》教案-新版

3.1.3 空间向量的数量积运算一、教学目标(一)核心素养通过本节课的学习,同学们能掌握空间向量数量积运算的法则及运算律,能借助图形进行空间向量的运算,并通过空间几何体加深对运算的理解.会利用数量积的性质求空间向量的夹角和模,并能熟练应用于立体几何证明与求值.(二)学习目标1.了解向量夹角的定义,掌握空间向量数量积的运算法则及运算律.2.掌握利用数量积求空间向量夹角和模的方法.3.培养学生数形结合的思想和空间想象能力,并能解决向量的综合问题.(三)学习重点1.空间向量的数量积运算法则及运算律.2.空间向量的模长公式和夹角公式.3.空间向量数量积在立体几何中的应用.(四)学习难点1.利用空间向量的数量积求模与夹角.2.将立体几何问题转化为空间向量的数量积问题.二、教学设计(一)课前设计1.预习任务(1)读一读:阅读教材第90页至第91页,填空: 已知两个非零向量a ,b ,在空间任取一点O ,作a OA =,b OB =,则AOB ∠叫做向量a ,的夹角,记作><,. 如果2,π>=<,那么向量,互相垂直,记作⊥. 已知两个非零向量,,则><b a b a ,cos ||||叫做,的的数量积,记作⋅. 零向量与任何向量数量积为0. 特别地,⋅=><,cos ||||2||=.(2)写一写:和平面向量类似,空间向量的数量积满足哪些运算律? ①数乘结合律:)()(b a b a ⋅=⋅λλ, ②交换律:⋅=⋅, ③分配率:⋅+⋅=+⋅)(.和平面向量类似,空间向量的数量积有哪些性质? ①若为单位向量,则⋅=><,cos ||; ②若,⊥⇔⋅0=; ③==a ||;④若,为非零向量,则>=<,cos ||||a ba b ⋅; ⑤||||||≤⋅(当且仅当a ,b 共线时等号成立). 2.预习自测(1)已知向量,满足:3||=,2||=,⋅6-=,则>=<,( )A .0B .3πC .2πD .π 【知识点】空间向量的夹角公式.【解题过程】∵6cos ,123||||a b a b a b ⋅-<>===-⨯rr r r r r ,∴>=<b a ,π.【思路点拨】理解并熟记空间向量的夹角公式.【答案】D .(2)在正三棱柱111C B A ABC -中,若12BB AB =,则1AB 与B C 1所成角的大小为()A . 60B . 90C . 75D . 105【知识点】空间向量的垂直.【解题过程】设m BB =||1,则m AB 2||=,∴C AB 11⋅)()(11C BB +⋅+=C BB 11⋅+⋅= 180cos 60cos 22⋅⋅+⋅⋅=m m m m 022=-=m m ,故1AB 与B C 1所成角的大小为 90.【思路点拨】空间向量的垂直的充要条件数量积等于0.【答案】B .(3)在平行六面体1111D C B A ABCD -中,4=AB ,3=AD ,51=AA , 90=∠BAD ,6011=∠=∠DAA BAA ,则=||1AC .【知识点】空间向量的模长. 【解题过程】=21||AC 2121)(AA AC ++=112122222AA AA AA ⋅+⋅+⋅+++=21532215420534222⨯⨯⨯+⨯⨯⨯++++=85=,故=||1AC 85.【思路点拨】利用空间向量的模长公式,转化为数量积的运算. 【答案】85.(4)已知线段AB ,BD 在平面α内,AB BD ⊥,线段α⊥AC ,且a AB =,b BD =,c AC =,则C ,D 间的距离为 .【知识点】空间向量的模长. 【解题过程】222)(||++==⋅+⋅+⋅+++=222222000222+++++=c b a 222c b a ++=,故C ,D 间的距离为222c b a ++.【思路点拨】利用空间向量的模长公式,转化为数量积的运算. 【答案】222c b a ++.(二)课堂设计1.知识回顾(1)空间向量线性运算法则和运算律;(2)共线向量定理的两种表达形式;(3)共面向量定理的两种表达形式.2.问题探究探究一 由平面向量类比空间向量的数量积运算★●活动① 类比提炼概念前面我们说过,两个非零向量a r ,b r 一定是共面向量.那在平面向量中,我们是怎样定义两个向量的夹角的呢?(抢答) 已知两个非零向量,,在空间任取一点O ,作OA a =uu r r ,OB b =uu u r r ,则AOB ∠叫做向量,的夹角,记作><,.如果2,π>=<,那么向量,互相垂直,记作⊥.也就是说,两个空间向量夹角的定义与平面向量一致.【设计意图】两个非零向量一定是共面,因此向量夹角的概念自然地从平面到空间,让学生体会概念的类比过程,为数量积的定义作好准备.●活动② 巩固理解,深入探究同样的,那数量积的定义呢?(抢答) 已知两个非零向量a ,b ,则><,cos ||||叫做a ,b 的的数量积(inner product ),记作a b ⋅r r .零向量与任何向量数量积为0.特别地,2=||||cos ,||a a a a a a a ⋅<>=r r r r r r r .【设计意图】通过抢答,使学生深入探究,进而得到数量积定义.●活动③ 深入探究,发现规律和平面向量类似,空间向量的数量积满足哪些运算律?(抢答) ①数乘结合律:)()(⋅=⋅λλ, ②交换律:⋅=⋅, ③分配率:⋅+⋅=+⋅)(.【设计意图】类比平面向量,得出空间向量数量积的运算律,理解更加深入.探究二 探究空间向量数量积的性质★▲●活动① 类比探究,研究性质和平面向量类似,空间向量的数量积有哪些性质?(抢答) ①若为单位向量,则=||cos ,a e a a e ⋅<>r r r r r ;(解释:1||=,转化为投影) ②若,为非零向量,则0a b a b ⊥⇔⋅=r r r r ;(解释:,cos 022a b ππ<>==r r ,)③||==;(解释:,0cos 01a b <>==r r ,) ④若,为非零向量,则||||,cos b a b a >=<;(解释:定义的变形式) ⑤||||||≤⋅(当且仅当,共线时等号成立).(解释:,[0,]cos ,[1,1]a b a b π<>∈<>∈-r r r r ,)【设计意图】通过类比,得到空间向量数量积的各种性质,并给予合理解释,突破难点. ●活动② 巩固理解,深入探究以上五个性质中,大家认为最重要的有哪些,它们有什么作用?(抢答)第②条,0a b a b ⊥⇔⋅=r r r r ,可用于证明空间向量垂直;第③条,||=,是空间向量的模长公式;第④条,||||,cos b a b a >=<,是空间向量的夹角公式.【设计意图】让学生进行思考,在深刻理解性质的同时,指出公式的作用,为后面的计算打好基础.探究三 探究空间向量数量积的具体应用★▲●活动① 归纳梳理、理解提升通过前面的学习,由于两个向量必然共面,所以空间向量数量积的运算法则和运算律和平面向量基本一致.同时,我们理解了数量积的三个重要应用是?(抢答)模长、垂直、夹角.它们都是向量a ,b 的二次运算,是非线性的.【设计意图】通过学生归纳知识点和定理,培养学生数学对比、归类、整理意识. ●活动② 互动交流、初步实践例1 设,,是任意的非零向量,且它们相互不共线,下列命题中:①()()0a b c c a b ⋅-⋅=r r r r r r ;②=||22a b b a =r r r r ; ④22||4||9)23()23(-=-⋅+.正确的是( )A .①②B .②③C .③④D .②④【知识点】空间向量的数量积运算法则和运算律.【数学思想】转化思想.【解题过程】向量的数量积不满足结合律,所以①不正确;由向量的数量积的定义知,②正确;,不一定共线,向量不一定相等,所以③不正确;利用数量积的运算律,④正确.【思路点拨】空间向量数量积运算不满足结合律.【答案】D .同类训练 已知空间四边形ABCD 的每条边和对角线长都等于a ,点E ,F ,G 分别为AB ,AD ,DC 的中点,则以下运算结果为2a 的是( )A .⋅2B .⋅2C .CA FG ⋅2D .CB EF ⋅2【知识点】空间几何体中向量的数量积运算.【数学思想】数形结合思想. 【解题过程】由已知可得3,π>=<, 所以><=⋅,cos ||||22223cos 2a a ==π. 【思路点拨】在空间几何体中先找出向量的夹角再根据定义计算.【答案】B .【设计意图】通过空间几何体中的向量,让学生对数量积的定义和运算更加熟练. 活动③ 巩固基础、检查反馈例2 已知空间四边形OABC 中,OB =OC ,且3π=∠=∠AOC AOB ,则><BC OA ,cos 的值为( )A .0B .21C .22D .23 【知识点】空间向量的线性表示及夹角公式.【数学思想】数形结合思想. 【解题过程】设a OA =,b OB =,c OC =,由已知得3,,π>=>=<<,且||||=. 所以()OA BC a c b a c a b ⋅=⋅-=⋅-⋅uu r uu u r r r r r r r r 3cos ||||3cos ||||ππ-=0|)||(|||21=-=, 所以0||||,cos =>=<BC OA .【思路点拨】求向量夹角的重点就是求数量积和模长.【答案】A .同类训练 已知空间向量,,两两夹角为 60,其模都为1,则|2|+-等于( )A .5B .5C .6D .6【知识点】空间向量的模长公式.【数学思想】转化思想. 【解题过程】∵1||||||===c b a , 60,,,>=>=<>=<<a c c b b a ,∴21=⋅=⋅=⋅, ∴2|2|+-a c c b b a c b a ⋅+⋅-⋅-++=4424222214214212411⨯+⨯-⨯-++=5=, ∴|2|+-5=. 【思路点拨】先计算⋅,⋅,⋅,再利用模长公式展开计算.【答案】A .【设计意图】运用向量的夹角和模长公式,学生对数量积的运算更加熟练,基础更加牢固. ●活动④ 强化提升、灵活应用例3 已知PO ,P A 分别是平面α的垂线、斜线,AO 是P A 在平面α内的射影,α⊂l 且OA l ⊥,求证:PA l ⊥.【知识点】利用空间向量数量积解决直线垂直问题.【数学思想】数形结合思想.【解题过程】取直线l 的方向向量,同时取向量PA ,,∵OA l ⊥,∴0=⋅.∵α⊥PO ,且α⊂l ,∴PO l ⊥,∴0=⋅. 又∵=⋅)(+⋅0=⋅+⋅=,∴PA l ⊥.【思路点拨】将向量用,来表示,从而利用数量积解决垂直问题.这是三垂线定理的向量证法,同理也可用来证明:若PA l ⊥,则OA l ⊥.【答案】见解题过程.同类训练 已知m ,n 是平面α内的两条相交直线,如果m l ⊥,n l ⊥,求证:α⊥l .【知识点】利用空间向量数量积解决线面垂直问题.【数学思想】数形结合思想.【解题过程】在α内任作一直线g ,分别在l ,m ,n ,g 上取非零向量l ,m ,,. ∵m 与n 相交,∴向量,不平行,由向量共面的充要条件知,存在唯一的有序实数对),(y x ,使y x +=. ∵0=⋅m l ,0=⋅n l ,∴y x ⋅+⋅=⋅0=,即g l ⊥.∴l 垂直于α内的任意直线,∴α⊥l .【思路点拨】将α内的任意直线的方向向量表示为,的线性组合,从而利用数量积证明0=⋅g l ,再由线面垂直的定义可证.这是线面垂直判定定理的向量证法.【答案】见解题过程.【设计意图】垂直问题的证明是常见题型,通过数量积的计算,避免了立体几何中辅助线的添加,极大地降低了难度.3. 课堂总结知识梳理(1)已知两个非零向量,,在空间任取一点O ,作=,=,则AOB ∠叫做向量,的夹角,记作><,.如果2,π>=<b a ,那么向量,互相垂直,记作⊥. (2)已知两个非零向量,,则><,cos ||||叫做,的的数量积(inner product ),记作⋅.零向量与任何向量数量积为0.特别地,⋅=><,cos ||||2||=.空间向量的数量积满足的运算律有:①数乘结合律:)()(⋅=⋅λλ,②交换律:⋅=⋅,③分配率:⋅+⋅=+⋅)(.(3)空间向量的数量积的性质有:①若e 为单位向量,则a e ⋅=><,cos ||;②若a ,b 为非零向量,则a b ⊥⇔a b ⋅0=;③||==a ,b 为非零向量,则||||,cos b a >=<;⑤||||||≤⋅(当且仅当,共线时等号成立).重难点归纳(1)空间向量的数量积是向量的二维计算,是三个实数的乘积,不满足结合律.(2)空间向量的数量积主要解决向量的垂直,模长和夹角问题,在立体几何中应用非常广泛.(三)课后作业基础型 自主突破1.下列命题中正确的是( )A .222)(⋅=⋅ B .||||||≤⋅C .)()(⋅⋅=⋅⋅D .若)(-⊥,则0=⋅=⋅【知识点】向量数量积的概念和运算.【数学思想】转化思想. 【解题过程】对于A 项,><=⋅,cos )(222222≤,故A 错误;对于C 项,数量积不满足结合律,故C 错误;对于D 项,有0)(=-⋅,所以⋅=⋅,但不一定等于0,故D 错误.B 项是数量积的性质.【思路点拨】深刻理解各种概念和运算.【答案】B . 2.已知,为单位向量,其夹角为 60,则=⋅-)2(( )A .1-B .0C .1D .2【知识点】向量数量积的运算.【数学思想】转化思想. 【解题过程】∵1||||==,>=<, 60, ∴=⋅-)2(22-⋅0||60cos ||||22=-= .【思路点拨】熟练掌握空间向量数量积的运算法则.【答案】B . 3.在三棱锥BCD A -中,2===AD AC AB , 90=∠BAD , 60=∠BAC ,则=⋅( )A .2-B .2C .32-D .32 【知识点】空间向量数量积的运算.【数学思想】数形结合思想. 【解题过程】=⋅)(-⋅⋅-⋅= 60cos 220⨯⨯-=2-=.【思路点拨】在空间几何体中找到夹角再根据定义计算.【答案】A .4.在三棱锥ABC D -中,已知)()2(AC AB DA DC DB -⋅-+0=,则ABC ∆是( )A .直角三角形B .等腰三角形C .等腰直角三角形D .等边三角形 【知识点】空间向量数量积的运算.【数学思想】转化思想. 【解题过程】∵)()2(-⋅-+)()(-⋅-+-=0)()(22=-=-⋅+=AC AB AC AB AC AB ,∴22||||AC AB =,即AC AB =.【思路点拨】熟练掌握空间向量数量积的各种变形.【答案】B .5.已知A ,B ,C 为圆O 上的三点,若+=与的夹角 为 .【知识点】空间向量的夹角.【数学思想】数形结合思想.【解题过程】∵+=,∴点O 是BC 中点,故BC 为直径,根据圆的性质,有 90=∠BAC ,即<AB ,> 90=.【思路点拨】利用几何性质,点O 是BC 中点,BAC ∠是直角所对的圆周角.【答案】 90. 6.已知,,中每两个向量的夹角都是3π,且4||=a ,6||=b ,2||=c ,试求出||++的值.【知识点】向量模长公式.【数学思想】转化思想. 【解题过程】∵2||++⋅+⋅+⋅+++=222222422664264222⨯+⨯+⨯+++=100=,∴||++10=. 【思路点拨】利用模长公式进行数量积的计算.【答案】10.能力型 师生共研7.已知23|=a ,4|=b ,+=,λ+=,43,π>=<,若⊥, 则=λ .【知识点】向量垂直与数量积的关系. 【数学思想】转化思想.【解题过程】∵⊥,∴0=⋅,即⋅+)(0)(=+λ,则0)1(22=⋅+++λλ,即043cos 234)1(4)23(22=⨯⨯⨯+++πλλ,∴064=+λ,23-=λ. 【思路点拨】利用向量垂直的性质,列出方程求解.【答案】23-. 8.直三棱柱111C B A ABC -中, 90=∠BCA ,M ,N 分别是11B A ,11C A 的中点,1CC CA BC ==,则BM 与AN 所成角的余弦值为( )A .101 B .52 C .1030 D .22 【知识点】向量夹角公式求空间几何体中异面直线所成角. 【数学思想】数形结合思想.【解题过程】设=.=,CC =1,1||||||===,∴0=⋅=⋅=⋅,∵BM +=,+=,∴BM ⋅432=+=,又∵26||=BM ,25||=AN ,∴<cos ⋅>||||AN BM =1030252643=⨯=. 【思路点拨】将与用.,表示,再利用向量夹角公式得到所求角的余弦值.【答案】C .探究型 多维突破9.在正三棱柱111C B A ABC -中,若侧面对角线11BC AB ⊥,求证:11AB C A ⊥. 【知识点】在空间几何体中利用数量积解决直线垂直问题. 【数学思想】数形结合思想.【解题过程】设=,=,BB =1,m ==||||,n =||, ∵11BC AB ⊥,且11BB AB AB +=+-=,=1BC +, ∴11BC AB ⋅⋅+-=)()(+2+⋅-=02122=-=m n ,∴222n m =, ∴A AB 11⋅⋅+-=)()(1BC AB A A ++⋅+-=)()(+--b a c a ⋅--=22021222=--=m n m ,∴11AB C A ⊥. 【思路点拨】将1AB ,1BC ,C A 1用,,表示,再把垂直关系与数量积为零进行转化. 【答案】见解题过程.10.三棱柱111 C B A ABC -中,2221===AC AB AA , 6011=∠=∠=∠BAC AC A AB A ,在平行四边形C C BB 11内是否存在一点O ,使得⊥O A 1平面C C BB 11?若存在,试确定O 点的位置;若不存在,说明理由.【知识点】利用数量积运算解决动点存在性问题. 【数学思想】数形结合思想.【解题过程】设a AB =,b AC =,AA =1,假设存在点O ,使得⊥O A 1平面C C BB 11,不妨设n BB m +=1,则)(n m -+=m n n ++-=,而+=m n n ++-=)1(,∴11AA A -=m n n )1()1(-++-=, 要使⊥O A 1平面C C BB 11,只需⊥O A 11BB ,⊥O A 1BC ,即01=⋅A ,0)(1=-⋅A , ∴])1()1[(m n n -++-0=⋅c ,])1()1[(m n n -++-0)(=-⋅,解得43=m ,21=n ,+=O ,使得⊥O A 1平面C C BB 11.【思路点拨】在平面C C BB 11内将表示为n BB m +1,利用垂直条件列式解出m ,n 的值,从而确定点O 的位置.【答案】见解题过程.自助餐1.下列命题中,①a =||m m ⋅=⋅)()(λλ;③⋅+=+⋅)()(;④a b b a 22=. 其中真命题的个数为( )A .1个B .2个C .3个D .4个【知识点】向量数量积的概念和运算. 【数学思想】转化思想.【解题过程】①②③正确,④不正确,因为与的方向不一定相同,故不一定相等. 【思路点拨】深刻理解各种概念和运算. 【答案】C .2.已知向量,满足2||=,2||=,且与-2互相垂直,则>=<, .【知识点】向量数量积的运算,夹角公式. 【数学思想】转化思想.【解题过程】∵与a b -2互相垂直,∴0)2(=-⋅,即022=-⋅,∴2=⋅b a ,∴22||||,cos =>=<b a ,故 45,>=<b a . 【思路点拨】先求出b a ⋅,再利用向量夹角公式.【答案】 45.3.设A ,B ,C ,D 是空间不共面的四点,且满足0=⋅,0=⋅,0=⋅,则BCD ∆( )A .是钝角三角形B .是锐角三角形C .是直角三角形D .无形状不确定【知识点】数量积定义的应用.【数学思想】转化思想【解题过程】∵⋅)()(-⋅-=2+⋅-⋅-⋅=02>=,∴0||||,cos >>=<BD BC ,故CBD ∠为锐角,同理BCD ∠与BDC ∠均为锐角. 【思路点拨】锐角、钝角可由数量积的正负进行判定. 【答案】B .4.已知a ,b 是两异面直线,A ,a B ∈,C ,b D ∈,b AC ⊥,b BD ⊥,且2=AB ,1=CD ,则直线a ,b 所成的角为( ) A . 30B . 60C . 90D . 45【知识点】利用向量夹角公式计算异面直线所成角. 【数学思想】数形结合思想.【解题过程】∵++=,∴⋅++=⋅)(12==,故21||||,cos =>=<CD AB ,即 60,>=<CD AB . 【思路点拨】先求出⋅,再利用向量夹角公式. 【答案】B .5.在一个直二面角βα--l 的棱上有两点A ,B ,AC ,BD 分别是这个二面角的两个面内垂直于l 的线段,且4=AB ,6=AC ,8=BD ,则CD 的长为 . 【知识点】向量模长的计算. 【数学思想】转化思想.【解题过程】∵++=,∴22)(++=⋅+⋅+⋅+++=222222116864222=++=,∴292||=CD .【思路点拨】将拆分成已知长度的向量,再使用向量模长公式. 【答案】292.6.在长方体1111D C B A ABCD -中,设11==AA AD ,2=AB ,P 是11D C 的中点,则C B 1与A 1所成角的大小为 .【知识点】向量夹角公式的运用. 【数学思想】数形结合思想.【解题过程】∵A B 11⋅()(1AA ⋅+-=2=1=,由题意得211==C B PA ,则21||||,cos 1111=>=<P A C B A B ,故 60,11>=<P A C B . 【思路点拨】灵活运用向量夹角公式,关键是计算出A B 11⋅.【答案】 60.。

高中数学人教A版选修2-1课件3.1.4空间向量的正交分解及其坐标运算(系列三)

高中数学人教A版选修2-1课件3.1.4空间向量的正交分解及其坐标运算(系列三)

∴O→E=12(O→A+O→B), C→G=2C→E=2(O→E-O→C)
33 ∴O→G=O→C+C→G= O→C+2(O→E-O→C)=
3 13(O→A+O→B+O→C) ∴λ=3.
答案:3
5.如图 2,四棱锥 P—OABC 的底面为一矩形, 设O→A=a,O→C=b,O→P=c,E、F 分别是 PC 和 PB 的中点,用 a,b,c 表示B→F、B→E、A→E、E→F.
D.既不充分也不必要条件
解析:当非零向量a,b,c不共面时,{a,b,c}可以当基底, 否则不能当基底,当{a,b,c}为基底时,一定有a,b,c为 非零向量.
答案:B
2.已知{a,b,c}是空间的一个基底,则可以和向量p=a+b, q=a-b构成基底的向量是( )
A.a
B.b
C.a+2b
有序实数组{x,y,z},使得p=xa+yb+zc.
2.基底的概念
如果三个向量a、b、c不共面,那么空间所有向量组成的集合 就是{p|p=xa+yb+zc,x、y、z∈R}这个集合可以看作是由 向 量 a 、 b 、 c 生 成 的 , 我 们 把 {a , b , c} 叫 做 空 间 的 一 个 基 底.a、b、c叫做基向量.空间任何三个不共面的向量都可构 成空间的一个基底.
人教版 选修2-1
第三章 空间向量与立体几何
3.1空间向量及其运算
空间向量的正交分解及其坐标 表示
学习目标
1.了解空间向量的正交分解的含义. 2.掌握空间向量的基本定理,并能用空间向量基本定理
解决一些简单问题. 3.掌握空间向量的坐标表示,能在适当的坐标系中写出
向量的坐标.
新知导入
1.空间向量基本定理 如果三个向量a,b,c不共面,那么对空间任一向量p,存在

3.1《空间向量及其运算》教案(新人教选修2-1)

3.1《空间向量及其运算》教案(新人教选修2-1)

空间向量及其运算( 一 )教课目标:1.理解空间向量的观点,掌握空间向量的加法、减法和数乘运算.2.用空间向量的运算意义和运算律解决立几问题..教课要点:空间向量的加法、减法和数乘运算及运算律.教课难点:用向量解决立几问题.讲课种类:新讲课 .课时安排: 1 课时 .教具:多媒体、实物投影仪.教课过程:一、复习引入:1.向量的观点(1)向量的基本因素:大小和方向 .(2) 向量的表示:几何表示法uuur r r rAB ,a;坐标表示法 a xi yj ( x, y) .(3)向量的长度:即向量的大小,记作| a |.(4)特别的向量:零向量 a =0|a|= 0.单位向量 a0为单位向量| a0|=1.(5)相等的向量:大小相等,方向同样( x1 , y1 )( x2 , y2 )x1x2 y1y2(6)平行向量 ( 共线向量 ) :方向同样或相反的向量,称为平行向量. 记作a∥b . 因为向量能够进行随意的平移( 即自由向量 ) ,平行向量总能够平移到同向来线上,故平行向量也称为共线向量.2.向量的运算向量的加减法,数与向量的乘积,向量的数目(内积)及其各运算的坐标表示和性质运算种类几何方法坐标方法运算性质向a b b a量1.平行四边形法例a b( a b)c a (b c)的2.三角形法例( x1x2 , y1y2 )加uuur uuur uuur法AB BC AC向a b a( b)量a b uuur uuur的三角形法例( x1x2 , y1y2 )AB BA减uuur uuur uuur法OB OA AB向 1. a 是一个向量,知足:量 2.>0 时 , a与a同a ( x, y)( a) ()a的向 ;()a a a 乘<0 时, a 与a异法向 ;( a b)a b=0 时 , a =0.a ∥b a ba ?b b ? a向 a ? b 是一个数( a) ? b a ? (b)(a ?b)量 1. a 0或b0 时,的a? b =0 a ?b( a b) ? c a ? c b ? c数 2. a 0且b0 时,x1 x2y1 y2量 a ? b | a || b | cos(a,b) a 2 | a |2| a |x2y2积| a ? b | | a || b |3.重要定理、公式:(1)平面向量基本定理e1 ,e2是同一平面内两个不共线的向量,那么,关于这个平面内任一直量,有且仅有一对实数 1 ,2,使a1e1 2 e2(2)两个向量平行的充要条件a ∥b a =λb x1 y2x2 y10 .(3)两个向量垂直的充要条件a ⊥b a ·b=O x1 x2y1 y20 .(4)线段的定比分点公式设点 P分有向线段uuur uuur所成的比为λ,即PP=λ PP,则12uuur1uuur1uuur( 线段的定比分点的向量公式 ) OP =OP +OP1112x x1x2,1( 线段定比分点的坐标公式 )y y1y2. 1当λ=1时,得中点公式:uuur1uuur uuur x x1x2 ,2OP =2( OP1+ OP2)或y1y2y.2(5)平移公式设点 P( x, y) 按向量 a(h, k) 平移后获得点uuur uuur x x h, P (x , y ) ,则 OP = OP+ a或y,y k.曲线 y f (x) 按向量 a(h, k) 平移后所得的曲线的函数分析式为:y k f (x h)(6)正、余弦定理正弦定理:a b c2R. sin A sin B sin C余弦定理: a2b2c22bc cos A cos A b2 c 2a22bcb2 c 2a22ac cos B cos B c2 a 2b22cac2a2b22ab cosC cosC a 2b2c2.2ab二、解说新课:1.空间向量的观点:在空间,我们把拥有大小和方向的量叫做向量.注:⑴空间的一个平移就是一个向量.⑵向量一般用有向线段表示.同向等长的有向线段表示同一或相等的向量.⑶空间的两个向量可用同一平面内的两条有向线段来表示.2.空间向量的运算定义:与平面向量运算同样,空间向量的加法、减法与数乘向量运算以下(如图)uuur uuur uuur r vOB OA AB a bD'C'CbA'B'a aB bb D CaO AA Buuur uuur uuur r rBA OA OB a buuur rR)OP a(运算律:⑴加法互换律: a b b a⑵加法联合律:( a b ) c a (b c)⑶数乘分派律:( a b)a b3.平行六面体:平行四边形 ABCD 平移向量 a 到 A B C D 的轨迹所形成的几何体,叫做平行六面体, 并记作:ABCD - A B C D .它的六个面都是平行四边形,每个面的边叫做平行六面体的棱 .三、解说典范:例 1.已知平行六面体 ABCD - A B C D 化简以下向量表达式,标出化简结果的向量.uuur uuur uuur uuur uuur ⑴ AB BC ;⑵ AB AD AA ;uuur uuur1 uuuur1 uuur uuur uuurD'C'⑶AB ADCC;⑷3( AB ADAA).2A'B'M解:如图:uuur uuur uuur ⑴ ABBC AC ;uuur uuur uuur uuur uuur uuuur ⑵ ABADAA =AC AA AC ;GDCABuuur uuur1 uuuuruuur uuuur uuuur⑶设 M 是线段 CC 的中点,则 ABADCCACCMAM ;2⑷设 G 是线段 AC 的三等份点,则1 uuur uuur uuur1 uuuuruuur3 (ABADAA )ACAG .3uuur uuuur uuuur uuur向量 AC, AC , AM , AG 以下图 :例 2 已知空间四边形ABCD ,连接 AC, BD ,设 M ,G 分别是 BC ,CD 的中点,化简以下各表uuur uuur uuur达式,并标出化简结果向量:(1) ABBCCD ;uuur 1 uuur uuur uuur 1 uuur uuur(2) AB ( BD BC) ;( 3) AG (AB AC).A2 2解:如图, uuur uuur uuur uuur uuuruuur(1) AB BC CD AC CD AD ;uuur uuur uuur uuur uuur uuurB(2) AB 1 (BD BC ) AB 1 BC 1 BDDuuur 2uuuur uuuur uuur 2 2MGAB BM MG AG ;uuur 1 uuuruuur uuur uuuur uuuur C(3) AG ( ABAC) AG AM MG .2四、讲堂练习 :1.如图,在空间四边形ABCD 中, E, F 分别是 AD 与 BC 的中点,uuur1 uuur uuur求证: EF(AB DC).21 uuur1 uuuruuur uuur uuur uuuruuur证明: EF ED DC CF2 ADDC2CBA1 uuur uuur uuur1 uuur2( ABBD )DCCB2EBDFC1uuur uuur1uuur uuur2AB DC2(CB BD )1 uuur uuur1uuur2AB DC2CD1uuur uuur2( AB DC )r r r r r r r r r r r r r rr2.已知2x3y3a b4c ,3x y8a5b c ,把向量 x, y 用向量 a,b , c 表示.r r r r r r r r r r解 : ∵2x 3y3a b4c, 3x y8a5b cr r r r r r r r∴ x3a2b c , y a b2c uuur r uuur r uuur r3 .如图,在平行六面体ABCD ABCD 中,设AB a , AD b, AA c , E, F 分别是AD , BD 中点,uuuur uuur D' r r r;C'( 1)用向量a, b,c表示D B, EFuuur uuur uuur uuuur uuuur ( 2 )化简:AB BB BC C D2DE;uuuur uuuur uuuur uuur r r r 解 : ( 1)D B D A A B B Bb a cuuur uuur uuur uuur1 uuur r1 uuurEF EA AB BF D A a BDr 2r21r r 1 r1r r ( b c) a( a b )(a c ) 222A'B'EDCFA B五、小结:空间向量的有关的观点及空间向量的表示方法;平行六面体的观点;向量加法、减法和数乘运算 .六、课后作业:如图设 A 是△BCD 所在平面外的一点,G 是△BCD 的重心.求证:uuur 1 uuur uuur uuurAG(AB AC AD) .3A七、板书设计(略).八、课后记:BG DC3.1《空间向量及其运算》教案(新人教选修2-1)。

高中数学选修2-1-第三章第一节《3.1空间向量及其运算》全套教案

高中数学选修2-1-第三章第一节《3.1空间向量及其运算》全套教案

高中数学选修2-1-第三章第一节《3.1空间向量及其运算》全套教案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN空间向量及其运算课时分配:第一课空间向量及其加减运算 1个课时第二课空间向量的数乘运算 1个课时第三课空间向量的数量积运算 1个课时第四课空间向量运算的坐标表示1个课时3. 1.1 空间向量及其加减运算【教学目标】1.了解向量与平面平行、共面向量的意义,掌握向量与平面平行的表示方法;2.理解共面向量定理及其推论;掌握点在已知平面内的充要条件;3.会用上述知识解决立体几何中有关的简单问题。

【教学重点】点在已知平面内的充要条件。

共线、共面定理及其应用。

【教学难点】对点在已知平面内的充要条件的理解与运用。

b a AB OA OB+=+=;b a OB OA BA-=-=;)(R a OP ∈=λλ3.平行六面体:平行四边形ABCD 平移向量a 到D C B A ''''的轨迹所形成的几何体,叫做平行六面体,并记作:ABCD -D C B A ''''它的六个面都是平行四边形,每个面的边叫做平行六面体的棱。

4.平面向量共线定理方向相同或者相反的非零向量叫做平行向量。

由于任何一组平行向量都可以平移到同一条直线上,所以平行向量也叫做共线向量。

向量b 与非零向量a 共线的充要条件是有且只有一个实数λ,使b =λa 。

这个定理称为平面向量共线定理,要注意其中对向量a 的非零要求。

条有向线段来表示。

思考:运算律:(1)加法交换律:a b b a+=+ (2)加法结合律:)()(c b a c b a++=++(3)数乘分配律:b a b aλλλ+=+)(C BAOb bb aa a C'B'A'D'DABC数t 满足等式t OA OP +=a。

其中向量a 叫做直线l 的方向向量。

新教材人教A版选择性必修第一册 1.1.1 空间向量及其线性运算 学案

新教材人教A版选择性必修第一册 1.1.1 空间向量及其线性运算 学案

第一章 空间向量与立体几何 1.1 空间向量及其运算 1.1.1 空间向量及其线性运算素养目标·定方向课程标准学法解读1.了解空间向量的概念.2.掌握空间向量的线性运算. 1.了解空间向量的概念.(数学抽象)2.经历由平面向量的运算及其法则推广到空间向量的过程.(逻辑推理)3.掌握空间向量线性运算的法则和运算律.(数学运算)4.掌握共线向量定理和共面向量定理,会证明空间三点共线、四点共面.(数学抽象)必备知识·探新知知识点1 空间向量的概念1.定义:在空间,具有__大小__和__方向__的量叫做空间向量. 2.长度或模:向量的__大小__. 3.表示方法:(1)几何表示法:空间向量用__有向线段__表示;(2)字母表示法:用字母a ,b ,c ,…表示;若向量a 的起点是A ,终点是B ,也可记作AB →,其模记为|a |或|AB →|.4.几类特殊的空间向量名称定义及表示零向量__长度为0__的向量叫做零向量.记为0 单位向量__模为1__的向量叫做单位向量相反向量与向量a长度__相等__而方向__相反__的向量,叫做a的相反向量,记为-a共线向量(平行向量)如果表示若干空间向量的有向线段所在的直线互相平行或重合,那么这些向量叫做共线向量或平行向量.规定:对于任意向量a,都有0∥a相等向量方向__相同__且模__相等__的向量叫做相等向量思考1:单位向量都相等吗?提示:不一定.单位向量的模虽然都为1,但是方向各异.知识点2 空间向量的线性运算空间向量的线性运算加法a+b=OA→+AB→=OB→减法a-b=OA→-OC→=CA→数乘当λ>0时,λa=λOA→=PQ→;当λ<0时,λa=λOA→=MN→;当λ=0时,λa=0运算律交换律:a+b=b+a;结合律:a+(b+c)=(a+b)+c,λ(μa)=(λμ)a;分配律:(λ+μ)a=λa+μa,λ(a+b)=λa+λb思考2:怎样作图表示三个向量的和,作出的和向量是否与相加的顺序有关?提示:可以利用三角形法则和平行四边形法则作出三个向量的和.加法运算是对有限个向量求和,交换相加向量的顺序,其和不变.思考3:由数乘λa=0,可否得出λ=0?提示:不能.λa=0⇔λ=0或a=0.知识点3 共线向量1.空间两个向量共线的充要条件对于空间任意两个向量a,b(b≠0),a∥b的充要条件是存在实数λ,使得__a=λb__.2.直线的方向向量在直线l上取非零向量a,我们把__与向量a平行的非零向量__称为直线l的方向向量.思考4:对于空间向量a,b,c,若a∥b且b∥c,是否可以得到a∥c?提示:不能.若b =0,则对任意向量a ,c 都有a ∥b 且b ∥c . 思考5:怎样利用向量共线证明A ,B ,C 三点共线? 提示:只需证明向量AB →,BC →(不唯一)共线即可.知识点4 共面向量1.共面向量如图,如果表示向量a 的有向线段OA →所在的直线OA 与直线l 平行或重合,那么称向量a 平行于直线l .如果直线OA 平行于平面α或在平面α内,那么称向量a 平行于平面α.平行于同一个平面的向量,叫做共面向量.2.向量共面的充要条件如果两个向量a ,b 不共线,那么向量p 与向量a ,b 共面的充要条件是存在唯一的有序实数对(x ,y ),使__p =x a +y b __.思考6:空间中的两个向量是不是共面向量?提示:是.空间中的任意两个向量都可以平移到同一个平面内,成为同一平面内的两个向量.关键能力·攻重难题型探究题型一 空间向量及相关概念的理解典例1 给出下列命题:①在同一条直线上的单位向量都相等;②只有零向量的模等于0;③在正方体ABCD -A 1B 1C 1D 1中,AD 1→与BC 1→是相等向量;④在空间四边形ABCD 中,AB →与CD →是相反向量;⑤在三棱柱ABC -A 1B 1C 1中,与AA 1→的模一定相等的向量一共有4个.其中正确命题的序号为 __②③__.[解析] ①错误,在同一条直线上的单位向量,方向可能相同,也可能相反,故它们不一定相等;②正确,零向量的模等于0,模等于0的向量只有零向量;③正确,AD 1→与BC 1→的模相等,方向相同;④错误,空间四边形ABCD 中,AB →与CD →的模不一定相等,方向也不一定相反; ⑤错误,在三棱柱ABC -A 1B 1C 1中,与AA 1→的模一定相等的向量是A 1A →,BB 1→,B 1B →,CC 1→,C 1C →,一共有5个.[规律方法] 空间向量概念的辨析(1)向量的两个要素是大小与方向,两者缺一不可; (2)单位向量的方向虽然不一定相同,但长度一定为1;(3)两个向量的模相等,即它们的长度相等,但方向不确定,即两个向量(非零向量)的模相等是两个向量相等的必要不充分条件;(4)由于方向不能比较大小,因此“大于”“小于”对向量来说是没有意义的,但向量的模是可以比较大小的.【对点训练】❶ 给出下列命题:①两个空间向量相等,则它们起点相同,终点也相同; ②若空间向量a ,b 满足|a |=|b |,则a =b ; ③在正方体ABCD -A 1B 1C 1D 1中,必有AC →=A 1C 1→; ④若空间向量m ,n ,p 满足m =n ,n =p ,则m =p ; ⑤空间中任意两个单位向量必相等. 其中不正确的命题的个数是( C ) A .1 B .2 C .3D .4[解析] 当两向量的起点相同,终点也相同时,这两个向量必相等;但当两个向量相等时,它们的起点和终点均不一定相同,故①错;根据向量相等的定义知不仅需要模相等,而且需要方向相同,故②错;根据正方体ABCD -A 1B 1C 1D 1中,向量AC →与A 1C 1→的方向相同,模也相等,必有AC →=A 1C 1→,故③正确;命题④显然正确;空间中任意两个单位向量的模均为1,但方向不一定相同,故不一定相等,故⑤错.题型二 空间向量的线性运算典例2 如图所示,在平行六面体ABCD -A 1B 1C 1D 1中,设AA 1→=a ,AB →=b ,AD →=c ,M ,N ,P 分别是AA 1,BC ,C 1D 1的中点,试用a ,b ,c 表示以下各向量:①AC 1→;②AP →;③A 1N →.[分析] 根据数乘向量及三角形法则,平行四边形法则求解. [解析] ①AC 1→=AB →+BB 1→+B 1C 1→=AB →+AA 1→+AD →=a +b +c . ②AP →=AA 1→+A 1D 1→+D 1P →=AA 1→+AD →+12AB →=a +c +12b .③A 1N →=A 1A →+AB →+BN →=-AA 1→+AB →+12AD →=-a +b +12c .[规律方法] 空间向量线性运算的技巧和思路 (1)空间向量加法、减法运算的两个技巧①巧用相反向量:向量加减法的三角形法则是解决空间向量加法、减法运算的关键,灵活应用相反向量可使有关向量首尾相接,从而便于运算.②巧用平移:利用三角形法则和平行四边形法则进行向量的加法、减法运算时,务必要注意和向量、差向量的方向,必要时可采用空间向量的自由平移获得更准确的结果.(2)化简空间向量的常用思路①分组:合理分组,以便灵活运用三角形法则、平行四边形法则进行化简.②多边形法则:在空间向量的加法运算中,若是多个向量求和,还可利用多边形法则,若干个向量的和可以将其转化为首尾相接的向量求和.③走边路:灵活运用空间向量的加法、减法法则,尽量走边路(即沿几何体的边选择途径).【对点训练】❷ (2020·山东潍坊学年高二期末)已知四棱锥P -ABCD 的底面ABCD 是平行四边形,设P A →=a ,PB →=b ,PC →=c ,则PD →=( B )A .a +b +cB .a -b +cC .a +b -cD .-a +b +c[解析] 如图所示,四棱锥P -ABCD 的底面ABCD 是平行四边形,P A →=a ,PB →=b ,PC →=c ,则PD →=P A →+AD →=P A →+BC →=P A →+(PC →-PB →)=P A →-PB →+PC →=a -b +c .故选B .题型三 空间共线向量定理及其应用典例3 如图所示,在正方体ABCD -A 1B 1C 1D 1中,点E 在A 1D 1上,且A 1E →=2ED 1→,点F 在对角线A 1C 上,且A 1F →=23FC →.求证:E ,F ,B 三点共线.[分析] 可通过证明EF →与EB →共线来证明E ,F ,B 三点共线. [证明] 设AB →=a ,AD →=b ,AA 1→=c . 因为A 1E →=2ED 1→,A 1F →=23FC →,所以A 1E →=23A 1D 1→,A 1F →=25A 1C →,所以A 1E →=23AD →=23b ,A 1F →=25(AC →-AA 1→)=25(AB →+AD →-AA 1→)=25a +25b -25c . 所以EF →=A 1F →-A 1E →=25a -415b -25c=25⎝⎛⎭⎫a -23b -c . 又EB →=EA 1→+A 1A →+AB →=-23b -c +a =a -23b -c .∴EF →=25EB →,又∵EF →与EB →有公共点E ,∴E ,F ,B 三点共线. [规律方法] 1.判断向量共线的策略(1)熟记共线向量充要条件:①a ∥b ,b ≠0,则存在唯一实数λ使a =λb ;②若存在唯一实数λ,使a =λb ,b ≠0,则a ∥b .(2)判断向量共线的关键是找到实数λ. 2.证明空间三点共线的三种思路对于空间三点P 、A 、B 可通过证明下列结论来证明三点共线. (1)存在实数λ,使P A →=λPB →成立.(2)对空间任一点O ,有OP →=OA →+tAB →(t ∈R ). (3)对空间任一点O ,有OP →=xOA →+yOB →(x +y =1).【对点训练】❸ 如图所示,ABCD -ABEF 都是平行四边形,且不共面,M 、N 分别是AC 、BF 的中点,判断CE →与MN →是否共线?[解析] M 、N 分别是AC 、BF 的中点,而四边形ABCD 、ABEF 都是平行四边形, ∴MN →=MA →+AF →+FN →=12CA →+AF →+12FB →.又∵MN →=MC →+CE →+EB →+BN →=-12CA →+CE →-AF →-12FB →,∴12CA →+AF →+12FB →=-12CA →+CE →-AF →-12FB →. ∴CE →=CA →+2AF →+FB →=2(MA →+AF →+FN →). ∴CE →=2MN →,∴CE →∥MN →,即CE →与MN →共线. 题型四 空间向量共面定理及其应用典例4 已知A ,B ,C 三点不共线,平面ABC 外的一点M 满足OM →=12OA →+13OB →+16OC →. (1)判断MA →,MB →,MC →三个向量是否共面; (2)判断点M 是否在平面ABC 内.[分析] 要证明三个向量MA →,MB →,MC →共面,只需证明存在实数x ,y ,使MA →=xMB →+yMC →,证明了三个向量共面,即可说明点M 就在平面内.[解析] (1)因为OM →=12OA →+13OB →+16OC →,所以6OM →=3OA →+2OB →+OC →,所以3OA →-3OM →=(2OM →-2OB →)+(OM →-OC →), 因此3MA →=2BM →+CM →=-2MB →-MC →. 故向量MA →,MB →,MC →共面.(2)由(1)知向量MA →,MB →,MC →共面,三个向量又有公共点M ,故M ,A ,B ,C 共面,即点M 在平面ABC 内.[规律方法] 1.证明点P 在平面ABC 内,可以用AP →=xAB →+yAC →,也可以用OP →=OA →+xAB →+yAC →,若用OP →=xOA →+yOB →+zOC →,则必须满足x +y +z =1.2.判定三个向量共面一般用p =x a +y b ,证明三线共面常用AP →=xAB →+yAC →,证明四点共面常用OP →=xOA →+yOB →+zOC →(其中x +y +z =1).【对点训练】❹ 正方体ABCD -A 1B 1C 1D 1中,M 、N 、P 、Q 分别为A 1D 1、D 1C 1、AA 1、CC 1的中点,用向量方法证明M 、N 、P 、Q 四点共面.[解析] 令D 1A 1→=a ,D 1C 1→=b ,D 1D →=c , ∵M 、N 、P 、Q 均为棱的中点,∴MN →=12b -12a ,MP →=MA 1→+A 1P →=12a +12c ,MQ →=MD 1→+D 1C 1→+C 1Q →=-12a +b +12c .令MQ →=λMN →+μMP →,则-12a +b +12c =12(μ-λ)a +12λb +12μc , ∴⎩⎪⎨⎪⎧12(μ-λ)=-1212λ=112μ=12,∴⎩⎪⎨⎪⎧λ=2μ=1.∴MQ →=2MN →+MP →,因此向量MQ →、MN →、MP →共面, ∴四点M 、N 、P 、Q 共面.易错警示混淆平面向量与空间向量致错典例5 已知非零空间向量e 1,e 2不共线,如果AB →=e 1+e 2,AC →=2e 1+8e 2,AD →=3e 1-3e 2,那么下列结论正确的是( B )A .A ,B ,C ,D 四点共线 B .A ,B ,C ,D 四点共面 C .A ,B ,C ,D 四点不共面 D .无法确定[错解] ∵AB →=e 1+e 2,AC →+AD →=5e 1+5e 2=5AB →, ∴A ,B ,C ,D 四点共线.故选A .[辨析] 在平面向量中,若a =λb (b ≠0),则a 与b 共线;在空间向量中,若a =λb +μc (b 与c 不共线),则a ,b ,c 共面.[正解] 由错解知AB →=15AC →+15AD →,则AB →,AC →,AD →共面.从而A ,B ,C ,D 四点共面.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.1.1 空间向量及其运算
【使用说明及学法指导】
1.先自学课本,理解概念,完成导学提纲;
2.小组合作,动手实践。

【学习目标】
1. 理解空间向量的概念,掌握其表示方法;
2. 会用图形说明空间向量加法、减法、数乘向量及它们的运算律;
3. 能用空间向量的运算意义及运算律解决简单的立体几何中的问题.
【重点】能用空间向量的运算意义及运算律解决简单的立体几何中的问题
【难点】会用图形说明空间向量加法、减法、数乘向量及它们的运算律;
一、自主学习
1.预习教材P 84~ P 86, 解决下列问题
复习1:平面向量基本概念:
具有 和 的量叫向量, 叫向量的模(或长度); 叫零向量,记着 ; 叫单位向量. 叫相反向量, a 的相反向量记着 . 叫相等向量. 向量的表示方法有 , ,和 共三
种方法.
复习2:平面向量有加减以及数乘向量运算:
1. 向量的加法和减法的运算法则有 法则 和 法则.
2. 实数与向量的积:
实数λ与向量a 的积是一个 量,记作 ,其长度和方向规定如下:
(1)|λa |= .
(2)当λ>0时,λa 与b ;
当λ<0时,λa 与b ;
当λ=0时,λa = .
3. 向量加法和数乘向量,以下运算律成立吗?
加法交换律:a +b =b +a
加法结合律:(a +b )+c =a +(b +c )
数乘分配律:λ(a +b )=λa +λb
2.导学提纲
1.空间向量中的零向量,单位向量,相等向量分别如何表示:__________、_________、_____________.
2.分别用平行四边形法则和三角形法则求,.a b a b +- . a b
3.点C 在线段AB 上,且52
AC CB =,则AC = AB , BC = AB . 4.知识反思:可以发现平面向量和空间向量存在怎样的位置关系?
5.知识拓展
平面向量仅限于研究平面图形在它所在的平面内的平移,而空间向量研究的是空间的平移,它们的共同点都
是指“将图形上所有点沿相同的方向移动相同的长度”,空间的平移包含平面的平移.
二、典型例题
例1、(1)给出下列命题:
①将空间中所有的单位向量移到同一个点为起点,则它们的终点构成一个圆;
②若空间向量a 、b 满足|a |=|b |,则a =b ;
③在正方体ABCD-A 1B 1C 1D 1中,必有AC=11C A ;
④若空间向量m 、n 、p 满足m =n ,n =p ,则m =p ;
⑤空间中任意两个单位向量必相等.
其中假命题的个数是( )
A .1
B .2
C .3
D .4
(2) 化简下列各式: ⑴ AB BC CA ++ ; ⑵;AB MB BO OM +++ ⑶;AB AC BD CD -+- ⑷ OA OD DC -- . ⑸ OA OC BO CO +++ ; ⑹ AB AD DC -- ;
⑺ NQ QP MN MP ++- .
例2. 已知平行六面体''''ABCD A B C D -(如图),化简下列向量表达式,并标出化简结果的向量:
AB BC + ⑴; 'AB AD AA ++ ⑵; 1'2AB AD CC ++ ⑶ 1(')2
AB AD AA ++ ⑷.
变式:在上图中,用',,AB AD AA 表示'',AC BD 和'DB .
例3.在四面体ABCD 中,M 为BC 的中点,Q 为△BCD 的重心,设AB=b AC=c AD=d ,试用b ,c ,d 表示向量,、,,和。

三、当堂练习
1. 下列说法中正确的是(

A. 若∣a ∣=∣b ∣,则a ,b 的长度相同,方向相反或相同;
B. 若a 与b 是相反向量,则∣a ∣=∣b ∣;
C. 空间向量的减法满足结合律
;
D. 在四边形ABCD 中,一定有AB AD AC += .
2. 长方体''''ABCD A B C D -中,化简'''''AA A B A D ++ =
3. 已知向量a ,b 是两个非零向量,00,
a b 是与a ,b
同方向的单位向量,那么下列各式正确的是(

A. 00a b =
B. 00a b = 或00a b =-
C. 01a =
D. ∣0a ∣=∣
0b ∣
4. 在四边形ABCD 中,若AC AB AD =+ ,则四边形是( )
A. 矩形
B. 菱形
C. 正方形
D. 平行四边形
5. 下列说法正确的是( )
A. 零向量没有方向
B. 空间向量不可以平行移动
C. 如果两个向量不相同,那么它们的长度不相等
D. 同向且等长的有向线段表示同一向量
6.在三棱柱ABC-A'B'C'中,M,N 分别为
BC ,B'C'
的中点,化简下列式子: ⑴ AM + BN ⑵'A N -'MC + 'BB
四、课堂小结
1.知识:
2.数学思想、方法:
3.能力:
五、课后巩固
1.完成书86页练习
2.课本第97页A 组1题。

相关文档
最新文档