北京市鲁迅中学七年级下册期中数学试卷(含答案)
完整版七年级数学下册期中考试试卷及答案 - 百度文库
![完整版七年级数学下册期中考试试卷及答案 - 百度文库](https://img.taocdn.com/s3/m/b2203a82bdeb19e8b8f67c1cfad6195f312be8ab.png)
完整版七年级数学下册期中考试试卷及答案 - 百度文库一、选择题1.2的平方根是()A .﹣1.414B .±1.414C .2D .2±2.北京2022年冬奥会会徽是以汉字“冬”为灵感来源设计的.在下面如图的四个图中,能由如图经过平移得到的是( )A .B .C .D . 3.下列各点中,位于第三象限的是( )A .()1.5, 3.5-B .()2,4C .()3,2--D .()2.5,3- 4.下列命题中是假命题的是( ) A .对顶角相等B .在同一平面内,垂直于同一条直线的两条直线平行C .同旁内角互补D .平行于同一条直线的两条直线平行5.如图,一副直角三角板图示放置,点C 在DF 的延长线上,点A 在边EF 上,//AB CD ,90ACB EDF ∠=∠=︒,则CAF ∠=( )A .10︒B .15︒C .20︒D .25︒ 6.下列说法不正确的是( ) A .125的平方根是±15 B .﹣9是81的平方根C .0.4的算术平方根是0.2D .327-=﹣3 7.将直角三角尺的直角顶点靠在直尺上,且斜边与这根直尺平行,那么,在形成的这个图中与α∠互余的角共有( )A .0个B .1个C .2个D .3个8.如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O 1,O 2,O 3,… 组成一条平滑的曲线,点P 从原点O 出发,沿这条曲线向右运动,速度为每秒2π个单位长度,则第2021秒时,点P 的坐标是( )A .(2020,0)B .(2021,-1)C .(2021,1)D .(2022,0)二、填空题9.计算:﹣9=_____.10.若点()3,P m 与(),6Q n -关于x 轴对称,则2m n -=____________________________. 11.如图,已知AB //DE ,BC ⊥CD ,∠ABC 和∠CDE 的角平分线交于点F ,∠BFD =__________°.12.如图,AB ∥DE ,AD ⊥AB ,AE 平分∠BAC 交BC 于点F ,如果∠CAD =24°,则∠E =___°.13.如图所示是一张长方形形状的纸条,1105∠=︒,则2∠的度数为__________.14.阅读下列解题过程:计算:232425122222++++++ 解:设232425122222S =++++++① 则232526222222S =+++++②由②-①得,2621S =-运用所学到的方法计算:233015555++++⋯⋯+=______________.15.已知点P 位于第一象限,到x 轴的距离为2,到y 轴的距离为5,则点P 的坐标为____.16.如图所示,动点P 在平面直角坐标系中,按箭头所示方向呈台阶状移动,第一次从原点运动到点(0,1),第二次接着运动到点(1,1),第三次接着运动到点(1,2),…,按这样的运动规律,经过2021次运动后,动点P 的坐标是________.三、解答题17.计算:(1);(2)18.求下列各式中x 的值:(1)23126x -=(2)()3180x --=19.阅读下列推理过程,在括号中填写理由.已知:如图,点D 、E 分别是线段AB 、BC 上的点,AE 平分BAC ∠,BED C ∠=∠,//DF AE ,交BC 于点F .求证:DF 平分BDE ∠.证明:AE ∵平分BAC ∠(已知)12∠∠∴=( )BED C ∠=∠(已知)//AC DE ∴( )13∠∠∴=( )23∴∠=∠(等量代换)//DF AE ( )25∴∠=∠( )34∠=∠( )45∴∠=∠( )DF ∴平分BDE ∠( )20.在平面直角坐标系中,△ABC 三个顶点的坐标分别是A (﹣2,2)、B (2,0),C (﹣4,﹣2).(1)在平面直角坐标系中画出△ABC ;(2)若将(1)中的△ABC 平移,使点B 的对应点B ′坐标为(6,2),画出平移后的△A ′B ′C ′;(3)求△A ′B ′C ′的面积.21.(阅读材料) ∵459<<,即25<<3,∴15-<1<2,∴5-1的整数部分为1,∴5-1的小数部分为5-2(解决问题)(1)填空:91的小数部分是 ;(2)已知a 是21-4的整数部分,b 是21-4的小数部分,求代数式(﹣a )3+(b +4)2的值.22.如图用两个边长为18cm 的小正方形纸片拼成一个大的正方形纸片,沿着大正方形纸片的边的方向截出一个长方形纸片,能否使截得的长方形纸片长宽之比为3:2,且面积为30cm 2?请说明理由.23.已知AB ∥CD ,线段EF 分别与AB ,CD 相交于点E ,F .(1)请在横线上填上合适的内容,完成下面的解答:如图1,当点P在线段EF上时,已知∠A=35°,∠C=62°,求∠APC的度数;解:过点P作直线PH∥AB,所以∠A=∠APH,依据是;因为AB∥CD,PH∥AB,所以PH∥CD,依据是;所以∠C=(),所以∠APC=()+()=∠A+∠C=97°.(2)当点P,Q在线段EF上移动时(不包括E,F两点):①如图2,∠APQ+∠PQC=∠A+∠C+180°成立吗?请说明理由;②如图3,∠APM=2∠MPQ,∠CQM=2∠MQP,∠M+∠MPQ+∠PQM=180°,请直接写出∠M,∠A与∠C的数量关系.【参考答案】一、选择题1.D解析:D【分析】根据平方根的定义求解即可.【详解】解:2的平方根是2故选:D.【点睛】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.2.C【分析】根据平移只改变图形的位置,不改变图形的形状与大小解答.【详解】解:观察各选项图形只改变图形的位置,不改变图形的形状与大小可知,A.是旋转180°后图形,故选项A不合题意;B.是【分析】根据平移只改变图形的位置,不改变图形的形状与大小解答.【详解】解:观察各选项图形只改变图形的位置,不改变图形的形状与大小可知,A .是旋转180°后图形,故选项A 不合题意;B .是轴对称图形,故选项B 不合题意;C .选项的图案可以通过平移得到.故选项C 符合题意;D .是轴对称图形,故选项D 不符合题意.故选:C .【点睛】本题考查了图形的平移,掌握平移的定义及性质是解题的关键.3.C【分析】根据各象限的点的特征即可判断,第三象限的点的特征是:横纵坐标都是负数.【详解】位于第三象限的点的横坐标和纵坐标都是负数,∴C ()3,2--符合题意,故选C .【点睛】本题考查了平面直角坐标系的定义,掌握各象限的点坐标的符号是解题的关键.平面直角坐标系中各象限点的坐标特点:①第一象限的点:横坐标>0,纵坐标>0;②第二象限的点:横坐标<0,纵坐标>0;③第三象限的点:横坐标<0,纵坐标<0;④第四象限的点:横坐标>0,纵坐标<0.4.C【分析】利用对顶角相等、平行线的判定与性质进行判断选择即可.【详解】解:A 、对顶角相等,是真命题,不符合题意;B 、在同一平面内,垂直于同一条直线的两条直线平行,是真命题,不符合题意;C 、同旁内角互补,是假命题,符合题意;D 、平行于同一条直线的两条直线平行,真命题,不符合题意,故选:C .【点睛】本题考查判断命题的真假,解答的关键是熟练掌握对顶角相等、平行线的判定与性质等知识,难度不大.5.B【分析】根据平行线的性质可知,BAF=EFD=45∠∠ ,由BAC=30∠ 即可得出答案。
七年级下册期中数学试卷(含答案)
![七年级下册期中数学试卷(含答案)](https://img.taocdn.com/s3/m/44117352b9d528ea80c77934.png)
七年级(下)期中数学试卷一、选择题(每小题3分,共30分)1.(3分)在平面直角坐标系中,点A(2,﹣3)在第()象限.A.一B.二C.三D.四2.(3分)4的平方根是()A.±2 B.2 C.±D.3.(3分)在实数﹣,0.31,,0.1010010001,3中,无理数有()个A.1 B.2 C.3 D.44.(3分)如图,已知∠1=60°,∠2=60°,∠3=68°,则∠4的大小()A.68°B.60°C.102°D.112°5.(3分)如图,在4×8的方格中,建立直角坐标系E(﹣1,﹣2),F(2,﹣2),则G 点坐标为()A.(﹣1,1)B.(﹣2,﹣1)C.(﹣3,1)D.(1,﹣2)6.(3分)在直角坐标系中,A(0,1),B(3,3)将线段AB平移,A到达C(4,2),B 到达D点,则D点坐标为()A.(7,3)B.(6,4)C.(7,4)D.(8,4)7.(3分)如图AB∥CD,BC∥DE,∠A=30°,∠BCD=110°,则∠AED的度数为()A.90°B.108°C.100°D.80°8.(3分)下列说法错误的是()A.B.64的算术平方根是4C.D.,则x=19.(3分)一只跳蚤在第一象限及x、y轴上跳动,第一次它从原点跳到(0.1),然后按图中箭头所示方向跳动(0,0)→(0,1)→(1,1)→(1,0)→……,每次跳一个单位长度,则第2018次跳到点()A.(6,44)B.(7,45)C.(44,7)D.(7,44)10.(3分)下列命题是真命题的有()个①两条直线被第三条直线所截,同位角的平分线平行②垂直于同一条直线的两条直线互相平行③过一点有且只有一条直线与已知直线平行④对顶角相等,邻补角互补A.1 B.2 C.3 D.4二、填空题(每小题3分,共18分)11.(3分)实数的绝对值是.12.(3分)x、y是实数,,则xy=.13.(3分)已知,A(0,4),B(﹣2,0),C(3,﹣1),则S△ABC=.14.(3分)若2n﹣3与n﹣1是整数x的平方根,则x=.15.(3分)在平面坐标系中,A(1,﹣1),B(2,3),M是x轴上一点,要使MB+MA的值最小,则M的坐标为.16.(3分)如图,在平面内,两条直线l1,l2相交于点O,对于平面内任意一点M,若p,q分别是点M到直线l1,l2的距离,则称(p,q)为点M的“距离坐标”.根据上述规定,“距离坐标”是(2,1)的点共有个.三、解答题(共8小题,72分)17.(8分)计算:(1)(2)18.(8分)求下列各式中的x值(1)16(x+1)2=49(2)8(1﹣x)3=12519.(8分)完成下面的推理填空如图,已知,F是DG上的点,∠1+∠2=180°,∠3=∠B,求证:∠AED=∠C.证明:∵F是DG上的点(已知)∴∠2+∠DFE=180°()又∵∠1+∠2=180°(已知)∴∠1=∠DFE()∴BD∥EF()∴∠3=∠ADE()又∵∠3=∠B(已知)∴∠B=∠ADE()∴DE∥BC()∴∠AED=∠C()20.(8分)已知在平面直角坐标系中有三点A(﹣2,1)、B(3,1)、C(2,3).请回答如下问题:(1)在坐标系内描出点A、B、C的位置;(2)求出以A、B、C三点为顶点的三角形的面积;(3)在y轴上是否存在点P,使以A、B、P三点为顶点的三角形的面积为10,若存在,请直接写出点P的坐标;若不存在,请说明理由.21.(8分)已知:a是9+的小数部分,b是9﹣的小数部分.①求a、b的值;②求4a+4b+5的平方根.22.(10分)①如图1,O是直线AB上一点,OE平分∠AOC,OF平分∠BOC,求证:OE⊥OF.②如图2,AB∥CD,∠1=∠B,∠2=∠D.求证:BE⊥DE23.(10分)(1)①如图1,AB∥CD,则∠B、∠P、∠D之间的关系是;②如图2,AB∥CD,则∠A、∠E、∠C之间的关系是;(2)①将图1中BA绕B点逆时针旋转一定角度交CD于Q(如图3).证明:∠BPD=∠1+∠2+∠3②将图2中AB绕点A顺时针旋转一定角度交CD于H(如图4)证明:∠E+∠C+∠CHA+∠A=360°(3)利用(2)中的结论求图5中∠A+∠B+∠C+∠D+∠E+∠F的度数.24.(12分)如图1,D在y轴上,B在x轴上,C(m,n),DC⊥BC且+(n﹣b)2+|b ﹣4|=0.(1)求证:∠CDO+∠OBC=180°;(2)如图2,DE平分∠ODC,BF平分∠OBC,分别交OB、CD、y轴于E、F、G.求证:DE∥BF;(3)在(2)问中,若D(0,2),G(0,5),B(6,0),求点E、F的坐标.七年级(下)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)在平面直角坐标系中,点A(2,﹣3)在第()象限.A.一B.二C.三D.四【解答】解:点A(2,﹣3)在第四象限.故选:D.2.(3分)4的平方根是()A.±2 B.2 C.±D.【解答】解:∵(±2)2=4,∴4的平方根是±2.故选:A.3.(3分)在实数﹣,0.31,,0.1010010001,3中,无理数有()个A.1 B.2 C.3 D.4【解答】解:在实数﹣(无理数),0.31(有理数),(无理数),0.1010010001(有理数),3(无理数)中,无理数有3个,故选:C.4.(3分)如图,已知∠1=60°,∠2=60°,∠3=68°,则∠4的大小()A.68°B.60°C.102°D.112°【解答】解:∵∠1=60°,∠2=60°,∴a∥b,∴∠5+∠4=180°,∵∠3=68°=∠5,∴∠4=112°.故选:D.5.(3分)如图,在4×8的方格中,建立直角坐标系E(﹣1,﹣2),F(2,﹣2),则G 点坐标为()A.(﹣1,1)B.(﹣2,﹣1)C.(﹣3,1)D.(1,﹣2)【解答】解:如图所示:G点坐标为:(﹣3,1).故选:C.6.(3分)在直角坐标系中,A(0,1),B(3,3)将线段AB平移,A到达C(4,2),B 到达D点,则D点坐标为()A.(7,3)B.(6,4)C.(7,4)D.(8,4)【解答】解:∵点A(0,1)的对应点C的坐标为(4,2),即(0+4,1+1),∴点B(3,3)的对应点D的坐标为(3+4,3+1),即D(7,4),故选:C.7.(3分)如图AB∥CD,BC∥DE,∠A=30°,∠BCD=110°,则∠AED的度数为()A.90°B.108°C.100°D.80°【解答】解:如图,延长DE交AB于F,∵AB∥CD,BC∥DE,∴∠AFE=∠B,∠B+∠C=180°,∴∠AFE=∠B=70°,又∵∠A=30°,∴∠AED=∠A+∠AFE=100°,故选:C.8.(3分)下列说法错误的是()A.B.64的算术平方根是4C.D.,则x=1【解答】解:A、,正确;B、64的算术平方根是8,错误;C、,正确;D、,则x=1,正确;故选:B.9.(3分)一只跳蚤在第一象限及x、y轴上跳动,第一次它从原点跳到(0.1),然后按图中箭头所示方向跳动(0,0)→(0,1)→(1,1)→(1,0)→……,每次跳一个单位长度,则第2018次跳到点()A.(6,44)B.(7,45)C.(44,7)D.(7,44)【解答】解:跳蚤运动的速度是每秒运动一个单位长度,(0,1)用的秒数分别是1(12)秒,到(0,2)用8(2×4)秒,到(0,3)用9(32)秒,到(0,4)用24(4×6)秒,到(0,5)用25(52)秒,到(0,6)用48(6×8)秒,依此类推,到(0,45)用2025秒.2025﹣1﹣6=2018,故第2018秒时跳蚤所在位置的坐标是(6,44).故选:A.10.(3分)下列命题是真命题的有()个①两条直线被第三条直线所截,同位角的平分线平行②垂直于同一条直线的两条直线互相平行③过一点有且只有一条直线与已知直线平行④对顶角相等,邻补角互补A.1 B.2 C.3 D.4【解答】解:两条平行线被第三条直线所截,同位角的平分线平行,①是假命题;在同一平面内,垂直于同一条直线的两条直线互相平行,②是假命题;过直线外一点有且只有一条直线与已知直线平行,③是假命题;对顶角相等,邻补角互补,④是真命题;故选:A.二、填空题(每小题3分,共18分)11.(3分)实数的绝对值是.【解答】解:|﹣|=,故答案为:.12.(3分)x、y是实数,,则xy=﹣6 .【解答】解:由题意可知:x+2=0,y﹣3=0,∴x=﹣2,y=3∴xy=﹣6故答案为:﹣6=11 .13.(3分)已知,A(0,4),B(﹣2,0),C(3,﹣1),则S△ABC【解答】解:如图:S=.△ABC故答案为:1114.(3分)若2n﹣3与n﹣1是整数x的平方根,则x= 1 .【解答】解:当2n﹣3=n﹣1 时,解得n=2,所以x=(n﹣1)2=(2﹣1)2=1;当2n﹣3+n﹣1=0,解得n=,所以x=(n﹣1)=(﹣1)2=.∵x是整数,∴x=1,故答案为1.15.(3分)在平面坐标系中,A(1,﹣1),B(2,3),M是x轴上一点,要使MB+MA的值最小,则M的坐标为(,0).【解答】解:连接AB交x轴于M,则MB+MA的值最小.设直线AB的解析式为y=kx+b,则有,解得,∴直线AB的解析式为y=4x﹣5,令y=0,得到x=,∴M(,0)故本题答案为:(,0);16.(3分)如图,在平面内,两条直线l1,l2相交于点O,对于平面内任意一点M,若p,q分别是点M到直线l1,l2的距离,则称(p,q)为点M的“距离坐标”.根据上述规定,“距离坐标”是(2,1)的点共有 4 个.【解答】解:到l1的距离是2的点,在与l1平行且与l1的距离是2的两条直线上;到l2的距离是1的点,在与l2平行且与l2的距离是1的两条直线上;以上四条直线有四个交点,故“距离坐标”是(2,1)的点共有4个.故答案为:4.三、解答题(共8小题,72分)17.(8分)计算:(1)(2)【解答】解:(1)原式=4+4×2=12;(2)原式=﹣++﹣1=2.18.(8分)求下列各式中的x值(1)16(x+1)2=49(2)8(1﹣x)3=125【解答】解:(1)16(x+1)2=49(x+1)2=x+1=,∴.(2)8(1﹣x)3=1251﹣x=x=﹣.19.(8分)完成下面的推理填空如图,已知,F是DG上的点,∠1+∠2=180°,∠3=∠B,求证:∠AED=∠C.证明:∵F是DG上的点(已知)∴∠2+∠DFE=180°(邻补角的定义)又∵∠1+∠2=180°(已知)∴∠1=∠DFE(等量代换)∴BD∥EF(内错角相等,两直线平行)∴∠3=∠ADE(两直线平行,内错角相等)又∵∠3=∠B(已知)∴∠B=∠ADE(等量代换)∴DE∥BC(同位角相等,两直线平行)∴∠AED=∠C(两直线平行,同位角相等)【解答】解:∵F是DG上的点(已知)∴∠2+∠DFE=180°(邻补角的定义)又∵∠1+∠2=180°(已知)∴∠1=∠DFE(等量代换)∴BD∥EF(内错角相等,两直线平行)∴∠3=∠ADE(两直线平行,内错角相等)又∵∠3=∠B(已知)∴∠B=∠ADE(等量代换)∴DE∥BC(同位角相等,两直线平行)∴∠AED=∠C(两直线平行,同位角相等)故答案为:邻补角的定义;等量代换;内错角相等,两直线平行;等量代换;同位角相等,两直线平行;两直线平行,同位角相等.20.(8分)已知在平面直角坐标系中有三点A(﹣2,1)、B(3,1)、C(2,3).请回答如下问题:(1)在坐标系内描出点A、B、C的位置;(2)求出以A、B、C三点为顶点的三角形的面积;(3)在y轴上是否存在点P,使以A、B、P三点为顶点的三角形的面积为10,若存在,请直接写出点P的坐标;若不存在,请说明理由.【解答】解:(1)描点如图;(2)依题意,得AB∥x轴,且AB=3﹣(﹣2)=5,=×5×2=5;∴S△ABC(3)存在;=10,∵AB=5,S△ABP∴P点到AB的距离为4,又点P在y轴上,∴P点的坐标为(0,5)或(0,﹣3).21.(8分)已知:a是9+的小数部分,b是9﹣的小数部分.①求a、b的值;②求4a+4b+5的平方根.【解答】解:①由题意可知:9+的整数部分为12,9﹣的整数部分为5,∴9+=12+a,9﹣=5+b∴a=﹣3,b=4﹣,②原式=4(a+b)+5=4×1+5=9∴9的平方根为:±322.(10分)①如图1,O是直线AB上一点,OE平分∠AOC,OF平分∠BOC,求证:OE⊥OF.②如图2,AB∥CD,∠1=∠B,∠2=∠D.求证:BE⊥DE【解答】①证明:∵OE平分∠AOC,OF平分∠BOC,∴∠EOC=∠AOC,∠FOC=BOC,∵∠AOC+∠BOC=180°,∴∠EOF=∠EOC+∠FOC=90°,∴OE⊥OF;②证明:∵AB∥CD,∴∠A+∠C=180°,∵∠2+∠D+∠C=180°,∠1+∠A+∠B=180°,∠1=∠B,∠2=∠D,∴2∠1+2∠2=180°+180°﹣180°=180°,∴∠1+∠2=90°,∴∠BED=90°,∴BE⊥DE.23.(10分)(1)①如图1,AB∥CD,则∠B、∠P、∠D之间的关系是∠B+∠D=∠P;②如图2,AB∥CD,则∠A、∠E、∠C之间的关系是∠A+∠E+∠C=360°;(2)①将图1中BA绕B点逆时针旋转一定角度交CD于Q(如图3).证明:∠BPD=∠1+∠2+∠3②将图2中AB绕点A顺时针旋转一定角度交CD于H(如图4)证明:∠E+∠C+∠CHA+∠A=360°(3)利用(2)中的结论求图5中∠A+∠B+∠C+∠D+∠E+∠F的度数.【解答】解:(1)①如图1中,作PE∥AB,∵AB∥CD,∴PE∥CD,∴∠B=∠1,∠D=∠2,∴∠B+∠D=∠1+∠2=∠BPD.②作EH∥AB,∵AB∥CD,∴EH∥CD,∴∠A+∠1=180°,∠2+∠C=180°,∴∠A+∠1+∠2+∠C=360°,∴∠A+∠AEC+∠C=360°.故答案为∠B+∠D=∠P,∠A+∠E+∠C=360°.(2)①如图3中,作BE∥CD,∵∠EBQ=∠3,∠EBP=∠EBQ+∠1,∴∠BPD=∠EBP+∠2=∠1+∠3+∠2.②如图4中,连接EH.∵∠A+∠AEH+∠AHE=180°,∠C+∠CEB+∠CBE=180°,∴∠A+∠AEH+∠AHE+∠CEH+∠CHE+∠C=360°,∴∠A+∠AEC+∠C+∠AHC=360°.(3)如图5中,设AC交BG于H.∵∠AHB=∠A+∠B+∠F,∵∠AHB=∠CHG,在五边形HCDEG中,∠CHG+∠C+∠D+∠E+∠G=540°,∴∠A+∠B+∠F+∠C+∠D+∠E+∠G=540°,∴∠A+∠B+∠C+∠D+∠E+∠F=540°24.(12分)如图1,D在y轴上,B在x轴上,C(m,n),DC⊥BC且+(n﹣b)2+|b ﹣4|=0.(1)求证:∠CDO+∠OBC=180°;(2)如图2,DE平分∠ODC,BF平分∠OBC,分别交OB、CD、y轴于E、F、G.求证:DE∥BF;(3)在(2)问中,若D(0,2),G(0,5),B(6,0),求点E、F的坐标.【解答】解:(1)∵DC⊥BC,∴∠BCD=90°,∵∠BOD=90°,∴∠OBC+∠ODC=360°﹣∠BOD﹣∠BCD=180°;(2)∵DE平分∠ODC,BF平分∠OBC,∴∠ODE=∠ODC,∠OBF=∠OBC,∵∠OBC+∠ODC=180°,∴∠ODE+∠OBF=90°,∵∠ODE+∠OED=90°,∴∠OED=∠OBF,∴DE∥BF,(3)∵+(n﹣b)2+|b﹣4|=0,∴m﹣3=0,n﹣b=0,b﹣4=0,∴m=3,b=4,n=4,∴C(3,4),∵D(0,2),∴直线CD的解析式为y=x+2①,∵G(0,5),B(6,0),∴直线BG的解析式为y=﹣x+5②,联立①②解得,,∴F(2,),∵DE∥BF,D(0,2),∴直线DE的解析式为y=﹣x+2,令y=0,得,﹣x+2=0,∴x=2.4,∴E(2.4,0).。
完整版(完整版)七年级数学下册期中试卷及答案 - 百度文库
![完整版(完整版)七年级数学下册期中试卷及答案 - 百度文库](https://img.taocdn.com/s3/m/d6f70d46a9956bec0975f46527d3240c8447a142.png)
完整版(完整版)七年级数学下册期中试卷及答案 - 百度文库 一、选择题 1.化简4的结果为()A .16B .4C .2D .2±2.下列四种汽车车标,可以看做是由某个基本图案经过平移得到的是( )A .B .C .D .3.在平面直角坐标系中位于第二象限的点是( )A .()2,3B .()2,3-C .()2,3-D .()2,3-- 4.下列命题:①过直线外一点有且只有一条直线与已知直线平行;②在同一平面内,过一点有且只有一条直线与已知直线垂直;③图形平移的方向一定是水平的;④内错角相等.其中真命题为( )A .①②B .①④C .①②③D .①②④ 5.如果,直线//AB CD ,65A ∠=︒,则EFC ∠等于( )A .105︒B .115︒C .125︒D .135︒ 6.下列运算正确的是( ) A .32-=﹣6 B .31182-=- C .4=±2 D .25×32=5107.如图,AB //CD ,AD ⊥AC ,∠ACD =53°,则∠BAD 的度数为( )A .53°B .47°C .43°D .37°8.在平面直角坐标系xOy 中,对于点(,)P x y ,我们把点(1,1)P y x -++叫做点P 的伴随点,已知点1A 的伴随点为2A ,点2A 的伴随点为3A ,点3A 的伴随点为4A ,…,这样依次得点A 1,A 2,A 3,…,n A ,…,若点1A 的坐标为(3)1,,则点A 2021的坐标为( ) A .(0,2)- B .(0)4, C .(3)1, D .(3,1)-二、填空题9.若102.0110.1=,则± 1.0201=_________.10.点A (2,4)关于x 轴对称的点的坐标是_____.11.如图,点D 是△ABC 三边垂直平分线的交点,若∠A =64°,则∠D =_____°.12.如图,AB ∥DE ,AD ⊥AB ,AE 平分∠BAC 交BC 于点F ,如果∠CAD =24°,则∠E =___°.13.如图,将一条对边互相平行的长方形纸带进行两次折叠,折痕分别为AB 、CD ,若//CD BE ,且156∠=︒,则2∠=_____.14.已知M 是满足不等式36a <<N 是满足不等式372-大整数,则M +N 的平方根为________.15.第二象限内的点()P x,y 满足x =9,2y =4,则点P 的坐标是___. 16.如图,在平面直角坐标系中,将正方形①依次平移后得到正方形②,③,④…;相应地,顶点A 依次平移得到A 1,A 2,A 3,…,其中A 点坐标为(1,0),A 1坐标为(0,1),则A20的坐标为__________.三、解答题17.计算:(1)31 81624-+-;(2)1333⎛⎫+⎪⎝⎭.18.已知a+b=5,ab=2,求下列各式的值.(1)a2+b2;(2)(a﹣b)2.19.如图,已知∠1+∠AFE=180°,∠A=∠2,求证:∠A=∠C+∠AFC证明:∵∠1+∠AFE=180°∴ CD∥EF(,)∵∠A=∠2 ∴()(,)∴AB∥CD∥EF(,)∴∠A= ,∠C= ,(,)∵∠AFE =∠EFC+∠AFC,∴ = .20.在如图的方格中,每个小方格都是边长为1个单位长度的正方形,三角形ABC的三个顶点都在格点(小方格的顶点)上,(1)请建立适当的平面直角坐标系,使点A,C的坐标分别为(﹣2,﹣1),(1,﹣1),并写出点B的坐标;(2)在(1)的条件下,将三角形ABC先向右平移4个单位长度,再向上平移2个单位长度后可得到三角形A'B'C',请在图中画出平移后的三角形A'B'C',并分别写出点A',B',C'的坐标.21.已知55-的整数部分为a,小数部分为b.(1)求a,b的值:(2)若c是一个无理数,且乘积bc是一个有理数,你能写出数c的值吗?并说明理由.22.(1)如图,分别把两个边长为1cm的小正方形沿一条对角线裁成4个小三角形拼成一个大正方形,则大正方形的边长为_______cm;π,设圆的周长为C圆,正方形的周长(2)若一个圆的面积与一个正方形的面积都是22cm为C正,则C圆_____C正(填“=”或“<”或“>”号);(3)如图,若正方形的面积为2400cm,李明同学想沿这块正方形边的方向裁出一块面积为2300cm的长方形纸片,使它的长和宽之比为3:2,他能裁出吗?请说明理由?23.阅读下面材料:小亮同学遇到这样一个问题:已知:如图甲,AB//CD,E为AB,CD之间一点,连接BE,DE,得到∠BED.求证:∠BED=∠B+∠D.(1)小亮写出了该问题的证明,请你帮他把证明过程补充完整.证明:过点E作EF//AB,则有∠BEF=.∵AB//CD,∴//,∴∠FED=.∴∠BED=∠BEF+∠FED=∠B+∠D.(2)请你参考小亮思考问题的方法,解决问题:如图乙,已知:直线a//b,点A,B在直线a上,点C,D在直线b上,连接AD,BC,BE平分∠ABC,DE平分∠ADC,且BE,DE所在的直线交于点E.①如图1,当点B在点A的左侧时,若∠ABC=60°,∠ADC=70°,求∠BED的度数;②如图2,当点B在点A的右侧时,设∠ABC=α,∠ADC=β,请你求出∠BED的度数(用含有α,β的式子表示).【参考答案】一、选择题1.C解析:C【分析】根据算术平方根的的性质即可化简.【详解】4=2故选C.【点睛】此题主要考查算术平方根,解题的关键是熟知算术平方根的性质.2.B【分析】根据平移变换的性质,逐一判断选项,即可得到答案.【详解】A. 可以经过轴对称变换得到,不能经过平移变换得到,故本选项不符合题意;B. 可以经过平移变换得到,故本选项符合题意;C解析:B【分析】根据平移变换的性质,逐一判断选项,即可得到答案.【详解】A. 可以经过轴对称变换得到,不能经过平移变换得到,故本选项不符合题意;B. 可以经过平移变换得到,故本选项符合题意;C. 可以经过轴对称变换得到,不能经过平移变换得到,故本选项不符合题意;D. 可以经过轴对称变换得到,不能经过平移变换得到,故本选项不符合题意;故选B.【点睛】本题主要考查平移变换的性质,掌握平移变换的性质,是解题的关键.3.B【分析】第二象限的点的横坐标小于0,纵坐标大于0,据此解答即可.【详解】解:根据第二象限的点的坐标的特征:横坐标符号为负,纵坐标符号为正,各选项中只有B (-2,3)符合,故选:B .【点睛】本题主要考查了平面直角坐标系中各象限的点的坐标的符号特点,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-). 4.A【分析】根据两直线的位置关系即可判断.【详解】①过直线外一点有且只有一条直线与已知直线平行,正确;②在同一平面内,过一点有且只有一条直线与已知直线垂直,正确;③图形平移的方向不一定是水平的,故错误;④两直线平行,内错角才相等,故错误.故①②正确,故选A.【点睛】此题主要考查两直线的位置关系,解题的关键是熟知两直线的位置关系.5.B【分析】先求∠DFE 的度数,再利用平角的定义计算求解即可.【详解】∵AB ∥CD ,∴∠DFE =∠A =65°,∴∠EFC =180°-∠DFE =115°,故选B .【点睛】本题考查了平行线的性质,平角的定义,熟练掌握平行线的性质是解题的关键. 6.B【分析】分别根据负整数指数幂的运算、立方根和算术平方根的定义及二次根式的乘法法则逐一计算可得.【详解】A 、3311228-==,此选项计算错误;B 12-,此选项计算正确;C 2=,此选项计算错误;D 、故选:B .【点睛】本题考查了负整数指数幂、立方根和算术平方根及二次根式的乘法,熟练掌握相关的运算法则是解题的关键.7.D【分析】因为AD ⊥AC ,所以∠CAD =90°.由AB //CD ,得∠BAC =180°﹣∠ACD ,进而求得∠BAD 的度数.【详解】解:∵AB //CD ,∴∠ACD +∠BAC =180°.∴∠CAB =180°﹣∠ACD =180°﹣53°=127°.又∵AD ⊥AC ,∴∠CAD =90°.∴∠BAD =∠CAB ﹣∠CAD =127°﹣90°=37°.故选:D .【点睛】本题考查了平行线的性质,垂线的定义,掌握平行线的性质是解题的关键. 8.C【分析】根据“伴随点”的定义依次求出各点,得出每4个点为一个循环组依次循环,用2021除以4,根据余数的情况确定点A2021的坐标即可.【详解】解:∵点的坐标为,∴点的伴随点的坐标为,即解析:C【分析】根据“伴随点”的定义依次求出各点,得出每4个点为一个循环组依次循环,用2021除以4,根据余数的情况确定点A 2021的坐标即可.【详解】解:∵点1A 的坐标为(3)1,, ∴点1A 的伴随点2A 的坐标为(11,31)-++,即(0,4) ,同理得:345(3,1),(0,2),(3,1),A A A --∴每4个点为一个循环组依次循环,∵202145051÷=,∴A2021的坐标与A的坐标相同,1即A2021的坐标为(3)1,,故选:C.【点睛】本题主要考查平面直角坐标系中探索点的变化规律问题,解题关键是读懂题目,理解“伴随点”的定义,并能够得出每4个点为一个循环组依次循环.二、填空题9.±1.01【分析】根据算术平方根的意义,把被开方数的小数点进行移动(每移动两位,结果移动一位),进行填空即可.【详解】解:∵,∴,故答案为±1.01.【点睛】本题考查了算术平方根的移解析:±1.01【分析】根据算术平方根的意义,把被开方数的小数点进行移动(每移动两位,结果移动一位),进行填空即可.【详解】解:∵10.1=,∴ 1.01=±,故答案为±1.01.【点睛】本题考查了算术平方根的移动规律的应用,能根据移动规律填空是解此题的关键.10.(2,﹣4)【分析】根据关于x轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数,可直接得到答案.【详解】点A(2,4)关于x轴对称的点的坐标是(2,﹣4),故答案为(2,﹣4).【点睛解析:(2,﹣4)【分析】根据关于x轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数,可直接得到答案.【详解】点A(2,4)关于x轴对称的点的坐标是(2,﹣4),故答案为(2,﹣4).【点睛】此题主要考查了关于x轴对称的点的坐标,关键是掌握点的坐标的变化规律.11.128°【解析】【分析】由点D为三边垂直平分线交点,得到点D为△ABC的外心,根据同弧所对的圆周角等于圆心角的一半即可得到结果【详解】∵D为△ABC三边垂直平分线交点,∴点D为△ABC的解析:128°【解析】【分析】由点D为三边垂直平分线交点,得到点D为△ABC的外心,根据同弧所对的圆周角等于圆心角的一半即可得到结果【详解】∵D为△ABC三边垂直平分线交点,∴点D为△ABC的外心,∴∠D=2∠A∵∠A=64°∴∠D=128°故∠D的度数为128°【点睛】此题考查线段垂直平分线的性质,解题关键在于根据同弧所对的圆周角等于圆心角的一半来解答12.33【分析】由题意易得∠BAD=90°,则有∠BAC=66°,然后根据角平分线的定义可得∠BAE=33°,进而根据平行线的性质可求解.【详解】解:∵AD⊥AB,∴∠BAD=90°,∵∠C解析:33【分析】由题意易得∠BAD=90°,则有∠BAC=66°,然后根据角平分线的定义可得∠BAE=33°,进而根据平行线的性质可求解.【详解】解:∵AD⊥AB,∴∠BAD=90°,∵∠CAD=24°,∴∠BAC=66°,∵AE平分∠BAC,∴∠BAE=∠CAE=33°,∵AB∥DE,∴∠E=∠BAE=33°,故答案为33.【点睛】本题主要考查平行线的性质、角平分线的定义及垂线的定义,熟练掌握平行线的性质、角平分线的定义及垂线的定义是解题的关键.13.68°【分析】利用平行线的性质以及翻折不变性即可得到∠5=∠DCF=∠4=∠3=∠1=56°,进而得出∠2=68°.【详解】解:如图,延长BC到点F,∵纸带对边互相平行,∠1=56°,解析:68°【分析】利用平行线的性质以及翻折不变性即可得到∠5=∠DCF=∠4=∠3=∠1=56°,进而得出∠2=68°.【详解】解:如图,延长BC到点F,∵纸带对边互相平行,∠1=56°,∴∠4=∠3=∠1=56°,由折叠可得,∠DCF=∠5,∵CD∥BE,∴∠DCF=∠4=56°,∴∠5=56°,∴∠2=180°-∠DCF-∠5=180°-56°-56°=68°,故答案为:68°.【点睛】本题考查平行线的判定和性质,解题的关键是熟练掌握:两直线平行,同位角相等;两直线平行,内错角相等.14.±2【分析】首先估计出a的值,进而得出M的值,再得出N的值,再利用平方根的定义得出答案.【详解】解:∵M是满足不等式-的所有整数a的和,∴M=-1+0+1+2=2,∵N是满足不等式x≤的解析:±2【分析】首先估计出a的值,进而得出M的值,再得出N的值,再利用平方根的定义得出答案.【详解】解:∵M36a<a的和,∴M=-1+0+1+2=2,∵N是满足不等式x372-∴N=2,∴M+N的平方根为:4±2.故答案为:±2.【点睛】此题主要考查了估计无理数的大小,得出M ,N 的值是解题关键.15.(-9, 2)【分析】点在第二象限内,那么其横坐标小于,纵坐标大于,进而根据所给的条件判断具体坐标.【详解】∵点在第二象限,∴,,又∵,,∴,,∴点的坐标是.【点睛】本题主要考查解析:(-9, 2)【分析】点在第二象限内,那么其横坐标小于0,纵坐标大于0,进而根据所给的条件判断具体坐标.【详解】∵点()P x y ,在第二象限,∴0x <,0y >,又∵9x =,24y =,∴9x =-,2y =,∴点P 的坐标是()92-,. 【点睛】本题主要考查了绝对值的性质和有理数的乘方以及平面直角坐标系中第二象限的点的坐标的符号特点,记住各象限内点的坐标的符号是解决的关键.16.(-19,8)【分析】求出A3,A6,A9的坐标,观察得出A3n 横坐标为1−3n ,可求出A18的坐标,从而可得结论.【详解】解:观察图形可知:A3(−2,1),A6(−5,2),A9(−8,解析:(-19,8)【分析】求出A3,A6,A9的坐标,观察得出A3n横坐标为1−3n,可求出A18的坐标,从而可得结论.【详解】解:观察图形可知:A3(−2,1),A6(−5,2),A9(−8,3),•••,∵−2=1−3×1,−5=1−3×2,−8=1−3×3,∴A3n横坐标为1−3n,∴A18横坐标为:1−3×6=−17,∴A18(−17,6),把A18向左平移2个单位,再向上平移2个单位得到A20,∴A20(−19,8).故答案为:(−19,8).【点睛】本题主要考查坐标系中点、线段的平移规律.在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.三、解答题17.(1)0.5;(2)4【分析】(1)根据立方根,算术平方根的定义对各项进行化简,最后相加减即可;(2)根据实数的混合运算法则进行求解.【详解】解:(1);(2).【点睛】本题考查实数解析:(1)0.5;(2)4【分析】(1)根据立方根,算术平方根的定义对各项进行化简,最后相加减即可;(2)根据实数的混合运算法则进行求解.【详解】解:(13242=-+-0.5=;(231=+4=.【点睛】本题考查实数的运算,熟练掌握立方根,算术平方根的定义是解题的关键.18.(1)21;(2)17【分析】(1)根据完全平方公式变形,得到a2+b2=(a+b )2﹣2ab ,即可求解; (1)根据完全平方公式变形,得到(a ﹣b )2=a2+b2-2ab ,即可求解.【详解】解析:(1)21;(2)17【分析】(1)根据完全平方公式变形,得到a 2+b 2=(a +b )2﹣2ab ,即可求解;(1)根据完全平方公式变形,得到(a ﹣b )2=a 2+b 2-2ab ,即可求解.【详解】解:(1)∵a +b =5,ab =2,∴a 2+b 2=(a +b )2﹣2ab =52﹣2×2=21;(2))∵a +b =5,ab =2,∴(a ﹣b )2=a 2+b 2-2ab =21-2×2=17.【点睛】本题主要考查了完全平方公式,熟练掌握()2222a b a ab b +=±+ 及其变形公式是解题的关键.19.同旁内角互补两直线平行;AB ∥CD ;同位角相等,两直线平行;两条直线都与第三条直线平行,则这两直线也互相平行;∠AFE ,∠EFC ;两直线平行,内错角相等;∠A ,∠C+∠AFC .【分析】根据同旁解析:同旁内角互补两直线平行;AB ∥CD ;同位角相等,两直线平行;两条直线都与第三条直线平行,则这两直线也互相平行;∠AFE ,∠EFC ;两直线平行,内错角相等;∠A ,∠C +∠AFC .【分析】根据同旁内角互补,两直线平行可得 CD ∥EF ,根据∠A=∠2利用同位角相等,两直线平行,AB ∥CD ,根据平行同一直线的两条直线平行可得AB ∥CD ∥EF 根据平行线的性质可得∠A =∠AFE ,∠C =∠EFC ,根据角的和可得 ∠AFE =∠EFC +∠AFC 即可.【详解】证明:∵ ∠1+∠AFE =180°∴ CD ∥EF (同旁内角互补,两直线平行),∵∠A=∠2 ,∴( AB ∥CD ) (同位角相等,两直线平行),∴ AB ∥CD ∥EF (两条直线都与第三条直线平行,则这两直线也互相平行)∴ ∠A = ∠AFE ,∠C = ∠EFC ,(两直线平行,内错角相等)∵ ∠AFE =∠EFC +∠AFC ,∴ ∠A = ∠C +∠AFC .故答案为同旁内角互补两直线平行;AB∥CD;同位角相等,两直线平行;两条直线都与第三条直线平行,则这两直线也互相平行;∠AFE,∠EFC;两直线平行,内错角相等;∠A,∠C+∠AFC.【点睛】本题考查平行线的性质与判定,角的和差,掌握平行线的性质与判定是解题关键.20.(1)坐标系见解析,B(0,1);(2)画图见解析,A′(2,1),B′(4,3),C′(5,1)【分析】(1)根据A,C两点的坐标确定平面直角坐标系即可,根据点B的位置写出点B的坐标即可.(解析:(1)坐标系见解析,B(0,1);(2)画图见解析,A′(2,1),B′(4,3),C′(5,1)【分析】(1)根据A,C两点的坐标确定平面直角坐标系即可,根据点B的位置写出点B的坐标即可.(2)分别作出A′,B′,C′即可解决问题.【详解】解:(1)平面直角坐标系如图所示:B(0,1).(2)△A′B′C′如图所示.A′(2,1),B′(4,3),C′(5,1).【点睛】本题考查作图-平移变换,平面直角坐标系等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.21.(1);(2)或【分析】(1)先判断在哪两个整数之间,再得出整数部分和小数部分.(2)由的值,由平方差公式,得出的有理化因式即为.【详解】解:(1),,;(2),或.【点睛】本解析:(1)2,3==2)33a b--【分析】(15(2)由b的值,由平方差公式,得出b的有理化因式即为c.【详解】解:(1)23<,∴253<,∴2,3==a b(2)3b=-∴c=33c=-【点睛】本题考查了估计无理数的大小和有理数乘以无理数,是基础知识要熟练掌握.22.(1);(2);(3)不能裁剪出,详见解析【分析】(1)根据所拼成的大正方形的面积为2即可求得大正方形的边长;(2)由圆和正方形的面积公式可分别求的圆的半径及正方形的边长,进而可求得圆和正方形解析:(12)<;(3)不能裁剪出,详见解析【分析】(1)根据所拼成的大正方形的面积为2即可求得大正方形的边长;(2)由圆和正方形的面积公式可分别求的圆的半径及正方形的边长,进而可求得圆和正方形的周长,利用作商法比较这两数大小即可;(3)利用方程思想求出长方形的长边,与正方形边长比较大小即可;【详解】解:(1)∵小正方形的边长为1cm,∴小正方形的面积为1cm2,∴两个小正方形的面积之和为2cm2,即所拼成的大正方形的面积为2 cm2,∴,(2)∵22=,rππ∴r=∴2=2C r π=圆设正方形的边长为a∵22a π=, ∴a∴=4C a =正∴1C C =<圆正故答案为:<;(3)解:不能裁剪出,理由如下:∵长方形纸片的长和宽之比为3:2,∴设长方形纸片的长为3x ,宽为2x ,则32300x x ⋅=,整理得:250x =,∴22(3)9950450x x ==⨯=,∵450>400,∴22(3)20x >,∴320x >,∴长方形纸片的长大于正方形的边长,∴不能裁出这样的长方形纸片.【点睛】本题通过圆和正方形的面积考查了对算术平方根的应用,主要是对学生无理数运算及比较大小进行了考查.23.(1)∠B ,EF ,CD ,∠D ;(2)①65°;②180°﹣【分析】(1)根据平行线的判定定理与性质定理解答即可;(2)①如图1,过点E 作EF ∥AB ,当点B 在点A 的左侧时,根据∠ABC =60°,解析:(1)∠B ,EF ,CD ,∠D ;(2)①65°;②180°﹣1122a β+ 【分析】(1)根据平行线的判定定理与性质定理解答即可;(2)①如图1,过点E 作EF ∥AB ,当点B 在点A 的左侧时,根据∠ABC =60°,∠ADC =70°,参考小亮思考问题的方法即可求∠BED 的度数;②如图2,过点E 作EF ∥AB ,当点B 在点A 的右侧时,∠ABC =α,∠ADC =β,参考小亮思考问题的方法即可求出∠BED 的度数.【详解】解:(1)过点E 作EF ∥AB ,则有∠BEF =∠B ,∵AB ∥CD ,∴EF ∥CD ,∴∠FED =∠D ,∴∠BED =∠BEF +∠FED =∠B +∠D ;故答案为:∠B ;EF ;CD ;∠D ;(2)①如图1,过点E 作EF ∥AB ,有∠BEF =∠EBA .∵AB ∥CD ,∴EF ∥CD .∴∠FED =∠EDC .∴∠BEF +∠FED =∠EBA +∠EDC .即∠BED =∠EBA +∠EDC ,∵BE 平分∠ABC ,DE 平分∠ADC ,∴∠EBA =12∠ABC =30°,∠EDC =12∠ADC =35°,∴∠BED =∠EBA +∠EDC =65°.答:∠BED 的度数为65°;②如图2,过点E 作EF ∥AB ,有∠BEF +∠EBA =180°.∴∠BEF =180°﹣∠EBA ,∵AB ∥CD , ∴EF ∥CD . ∴∠FED =∠EDC . ∴∠BEF +∠FED =180°﹣∠EBA +∠EDC .即∠BED =180°﹣∠EBA +∠EDC ,∵BE 平分∠ABC ,DE 平分∠ADC ,∴∠EBA =12∠ABC =12α,∠EDC =12∠ADC =12β, ∴∠BED =180°﹣∠EBA +∠EDC =180°﹣1122a β+. 答:∠BED 的度数为180°﹣1122a β+.【点睛】本题考查了平行线的判定与性质,解决本题的关键是熟练掌握平行线的判定与性质.。
完整版(完整版)七年级数学下册期中试卷及答案 - 百度文库
![完整版(完整版)七年级数学下册期中试卷及答案 - 百度文库](https://img.taocdn.com/s3/m/f9e4b98d690203d8ce2f0066f5335a8102d26656.png)
完整版(完整版)七年级数学下册期中试卷及答案 - 百度文库一、选择题1.下列各式中,正确的是()A .4=±2B .±16=4C .2(4)-=-4D .38-=-22.下列现象中,( )是平移 A .“天问”探测器绕火星运动 B .篮球在空中飞行 C .电梯的上下移动D .将一张纸对折3.在平面直角坐标系中,点()3,2-位于( ) A .第一象限B .第二象限C .第三象限D .第四象限 4.命题:①对顶角相等;②过一点有且只有一条直线与已知直线平行;③相等的角是对顶角;④同位角相等.其中错误的有( ) A .②③B .②④C .③④D .②③④5.如图,直线//EF MN ,点A ,B 分别是EF ,MN 上的动点,点G 在MN 上,ACB m ∠=︒,AGB ∠和CBN ∠的角平分线交于点D ,若52D ∠=︒,则m 的值为( ).A .70B .74C .76D .806.下列说法中,正确的是( ) A .(﹣2)3的立方根是﹣2 B .0.4的算术平方根是0.2 C .64的立方根是4D .16的平方根是47.如图:AB ∥CD ,OE 平分∠BOC ,OF ⊥OE ,OP ⊥CD ,∠ABO =40°,则下列结论:①OF 平分∠BOD ;②∠POE =∠BOF ;③∠BOE =70°;④∠POB =2∠DOF ,其中结论正确的序号是( )A .①②③B .①②④C .①③④D .①②③④8.如图,过点()02,0A 作直线l :3y =的垂线,垂足为点1A ,过点1A 作12A A x ⊥轴,垂足为点2A ,过点2A 作23A A l ⊥,垂足为点3A ,…,这样依次作下去,得到一组线段:01A A ,12A A ,23A A ,…,则线段20202021A A 的长为( )A .201932⎛⎫ ⎪ ⎪⎝⎭B .202032⎛⎫⎪ ⎪⎝⎭C .202132⎛⎫⎪⎝⎭D .202232⎛⎫⎪⎝⎭二、填空题9.算术平方根等于本身的实数是__________.10.若点()3,P m 与(),6Q n -关于x 轴对称,则2m n -=____________________________. 11.在△ABC 中,若∠A=60°,点O 是∠ABC 和∠ACB 角平分线的交点,则∠BOC=________.12.如图,//AB DE ,70ABC ∠=︒,140CDE ∠=︒,则BCD ∠的度数为___________︒.13.如图,将长方形纸片沿CD 折叠,CF 交AD 于点E ,得到图1,再将纸片沿CD 折叠.得到图2,若36AEC ∠=︒,则图2中的CDG ∠为_______14.实数a 、b 在数轴上所对应的点如图所示,则3b |+|a 32a _____.15.把所有的正整数按如图所示规律排列形成数表.若正整数6对应的位置记为()2,3,则()12,7对应的正整数是_______.第1列 第2列 第3列 第4列 ...... 第1行 1 2 5 10 ...... 第2行 4 3 6 11 ...... 第3行 9 8 7 12 ...... 第4行 16 15 14 13 (5)…………………………16.如图,在平面直角坐标系中,一电子蚂蚁按照设定程序从原点O 出发,按图中箭头所示的方向运动,第1次从原点运动到点()1,2,第2次接着运动到点()2,0,第3次接着运动到点()2,2-,第4次接着运动到点()4,2-,第5次接着运动到点()4,0,第6次接着运动到点()5,2.…按这样的运动规律,经过2021次运动后,电子蚂蚁运动到的位置的坐标是_________.三、解答题17.(1238127(2)32|--+ (2)解方程:()31125x -=-18.已知3a b +=,4ab =-,求下列各式的值()21()a b -; ()2225a ab b -+19.补全下列推理过程:如图,已知EF //AD ,∠1=∠2,∠BAC =70°,求∠AGD . 解:∵EF //AD∴∠2=()又∵∠1=∠2()∴∠1=∠3()∴AB//()∴∠BAC+=180°()∵∠BAC=70°∴∠AGD=.20.如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动.它从A处出发去看望B、C、D处的其它甲虫,规定:向上向右走为正,向下向左走为负.如果从A到B 记为:A→B(+1,+4),从B到A记为:A→B(﹣1,﹣4),其中第一个数表示左右方向,第二个数表示上下方向,那么图中(1)A→C(,),B→D(,),C→(+1,);(2)若这只甲虫从A处去甲虫P处的行走路线依次为(+2,+2),(+1,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出P的位置.21.例如∵479.即273<,∴7的整数部分为272,仿照上例回答下列问题;(117介于连续的两个整数a和b之间,且a<b,那么a=,b=;(2)x172的小数部分,y171的整数部分,求x=,y=;x的平方根.(3)求(17)y22.如图,阴影部分(正方形)的四个顶点在5×5的网格格点上.(1)请求出图中阴影部分(正方形)的面积和边长(2)若边长的整数部分为a,小数部分为b,求213+a b23.如图1,点E 在直线AB 、DC 之间,且180DEB ABE CDE ∠+∠-∠=︒. (1)求证://AB DC ;(2)若点F 是直线BA 上的一点,且BEF BFE ∠=∠,EG 平分DEB ∠交直线AB 于点G ,若20D ∠=︒,求FEG ∠的度数;(3)如图3,点N 是直线AB 、DC 外一点,且满足14CDM CDE ∠=∠,14ABN ABE ∠=∠,ND 与BE 交于点M .已知()012CDM αα∠=︒<<︒,且//BN DE ,则NMB ∠的度数为______(请直接写出答案,用含α的式子表示).【参考答案】一、选择题 1.D 解析:D 【分析】依据算术平方根、平方根、立方根的性质求解即可. 【详解】解:A 42=,故选项错误; B 、164±,故选项错误; C 2(4)4-=,故选项错误; D 382-=-,故选项正确; 故选D . 【点睛】本题主要考查的是立方根、平方根、算术平方根的定义,熟练掌握相关知识是解题的关键.2.C 【分析】根据平移的定义,对选项进行一一分析,排除错误答案.在平面内,把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,简称平移. 【详解】解:A. “天问”探测器绕火星运动不解析:C【分析】根据平移的定义,对选项进行一一分析,排除错误答案.在平面内,把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,简称平移.【详解】解:A.“天问”探测器绕火星运动不是平移,故此选项不符合题意;B. 篮球在空中飞行不是平移,故此选项不符合题意;C. 电梯的上下移动是平移,故此选项符合题意;D. 将一张纸对折不是平移,故此选项不符合题意故选:C.【点睛】本题考查平移的概念,与实际生活相联系,注意分清与旋转、翻转的区别.3.D【分析】根据各象限内点的坐标特征解答.【详解】解:点(3,-2)所在象限是第四象限.故选:D.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).4.D【分析】根据对顶角的定义对①③进行判断;根据过直线外一点有且只有一条直线与已知直线平行对②进行判断;根据平行线的性质对④进行判断.【详解】对顶角相等,所以①正确,不符合题意;过直线外一点有且只有一条直线与已知直线平行,所以②不正确,符合题意;相等的角不一定为对顶角,所以③不正确,符合题意;两直线平行,同位角相等,所以④不正确,符合题意,故选:D.【点睛】本题考查了命题与定理,主要是判断命题的真假,属于基础题,熟练掌握这些定理是解题的关键.5.C【分析】先由平行线的性质得到∠ACB=∠5+∠1+∠2,再由三角形内角和定理和角平分线的定义求出m即可.【详解】解:过C作CH∥MN,∴∠6=∠5,∠7=∠1+∠2,∵∠ACB=∠6+∠7,∴∠ACB=∠5+∠1+∠2,∵∠D=52°,∴∠1+∠5+∠3=180°−52°=128°,由题意可得GD为∠AGB的角平分线,BD为∠CBN的角平分线,∴∠1=∠2,∠3=∠4,∴m°=∠1+∠2+∠5=2∠1+∠5,∠4=∠1+∠D=∠1+52°,∴∠3=∠4=∠1+52°,∴∠1+∠5+∠3=∠1+∠5+∠1+52°=2∠1+∠5+52°=m°+52°,∴m°+52°=128°,∴m°=76°.故选:C.【点睛】本题主要考查平行线的性质和角平分线的定义,关键是对知识的掌握和灵活运用.6.A【分析】根据立方根的定义及平方根的定义依次判断即可得到答案.【详解】解:A.(﹣2)3的立方根是﹣2,故本选项符合题意;B.0.04的算术平方根是0.2,故本选项不符合题意;C642,故本选项不符合题意;D.16的平方根是±4,故本选项不符合题意;故选:A.【点睛】此题考查立方根的定义及平方根的定义,熟记定义是解题的关键.7.A【分析】根据AB∥CD可得∠BOD=∠ABO=40°,利用平角得到∠COB=140°,再根据角平分线的定义得到∠BOE=70°,则③正确;利用OP⊥CD,AB∥CD,∠ABO=40°,可得∠POB=50°,∠BOF=20°,∠FOD=20°,进而可得OF平分∠BOD,则①正确;由∠EOB=70°,∠POB=50°,∠POE=20°,由∠BOF=∠POF-∠POB=20°,进而可得∠POE=∠BOF,则②正确;由②可知∠POB=50°,∠FOD=20°,则④不正确.【详解】③∵AB∥CD,∴∠BOD=∠ABO=40°,∴∠COB=180°-40°=140°,又∵OE平分∠BOC,∴∠BOE=12∠COB=12×140°=70°,故③正确;①∵OP⊥CD,∴∠POD=90°,又∵AB∥CD,∴∠BPO=90°,又∵∠ABO=40°,∴∠POB=90°-40°=50°,∴∠BOF=∠POF-∠POB=70°-50°=20°,∠FOD=40°-20°=20°,∴OF平分∠BOD,故①正确;②∵∠EOB=70°,∠POB=90°-40°=50°,∴∠POE=70°-50°=20°,又∵∠BOF=∠POF-∠POB=70°-50°=20°,∴∠POE=∠BOF,故②正确;④由①可知∠POB=90°-40°=50°,∠FOD=40°-20°=20°,故∠POB≠2∠DOF,故④不正确.故结论正确的是①②③,故选A.【点睛】本题考查了平行线的性质,解题的关键是要注意将垂直、平行、角平分线的定义结合应用,弄清图中线段和角的关系,再进行解答.8.B【分析】由,可得,然后根据形的性质結合图形即可得到规律,然后按规律解答即可. 【详解】解:由,可得∵点A0坐标为(2,0) ∴OA0=2, ∴ ∴ ∴∴A2020A2021= 故答案为:解析:B 【分析】由y x =,可得130AOA ︒∠=,然后根据形的性质結合图形即可得到规律12nnn n OA OA -==⎝⎭⎝⎭,然后按规律解答即可.【详解】解:由y =,可得130AOA ︒∠= ∵点A 0坐标为(2,0) ∴OA 0=2,∴1021324339,,28OA OA OA OA ========⋯∴12nnn n OA OA -==⎝⎭⎝⎭∴202020202OA =⨯⎝⎭∴A 2020A 2021=20202020122⨯⨯=⎝⎭⎝⎭故答案为:B 【点睛】本题考查了规律型中点的坐标以及含30°角的直角三角形,利用“在直角三角形中,30°角所对的直角边等于斜边的一半”,结合图形找出变化规律是解题的关键.二、填空题 9.0或1 【详解】根据负数没有算术平方根,一个正数的算术平方根只有一个,1和0的算术平方根等于本身,即可得出答案.解:1和0的算术平方根等于本身. 故答案为1和0“点睛”本题考查了算术平方根的知解析:0或1 【详解】根据负数没有算术平方根,一个正数的算术平方根只有一个,1和0的算术平方根等于本身,即可得出答案.解:1和0的算术平方根等于本身. 故答案为1和0“点睛”本题考查了算术平方根的知识,注意掌握1和0的算术平方根等于本身.10.0 【分析】根据平面直角坐标系中关于轴对称的两点,横坐标互为相反数,纵坐标相等的特点进行解题即可. 【详解】 ∵点与关于轴对称 ∴ ∴,故答案为:0. 【点睛】本题主要考查了平面直角坐标系内点解析:0 【分析】根据平面直角坐标系中关于x 轴对称的两点,横坐标互为相反数,纵坐标相等的特点进行解题即可. 【详解】∵点(3,)P m 与(,6)Q n -关于x 轴对称 ∴36n m =-=-,∴262(3)0m n -=--⨯-=, 故答案为:0. 【点睛】本题主要考查了平面直角坐标系内点的轴对称,熟练掌握相关点的轴对称特征是解决本题的关键.11.120° 【分析】由题意可知求出∠ABC+∠ACB=120°,由BO 平分∠ABC ,CO 平分∠ACB ,可知∠OBC+∠OCB=∠ABC+∠ACB=60°,所以∠BOC=180°-∠OBC-∠OCB=解析:120°【分析】由题意可知求出∠ABC+∠ACB=120°,由BO平分∠ABC,CO平分∠ACB,可知∠OBC+∠OCB=12∠ABC+12∠ACB=60°,所以∠BOC=180°-∠OBC-∠OCB=120°.【详解】∵∠A=60°,∴∠ABC+∠ACB=120°,∵BO平分∠ABC,CO平分∠ACB,∴∠OBC=12∠ABC,∠OCB=12∠ACB,∴∠OBC+∠OCB=12∠ABC+12∠ACB=60°,∴∠BOC=180°-∠OBC-∠OCB=120°故答案为120°【点睛】本题考查三角形内角和定理,解题的关键是熟练运用三角形内角和定理12.30【分析】过点C作CF∥AB,根据平行线的传递性得到CF∥DE,根据平行线的性质得到∠BCF=∠ABC,∠CDE+∠DCF=180°,根据已知条件等量代换得到∠BCF=70°,由等式性质得到∠解析:30【分析】过点C作CF∥AB,根据平行线的传递性得到CF∥DE,根据平行线的性质得到∠BCF=∠ABC,∠CDE+∠DCF=180°,根据已知条件等量代换得到∠BCF=70°,由等式性质得到∠DCF=30°,于是得到结论.【详解】解:过点C作CF∥AB,∵AB∥DE,∴CF∥DE,∴∠BCF=∠ABC=70°,∠DCF=180°-∠CDE=40°,∴∠BCD=∠BCF-∠DCF=70°-40°=30°.故答案为:30【点睛】本题主要考查平行线的性质,掌握平行线的性质和判定是解题的关键,即①同位角相等⇔两直线平行,②内错角相等⇔两直线平行,③同旁内角互补⇔两直线平行.13.126°【分析】在图1中,求出∠BCE,根据折叠的性质和外角的性质得到∠EDG,在图2中结合折叠的性质,利用∠CDG=∠EDG-∠CDE可得结果.【详解】解:在图1中,∠AEC=36°,∵解析:126°【分析】在图1中,求出∠BCE,根据折叠的性质和外角的性质得到∠EDG,在图2中结合折叠的性质,利用∠CDG=∠EDG-∠CDE可得结果.【详解】解:在图1中,∠AEC=36°,∵AD∥BC,∴∠BCE=180°-∠AEC=144°,由折叠可知:∠ECD=(180°-144°)÷2=18°,∴∠CDE=∠AEC-∠ECD=18°,∵∠DEF=∠AEC=36°,∴∠EDG=180°-36°=144°,在图2中,∠CDG=∠EDG-∠CDE=126°,故答案为:126°.【点睛】本题考查了平行线的性质,折叠问题以及三角形的外角性质,利用三角形的外角性质,找出∠EDG的度数是解题的关键.14.﹣2a﹣b【分析】直接利用数轴结合绝对值以及平方根的性质化简得出答案.【详解】解:由数轴可得:a<﹣,0<b<,故|﹣b|+|a+|+=﹣b﹣(a+)﹣a=﹣b﹣a﹣﹣a=﹣2a﹣b解析:﹣2a﹣b【分析】直接利用数轴结合绝对值以及平方根的性质化简得出答案.【详解】解:由数轴可得:a0<b故b|+|ab﹣(a ab﹣a a=﹣2a﹣b.故答案为:﹣2a﹣b.【点睛】此题主要考查了实数的运算以及实数与数轴,正确化简各式是解题关键.15.138【分析】根据表格中的数据,以及正整数6对应的位置记为,可得表示方法,观察出1行1列数的特点为12-0,2行2列数的特点为22-1,3行3列数的特点为32-2,…n行n列数的特点为(n2-n解析:138【分析】2,3,可得表示方法,观察出1行1列根据表格中的数据,以及正整数6对应的位置记为()数的特点为12-0,2行2列数的特点为22-1,3行3列数的特点为32-2,…n行n列数的特点为(n2-n+1),且每一行的第一个数字逆箭头方向顺次减少1,由此进一步解决问题.【详解】2,3,解:∵正整数6对应的位置记为()即表示第2行第3列的数,12,7表示第12行第7列的数,∴()由1行1列的数字是12-0=12-(1-1)=1,2行2列的数字是22-1=22-(2-1)=3,3行3列的数字是32-2=32-(3-1)=7,…n行n列的数字是n2-(n-1)=n2-n+1,∴第12行12列的数字是122-12+1=133,∴第12行第7列的数字是138,故答案为:138.【点睛】此题考查观察分析归纳总结顾虑的能力,解答此题的关键是找出两个规律,即n行n列数的特点为(n2-n+1),且每一行的第一个数字逆箭头方向顺次减少1,此题有难度.16.(1617,2)【分析】根据已知提供的数据从横纵坐标分别分析得出横坐标的为1,2,2,4,4,4+1,4+2,4+2,4+4,4+4,每5次一轮,每次比前一次起始多4,这一规律纵坐标为2,0,-解析:(1617,2)【分析】根据已知提供的数据从横纵坐标分别分析得出横坐标的为1,2,2,4,4,4+1,4+2,4+2,4+4,4+4,每5次一轮,每次比前一次起始多4,这一规律纵坐标为2,0,-2,-2,0,…,每5次一轮这一规律,进而求出即可.【详解】解:前五次运动横坐标分别为:1,2,2,4,4,第6到10次运动横坐标分别为:4+1,4+2,4+2,4+4,4+4,…∴第5n+1到5n+5次运动横坐标分别为:4n+1,4n+2,4n+2,4n+4,4n+4,前五次运动纵坐标分别2,0,-2,-2,0,第6到10次运动纵坐标分别为2,0,-2,-2,0,…∴第5n+1到5n+5次运动纵坐标分别为2,0,-2,-2,0,∵2021÷5=404…1,∴经过2021次运动横坐标为=4×404+1=1617,经过2021次运动纵坐标为2,∴经过2021次运动后,电子蚂蚁运动到的位置的坐标是(1617,2).故答案为:(1617,2).【点睛】此题主要考查了点的坐标规律,培养学生观察和归纳能力,从所给的数据和图形中寻求规律进行解题是解答本题的关键.三、解答题17.(1);(2)【分析】(1)根据实数的运算法则直接计算即可,(2)利用立方根的含义求解再求解即可.【详解】(1)原式=(2)解:【点睛】本题考查的是实数的运算,求一个数的立方根x=-解析:(1)102)4【分析】(1)根据实数的运算法则直接计算即可,x-再求解x即可.(2)利用立方根的含义求解1,(1)原式= 9(3)22+-++10=(2)解:15x -=-4x =-【点睛】本题考查的是实数的运算,求一个数的立方根,掌握求解的方法是解题关键.18.(1)25;(2)37【分析】(1)利用完全平方差公式求解.(2)先配方,再求值.【详解】解:(1)(2)【点睛】本题考查完全平方公式及其变形式,根据公式特征进行变形是求解解析:(1)25;(2)37【分析】(1)利用完全平方差公式求解.(2)先配方,再求值.【详解】解:(1)22()()4a b a b ab -=+-()2344=-⨯-25.=(2)2222527a ab b a ab b ab -+=++-2()7a b ab =+-()928=--37.=【点睛】本题考查完全平方公式及其变形式,根据公式特征进行变形是求解本题的关键. 19.∠3;两直线平行,同位角相等;已知;等量代换;DG ;内错角相等,两直线平行;∠AGD ;两直线平行,同旁内角互补;110°【分析】根据平行线的性质得出∠2=∠3,求出∠1=∠3,根据平行线的判定得解析:∠3;两直线平行,同位角相等;已知;等量代换;DG ;内错角相等,两直线平行;∠AGD ;两直线平行,同旁内角互补;110°根据平行线的性质得出∠2=∠3,求出∠1=∠3,根据平行线的判定得出AB//DG,根据平行线的性质推出∠BAC+∠AGD=180°,代入求出即可求得∠AGD.【详解】解:∵EF//AD,∴∠2=∠3(两直线平行,同位角相等),又∵∠1=∠2(已知),∴∠1=∠3(等量代换),∴AB//DG,(内错角相等,两直线平行)∴∠BAC+∠AGD=180°,(两直线平行,同旁内角互补)∵∠BAC=70°,∴∠AGD=110°故答案为:∠3,两直线平行,同位角相等,已知,等量代换,DG,内错角相等,两直线平行,∠AGD,两直线平行,同旁内角互补;110°.【点睛】本题考查了平行线的性质和判定的应用,能正确根据平行线的性质和判定定理进行推理是解此题的关键.20.(1)3,4,3,﹣2,D,﹣2;(2)见解析【分析】(1)根据向上向右走为正,向下向左走为负,可得答案;(2)根据向上向右走为正,向下向左走为负,可得答案.【详解】解:(1)A→C( 3解析:(1)3,4,3,﹣2,D,﹣2;(2)见解析【分析】(1)根据向上向右走为正,向下向左走为负,可得答案;(2)根据向上向右走为正,向下向左走为负,可得答案.【详解】解:(1)A→C( 3,4),B→D(3﹣2),C→D(+1,﹣2);故答案为3,4;3,﹣2;D,﹣2;(2)这只甲虫从A处去甲虫P处的行走路线依次为(+2,+2),(+1,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出P的位置,如图【点睛】本题主要考查了用有序实数对表示路线.读懂题目信息,正确理解行走路线的记录方法是解题的关键.21.(1),;(2);(3)【分析】(1)根据的范围确定出、的值;(2)求出,的范围,即可求出、的值,代入求出即可;(3)将代入中即可求出.【详解】解:(1),,,,故答案是:,;(解析:(1)4a =,5b =;(2)174,3x y =;(3)8±【分析】(117a 、b 的值;(2172171的范围,即可求出x 、y 的值,代入求出即可;(3)将174,3x y ==代入(17)y x 中即可求出.【详解】解:(1)161725<4175∴<<,4a ∴=,5b =,故答案是:4a =,5b =;(2)4175<,61727∴<,31714<<,172∴+的小数部分为:1726174+-=-,171-的整数部分为:3;故答案是:174,3x y =-=;(3)174,3x y =-=,3(17)464y x ∴-==,(17)y x ∴-的平方根为:648±=±.【点睛】本题考查了估算无理数的大小的应用、求平方根,解题的关键是读懂题意及求出4175<<.22.(1)S=13,边长为 ;(2)6【详解】分析:(1)、利用正方形的面积减去四个直角三角形的面积得出阴影部分的面积,从而得出正方形的边长;(2)、根据无理数的估算得出a 和b 的值,然后得出答案.解析:(1)S=13,边长为 13;(2)6【详解】分析:(1)、利用正方形的面积减去四个直角三角形的面积得出阴影部分的面积,从而得出正方形的边长;(2)、根据无理数的估算得出a 和b 的值,然后得出答案.详解:解:(1)S=25-12=13, 边长为, (2)a=3,b= -3 原式=9+-3-=6.点睛:本题主要考查的就是无理数的估算,属于中等难度的题型.解决这个问题的关键就是根据正方形的面积得出边长.23.(1)见解析;(2)10°;(3)【分析】(1)过点E 作EF ∥CD ,根据平行线的性质,两直线平行,内错角相等,得出结合已知条件,得出即可证明;(2)过点E 作HE ∥CD ,设 由(1)得AB ∥CD解析:(1)见解析;(2)10°;(3)18015α︒-【分析】(1)过点E 作EF ∥CD ,根据平行线的性质,两直线平行,内错角相等,得出,CDE DEF ∠=∠结合已知条件180DEB ABE CDE ∠+∠-∠=︒,得出180,FEB ABE ∠+∠=︒即可证明;(2)过点E 作HE ∥CD ,设,,GEF x FEB EFB y ∠=∠=∠= 由(1)得AB ∥CD ,则AB ∥CD ∥HE ,由平行线的性质,得出20,DEF D EFB y ∠=∠+∠=︒+再由EG 平分DEB ∠,得出,DEG GEB GEF FEB x y ∠=∠=∠+∠=+则2DEF DEG GEF x y ∠=∠+∠=+,则可列出关于x 和y 的方程,即可求得x ,即GEF ∠的度数;(3)过点N 作NP ∥CD ,过点M 作QM ∥CD ,由(1)得AB ∥CD ,则NP ∥CD ∥AB ∥QM ,根据14CDM CDE ∠=∠和CDM α∠=,得出3,MDE α∠=根据CD ∥PN ∥QM ,DE ∥NB ,得出,PND CDM DMQ α∠=∠=∠=3,EDM BNM α∠=∠=即4,BNP α∠=根据NP ∥AB ,得出4,PNB ABN α∠=∠=再由14ABN ABE ∠=∠,得出16,ABM α∠=由AB ∥QM ,得出18016,QMB α∠=︒-因为NMB NMQ QMB ∠=∠+∠,代入α的式子即可求出BMN ∠.【详解】(1)过点E 作EF ∥CD ,如图,∵EF ∥CD ,∴,CDE DEF ∠=∠∴,DEB CDE DEB DEF FEB ∠-∠=∠-∠=∠∵180DEB ABE CDE ∠+∠-∠=︒,∴180,FEB ABE ∠+∠=︒∴EF ∥AB ,∴CD ∥AB ;(2)过点E 作HE ∥CD ,如图,设,,GEF x FEB EFB y ∠=∠=∠=由(1)得AB ∥CD ,则AB ∥CD ∥HE ,∴20,,D DEH HEF EFB y ∠=∠=︒∠=∠=∴20,DEF DEH HEF D EFB y ∠=∠+∠=∠+∠=︒+又∵EG 平分DEB ∠,∴,DEG GEB GEF FEB x y ∠=∠=∠+∠=+∴2,DEF DEG GEF x y x x y ∠=∠+∠=++=+即220,x y y +=︒+解得:10,x =︒即10GEF ∠=︒;(3)过点N 作NP ∥CD ,过点M 作QM ∥CD ,如图,由(1)得AB ∥CD ,则NP ∥CD ∥AB ∥QM ,∵NP ∥CD ,CD ∥QM ,,CDM α∠=∴PND CDM DMQ α∠=∠=∠=,又∵14CDM CDE ∠=∠, ∴33,MDE CDM α∠=∠=∵//BN DE ,∴3,MDE BNM α∠=∠=∴34,PNB PND BNM ααα∠=∠+∠=+=又∵PN ∥AB ,∴4,PNB NBA α∠=∠= ∵14ABN ABE ∠=∠, ∴44416,ABM ABN αα∠=∠=⨯=又∵AB ∥QM ,∴180,ABM QMB ∠+∠=︒∴18018016,QMB ABM α∠=︒-∠=︒-∴1801618015NMB NMQ QMB ααα∠=∠+∠=+︒-=-.【点睛】本题考查平行线的性质,角平分线的定义,解决问题的关键是作平行线构造相等的角,利用两直线平行,内错角相等,同位角相等来计算和推导角之间的关系.。
2013-2014学年北京市鲁迅中学初一第二学期期中考试数学试题
![2013-2014学年北京市鲁迅中学初一第二学期期中考试数学试题](https://img.taocdn.com/s3/m/36d39f91f111f18582d05a15.png)
北京市鲁迅中学七年级数学科目期中(模块)测试题本试卷分第I卷(选择题)和第U卷(非选择题)两部分,其中第I卷(选择题)和第U卷(非选择题)共100分。
考试时间100分钟。
第I卷(共30分)一、精心选一选(共10个小题,每小题3分,共30分)在下列各题的四个备选答案中,只有一个是正确的,请把正确结论的代号写在题后的括号内.1. 若a<0,则点A (-a, 2)在().A .第一象限 B.第二象限 C.第三象限 D.第四象限2. 不等式x+ 1>2的解集在数轴上表示正确的是()■ 亠一上•_ *—|> ・—i L1 1~*_i 6 7 j -10 12 -10 12 -10 12W(坯(C)(D}3. 下列各式中,正确的是().A. ,(-2)2=-2B. - .32=3C. 3 -9 - -3D. _ ,9=:34. 若a>b,则下列不等式中错误.的是()A . a-1 >b-1 B. a+ 1> b+ 1C. 2a>2bD. - 2a>-2b5. 如图,利用直尺和三角尺过直线外一点画已知直线的平行线,这种画法依据的是().A .同位角相等,两直线平行B.两直线平行,同位角相等C.内错角相等,两直线平行D.两直线平行,内错角相等6. (-0.7 )的平方根是()A. -0.7 B . -0.7 C . 0.7 D . 0.497. 估计.76的大小应在().A.7 〜8之间B.8.0 〜8.5之间C. 8.5〜9.0之间D. 9.0 〜9.5之间『x > _28.在数轴上表示不等式组 '的解集,正确的是() x <49. 如图所示,将厶ABC 沿着XY 方向平移一定的距离就得到△ MNL,则下列结论正确.① AM // BN ;② AM=BN ;③ BC=ML ;④/ ACB=Z MNLA.1个B.2 个C.3 个D.4 个10题图图①图②10•如图①,一张四边形纸片 ABCD ,/ A = 50°,/ C = 150°.若将其按照图 ②所示方式折叠后,恰好MD '// AB , ND ' // BC ,则/ D 的度数为第U 卷(非选择题共70分)二、细心填一填(共10个小题,每小题2分,共20分)11. 点A (-1,-3)关于x 轴对称点的坐标是 ______ •关于原点对称的点坐标是。
北京市西城区鲁迅中学七下数学期中考试及解析
![北京市西城区鲁迅中学七下数学期中考试及解析](https://img.taocdn.com/s3/m/494fb4d771fe910ef12df878.png)
北京市西城区鲁迅中学七下数学期中考试及解析一、选择题:本大题共10小题,每小题3分,共30分.在每小题的4个选项中,只有一项是符合题目要求的.1.以下列各组线段为边,能组成三角形的是()A.2cm,3cm,5cm B.5cm,6cm,10cm C.1cm,1cm,3cm D.3cm,4cm,9cm 【考点】K6:三角形三边关系.【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【解答】解:根据三角形的三边关系,知A、2+3=5,不能组成三角形;B、5+6>10,能够组成三角形;C、1+1<3,不能组成三角形;D、3+4<9,不能组成三角形.故选B.2.如果点A(x,y)在第三象限,则点B(﹣x,y﹣1)在()A.第一象限B.第二象限C.第三象限D.第四象限【考点】D1:点的坐标.【分析】根据点A(x,y)在第三象限,可得x、y的取值范围,进而可得﹣x,y﹣1的符号,结合各个象限点的坐标的特点,可得答案.【解答】解:∵点A(x,y)在第三象限,∴x<0,y<0,在B(﹣x,y﹣1)中,﹣x>0,y﹣1<0;故点B(﹣x,y﹣1)在第四象限.故选D.3.﹣8的立方根与4的平方根的和是()A.0 B.0或4 C.4 D.0或﹣4【考点】24:立方根;21:平方根.【分析】根据立方根的定义求出﹣8的立方根,根据平方根的定义求出4的平方根,然后即可解决问题.【解答】解:∵﹣8的立方根为﹣2,4的平方根为±2,∴﹣8的立方根与4的平方根的和是0或﹣4.故选D.4.下列各式中,正确的是()A.± =±B.± =C.±=±D. =±【考点】22:算术平方根.【分析】根据平方根的定义得到±=±,即可对各选项进行判断.【解答】解:因为±=±,所以A选项正确;B、C、D选项都错误.故选A.5.下列说法正确的是()A.﹣5是25的平方根B.25的平方根是﹣5C.﹣5是(﹣5)2的算术平方根D.±5是(﹣5)2的算术平方根【考点】22:算术平方根;21:平方根.【分析】根据正数a有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根,数a的正的平方根,叫做a的算术平方根进行分析即可.【解答】解:A、﹣5是25的平方根,说法正确;B、25的平方根是﹣5,说法错误;C、﹣5是(﹣5)2的算术平方根,说法错误;D、±5是(﹣5)2的算术平方根,说法错误;故选:A.6.点P(a,b)在第四象限,则点P到x轴的距离是()A.a B.b C.|a| D.|b|【考点】D1:点的坐标.【分析】根据点到x轴的距离是纵坐标的绝对值解答即可.【解答】解:P(a,b)在第四象限,则点P到x轴的距离是|b|,故选:D.7.若一个多边形的每个外角都等于60°,则它的内角和等于()A.180°B.720°C.1080°D.540°【考点】L3:多边形内角与外角.【分析】由一个多边形的每个外角都等于60°,根据n边形的外角和为360°计算出多边形的边数n,然后根据n边形的内角和定理计算即可.【解答】解:设多边形的边数为n,∵多边形的每个外角都等于60°,∴n=360°÷60°=6,∴这个多边形的内角和=(6﹣2)×180°=720°.故选B.8.一个三角形的两边长分别是3和7,且第三边长为整数,这样的三角形周长最大的值为()A.15 B.16 C.18 D.19【考点】K6:三角形三边关系.【分析】先根据三角形的三边关系定理求得第三边的取值范围;再根据第三边是整数,从而求得周长最大时,对应的第三边的长.【解答】解:设第三边为a,根据三角形的三边关系,得:7﹣3<a<3+7,即4<a<10,∵a为整数,∴a的最大值为9,则三角形的最大周长为9+3+7=19.故选D.9.同一平面内的四条直线若满足a⊥b,b⊥c,c⊥d,则下列式子成立的是()A.a∥d B.b⊥d C.a⊥d D.b∥c【考点】J9:平行线的判定;J3:垂线.【分析】根据同一平面内,垂直于同一条直线的两条直线平行,可证a∥c,再结合c⊥d,可证a⊥d.【解答】解:∵a⊥b,b⊥c,∴a∥c,∵c⊥d,∴a⊥d.故选C.10.编队飞行(即平行飞行)的两架飞机A,B在坐标系中的坐标分别为A(﹣1,2),B(﹣2,3),当飞机A飞到指定位置的坐标是(2,﹣1)时,飞机B的坐标是()A.(1,5)B.(﹣4,5)C.(1,0)D.(﹣5,6)【考点】D3:坐标确定位置.【分析】根据平移规律,由A的坐标变化情况确定B的坐标.【解答】解:当飞机A从A(﹣1,2),飞到指定位置的坐标是(2,﹣1)时,飞机在平面直角坐标系中是向x轴正方向,及y轴的负方向飞行的,飞机的横坐标移动的距离=|2﹣(﹣1)|=3,纵坐标移动的距离=|﹣1﹣2|=3;由于是平行飞行,同理飞机B的坐标也是这样移动的,横坐标向x轴正方向加3,变为﹣2+3=1,纵坐标向y轴负方向减3变为3﹣3=0;∴飞机B的坐标变为(1,0).故选C.二、填空题:本大题共10小题,每空2分,共20分.把答案填在题中横线上. 11.36的平方根是±6 ,81的算术平方根是9 .【考点】22:算术平方根;21:平方根.【分析】利用平方根和算术平方根的定义求解即可.【解答】解:36的平方根是±6,81的算术平方根是9,故答案为:±6;912. = ﹣4 . = .【考点】24:立方根.【分析】根据立方根的定义即可求解.【解答】解: =﹣4,==.故答案为﹣4,.13.若+|b2﹣9|=0,则ab= ±6 .【考点】23:非负数的性质:算术平方根;16:非负数的性质:绝对值.【分析】根据非负数的性质列出方程求出a、b的值,代入所求代数式计算即可.【解答】解: +|b2﹣9|=0,∴a﹣2=0,b=±3,因此ab=2×(±3)=±6.故结果为:±6.14.已知a,b,c是△ABC的三边,化简:|a+b﹣c|+|b﹣a﹣c|﹣|c+b﹣a|= 3a ﹣b﹣c .【考点】K6:三角形三边关系.【分析】三角形三边满足两边和大于第三边,两边的差小于第三边,根据此来确定绝对值内的式子的正负,从而化简计算即可.【解答】解:∵△ABC的三边长分别是a、b、c,∴a+b﹣c>0,b﹣a﹣c=b﹣(a+c)<0,c+b﹣a>0,∴|a+b﹣c|+|b﹣a﹣c|﹣|c+b﹣a|=a+b﹣c﹣b+a+c﹣c﹣b+a=3a﹣b﹣c.故答案为:3a﹣b﹣c.15.如图,折叠宽度相等的长方形纸条,若∠1=63°,则∠2=54度.【考点】PB:翻折变换(折叠问题).【分析】由平行线的性质得到∠1=∠3=63°,再根据折叠的性质有∠3=∠4,然后利用平角的定义可计算出∠2的度数.【解答】解:如图,∵纸条为宽度相等的长方形,∴∠1=∠3=63°,∵折叠宽度相等的长方形纸条,∴∠3=∠4,∴∠2=180°﹣2∠3=180°﹣2×63°=54°.故答案为54.16.在数轴上离原点的距离为的点表示的数是±3.【考点】29:实数与数轴.【分析】设数轴上原点距离等于的点表示的数是x,再根据数轴上两点间距离的定义求出x的值即可.【解答】解:设数轴上原点距离等于3的点表示的数是x,则|x|=3,解得x=±3.故答案为:±3.∴∠BEF=∠C=70°.∵∠A=34°,∴∠F=70°﹣34°=36°.故答案为:36.20.如图,直角△ABC的周长为2017,在其内部有5个小直角三角形,且这5个小直角三角形都有一条边与BC平行,则这5个小直角三角形的周长之和是2017 .【考点】Q2:平移的性质;JA:平行线的性质.【分析】小直角三角形的与AC平行的边的和等于AC,与BC平行的边的和等于BC,则小直角三角形的周长等于直角△ABC的周长,据此即可求解.【解答】解:利用平移的性质可得出,这五个小三角形的周长的和等于大三角形的周长为2017,故答案为:2017.三、计算题:(每小题10分)21.(1)+﹣;(2)﹣﹣.【考点】2C:实数的运算.【分析】(1)直接利用算术平方根定义分析得出答案;(2)直接利用立方根的性质化简得出答案.【解答】解:(1)+﹣=2+5﹣10=﹣3;(2)﹣﹣=﹣×+3=3.22.求x的值:(1)(2x﹣1)2=25;(2)3(x﹣4)3=﹣375.【考点】24:立方根;21:平方根.【分析】(1)利用直接开平方法,即可得到结论;(2)根据等式的性质,可得乘方的形式,根据开方运算,可得一元一次方程,根据解一元一次方程,可得答案.【解答】解:(1)(2x﹣1)2=25,∴2x﹣1=±5,∴x1=3,x2=﹣2;(2)3(x﹣4)3=﹣375,∴(x﹣4)3=﹣125,∴x﹣4=﹣5,∴x=﹣1.四、证明与解答(每题6分)23.如图,已知:AB∥DE,∠1+∠3=180°,求证:BC∥EF.【考点】JB:平行线的判定与性质.【分析】由AB与DE平行,利用两直线平行内错角相等得到一对角相等,由已知两个角互补,等量代换得到一对同旁内角互补,利用同旁内角互补两直线平行得到BC与EF平行.【解答】证明:∵AB∥DE,∴∠1=∠2,∵∠1+∠3=180°,∴∠2+∠3=180°,∴BC∥EF.24.已知等腰三角形的两边长a、b满足|a﹣4|+(b﹣9)2=0,求这个等腰三角形的周长.【考点】KH:等腰三角形的性质;16:非负数的性质:绝对值;1F:非负数的性质:偶次方;K6:三角形三边关系.【分析】根据非负数的性质求出a、b,再分情况讨论求解.【解答】解:根据题意得,a﹣4=0,b﹣9=0,解得a=4,b=9,①4是腰长时,三角形的三边分别为4、4、9,∵4+4<9,∴不能组成三角形,②4是底边时,三角形的三边分别为4、9、9,能组成三角形,周长=9+9+4=22.综上所述,等腰三角形的周长是22.25.如图,已知AD,AE分别是△ABC的高和中线,AB=6cm,AC=8cm,BC=10cm,∠CAB=90°,求:(1)△ABC的面积;(2)AD的长;(3)△ACE和△ABE的周长的差.【考点】K3:三角形的面积.【分析】(1)根据三角形的面积公式计算即可;(2)利用“面积法”来求线段AD的长度;(3)由于AE是中线,那么BE=CE,于是△ACE的周长﹣△ABE的周长=AC+AE+CE ﹣(AB+BE+AE),化简可得△ACE的周长﹣△ABE的周长=AC﹣AB,易求其值.【解答】解:(1)如图,∵△ABC是直角三角形,∠BAC=90°,AB=6cm,AC=8cm,=AB•AC=×6×8=24(cm2).∴S△ABC(2)∵∠BAC=90°,AD是边BC上的高,∴AB•AC=BC•AD,∴AD==4.8(cm),即AD的长度为4.8cm;(3)∵AE为BC边上的中线,∴BE=CE,∴△ACE的周长﹣△ABE的周长=AC+AE+CE﹣(AB+BE+AE)=AC﹣AB=8﹣6=2(cm),即△ACE和△ABE的周长的差是2cm.26.如图,四边形ABCD中,∠A=∠C=90°,BE平分∠ABC,DF平分∠ADC,则BE与DF有何位置关系?试说明理由.【考点】J9:平行线的判定;IJ:角平分线的定义.【分析】根据四边形的内角和定理和∠A=∠C=90°,得∠ABC+∠ADC=180°;根据角平分线定义、等角的余角相等易证明和BE与DF两条直线有关的一对同位角相等,从而证明两条直线平行.【解答】解:BE∥DF.理由如下:∵∠A=∠C=90°(已知),∴∠ABC+∠ADC=180°(四边形的内角和等于360°).∵BE平分∠ABC,DF平分∠ADC,∴∠1=∠2=∠ABC,∠3=∠4=∠ADC(角平分线的定义).∴∠1+∠3=(∠ABC+∠ADC)=×180°=90°(等式的性质).又∠1+∠AEB=90°(三角形的内角和等于180°),∴∠3=∠AEB(同角的余角相等).∴BE∥DF(同位角相等,两直线平行).27.如图,在直角坐标系中,A(﹣1,3),B(3,﹣2).(1)求△AOB的面积;(2)设AB交y轴于点C,求C点的坐标.【考点】K3:三角形的面积;D5:坐标与图形性质.【分析】由A(﹣1,3),B(3,﹣2)可以求出直线AB的方程,再根据直线方程来求解即可.【解答】解:过AB两点的直线方程为=,即4y+5x﹣7=0.当y=0时,x=,即该直线与x轴的交点是D(,0).(1)S△AOB =S△AOD+S△BOD=OD×3+OD×2=OD×(3+2)=×5=.即S△AOB=;(2)当x=0时,y=,即直线4y+5x﹣7=0与x轴的交点C的坐标是(0,).五.附加题:28.如图,在第1个△ABA1中,∠B=40°,∠BAA1=∠BA1A,在A1B上取一点C,延长AA1到A2,使得在第2个△A1CA2中,∠A1CA2=∠A1A2C;在A2C上取一点D,延长A1A2到A3,使得在第3个△A2DA3中,∠A2DA3=∠A2A3D;…,按此做法进行下去,第3个三角形中以A3为顶点的内角的度数为17.5°;第n个三角形中以An为顶点的内角的度数为.【考点】K7:三角形内角和定理.【分析】先根据等腰三角形的性质求出∠BA1A的度数,再根据三角形外角的性质及等腰三角形的性质分别求出∠CA2A1,∠DA3A2及∠EA4A3的度数,找出规律即可得出第n个三角形的以An为顶点的底角的度数.【解答】解:∵在△ABA1中,∠B=40°,AB=A1B,∴∠BA1A===70°,∵A1A2=A1C,∠BA1A是△A1A2C的外角,∴∠CA2A1=∠BA1A=×70°=35°;同理可得,∠DA3A2=×70°=17.5°,∠EA4A3=×70°,以此类推,第n个三角形的以An为顶点的底角的度数=.故答案为;17.5°,.29.在图中填上恰当的数,使每一行、每一列、每一条对角线上的3个数的和都是0.【考点】2C:实数的运算.【分析】根据题意填写表格即可.【解答】解:根据题意得:30.先阅读下面的文字,然后解答问题.大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部写出来,于是小明用﹣1表示的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分.由此我们还可以得到一个真命题:如果=x+y,其中x是整数,且0<y<1,那么x=1,y=﹣1.请解答下列问题:(1)如果﹣=a+b,其中a是整数,且0<b<1,那么a= 3 ,b= 3﹣;(2)已知2+=m+n,其中m是整数,且0<n<1,求|m﹣n|的值.【考点】2B:估算无理数的大小.【分析】(1)估算出2<<3,可得﹣3<﹣<﹣2,依此即可确定出a,b 的值;(2)根据题意确定出m与n的值,代入求出|m﹣n|即可.【解答】解:(1)∵﹣=a+b,其中a是整数,且0<b<1,2<<3,﹣3<﹣<﹣2,∴a=﹣3,b=3﹣,则a+b=2+3=5;(2)∵2+=m+n,其中m是整数,且0<n<1,∴m=4,n=﹣2,则|m﹣n|=|4﹣+2|=6﹣.。
北京市七年级下学期期中考试数学试卷及答案解析(共三套)
![北京市七年级下学期期中考试数学试卷及答案解析(共三套)](https://img.taocdn.com/s3/m/861350f1647d27284a735174.png)
北京市七年级下学期期中考试数学试卷(一)一、选择题(每题3分,共30分)1.已知a<b,则下列式子正确的是( )A.a+5>b+5 B.3a>3b C.﹣5a>﹣5b D.>2.16的平方根是( )A.4 B.8 C.±4D.不存在3.不等式2x﹣6>0的解集在数轴上表示正确的是( )A.B.C.D.4.已知下列命题:①相等的角是对顶角;②互补的角就是平角;③互补的两个角一定是一个锐角,另一个为钝角;④平行于同一条直线的两条直线平行;⑤邻补角的平分线互相垂直.其中真命题的个数为( )A.3个B.2个C.1个D.0个5.已知:如图,下列条件中,不能判断直线L1∥L2的是( )A.∠1=∠3B.∠4=∠5C.∠2+∠4=180°D.∠2=∠36.点到直线的距离是指( )A.从直线外一点到这条直线的垂线B.从直线外一点到这条直线的垂线段C.从直线外一点到这条直线的垂线的长D.从直线外一点到这条直线的垂线段的长7.下列计算正确的是( )A.=±15B.=﹣3 C.=D.=8.下列各组数中,互为相反数的一组是( )A.﹣2与B.﹣2与C.﹣2与﹣D.|﹣2|与29.如图,已知AD∥BC,∠B=30°,DB平分∠ADE,则∠DEC=( )A.30°B.60°C.90°D.120°10.若方程3m(x+1)+1=m(3﹣x)﹣5x的解是负数,则m的取值范围是( ) A.m>﹣1.25 B.m<﹣1.25 C.m>1.25 D.m<1.25二.填空题(每空2分,共24分)11.把命题“平行于同一条直线的两条直线互相平行”改写成“如果…,那么…”的形式为__________.12.﹣1的相反数是__________,﹣的绝对值是__________;=__________.13.如图,已知a∥b,∠1=70°,∠2=40°,则∠3=__________度.14.﹣27的立方根与的平方根的和是__________.15.实数﹣,﹣2,﹣3的大小关系是__________(用“>”或“<”号连接)16.如图,直线AB、CD相交于点O,OE⊥AB于点O,且∠COE=40°,则∠BOD 为__________.17.在实数①﹣,②,③0.3,④,⑤,⑥,⑦0.373737773…(每相邻两个3之间依次多一个7)中,属于无理数的有__________.18.x,y为实数,且满足+(3x+y﹣1)2=0,则=__________.19.不等式2x+1>3x﹣2的非负整数解是__________.20.如图,将△ABC沿直线AB向右平移后到达△BDE的位置,若∠CAB=50°,∠ABC=100°,则∠CBE的度数为__________.三.解答题21.计算:+﹣.22.解方程:(x﹣1)2=25.23.(1)解下列不等式(组):≥+1;(2)解不等式组,并求其整数解.24.如图,△ABC平移后的图形是△A′B′C′,其中C和C′是对应点,请画出平移后的三角形A′B′C′.25.如图,AD⊥BC于D,EF⊥BC于F,交AB于G,交CA延长线于E,∠1=∠2.求证:AD平分∠BAC.证明:∵AD⊥BC,EF⊥BC(已知)∴∠ADC=90°,∠EFC=90°(垂的定义)∴__________=____________________∥__________∴∠1=__________∠2=__________∵∠1=∠2(已知)∴__________=__________∴AD平分∠BAC(角平分线定义)26.已知:如图,CD⊥AB,GF⊥AB,∠B=∠ADE,求证:∠1=∠2.27.如图,AB∥DE,∠1=25°,∠2=110°,求∠BCD的度数.28.某单位要印刷一批北京冬季奥运会宣传资料,在需要支付制版费600元和每份资料0.3元印刷费的前提下,甲、乙两个印刷厂分别提出了不同的优惠条件,甲印刷厂提出:凡印刷数量超过2000份的,超过部分的印刷费可按9折收费,乙印刷厂提出:凡印刷数量超过3000份的,超过部分印刷费可按8折收费.(1)如果该单位要印刷2400份,那么甲印刷厂的费用是__________,乙印刷厂的费用是__________.(2)根据印刷数量大小,请讨论该单位到哪家印刷厂印刷资料可获得更大优惠?参考答案一、选择题(每题3分,共30分)1.已知a<b,则下列式子正确的是( )A.a+5>b+5 B.3a>3b C.﹣5a>﹣5b D.>考点:不等式的性质分析:看各不等式是加(减)什么数,或乘(除以)哪个数得到的,用不用变号.解答:解:A、不等式两边都加5,不等号的方向不变,错误;B、不等式两边都乘3,不等号的方向不变,错误;C、不等式两边都乘﹣5,不等号的方向改变,正确;D、不等式两边都除以3,不等号的方向不变,错误;故选:C.点评:主要考查了不等式的基本性质.不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.2.16的平方根是( )A.4 B.8 C.±4D.不存在考点:平方根.分析:根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.解答:解:∵(±4)2=16,∴16的平方根是±4.故选C.点评:本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.3.不等式2x﹣6>0的解集在数轴上表示正确的是( )A.B.C.D.考点:在数轴上表示不等式的解集.专题:图表型.分析:不等式2x﹣6>0的解集是x>3,>应向右画,且不包括3时,应用圈表示,不能用实心的原点表示3这一点,据此可求得不等式的解以及解集再数轴上的表示.解答:解:将不等式2x﹣6>0移项,可得:2x>6,将其系数化1,可得:x>3;∵不包括3时,应用圈表示,不能用实心的原点表示3这一点答案.故选:A.点评:此题主要考查了在数轴上表示不等式的解集,用数轴表示不等式的解集时,要注意“两定”:一是定界点,一般在数轴上只标出原点和界点即可.定边界点时要注意,点是实心还是空心,若边界点含于解集为实心点,不含于解集即为空心点;二是定方向,定方向的原则是:“小于向左,大于向右”.4.已知下列命题:①相等的角是对顶角;②互补的角就是平角;③互补的两个角一定是一个锐角,另一个为钝角;④平行于同一条直线的两条直线平行;⑤邻补角的平分线互相垂直.其中真命题的个数为( )A.3个B.2个C.1个D.0个考点:平行公理及推论;余角和补角;对顶角、邻补角;命题与定理.专题:常规题型.分析:根据所学的公理定理对各小题进行分析判断,然后再计算真命题的个数.解答:解:①对顶角既要考虑大小,还要考虑位置,相等的角不一定是对顶角,故①错误;②互补的角不一定是邻补角,所以不一定是平角,故②错误;③互补的两个角也可以是两个直角,故③错误;④平行于同一条直线的两条直线平行,是平行公理,故④正确;⑤邻补角的平分线的夹角正好是平角的一半,是直角,所以互相垂直,故⑤正确.所以真命题有④⑤两个.故选:B.点评:本题主要是对基础知识的考查,熟练掌握基础知识对今后的学习非常关键.5.已知:如图,下列条件中,不能判断直线L1∥L2的是( )A.∠1=∠3B.∠4=∠5C.∠2+∠4=180°D.∠2=∠3考点:平行线的判定.分析:依据平行线的判定定理即可判断.解答:解:A、内错角相等,两直线平行,故正确;B、同位角相等,两直线平行,故正确;C、同旁内角互补,两直线平行,故正确;D、错误.故选D.点评:本题考查了平行线的判定定理,正确理解定理是关键.6.点到直线的距离是指( )A.从直线外一点到这条直线的垂线B.从直线外一点到这条直线的垂线段C.从直线外一点到这条直线的垂线的长D.从直线外一点到这条直线的垂线段的长考点:点到直线的距离.分析:根据点到直线的距离的定义解答本题.解答:解:A、垂线是直线,没有长度,不能表示距离,故A错误;B、垂线段是一个图形,距离是指垂线段的长度,故B错误;C、垂线是直线,没有长度,不能表示距离,故C错误;D、符合点到直线的距离的定义,故D正确.故选:D.点评:此题主要考查了从直线外一点到这条直线的垂线段的长度,叫做点到直线的距离的定义.7.下列计算正确的是( )A.=±15B.=﹣3 C.=D.=考点:算术平方根.分析:根据算术平方根的定义解答判断即可.解答:解:A、,错误;B、,错误;C、,错误;D、,正确;故选D点评:此题考查算术平方根问题,关键是根据算术平方根的定义解答.8.下列各组数中,互为相反数的一组是( )A.﹣2与 B.﹣2与 C.﹣2与﹣D.|﹣2|与2考点:实数的性质.分析:根据相反数的概念、性质及根式的性质化简即可判定选择项.解答:解:A、=2,﹣2与2互为相反数,故选项正确;B、=﹣2,﹣2与﹣2不互为相反数,故选项错误;C、﹣2与不互为相反数,故选项错误;D、|﹣2|=2,2与2不互为相反数,故选项错误.故选A.点评:本题考查的是相反数的概念,只有符号不同的两个数叫互为相反数.如果两数互为相反数,它们的和为0.9.如图,已知AD∥BC,∠B=30°,DB平分∠ADE,则∠DEC=( )A.30°B.60°C.90°D.120°考点:平行线的性质.专题:计算题.分析:根据平行线的性质:两条直线平行,内错角相等及角平分线的性质,三角形内角和定理解答.解答:解:∵AD∥BC,∴∠ADB=∠B=30°,再根据角平分线的概念,得:∠BDE=∠ADB=30°,再根据两条直线平行,内错角相等得:∠DEC=∠ADE=60°,故选B.点评:考查了平行线的性质、角平分线的概念,要熟练掌握.10.若方程3m(x+1)+1=m(3﹣x)﹣5x的解是负数,则m的取值范围是( )A.m>﹣1.25 B.m<﹣1.25 C.m>1.25 D.m<1.25考点:一元一次方程的解;解一元一次不等式.专题:计算题.分析:本题首先要解这个关于x的方程,求出方程的解,根据解是负数,可以得到一个关于m的不等式,就可以求出m的范围.解答:解:3m(x+1)+1=m(3﹣x)﹣5x,3mx+3m+1=3m﹣mx﹣5x,3mx+mx+5x=3m﹣3m﹣1,(4m+5)x=﹣1,解得:x=﹣;根据题意得:﹣即4m+5>0;解得m>﹣1.25.故选A.点评:本题是一个方程与不等式的综合题目.解关于x的不等式是本题的一个难点.二.填空题(每空2分,共24分)11.把命题“平行于同一条直线的两条直线互相平行”改写成“如果…,那么…”的形式为如果两条直线平行于同一条直线,那么这两条直线平行.考点:命题与定理.分析:命题由题设和结论两部分组成,通常写成“如果…那么…”的形式.“如果”后面接题设,“那么”后面接结论.解答:解:命题可以改写为:“如果两条直线平行于同一条直线,那么这两条直线平行”.点评:本题考查命题的改写.任何一个命题都可以写成“如果…那么…”的形式.“如果”后面接题设,“那么”后面接结论.在改写过程中,不能简单地把题设部分、结论部分分别塞在“如果”、“那么”后面,要适当增减词语,保证句子通顺而不改变原意.12.﹣1的相反数是1,﹣的绝对值是;=3.考点:实数的性质.分析:由题意根据相反数的定义及绝对值的性质,进行求解.解答:解:﹣1的相反数是1﹣,﹣的绝对值是|﹣|=,∵3>,∴=3,故答案为:1,,3.点评:此题主要考查相反数的定义及绝对值的性质,比较简单.13.如图,已知a∥b,∠1=70°,∠2=40°,则∠3=70度.考点:三角形内角和定理;平行线的性质.专题:计算题.分析:把∠2,∠3转化为△ABC中的角后,利用三角形内角和定理求解.解答:解:由对顶角相等可得∠ACB=∠2=40°,在△ABC中,由三角形内角和知∠ABC=180°﹣∠1﹣∠ACB=70°.又∵a∥b,∴∠3=∠ABC=70°.故答案为:70.点评:本题考查了平行线与三角形的相关知识.14.﹣27的立方根与的平方根的和是0或﹣6.考点:立方根;平方根.分析:分别利用平方根、立方根的定义求解即可.解题注意=9,所以求的算术平方根就是求9的平方根.解答:解:∵﹣27的立方根是﹣3,的平方根是±3,所以它们的和为0或﹣6.故答案:0或﹣6.点评:此题主要考查了立方根、算术平方根的定义,其中求一个数的立方根,应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同,一个正数的平方根有两个且互为相反数.15.实数﹣,﹣2,﹣3的大小关系是﹣3<﹣<﹣2(用“>”或“<”号连接)考点:实数大小比较.分析:利用两个负实数绝对值大的反而小,据此判断即可.解答:解:∵|﹣|=,|﹣2|=2,|﹣3|=3,3>>2,∴﹣3<﹣<﹣2.故答案为:﹣3<﹣<﹣2.点评:此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.16.如图,直线AB、CD相交于点O,OE⊥AB于点O,且∠COE=40°,则∠BOD 为50°.考点:垂线;对顶角、邻补角.分析:根据垂直的定义求得∠AOE=90°;然后根据余角的定义可以推知∠AOC=∠AOE﹣∠COE=50°;最后由对顶角的性质可以求得∠BOD=∠AOC=50°.解答:解:∵OE⊥AB,∴∠AOE=90°;又∵∠COE=40°,∴∠AOC=∠AOE﹣∠COE=50°,∴∠BOD=∠AOC=50°(对顶角相等);故答案是:50°.点评:本题考查了垂线、对顶角与邻补角.注意,此题中隐含着已知条件“∠AOE=90°”.17.在实数①﹣,②,③0.3,④,⑤,⑥,⑦0.373737773…(每相邻两个3之间依次多一个7)中,属于无理数的有②④⑦.考点:无理数.分析:掌握无理数的三种形式,①开方开不尽的数,②无限不循环小数,③含有π的数,结合题意判断即可.解答:解:在实数①﹣,②,③0.3,④,⑤,⑥,⑦0.373737773…(每相邻两个3之间依次多一个7)中,属于无理数的有②,④,⑦0.373737773…(每相邻两个3之间依次多一个7),故答案为:②④⑦点评:此题考查了无理数的概念,解答本题的关键是掌握无理数的定义,属于基础题,要熟练掌握无理数的三种形式,难度一般.18.x,y为实数,且满足+(3x+y﹣1)2=0,则=3.考点:非负数的性质:算术平方根;非负数的性质:偶次方.分析:根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.解答:解:由题意得,x﹣1=0,3x+y﹣1=0,解得x=1,y=﹣2,所以,===3.故答案为:3.点评:本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.19.不等式2x+1>3x﹣2的非负整数解是0,1,2.考点:一元一次不等式的整数解.分析:先求出不等式2x+1>3x﹣2的解集,再求其非负整数解.解答:解:移项得,2x﹣3x>﹣2﹣1,合并同类项得,﹣x>﹣3,系数化为1得,x<3.故其非负整数解为:0,1,2.点评:解答此题不仅要明确不等式的解法,还要知道非负整数的定义.解答时尤其要注意,系数为负数时,要根据不等式的性质3,将不等号的方向改变.20.如图,将△ABC沿直线AB向右平移后到达△BDE的位置,若∠CAB=50°,∠ABC=100°,则∠CBE的度数为30°.考点:平移的性质.分析:根据平移的性质得出AC∥BE,以及∠CAB=∠EBD=50°,进而求出∠CBE的度数.解答:解:∵将△ABC沿直线AB向右平移后到达△BDE的位置,∴AC∥BE,∴∠CAB=∠EBD=50°,∵∠ABC=100°,∴∠CBE的度数为:180°﹣50°﹣100°=30°.故答案为:30°.点评:此题主要考查了平移的性质以及三角形内角和定理,得出∠CAB=∠EBD=50°是解决问题的关键.三.解答题21.计算:+﹣.考点:实数的运算.专题:计算题.分析:原式利用算术平方根的定义及二次根式性质计算即可得到结果.解答:解:原式=4+2﹣=5.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.22.解方程:(x﹣1)2=25.考点:解一元二次方程-直接开平方法专题:计算题.分析:两边开方,即可得出两个一元一次方程,求出方程的解即可.解答:解:开方得:x﹣1=±5,解得:x1=6,x2=﹣4.点评:本题考查了解一元二次方程的应用,题目是一道比较典型的题目,难度不大.23.(1)解下列不等式(组):≥+1;(2)解不等式组,并求其整数解.考点:解一元一次不等式组;在数轴上表示不等式的解集;解一元一次不等式.分析:(1)先去括号,再移项,合并同类项系数化为1即可得出结论.(2)首先解不等式组,再从不等式组的解集中找出适合条件的整数即可.解答:解:(1)去分母得2(x+1)≥3(2x﹣5)+12,去括号得2x+2≥6x﹣15+12,移项得2x﹣6x≥﹣15+12﹣2,合并同类项得﹣4x≥﹣5,系数化为1得x≤.(2),解不等式①得x>2.5,解不等式②得x≤4,∴不等式组的解集2.5<x≤4,整数解为3,4.点评:本题考查的是解一元一次不等式(组),熟知解一元一次不等式的基本步骤和解不等式组的法则是解答此题的关键.24.如图,△ABC平移后的图形是△A′B′C′,其中C和C′是对应点,请画出平移后的三角形A′B′C′.考点:作图-平移变换.分析:利用平移的性质得出平移后对应点位置进而得出答案.解答:解:如图所示:△A′B′C′即为所求.点评:此题主要考查了平移变换,根据题意得出平移后对应点位置是解题关键.25.如图,AD⊥BC于D,EF⊥BC于F,交AB于G,交CA延长线于E,∠1=∠2.求证:AD平分∠BAC.证明:∵AD⊥BC,EF⊥BC(已知)∴∠ADC=90°,∠EFC=90°(垂的定义)∴∠ADC=∠EFCAD∥EF∴∠1=∠DAB∠2=∠DAC∵∠1=∠2(已知)∴∠DAB=∠DAC∴AD平分∠BAC(角平分线定义)考点:平行线的判定与性质.专题:推理填空题.分析:由∠1=∠2得出△AEG是等腰三角形,根据等腰三角形的性质得出∠E=∠AGE,根据AD⊥BC,EF⊥BC推出AD∥EF,根据平行线的性质得出∠AGE=∠DAB,∠E=∠DAC,推出∠DAB=∠DAC即可.解答:证明:∵AD⊥BC,EF⊥BC(已知),∴∠ADC=90°,∠EFC=90°(垂直的定义),∴∠ADC=∠EFC,AD∥EF,∴∠1=∠DAB,∠2=∠DAC,∵∠1=∠2,∴∠DAB=∠DAC,即AD平分∠BAC(角平分线定义)故答案为:∠ADC;∠EFC;AD;EF;∠DAB;∠DAC;∠DAB;∠DAC.点评:本题考查了等腰三角形的性质,垂直定义,平行线的性质和判定,主要考查学生的推理能力.26.已知:如图,CD⊥AB,GF⊥AB,∠B=∠ADE,求证:∠1=∠2.考点:平行线的判定与性质.专题:证明题.分析:由CD⊥AB,GF⊥AB,根据平行线的判定方法得CD∥GF,再根据平行线的性质得∠2=∠BCD;由∠B=∠ADE,根据同位角相等,两直线平行得DE∥BC,则利用平行线的性质得∠1=∠BCD,然后利用等量代换即可得到∠1=∠2.解答:证明:∵CD⊥AB,GF⊥AB,∴CD∥GF,∴∠2=∠BCD,∵∠B=∠ADE,∴DE∥BC,∴∠1=∠BCD,∴∠1=∠2.点评:本题考查了平行线的判定与性质:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行;两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补.27.如图,AB∥DE,∠1=25°,∠2=110°,求∠BCD的度数.考点:平行线的性质.分析:过点C作CE∥AB,再由平行线的性质即可得出结论.解答:解:过点C作CE∥AB,∵AB∥DE,∴AB∥DE∥CE,∵∠1=25°,∠2=110°,∴∠3=∠1=25°,∠4=180°﹣∠2=180°﹣110°=70°,∴∠BCD=∠3+∠4=25°+70°=95°.点评:本题考查的是平行线的性质,用到的知识点为:两直线平行,同旁内角互补.28.某单位要印刷一批北京冬季奥运会宣传资料,在需要支付制版费600元和每份资料0.3元印刷费的前提下,甲、乙两个印刷厂分别提出了不同的优惠条件,甲印刷厂提出:凡印刷数量超过2000份的,超过部分的印刷费可按9折收费,乙印刷厂提出:凡印刷数量超过3000份的,超过部分印刷费可按8折收费.(1)如果该单位要印刷2400份,那么甲印刷厂的费用是1308元,乙印刷厂的费用是1320元.(2)根据印刷数量大小,请讨论该单位到哪家印刷厂印刷资料可获得更大优惠?考点:一次函数的应用.专题:压轴题;分类讨论.分析:(1)直接计算即可;(2)先根据x的取值范围分三种情况讨论:(i)0<x≤2000,(ii)2000<x≤3000,(iii)当x>3000时,可根据题意列出y甲=0.27x+660;y乙=0.24x+780,根据y甲=y乙,y甲>y乙,y甲<y乙,分别求关于x的不等式,综合可知:当0<x≤2000或x=4000时,无论到哪家印刷,都一样优惠;当2000<x<4000时,到甲印刷厂可获得更大优惠;当x>4000,到乙印刷厂可获得更大优惠.解答:解:(1)甲印刷厂的费用是600+2000×0.3+0.9×0.3(2400﹣2000)=1308元,乙印刷厂的费用是600+0.3×2400=1320元.(2)设该单位需印刷x份资料,共需费用为y元.(i)当0<x≤2000时,无论到哪家印刷厂印刷资料,都一样优惠.(ii)当2000<x≤3000时,甲印刷厂有打折,而乙印刷厂没打折,显然到甲印刷厂可获得更大优惠.(iii)当x>3000时,可分别得到费用的两个函数y甲=600+2000×0.3+0.9×0.3(x﹣2000)=0.27x+660y乙=600+3000×0.3+0.8×0.3(x﹣3000)=0.24x+780令y甲=y乙,即0.27x+660=0.24x+780解得x=4000,所以当印刷4000份资料时,无论到哪家印刷,都一样优惠.令y甲>y乙,即0.27x+660>0.24x+780解得x>4000,所以当印刷大于4000份资料时,到乙印刷厂可获得更大优惠.令y甲<y乙,即0.27x+660<0.24x+780解得x<4000,所以当印刷大于3000且小于4000份资料时,到甲印刷厂可获得更大优惠.综上所述,当0<x≤2000或x=4000时,无论到哪家印刷,都一样优惠.当2000<x<3000时,到甲印刷厂可获得更大优惠.当x>4000,到乙印刷厂可获得更大优惠.点评:主要考查利用一次函数的模型解决实际问题的能力.要先根据题意列出函数关系式,再代数求值.解题的关键是要分析题意根据实际意义求解.注意要把所有的情况都考虑进去,分情况讨论问题是解决实际问题的基本能力.北京市七年级下学期期中考试数学试卷(二)一、单项选择题(本题共10个小题,每小题3分,共30分)1.有两根长度分别为2,10的木棒,若想钉一个三角形木架,第三根木棒的长度可以是( )A.12 B.10 C.8 D.62.利用数轴确定不等式组的解集,正确的是( )A.B.C.D.3.如图,下面推理中,正确的是( )A.∵∠A+∠D=180°∴AD∥BC B.∵∠C+∠D=180°∴AB∥CDC.∵∠A+∠D=180°∴AB∥CD D.∵∠B+∠C=180°∴AD∥BC4.通过平移,可将如图中的福娃“欢欢”移动到图( )A.B.C.D.5.如图,将一个含30°角的三角板的直角顶点放在直尺的一边上,如果∠1=115°,那么∠2的度数是( )A.95°B.85°C.75°D.65°6.一个多边形的每一个外角都等于40°,则这个多边形的边数为( ) A.6 B.7 C.8 D.97.64的平方根为( )A.8 B.±8C.﹣8 D.±48.在以下实数,﹣,1.414,中无理数有( )A.4个B.3个C.2个D.1个9.等腰三角形的两边长分别是4和5,则这个等腰三角形的周长是( )A.13或14 B.13 C.14 D.无法确定10.若关于x的不等式的整数解共有4个,则m的取值范围是( ) A.6<m<7 B.6≤m<7 C.6≤m≤7D.6<m≤7二、填空题(本题共20分,每题2分)11.如图所示:直线AB与CD相交于O,已知∠1=30°,OE是∠BOC的平分线,则∠2=__________°,∠3=__________°.12.的算术平方根是__________;的算术平方根是__________.13.如图,△ABC中,∠A=50°,∠ABO=18°,∠ACO=32°,则∠BOC=__________.14.计算:++=__________.15.一副三角板如图所示放置,则∠α+∠β=__________度.16.把命题“平行于同一条直线的两条直线互相平行”改写成“如果…,那么…”的形式为__________.17.如图,AB∥CD,且∠A=25°,∠C=45°,则∠E的度数是__________.18.如图a是长方形纸带,∠DEF=20°,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c中的∠CFE的度数是__________度.19.如图:已知△ABC中,∠ABC的n等分线与∠ACB的n等分线分别相交于G1,G 2,G3,…,Gn﹣1,试猜想:∠BGn﹣1C与∠A的关系.(其中n是不小于2的整数)首先得到:当n=2时,如图1,∠BG1C=__________,当n=3时,如图2,∠BG2C=__________,…如图3,猜想∠BGn﹣1C=__________.…三.填理由(每空1分,共6分)20.如图,已知∠A=∠F,∠C=∠D,试说明BD∥CE.证明:∵∠A=∠F (已知)∴__________∥__________∴∠+∠=180°__________∵∠C=∠D (已知)∴∠D+∠DEC=180°∴__________.四.解答题(每小题5分,共44分)21.解不等式2(x﹣1)>3(x+1)﹣1,并在数轴上表示不等式的解集.22.解不等式组:,并在数轴上表示不等式的解集.23.按要求画图:(1)作BE∥AD交DC于E;(2)连接AC,作BF∥AC交DC的延长线于F;(3)作AG⊥DC于G.24.在△ABC中,∠A﹣∠C=35°,∠B﹣∠C=10°,求∠B的度数是多少?25.已知:如图,AD⊥BC,EF⊥BC,∠1=∠2.求证:∠DGC=∠BAC.26.如图,CD平分∠ACB,DE∥AC,EF∥CD,EF平分∠DEB吗?请说明你的理由.27.如果关于x,y的二元一次方程组的解是正整数,求整数p的值.28.“五•一”黄金周期间,某学校计划组织385名师生租车旅游,现知道出租公司有42座和60座两种客车,42座客车的租金每辆为320元,60座客车的租金每辆为460元.(1)若学校单独租用这两种车辆各需多少钱?(2)若学校同时租用这两种客车8辆(可以坐不满),而且要比单独租用一种车辆节省租金.请你帮助该学校选择一种最节省的租车方案.29.如图,在四边形ABCD中,∠A=∠C,BE平分∠ABC,DF平分∠ADC,试说明BE∥DF.参考答案一、单项选择题(本题共10个小题,每小题3分,共30分)1.有两根长度分别为2,10的木棒,若想钉一个三角形木架,第三根木棒的长度可以是( )A.12 B.10 C.8 D.6考点:三角形三边关系.分析:根据三角形中“两边之和大于第三边,两边之差小于第三边”,进行分析得到第三边的取值范围;再进一步找到符合条件的数值.解答:解:根据三角形的三边关系,得第三边应大于两边之差,即10﹣2=8;而小于两边之和,即10+2=12,即8<第三边<12,下列答案中,只有B符合条件.故选B.点评:本题主要考查了三角形中三边的关系,两边之和大于第三边,两边之差小于第三边.2.利用数轴确定不等式组的解集,正确的是( )A.B.C.D.考点:在数轴上表示不等式的解集;解一元一次不等式组.分析:分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.解答:解:,由①得x≤1,故不等式组的解集为:﹣3<x≤1.在数轴上表示为:.故选A.点评:本题考查的是在数轴上表示不等式的解集,熟知实心原点与空心原点的区别是解答此题的关键.3.如图,下面推理中,正确的是( )A.∵∠A+∠D=180°∴AD∥BC B.∵∠C+∠D=180°∴AB∥CDC.∵∠A+∠D=180°∴AB∥CD D.∵∠B+∠C=180°∴AD∥BC考点:平行线的判定.分析:根据平行线的判定定理对各选项进行逐一判断即可.解答:解:A、∵∠A+∠D=180°∴AB∥CD,故本选项错误;B、∵∠C+∠D=180°∴AD∥BC,故本选项错误;C、∵∠A+∠D=180°∴AB∥CD,符合同旁内角互补,两直线平行的判定定理,故本选项正确;D、∵∠B+∠C=180°∴AB∥CD,故本选项错误.故选C.点评:本题考查的是平行线的判定定理,用到的知识点为:同旁内角互补,两直线平行是解答此题的关键.4.通过平移,可将如图中的福娃“欢欢”移动到图( )A.B.C.D.考点:生活中的平移现象.分析:根据平移的性质,结合图形,对选项进行一一分析,排除错误答案.解答:解:A、属于图形旋转所得到,故错误;B、属于图形旋转所得到,故错误;C、图形形状大小没有改变,符合平移性质,故正确;D、属于图形旋转所得到,故错误.故选:C.点评:本题考查图形的平移变换.图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转,以致选错.5.如图,将一个含30°角的三角板的直角顶点放在直尺的一边上,如果∠1=115°,那么∠2的度数是( )A.95°B.85°C.75°D.65°考点:平行线的性质;三角形的外角性质.专题:计算题.分析:根据题画出图形,由直尺的两对边AB与CD平行,利用两直线平行,同位角相等可得∠1=∠3,由∠1的度数得出∠3的度数,又∠3为三角形EFG的外角,根据外角性质:三角形的外角等于与它不相邻的两内角之和得到∠3=∠E+∠2,把∠3和∠E的度数代入即可求出∠2的度数.解答:已知:AB∥CD,∠1=115°,∠E=30°,求:∠2的度数?解:∵AB∥CD(已知),且∠1=115°,∴∠3=∠1=115°(两直线平行,同位角相等),又∠3为△EFG的外角,且∠E=30°,∴∠3=∠2+∠E,则∠2=∠3﹣∠E=115°﹣30°=85°.故选B.点评:此题考查了平行线的性质,以及三角形的外角性质,利用了转化的数学思想,其中平行线的性质有:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补,熟练掌握性质是解本题的关键.6.一个多边形的每一个外角都等于40°,则这个多边形的边数为( )A.6 B.7 C.8 D.9考点:多边形内角与外角.分析:根据任意多边形的外角和是360°进行计算即可.解答:解:360°÷40°=9.故选:D.点评:本题主要考查的是多边形的外角和定理,明确任意多边形的外角和是360°是解题的关键.7.64的平方根为( )A.8 B.±8C.﹣8 D.±4考点:平方根.分析:根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.解答:解:∵(±8)2=64,∴64的平方根是±8.故选:B.点评:本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.。
完整版(完整版)七年级数学下册期中试卷及答案 - 百度文库
![完整版(完整版)七年级数学下册期中试卷及答案 - 百度文库](https://img.taocdn.com/s3/m/7581d2dcd05abe23482fb4daa58da0116c171f54.png)
完整版(完整版)七年级数学下册期中试卷及答案 - 百度文库一、选择题1.116的平方根是() A .-14B .14C .14±D .12± 2.下列各组图形可以通过平移互相得到的是( )A .B .C .D .3.在平面直角坐标系中,下列点中位于第四象限的是( )A .()0,3B .()2,1-C .()1,2-D .()1,1-- 4.下列命题是假命题的是( ) A .对顶角相等B .两条直线被第三条直线所截,同位角相等C .在同一平面内,垂直于同一条直线的两条直线互相平行D .在同一平面内,过直线外一一点有且只有一条直线与已知直线平行5.如图,已知AP 平分BAC ∠,CP 平分ACD ∠,1290∠+∠=︒.下列结论正确的有( ) ①//AB CD ;②180ABE CDF ∠+∠=︒;③//AC BD ;④若2ACD E ∠=∠,则2CAB F ∠=∠.A .1个B .2个C .3个D .4个6.下列说法:①两个无理数的和可能是有理数:②任意一个有理数都可以用数轴上的点表示;③33mn π-+是三次二项式;④立方根是本身的数有0和1;其中正确的是( ) A .①②B .①③C .①②③D .①②④ 7.如图,//AB CD ,EF 交AB 于点G ,EM 平分CEF ∠,80FGB ∠=︒,则GME ∠的度数为( ).A .60°B .55°C .50°D .45°8.如图,点()0,1A ,点()12,0A ,点()23,2A ,点()35,1A ,…,按照这样的规律下去,点2021A 的坐标为( )A .()6062,2020B .()3032,1010C .()3030,1011D .()6063,2021二、填空题9.已知实数x,y 满足2x -+(y+1)2=0,则x-y 的立方根是_____.10.已知点(),2019A a 与点202()0,B b 关于y 轴对称,则+a b 的值为__________. 11.如图,已知在四边形ABCD 中,∠A =α,∠C =β,BF ,DP 为四边形ABCD 的∠ABC 、∠ADC 相邻外角的角平分线.当α、β满足条件____________时,BF ∥DP .12.如图,已知a //b ,∠1=50°,∠2=115°,则∠3=______.13.如图,在ABC ∆中,若将ABC ∆沿DE 折叠,使点A 与点C 重合,若BCD ∆的周长为25,ABC ∆的周长为35,则AE =_______.14.定义:对任何有理数,a b ,都有22a b a ab b ⊗=++,若已知22(2)(3)a b -++=0,则a b ⊗=____________.15.在平面直角坐标系中,已知点P (﹣2,3),PA ∥y 轴,PA=3,则点A 的坐标为__. 16.如图,一个点在第一象限及x 轴、y 轴上运动,在第一秒钟,它从原点()0,0运动到()0,1,然后接着按图中箭头所示方向运动,即()()()()0,00,11,11,0→→→,…,且每秒运动一个单位,到()1,1点用时2秒,到()2,2点用时6秒,到()3,3点用时12秒,…,那么第421秒时这个点所在位置的坐标是____.三、解答题17.计算(每小题4分)(1)323(3)29()-+--(2)2335+-.(3)20203|2|8(1)-+-+-.(4)4+|﹣2 | + ( -1 )201718.求下列各式中的x 值(1)()216149x +=(2)3()81125x ﹣= 19.请补全推理依据:如图,已知:12180∠+∠=︒,3A ∠=∠,求证:B C ∠=∠.证明:∵12180∠+∠=︒(已知)∴//AD EF ( )∴3D ∠=∠( )又∵3A ∠=∠(已知)∴D A ∠=∠( )∴//AB CD ( )∴B C ∠=∠( )20.如图,三角形ABC 在平面直角坐标系中,(1)请写出三角形ABC 各点的坐标;(2)将 三角形ABC 经过平移后得到三角形A 1B 1C 1,若三角形ABC 中任意一点M (a ,b )与三角形A 1B 1C 1的对应点的坐标为M 1(a -1,b +2),写出A 1B 1C 1的坐标,并画出平移后的图形;(3)求出三角形ABC 的面积.21.已知:a 是815+的小数部分,b 是815-的小数部分.(1)求a 、b 的值;(2)求4a +4b +5的平方根.22.已知在44⨯的正方形网格中,每个小正方形的边长为1.(1)计算图①中正方形ABCD 的面积与边长.(2)利用图②中的正方形网格,作出面积为8的正方形,并在此基础上建立适当的数轴,在数轴上表示实数8和8-.23.已知直线//AB CD ,点P 为直线AB 、CD 所确定的平面内的一点.(1)如图1,直接写出APC ∠、A ∠、C ∠之间的数量关系 ;(2)如图2,写出APC ∠、A ∠、C ∠之间的数量关系,并证明;(3)如图3,点E 在射线BA 上,过点E 作//EF PC ,作PEG PEF ∠∠=,点G 在直线CD 上,作BEG ∠的平分线EH 交PC 于点H ,若30APC ∠=,140PAB ∠=,求PEH ∠的度数.【参考答案】一、选择题1.C解析:C【分析】根据平方根的定义(如果一个数的平方等于a ,那么这个数叫做a 的平方根)即可得.【详解】 解:因为211416⎛⎫±= ⎪⎝⎭, 所以116的平方根是14±, 故选:C .【点睛】本题考查了平方根,熟练掌握平方根的定义是解题关键.2.C【分析】根据平移不改变图形的形状和大小,平移变换中对应线段平行(或在同一直线上)且相等,从而得出答案.【详解】解:观察图形可知图案C 通过平移后可以得到.故选:C .【点睛】本题考查的是解析:C【分析】根据平移不改变图形的形状和大小,平移变换中对应线段平行(或在同一直线上)且相等,从而得出答案.【详解】解:观察图形可知图案C 通过平移后可以得到.【点睛】本题考查的是平移变换及其基本性质,掌握以上知识是解题的关键.3.C【分析】根据各象限内点的坐标特征对各选项分析判断后利用排除法求解.【详解】解:A 、(0,3)在y 轴上,故本选项不符合题意;B 、(2,1)-在第二象限,故本选项不符合题意;C 、(1,2)-在第四象限,故本选项符合题意;D 、(1,1)--在第三象限,故本选项不符合题意.故选:C .【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解题的关键,四个象限的符号特点分别是:第一象限(,)++;第二象限(,)-+;第三象限(,)--;第四象限(,)+-.4.B【分析】根据对顶角的性质、直线的性质、平行线的性质进行判断,即可得出答案.【详解】A 、对顶角相等;真命题;B 、两条直线被第三条直线所截,同位角相等;假命题;只有两直线平行时同位角才相等;C 、在同一平面内,垂直于同一条直线的两条直线互相平行真命题;D 、在同一平面内,过直线外一一点有且只有一条直线与已知直线平行;真命题; 故选:B .【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.正确的命题叫做真命题,错误的命题叫做假命题.5.C【分析】由三个已知条件可得AB ∥CD ,从而①正确;由①及平行线的性质则可推得②正确;由条件无法推出AC ∥BD ,可知③错误;由2ACD E ∠=∠及CP 平分ACD ∠,可得∠ACP =∠E ,得AC ∥BD ,从而由平行线的性质易得2CAB F ∠=∠,即④正确.【详解】∵AP 平分BAC ∠,CP 平分ACD ∠∴∠ACD =2∠ACP =2∠2,∠CAB =2∠1=2∠CAP∵1290∠+∠=︒∴∠ACD +∠CAB =2(∠1+∠2)=2×90゜=180゜∴//AB CD∵//AB CD∴∠ABE =∠CDB∵∠CDB +∠CDF =180゜∴180ABE CDF ∠+∠=︒故②正确由已知条件无法推出AC ∥BD故③错误∵2ACD E ∠=∠,∠ACD =2∠ACP =2∠2∴∠ACP =∠E∴AC ∥BD∴∠CAP =∠F∵∠CAB =2∠1=2∠CAP∴2CAB F ∠=∠故④正确故正确的序号为①②④故选:C .【点睛】本题考查了平行线的判定与性质,角平分线的定义,掌握这些知识是关键.6.A【分析】根据无理数的运算、数轴的定义、多项式的定义、立方根的运算逐个判断即可.【详解】①两个无理数的和可能是有理数,说法正确(0=,0是有理数②有理数属于实数,实数与数轴上的点是一一对应关系,则任意一个有理数都可以用数轴上的点表示,说法正确③3327mn mn ππ=-+-+是二次二项式,说法错误④立方根是本身的数有0和±1,说法错误综上,说法正确的是①②故选:A .【点睛】本题考查了无理数的运算、数轴的定义、多项式的定义、立方根的运算,熟记各运算法则和定义是解题关键.7.C【分析】根据两直线平行的性质定理,进行角的转换,再根据平角求得CEF ∠,进而求得GME ∠.【详解】//AB CD ,FED FGB ∴∠=∠,CEM GME ∠=∠又∵80FGB ∠=︒80FED ∴∠=︒18080100CEF ∴∠=-︒=︒, EM 平分CEF ∠,1502CEM CEF ∴∠=∠=︒, 50GME ∴∠=︒故选:C .【点睛】本题主要考查的是平行线的性质,角平分线的定义等知识点,根据条件数形结合是解题切入点.8.B【分析】观察图形得到奇数点的规律为,A1(2,0),A3(5,1),A5(8,2),…,A2n−1(3n−1,n−1),由2021是奇数,且2021=2n−1,则可求A2n−1(3032,10解析:B【分析】观察图形得到奇数点的规律为,A 1(2,0),A 3(5,1),A 5(8,2),…,A 2n−1(3n−1,n−1),由2021是奇数,且2021=2n−1,则可求A 2n−1(3032,1010).【详解】35211(2,0),(5,1),(8,2)(31,1)n A A A A n n -⋯⋯--2462(3,2),(6,3),(9,4)(3,1)n A A A A n n ⋯⋯+∵212021n -=∴1011n =2021(3032,1010)A故选B .【点睛】本题考查点的坐标规律;熟练掌握平面内点的坐标,能够根据图形的变化得到点的坐标规律是解题的关键.二、填空题9.【分析】先根据非负数的性质列出方程求出x 、y 的值求x-y 的立方根.【详解】解:由题意得,x-2=0,y+1=0,解得x=2,y=-1,x-y=3,3的立方根是.【点睛】本题考查的是【分析】先根据非负数的性质列出方程求出x 、y 的值求x-y 的立方根.【详解】解:由题意得,x-2=0,y+1=0,解得x=2,y=-1,x-y=3,3【点睛】本题考查的是非负数的性质和立方根的概念,掌握几个非负数的和为0时,这几个非负数都为0是解题的关键.10.-1【分析】直接利用关于y 轴对称点的性质得出a ,b 的值进而得出答案.【详解】解:∵点A (a ,2019)与点是关于y 轴的对称点,∴a=-2020,b=2019,∴a+b=-1.故答案为:解析:-1【分析】直接利用关于y 轴对称点的性质得出a ,b 的值进而得出答案.【详解】解:∵点A (a ,2019)与点202()0,B b 是关于y 轴的对称点,∴a=-2020,b=2019,∴a+b=-1.故答案为:-1.【点睛】本题考查关于y 轴对称的点的坐标性质,解题关键是熟练掌握横纵坐标的关系. 11.α=β【详解】试题解析:当BF ∥DP 时,即:整理得:故答案为解析:α=β【详解】试题解析:360.ABC ADC A C ∠+∠+∠+∠=360.ABC ADC CBM CDN ∠+∠+∠+∠=.CBM CDN A C αβ∴∠+∠=∠+∠=+当BF ∥DP 时, ()1,2C PDC FBC CDN CBM ∠=∠+∠=∠+∠ 即:()1,2βαβ=+ 整理得:.αβ=故答案为.αβ=12.65°【分析】根据平行线的性质可得∠4的度数,再根据三角形外角的性质,即可求解.【详解】解:如图:∵a//b ,∠1=50°,∴∠4=∠1=50°,∵∠2=115°,∠2=∠3+∠4,解析:65°【分析】根据平行线的性质可得∠4的度数,再根据三角形外角的性质,即可求解.【详解】解:如图:∵a //b ,∠1=50°,∴∠4=∠1=50°,∵∠2=115°,∠2=∠3+∠4,∴∠3=∠2﹣∠4=115°﹣50°=65°.故答案为:65°.【点睛】此题考查了平行线的性质以及三角形外角的性质,熟练掌握相关基本性质是解题的关键. 13.【分析】根据翻折得到,根据,即可求出AC,再根据E 是中点即可求解.【详解】沿翻折使与重合故答案为:.【点睛】此题主要考查三角形内的线段求解,解题的关键是熟知全等三角形的性 解析:5【分析】根据翻折得到DEA DEC ∆≅∆,根据35ABC C AB BC AC ∆=++=,10ABC BCD C C AC ∆∆-==即可求出AC,再根据E 是中点即可求解.【详解】ABC ∆沿DE 翻折使A 与C 重合DEA DEC ∴∆≅∆,AD CD AE CE ∴==∴+=+=DB CD BD AD AB35ABC C AB BC AC ∆=++=25∆=++=DBC C DB BC DC10ABC BCD C C AC ∆∆-==152AE AC ∴== 故答案为:5.【点睛】此题主要考查三角形内的线段求解,解题的关键是熟知全等三角形的性质.14.【分析】先求出a ,b 的值,2和-3分别代表新运算中的a 、b ,把a 、b 的值代入所给的式子即可求值.【详解】解:∵=0,∴a=2,b= -3,∴==4-6+9=7,故答案为:7.解析:【分析】先求出a ,b 的值,2和-3分别代表新运算中的a 、b ,把a 、b 的值代入所给的式子即可求值.【详解】解:∵22(2)(3)a b -++=0,∴a=2,b= -3,∴22a b a ab b ⊗=++=2222(3)(3)+⨯-+-=4-6+9=7,故答案为:7.【点睛】本题是定义新运算题型,直接把对应的数字代入所给的式子可求出所要的结果.解题的关键是对号入座不要找错对应关系.15.(-2,6)或(-2,0).【分析】根据平行于y 轴的直线上点的横坐标相等,到一点距离相等的点有两个,位于该点的上下,可得答案.【详解】解:由点P (-2,3),PA ∥y 轴,PA=3,得在P 点解析:(-2,6)或(-2,0).【分析】根据平行于y 轴的直线上点的横坐标相等,到一点距离相等的点有两个,位于该点的上下,可得答案.【详解】解:由点P (-2,3),PA ∥y 轴,PA=3,得在P 点上方的A 点坐标(-2,6),在P 点下方的A 点坐标(-2,0),故答案为:(-2,6)或(-2,0).【点睛】本题考查了点的坐标,掌握平行于y 轴的直线上点的横坐标相等是解题关键,注意到一点距离相等的点有两个,以防遗漏.16.【分析】由题目中所给的点运动的特点找出规律,即可解答.【详解】由题意可知这点移动的速度是1个单位长度/每秒,设这点为(x ,y ) 到达(1,0)时用了3秒,到达(2,0)时用了4秒,从(2,解析:()19,20由题目中所给的点运动的特点找出规律,即可解答.【详解】由题意可知这点移动的速度是1个单位长度/每秒,设这点为(x,y)到达(1,0)时用了3秒,到达(2,0)时用了4秒,从(2,0)到(0,2)有四个单位长度,则到达(0,2)时用了4+4=8秒,到(0,3)时用了9秒;从(0,3)到(3,0)有六个单位长度,则到(3,0)时用9+6=15秒;依此类推到(4,0)用16秒,到(0,4)用16+8=24秒,到(0,5)用25秒,到(6,0)用36秒,到(6,6)时用36+6=42秒…,可得在x轴上,横坐标为偶数时,所用时间为x2秒,在y轴上时,纵坐标为奇数时,所用时间为y2秒,∵20×20=400∴第421秒时这个点所在位置的坐标为(19,20),故答案为:(19,20).【点睛】本题主要考查了点的坐标的变化规律,得出运动变化的规律是解决问题的关键.三、解答题17.(1)0;(2);(3)1;(4)3.【分析】(1)先算根号和平方,再根据实数的加减运算计算即可得出答案;(2)先去绝对值,再根据实数的加减运算法则计算即可得出答案;(3)先算绝对值、立方根解析:(1)0;(23)1;(4)3.【分析】(1)先算根号和平方,再根据实数的加减运算计算即可得出答案;(2)先去绝对值,再根据实数的加减运算法则计算即可得出答案;(3)先算绝对值、立方根和乘方,再根据实数的加减运算法则计算即可得出答案;(4)先算根号、绝对值和乘方,再根据实数的加减运算法则计算即可得出答案.【详解】解:(1)原式=-3+4-3=-2(2)原式=(3)原式=2+(-2)+1=1(4)原式=2+2-1=3本题考查的是实数的运算,难度不大,需要熟练掌握实数的加减运算法则.18.(1);(2).【分析】(1)根据平方根的性质,直接开方,即可解答;(2)根据立方根,直接开立方,即可解答.【详解】解:(1),.(2).【点睛】本题考查平方根、立方根,解析:(1)12311,44x x ==-;(2)32x =-.【分析】(1)根据平方根的性质,直接开方,即可解答;(2)根据立方根,直接开立方,即可解答.【详解】解:(1)216(1)49x249(1)16x 714x ,∴12311,44x x ==-.(2)38(1)125x3125(1)8x 512x32x =-.【点睛】本题考查平方根、立方根,解决本题的关键是熟记平方根、立方根的相关性质. 19.同旁内角互补,两直线平行;两直线平行,同位角相等;等量代换;内错角相等,两直线平行;两直线平行,内错角相等【分析】根据平行线的判定定理以及性质定理证明即可.【详解】证明:∵∠1+∠2=180解析:同旁内角互补,两直线平行;两直线平行,同位角相等;等量代换;内错角相等,两直线平行;两直线平行,内错角相等【分析】根据平行线的判定定理以及性质定理证明即可.【详解】证明:∵∠1+∠2=180°(已知),∴AD∥EF(同旁内角互补,两直线平行),∴∠3=∠D(两直线平行,同位角相等),又∵∠3=∠A(已知),∴∠D=∠A(等量代换),,∴AB∥CD(内错角相等,两直线平行),∴∠B=∠C(两直线平行,内错角相等).故答案为:同旁内角互补,两直线平行;两直线平行,同位角相等;等量代换;内错角相等,两直线平行;两直线平行,内错角相等.【点睛】本题主要考查了平行线的判定与性质,熟记平行线的判定定理与性质定理是解本题的关键.20.(1)A(-2,-2),B(3,1),C(0,2);(2)A1(-3,0),B1(2,3),C1(-1,4),图见详解;(3)7【分析】(1)利用点的坐标的表示方法分别写出点A、B、C的坐标;解析:(1)A(-2,-2),B(3,1),C(0,2);(2)A1(-3,0),B1(2,3),C1(-1,4),图见详解;(3)7【分析】(1)利用点的坐标的表示方法分别写出点A、B、C的坐标;(2)先利用点的坐标平移的规律写出点A、B、C的对应点A1、B1、C1的坐标,然后描点即可得到△A1B1C1;(3)利用一个矩形的面积分别减去三个三角形的面积计算三角形ABC的面积.【详解】解:(1)如图观察可得:A(-2,-2),B(3,1),C(0,2);(2)根据三角形ABC中任意一点M(a,b)与三角形A1B1C1的对应点的坐标为M1(a-1,b+2)可知,△ABC向左平移一个单位长度,向上平移两个单位长度,平移后坐标为:A1(-3,0),B1(2,3),C1(-1,4),平移后的△A1B1C1如下图所示:;(3)111545313247222ABC S ==⨯-⨯⨯-⨯⨯-⨯⨯. 【点睛】本题考查了作图-平移变换:确定平移后图形的基本要素有两个:平移方向、平移距离.作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.21.(1)a =﹣3,b =4﹣;(2)±3.【分析】(1)根据3<<4,即可求出a 、b 的值;(2)把a ,b 代入代数式计算求值,再求平方根即可.【详解】解:(1)∵3<<4,∴11<8+<12,解析:(1)a 153,b =4152)±3.【分析】(1)根据3154,即可求出a 、b 的值;(2)把a ,b 代入代数式计算求值,再求平方根即可.【详解】解:(1)∵3154,∴11<1512,4<8155,∵a 是815b 是815∴a =1511153,b =8154=415(2))(445415344155415121641559a b ++=++=+-=,∴4a+4b+5的平方根为:9±=±3.【点睛】本题考查了无理数的估算,求一个数的平方根等知识,能熟练估算15的近似值,进而求出a、b的值是解题关键.22.(1)正方形的面积为10,正方形的边长为;(2)见解析【分析】(1)利用正方形的面积减去4个直角三角形的面积即可求出正方形的面积,然后根据算术平方根的意义即可求出边长;(2)根据(1)的方法画解析:(1)正方形ABCD的面积为10,正方形ABCD的边长为10;(2)见解析【分析】(1)利用正方形的面积减去4个直角三角形的面积即可求出正方形ABCD的面积,然后根据算术平方根的意义即可求出边长;(2)根据(1)的方法画出图形,然后建立数轴,根据算术平方根的意义即可表示出结论.【详解】×3×1=10解:(1)正方形ABCD的面积为4×4-4×12则正方形ABCD的边长为10;×2×2=8,所以该正方形即为所求,如图建立(2)如下图所示,正方形的面积为4×4-4×12数轴,以数轴的原点为圆心,正方形的边长为半径作弧,分别交数轴于两点∴8∴弧与数轴的左边交点为8888【点睛】此题考查的是求网格中图形的面积和实数与数轴,掌握算术平方根的意义和利用数轴表示无理数是解题关键.23.(1)∠A+∠C+∠APC=360°;(2)见解析;(3)55°【分析】(1)首先过点P作PQ∥AB,则易得AB∥PQ∥CD,然后由两直线平行,同旁内角互补,即可证得∠A+∠C+∠APC=360解析:(1)∠A+∠C+∠APC=360°;(2)见解析;(3)55°【分析】(1)首先过点P作PQ∥AB,则易得AB∥PQ∥CD,然后由两直线平行,同旁内角互补,即可证得∠A+∠C+∠APC=360°;(2)作PQ∥AB,易得AB∥PQ∥CD,根据两直线平行,内错角相等,即可证得∠APC=∠A+∠C;∠FEG,(3)由(2)知,∠APC=∠PAB-∠PCD,先证∠BEF=∠PQB=110°、∠PEG=12∠BEG,根据∠PEH=∠PEG-∠GEH可得答案.∠GEH=12【详解】解:(1)∠A+∠C+∠APC=360°如图1所示,过点P作PQ∥AB,∴∠A+∠APQ=180°,∵AB∥CD,∴PQ∥CD,∴∠C+∠CPQ=180°,∴∠A+∠APQ+∠C+∠CPQ=360°,即∠A+∠C+∠APC=360°;(2)∠APC=∠A+∠C,如图2,作PQ∥AB,∴∠A=∠APQ,∵AB∥CD,∴PQ∥CD,∴∠C=∠CPQ,∵∠APC=∠APQ-∠CPQ,∴∠APC=∠A-∠C;(3)由(2)知,∠APC=∠PAB-∠PCD,∵∠APC=30°,∠PAB=140°,∴∠PCD=110°,∵AB∥CD,∴∠PQB=∠PCD=110°,∵EF∥BC,∴∠BEF=∠PQB=110°,∵EF∥BC,∴∠BEF=∠PQB=110°,∵∠PEG=∠PEF,∴∠PEG=12∠FEG,∵EH平分∠BEG,∴∠GEH=12∠BEG,∴∠PEH=∠PEG-∠GEH=1 2∠FEG-12∠BEG=12∠BEF=55°.【点睛】此题考查了平行线的性质以及角平分线的定义.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.。
北京市2019学年度第二学期七年级数学期中试卷【含答案及解析】
![北京市2019学年度第二学期七年级数学期中试卷【含答案及解析】](https://img.taocdn.com/s3/m/4725c5388bd63186bdebbcdb.png)
答案及解析】
姓名班级分数题号-二二三来自四五总分
得分
、单选题
1.4的算术平方根是()
A. 4B.±4C.2D.±2
4.如图所示的图案分别是奔驰、奥迪、大众、三菱汽车的车标,其中,可以看作由“基本 图案”经过平移得到的是()•
B. G IA
5.如图,要把河中的水引到水池A中,应在河岸B处(AB丄CD)开始挖渠才能使水渠的长 度最短,这样做依据的几何学原理是()
五、解答题
⑵
23.求下列各式中的•的值: ⑴x3-2=0;(2)I --
24.求下列各式中的•的取值范围:(1)恥!(2)
25.已知:如图,/1=Z2,ZC=ZD
求证:/A=ZF。
A.第一象限B.第二象限C.第三象限D.第四象限
三、单选题
9. 下图是利用平面直角坐标系画出的故宫博物院的主要建筑分布图,若这个坐标系分别以
0,-1),表示九龙壁的
)•
10.下列命题中,真命题是().
① 相等的角是对顶角;②同旁内角互补;③ 在同一平面内,若a//b,b//c,则a//c;
④ 末位是零的整数能被5整除.
“结果是否大于88? ”为一次操作•如果操作只进行一次就停止,则x的取值范围
17.若a、b为实数,且满足|a—2|0,贝Va=,b=
r4
18.J勺平方根是——;27的立方根是——
19•点P(—3,5)到x轴的距离为,至U y轴的距离为.
20.已知,A为象限内一点,且点的A坐标是二元一次方程小[-4【的一组解,请你写出一 个满足条件的点A坐标(写出一个即可).
A.①②B.③④C.①③D.②④
四、填空题
11.不等式x+1V4的正整数解为.
北京市2021年七年级下学期期中考试数学试卷3.doc
![北京市2021年七年级下学期期中考试数学试卷3.doc](https://img.taocdn.com/s3/m/d172bdf93169a4517623a305.png)
北京市 七年级下学期期中考试数学试卷A .81±B .3±C .3-D . 2.下列各数中的无理数是( ).A .14B .0.•3 C . D3.下列调查中,适宜采用全面调查方式的是( ).A. 调查春节联欢晚会在北京地区的收视率B. 了解全班同学参加社会实践活动的情况C. 调查某品牌食品的蛋白质含量D. 了解一批手机电池的使用寿命4.若0<m ,则点P (-3,2m )所在的象限是( ).A .第一象限B .第二象限C .第三象限D .第四象限 5.如右图所示,点E 在AC 的延长线上,下列条件中能判断...CD AB //( ) A. 43∠=∠ B. 21∠=∠C. DCE D ∠=∠D.180=∠+∠ACD D6.如图,直线a ∥b ,c 是截线.若∠2=4∠1, 则∠1的度数为( ).A .30°B .36°C .40°D .45° 7.若<m n ,则下列不等式中,正确的是( ).A. 44->-m nB.55>m nC. 33-<-m nD. 2121+<+m n8.下列命题中,真命题是( ).A .相等的角是对顶角B .同旁内角互补C .平行于同一条直线的两条直线互相平行D .垂直于同一条直线的两条直线互相垂直9.若一个正数的两个平方根分别是a+3 和2a-18,则这个正数为( ) A. 36 B. 64 C. 49 D.144 10.若关于x 的不等式0->mx n 的解集是15<x ,则关于x 的不等式EDC BA 4321()+>-m n x n m 的解集是( ). A .23<-x B .23>-x C .23<x D .23>x 二、填空题(每题2分共20分)11.点P (-2,1) 关于y 轴对称点的坐标是 .12.若30<<a b ,且a ,b 是两个连续的整数,则a b +的值为 . 13.如图,直线AB ,CD 相交于点O ,EO ⊥AB ,垂足为O .若∠EOD =20°,则∠COB 的度数为 °.14. 语句“x 的3倍与10的和小于或等于7”用不等式表示为 . 15.已知:3+-y x +y x 2+=0,则2x+y=16.服装厂为了估计某校七年级学生穿每种尺码校服的人数,从该校七年级学生中随机抽取了50名学生的身高数据(单位:cm ),绘制成了下面的频数分布表和频数分布直方图.(1)表中m = ,n = ;(2)身高x 满足160170x ≤<的校服记为L 号,则需要订购L 号校服的学生占被调查学生的百分数为 .17.在平面直角坐标系中,点A 的坐标为(3-,2).若线段AB ∥x 轴,且AB 的长为4,则点B 的坐标为 . 18.在平面直角坐标系xOy 中,直线l 经过点A (1-,0),点A 1,A 2,A 3,A 4,A 5,……按 如图所示的规律排列在直线l 上.若直线l 上 任意相邻两个点的横坐标都相差1、纵坐标也 都相差1,则A 8的坐标为 ;若 点A n (n 为正整数)的横坐标为202X ,则 n = .三、解答题(19题3+5=8分,20题5分,21题5分共18分) 19.计算:① ()310732-+ ②2(2+-+-20. 解不等式:3x -2(x -29)≥4x ,并把它的解集在数轴上表示出来. 解:21.解不等式组2674,42152+>-⎧⎪+-⎨≥⎪⎩.x x x x解:四.几何推理证明题( 22题5分,23题5分) 22.推理填空(共5分)如图,已知DE ∥BC ,DF 、BE 分别平分∠ADE 和∠ABC ,求证:∠1=∠2 证明:∵DE ∥BC ∴∠ADE =______ ∵DF 、BE 平分∠ADE 、∠ABC∴∠ADF =21∠ADE , ∠ =21∠ABC∴∠ADF =∠ABE∴______ ∥______ ( ) ∴∠1=∠2 ( )2123.已知:如图,AB∥DC,AC和BD相交于点O,E是CD上一点,F是OD上一点,且∠1=∠A.(1)求证:FE∥OC;(2)若∠B=40°,∠1=60°,求∠OFE的度数.(1)证明:五、解答题(本题共13分,第24题6分,第25题7分)24.某校学生会为了解该校同学对乒乓球、羽毛球、排球、篮球和足球五种球类运动项目的喜爱情况(每位同学必须且只能从中选择一项),随机选取了若干名同学进行抽样调查,并将调查结果绘制成了如图1,图2所示的不完整的统计图.(1)参加调查的同学共有____名,图2中乒乓球所在扇形的圆心角为_°;(2)在图1中补全条形统计图(标上相应数据);(3)若该校共有2400名同学,请根据抽样调查数据估计该校同学中喜欢羽毛球运动的人数.(3)解:25.如图在平面直角坐标系xOy中,△ABC三个顶点的坐标分别为A(5-,1),B(4-,4),C(1-,1-).将△ABC向右平移5个单位长度,再向下平移4个单位长度,得到△'''A B C,其中点'A,'B,'C分别为点A,B,C的对应点.(1)请在所给坐标系中画出△'''A B C,并直接写出点'C的坐标;(2)若AB边上一点P经过上述平移后的对应点为'P(x,y),用含x,y的式子表示点P的坐标;(直接写出结果即可)(3)求△'''A B C的面积.解:(1)点'C的坐标为;(2)点P的坐标为;(3)六、解答题(26题7分,27题6分28题6分,)26.在一次知识竞赛中,甲、乙两人进入了“必答题”环节.规则是:两人轮流答题,每人都要回答20个题,每个题回答正确得m 分,回答错误或放弃回答扣n 分.当甲、乙两人恰好都答完12个题时,甲答对了9个题,得分为39分;乙答对了10个题,得分为46分. (1)求m 和n 的值;(2)规定此环节得分不低于60分能晋级,甲在剩下的比赛中至少还要答对多少个题才能顺利晋级? 解:27.已知关于x 的不等式组⎪⎩⎪⎨⎧+>++-<a x x x x 4231)3(32 恰好只有四个整数解,求a 的取值范围.28.如图,在平面直角坐标系内放置一个直角梯形AOCD ,已知AD=3,AO=8,OC=5。
北京市2021年七年级下学期期中考试数学试卷4.doc
![北京市2021年七年级下学期期中考试数学试卷4.doc](https://img.taocdn.com/s3/m/38197dc3f18583d048645905.png)
7题图北京市 七年级下学期期中考试数学试卷一. 选择题:(每小题3分,共36分)1.已知y x >,下列不等式变形中错误..的是( ) A .99+>+y x B .99->-y x C .y x 99> D .y x ->-99 2. 如图,在数轴上有O 、A 、B 、C 、D 五点,根据图中各点所表示的数,判断表示18 的点会落在数轴上的哪条线段上( ) A.线段OA 上 B.线段AB 上 C.线段BC 上 D.线段CD 上3.下列命题中正确的有( ).① 相等的角是对顶角; ② 若a ∥b ,b ∥c ,则a ∥c ;③ 同位角相等; ④ 邻补角的平分线互相垂直. A .0个 B .1个 C .2个 D .3个 4.如图,将一个含30°角的三角板的直角顶点放在直尺的一边上, 如果∠1=115°,那么∠2的度数是( ).A .95°B .85°C .75°D .65°5.如图,利用直尺和三角尺过直线外一点画已知直线的平行线, 这种画法依据的是( ).A.同位角相等,两直线平行 B.两直线平行,同位角相等 C.内错角相等,两直线平行 D.两直线平行,内错角相等 6.一元一次不等式组的解集在数轴上表示如图所示, 则该不等式组的解集为( ).A .2->xB .3≤xC .32<≤-xD .32≤<-x 7.如图所示,下列各式正确的是( )A .∠A >∠2>∠1B .∠1>∠2>∠AC .∠2>∠1>∠AD .∠1>∠A >∠2218.不等式组20132x x x -⎧⎪⎨+-⎪⎩>,≥的解集是( )A .x ≥8B .x >2C .0<x <2D .2<x ≤89.若关于x 的一元一次不等式组20,2x m x m -<⎧⎨+>⎩有解,则m 的取值范围为( )A .m >-23 B .m ≤23 C .m >23 D .m ≤-2310.如图,在△ABC 中,D 为AB 边上一点,点E 在BC 的延长线上,DE 交AC 于点F ,下列关于∠A 、∠B 、∠E 、∠1的关系式中,正确的是( ).A .∠A +∠B =∠1+∠E B .∠A +∠B =∠1―∠EC .∠A ―∠B =∠1—∠ED .∠A -∠B =∠1+∠E11.把直角梯形ABCD 沿AD 方向平移到梯形EFGH , CD=24 ,WG=8m ,WC=6,求阴影部分的面积( )A.120B.168C.288D.无法计算12.如图①,一张四边形纸片ABCD , ∠A =50︒, ∠C =150︒.若将其按照图②所示方式折叠后,恰好 MD ′∥AB ,ND ′∥BC ,则∠D 的度数为( ). A . 70︒ B . 75︒ C .80︒ D .85︒二、填空题:(每小题2分,共24分) 13.259的平方根为 . 14.已知212+++b a =0,则 ab=_____________.15.一个正数的平方根是2-m 和3m+6,则m 的值是 .16.如图,已知∠A =62°,∠ACD =35°,∠ABE =20°.则∠BDC=__________, ∠BFC =__________ABECF1DBAD C BD ′折叠AC MN 图①图② EDD _H EBA17.a -b=2,a -c=3,则(b -c )3-3(b -c )+1=________.18.如图,0623,622,721=∠=∠=∠,则4∠的度数为 °.第18题图 第19题图19.将一副直角三角尺按如图所示放置,其中∠A=30°,∠ACB=90°, ∠E=45°,三角形板DCE 的直角顶点D 在AB 边上,边ED 与边AC 交于点F ,若EC ∥AB , 则∠AFE 的度数是 度.20.若不等式组841x x x m +<-⎧⎨>⎩,的解集为3x >,则m 的取值范围是_________21.若一个三角形三个外角的比是2:3:4, 则最大的内角的度数是_________22.如图, △ABC 中, ∠A :∠ABC :∠ACB = 3 : 4 : 5, BD 、CE 分别是边 AC 、AB 上的高, BD 、CE 交于点H , 则∠BHC 的度数为_______.23.已知∠ABC 的边BA 、BC 分别与∠DEF 的边ED 、EF 垂直, 垂足 分别是M 、N , 且∠ABC =60︒, 则∠DEF 的度数为______________.24.定义两种新的变换:任意一组数(m ,n ),规定:①()()f m n m n =-,,,例如,(2)(21)f =-,1,; ②()()g m n m n =-,,,例如,(2)(21)g =-,1,. 按照以上变换有:[(3)](3)(3)g f g -=--=-,4,4,4,那么[(5)]f g ,2= .__ _ _A DFCB E22题图三、计算题(每小题3分,共9分)25.()31488123-+-+--26.解不等式:51321,36x x -+-<并在数轴上表示它的解集.27.解不等式组 3(1)52,3171,22x x x x -<+⎧⎪⎨-≥-⎪⎩并写出该不等式组的整数解.四、填理由 (本题3 分)28.如图,已知∠1=∠3,CD ∥EF ,试说明∠1=∠4. 解:∵∠1=∠3又∠2=∠3 ( ) ∴∠1= _______∴______∥______( ) 又∵CD ∥EF ∴AB ∥_______∴∠1=∠4 ( )4321FEAD C B五、画图题 29. (3分)(1)作直线BE ∥AD 交DC 于E ;(2)连接AC ,作直线BF ∥AC交DC 的延长线于F ; (3)作AG ⊥DC 于G .30.(3分)已知,△ABC 中,∠C=90°,过BC 边上一点D ,作射线DE 交三角形的边于E ,构造所有与∠A 相等的角.六、证明题( 本题不需写理由)31(4分). 已知:如图,∠ABC =∠ADC ,BF 、DE 是∠ABC 、∠ADC 的角平分线,DE // BF .求证:DC // AB .七、应用题(5分)32.现有A ,B 两种商品,买2件A 商品和1件B 商品用了90元,买3件A 商品和2件B 商品用了160元.(1)求A ,B 两种商品每件各是多少元?(2)如果小亮准备购买A ,B 两种商品共10件,总费用不超过350元,但不低于300元,问有几种购买方案,哪种方案费用最低?AD BCABCD八、解答题:33(2分)已知 ,x y 都是实数,且338y x x =-+-+,求3x y +的立方根.34(5分)已知关于x 、y 的方程组⎩⎨⎧+=--=+3274m y x m y x 的解满足0x y >>.(1)求m 的取值范围; (2)化简34m m -+-.35.(4分)如图,在△ABC 中,∠B=∠C ,∠BAD=40°,且∠ADE=∠AED ,求∠CDE的度数.36.(2分)如图,点P 为长方形ABCD 的边AD 上一点,点O 为△PBC 中一点.(1)若12OBC PBC ∠=∠,12OCB PCB ∠=∠,且∠BOC=x ,写出PCD ABP ∠+∠的值____________.(3)若∠OBC =n 1∠PBC ,∠OCB =n1∠PCB )交于点P ,写出PCD ABP ∠+∠的值______________.答题纸一、 选择题(每小题3分,共36分)二、填空题(每小题2分,共24分) 13. ____35±__ 14. ___4___; 15.____-4____; 16. (1)___97 __(2)___117___;17. __-1____; 18.___108___ ; 19. ___75___; 20.___m ≤3_____;21.__100__; 22._135___ ; 23____60°,120°__ ;24._(-5,-2)____. 三、计算题(每小题3分,共9分) 25.()31488123-+-+--26.解不等式:51321,36x x -+-< 并在数轴上表示它的解集.X<10727.解不等式组 3(1)52,3171,22x x x x -<+⎧⎪⎨-≥-⎪⎩并写出该不等式组的整数解. -2,-1,0,1,,2,3,4四、填理由 (本题3 分)28.如图,已知∠1=∠3,CD ∥EF ,试说明∠1=∠4. 解:∵∠1=∠3又∠2=∠3 ( 对顶角相等 ) ∴∠1= __∠2____∴_AB_∥_CD (同位角相等,两直线平行 ) 又∵CD ∥EF ∴AB ∥__ EF ___∴∠1=∠4 (两直线平行,同位角相等 ) 五、画图题29.(3分)(1)作BE ∥AD 交DC 于E ;(2)连接AC ,作BF ∥AC交DC 的延长线于F ; (3)作AG ⊥DC 于G (略)30.(3分)已知,△ABC 中,∠C=90°,过BC 边上一点D ,作射线DE 交三角形的边于E ,构造与∠A 相等的角.(略)六、证明题( 本题不需写理由)31(4分). 已知:如图,∠ABC =∠ADC ,BF 、DE 是∠ABC 、∠ADC 的角平分线,DE // BF .求证:DC // AB .4321F E ADCBA DBCABCD七、应用题(5分)32.现有A ,B 两种商品,买2件A 商品和1件B 商品用了90元,买3件A 商品和2件B 商品用了160元.(1)求A ,B 两种商品每件各是多少元?(2)如果小亮准备购买A ,B 两种商品共10件,总费用不超过350元,但不低于300元,问有几种购买方案,哪种方案费用最低?解:(1)设A 商品每件x 元,B 商品每件y 元, 依题意,得,解得.答:A 商品每件20元,B 商品每件50元.(2)设小亮准备购买A 商品a 件,则购买B 商品(10﹣a )件解得5≤a≤6根据题意,a 的值应为整数,所以a=5或a=6.方案一:当a=5时,购买费用为20×5+50×(10﹣5)=350元; 方案二:当a=6时,购买费用为20×6+50×(10﹣6)=320元; ∵350>320∴购买A 商品6件,B 商品4件的费用最低.答:有两种购买方案,方案一:购买A 商品5件,B 商品5件;方案二:购买A 商品6件,B 商品4件,其中方案二费用最低. 八、解答题:33(2分)已知 ,x y 都是实数,且338y x x =--,求3x y +的立方根. 334(5分)已知关于x 、y 的方程组⎩⎨⎧+=--=+3274m y x m y x 的解满足0x y >>.(1)求m 的取值范围; (2)化简34m m -+-. m>5 =2m-735.(4分)如图,在△ABC 中,∠B=∠C ,∠BAD=40°,且∠ADE=∠AED ,求∠CDE的度数.20°36.(2分)如图,点P 为长方形ABCD 的边AD 上一点,点O 为△PBC 中一点.(1)若12OBC PBC ∠=∠,12OCB PCB ∠=∠,且∠BOC=x ,写出PCD ABP ∠+∠的值____2x-180°___. (3)若∠OBC =n 1∠PBC ,∠OCB =n1∠PCB )交于点P ,写出PCD ABP ∠+∠的值_nx-(n-1) 180°___.初一备课组。
2023-2024学年北京市西城区鲁迅中学七年级下学期期中数学试卷+答案解析
![2023-2024学年北京市西城区鲁迅中学七年级下学期期中数学试卷+答案解析](https://img.taocdn.com/s3/m/18e9072e30b765ce0508763231126edb6e1a761e.png)
2023-2024学年北京市西城区鲁迅中学七年级下学期期中数学试卷一、选择题:本题共8小题,每小题3分,共24分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.4的平方根是()A. B. C.2 D.2.已知是二元一次方程的解,则k的值是()A.2B.C.4D.3.如图,在数轴上表示某不等式组中的两个不等式的解集,则该不等式组的解集为A. B.C. D.4.如图,直线,直角三角板的直角顶点P在直线b上,,则为()A. B. C. D.5.若,则点在()A.第一象限B.第二象限C.第三象限D.第四象限6.下列命题中,是真命题的是()A.如果两条直线都与第三条直线平行,那么这两条直线也互相平行B.同旁内角相等,两直线平行C.过一点有且只有一条直线与已知直线平行D.同位角相等7.如图,已知直线,且在某平面直角坐标系中,x轴,y轴,若点A的坐标为,点B的坐标为,则点C在()A.第一象限B.第二象限C.第三象限D.第四象限8.《九章算术》是我国东汉初年编订的一部数学经典著作.在它的“方程”一章里,一次方程组是由算筹布置而成的.《九章算术》中的算筹图是竖排的,为看图方便,我们把它改为横排,如图1、图2,图中各行从左到右列出的算筹数分别表示未知数的系数与相应的常数项.把图1所示的算筹图用我们现在所熟悉的方程组形式表述出来,就是类似的,图2所示的算筹图我们可以表述为()A. B. C. D.二、填空题:本题共8小题,每小题3分,共24分。
9.若,则__________.10.已知a,b为两个连续的整数,且,则__________.11.平面直角坐标系中,点到x轴的距离是__________.12.如图,直线l与直线a,b分别相交,且,,则__________13.将“平行于同一条直线的两条直线平行”改写成“如果……那么……”的形式为__________.14.已知线段,轴,若点A的坐标为,则点B的坐标为__________.15.在平面直角坐标系xOy中,若将点A向左平移可得到点;若将点A向上平移可得到点,则点A的坐标是__________.16.如图,面积为的正方形ABCD的边AB在数轴上,点B表示的数为将正方形ABCD沿着数轴水平移动,移动后的正方形记为,点A,B,C,D的对应点分别为,,,,移动后的正方形与原正方形ABCD重叠部分图形的面积记为①当正方形ABCD向右移动1时,移动后的正方形与原正方形ABCD重叠部分图形的面积为__________;②当时,数轴上点表示的数是__________用含a的代数式表示三、解答题:本题共13小题,共104分。
北京市2021年七年级下学期期中考试数学试卷 (2)
![北京市2021年七年级下学期期中考试数学试卷 (2)](https://img.taocdn.com/s3/m/1407ef07b14e852459fb57ac.png)
北京市七年级下学期期中考试数学试卷一、精心选一选(每小题3分,共30分)1.(3分)在平面直角坐标系中,点P(2,3)在()A.第一象限B.第二象限C.第三象限D.第四象限考点:点的坐标.分析:点P(2,3)的横、纵坐标均为正,可确定在第一象限.解答:解:点P(2,3)的横、纵坐标均为正,所以点P在第一象限,故选A.点评:本题主要考查了平面直角坐标系中第二象限的点的坐标的符号特点.四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).2.(3分)(202X春•北京校级期中)下列各数中是无理数的是()A.3 B.C.D.考点:无理数.分析:根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,找出无理数.解答:解:=2,则3,,为有理数,为无理数.故选D.点评:本题考查了无理数的知识,注意掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.3.(3分)观察下面图案,在A、B、C、D四幅图案中,能通过图案(如图所示)的平移得到的是()A.B.C.D.考点:生活中的平移现象.分析:根据平移不改变图形的形状和大小可知.解答:解:将题图所示的图案平移后,可以得到的图案是C选项.故选:C.点评:本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生容易混淆图形的平移、旋转或翻转的概念.4.(3分)4的平方根是()A.±2 B.2 C.﹣2 D.16考点:平方根.分析:根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a 的一个平方根.解答:解:∵(±2 )2=4,∴4的平方根是±2.故选:A.点评:本题主要考查平方根的定义,解题时利用平方根的定义即可解决问题.5.(3分)已知点M(﹣9,1﹣a)在x轴上,则a=()A.0 B. 1 C. 2 D. 3考点:点的坐标.分析:根据x轴上点的纵坐标为0列出方程求解即可.解答:解:∵点M(﹣9,1﹣a)在x轴上,∴1﹣a=0,解得a=1.故选B.点评:本题考查了点的坐标,熟记x轴上点的纵坐标为0是解题的关键.6.(3分)如果不等式(a﹣3)x>a﹣3的解集是x>1,那么a的取值范围是()A.a<3 B.a>3 C.a<0 D.a>0考点:不等式的解集.分析:根据不等式的解集中不等号的方向不变进而得出a的取值范围.解答:解:∵不等式(a﹣3)x>a﹣3的解集是x>1,∴a﹣3>0,解得a>3.故选:B.点评:此题主要考查了不等式的解集,利用不等式的解集得出a的符号是解题关键.7.(3分)下列选项中,可以用来证明命题“若a2>1,则a>1”是假命题的反例是()A.a=﹣2 B.a=﹣1 C.a=1 D.a=2考点:反证法.分析:根据要证明一个结论不成立,可以通过举反例的方法来证明一个命题是假命题.解答:解:用来证明命题“若a2>1,则a>1”是假命题的反例可以是:a=﹣2,∵(﹣2)2>1,但是a=﹣2<1,∴A正确;故选:A.点评:此题主要考查了利用举例法证明一个命题错误,要说明数学命题的错误,只需举出一个反例即可这是数学中常用的一种方法.8.(3分)若a、b为实数,且满足|a﹣2|+=0,则b﹣a的值为()A.2 B.0 C.﹣2 D.以上都不对考点:非负数的性质:算术平方根;非负数的性质:绝对值.分析:首先根据绝对值与二次根式的非负性,得出a与b的值,然后代入b﹣a求值即可.解答:解:∵|a﹣2|+=0,∴a=2,b=0∴b﹣a=0﹣2=﹣2.故选C.点评:本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.9.(3分)如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()A.30° B.25° C.20° D.15°考点:平行线的性质.分析:本题主要利用两直线平行,同位角相等作答.解答:解:根据题意可知,两直线平行,同位角相等,∴∠1=∠3,∵∠3+∠2=45°,∴∠1+∠2=45°∵∠1=20°,∴∠2=25°.故选:B.点评:本题主要考查了两直线平行,内错角相等的性质,需要注意隐含条件,直尺的对边平行,等腰直角三角板的锐角是45°的利用.10.(3分)把一张正方形纸片按如图所示的方法对折两次后剪去两个直角,那么打开以后的形状是()A.六边形B.八边形C.十二边形D.十六边形考点:剪纸问题.分析:由平面图形的折叠及立体图形的表面展开图的特点结合实际操作解题.解答:解:此题需动手操作,因为剪去的角是直角,通过折叠可知是八边形.故选B.点评:本题主要考查了与剪纸相关的知识;动手操作的能力是近几年常考的内容,要掌握熟练.二.耐心填一填(每小题2分,共20分)11.(2分)(202X春•晋安区期末)把命题“对顶角相等”改写成“如果…那么…”的形式:如果两个角是对顶角,那么它们相等.考点:命题与定理.分析:命题中的条件是两个角相等,放在“如果”的后面,结论是这两个角的补角相等,应放在“那么”的后面.解答:解:题设为:对顶角,结论为:相等,故写成“如果…那么…”的形式是:如果两个角是对顶角,那么它们相等,故答案为:如果两个角是对顶角,那么它们相等.点评:本题主要考查了将原命题写成条件与结论的形式,“如果”后面是命题的条件,“那么”后面是条件的结论,解决本题的关键是找到相应的条件和结论,比较简单.12.(2分)(202X春•北京校级期中)化简:|﹣2|+2=2+.考点:实数的运算.分析:先去绝对值符号,再合并同类项即可.解答:解:原式=2﹣+2=2+.故答案为:2+.点评:本题考查的是实数的运算,熟知实数混合运算的法则是解答此题的关键.13.(2分)(2012•冷水江市三模)如图,已知AB∥CD,BC平分∠ABE,∠C=34°,则∠BED= 68°.考点:平行线的性质.分析:根据两直线平行,内错角相等求出∠ABC,再根据角平分线的定义求出∠ABE,然后利用两直线平行,内错角相等求解即可.解答:解:∵AB∥CD,∠C=34°,∴∠ABC=∠C=34°,∵BC平分∠ABE,∴∠ABE=2∠ABC=2×34°=68°,∵AB∥CD,∴∠BED=∠ABE=68°.故答案为:68°.点评:本题考查了两直线平行,内错角相等的性质,角平分线的定义,熟记平行线的性质是解题的关键.14.(2分)(202X春•北京校级期中)若a、b满足=7,则S=的取值范围是﹣≤s≤.考点:非负数的性质:算术平方根;解一元一次不等式组.专题:计算题.分析:运用非负数的性质,建立关于S的不等式组,有条件得,0≤3|b|≤,0≤2≤,从而解得﹣≤s≤.解答:解:∵3+5|b|=7,∴=(7﹣5|b|)≥0,∴0≤|b|≤,∴0≤3|b|≤∵|b|=(7﹣3),∴7﹣3≥0∴0≤≤,即0≤2≤,∵s=2﹣3|b|,∴S的最大值=,S最小值=﹣,∴S=的取值范围是﹣≤s≤.故答案为﹣≤s≤.点评:本题考查了非负数的性质﹣算术平方根和绝对值,以及解不等式,难点是确定a、b、s之间的关系.15.(2分)如图,将边长为2个单位的等边△ABC沿边BC向右平移1个单位得到△DEF,则四边形ABFD的周长为8个单位.考点:平移的性质.专题:操作型.分析:根据平移的基本性质作答.解答:解:根据题意,将边长为2个单位的等边△ABC沿边BC向右平移1个单位得到△DEF,故四边形ABFD的边长分别为AD=1个单位,BF=3个单位,AB=DF=2个单位;故其周长为8个单位.故答案为:8.点评:本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.16.(2分)已知点A(0,0),B(3,0),点C在y轴上,且△ABC的面积是6,则点C 的坐标为(0,4)或(0,﹣4).考点:三角形的面积;坐标与图形性质.分析:本题需先根据点C在y轴上,设出C点的坐标,有两种情况进行讨论,再根据三角形的面积公式,即可求出点C的坐标.解答:解:∵点C在y轴上∴设C点的坐标为:(0,y),又∵A(0,0),B(3,0),∴AB=3,当C点的坐标在x轴的上方时,根据△ABC的面积是6得:6=×AB×y6=y=4,∴C点的坐标是:(0,4);同理可证:当C点的坐标在x轴的下方时,C点的坐标是:(0,﹣4).故答案为:(0,4)(0,﹣4)点评:本题主要考查了三角形的面积,在解题时要根据三角形的面积公式进行计算是本题的关键.17.(2分)如图,已知C岛在A岛的北偏东60°方向,在B岛的北偏西45°的方向,那么∠ACB= 105度.考点:方向角.分析:连接AB.先求出∠CAB及∠ABC的度数,再根据三角形内角和是180°即可进行解答.解答:解:连接AB.∵C岛在A岛的北偏东60°方向,在B岛的北偏西45°方向,∴∠CAB+∠ABC=180°﹣(60°+45°)=75°,∵三角形内角和是180°,∴∠ACB=180°﹣∠CAB﹣∠ABC=180°﹣30°﹣45°=105°.故答案为:105.点评:本题考查的是方向角的概念及三角形内角和定理,根据题意得出∠CAB及∠ABC的度数是解答此题的关键.18.(2分)(2013•肇庆一模)若在实数范围内有意义,则x的取值范围是x≥2.考点:二次根式有意义的条件.专题:计算题.分析:根据式子有意义的条件为a≥0得到3x﹣6≥0,然后解不等式即可.解答:解:∵在实数范围内有意义,∴3x﹣6≥0,解得x≥2,∴x的取值范围为x≥2.故答案为:x≥2.点评:本题考查了二次根式有意义的条件:式子有意义的条件为a≥0.19.(2分)(202X春•西城区期中)如图所示,把直角梯形ABCD沿AD方向平移到梯形EFGH,HG=24cm,WG=8cm,WC=6cm,求阴影部分的面积为168cm2.考点:平移的性质.专题:计算题.分析:根据平移的性质得HG=CD=24,则DW=DC﹣WC=18,由于S阴影部分+S梯形EDWF=S梯+S梯形EDWF,所以S阴影部分=S梯形EDWF,然后根据梯形的面积公式计算.形DHGW解答:解:∵直角梯形ABCD沿AD方向平移到梯形EFGH,∴HG=CD=24,∴DW=DC﹣WC=24﹣6=18,∵S阴影部分+S梯形EDWF=S梯形DHGW+S梯形EDWF,∴S阴影部分=S梯形EDWF=(DW+HG)×WG=×(18+24)×8=168(cm2).故答案为168.点评:本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同;新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.20.(2分)(202X春•西城区期中)已知,如图,AB∥CD,直线a交AB、CD分别于点E、F,点M在线段EF上,P是直线CD上的一个动点,(点P不与F重合)(1)当点P在射线FC上移动时,∠FMP、∠FPM和∠AEF之间的数量关系是:∠AEF=∠FMP+∠FPM;(2)当点P在射线FD上移动时,∠FMP、∠FPM和∠AEF之间的数量关系是:∠FMP+∠FPM+∠AEF=180°.考点:平行线的性质.分析:(1)根据平行线的性质可得∠EFD=∠AEF,然后在△MFP中,利用三角形的外角的性质即可求解;(2)根据平行线的性质可得∠EFD=∠AEF,然后在△MFP中,利用三角形的内角和定理即可求解.解答:解:(1)∵AB∥CD,∴∠EFD=∠AEF,又∵∠EFD=∠FMP+∠FPM,∴∠AEF=∠FMP+∠FPM;(2)当点P在射线FD上移动时,如右图:∵AB∥CD,∴∠EFD=∠AEF,又∵∠FMP+∠FPM+∠EFD=180°,∴∠FMP+∠FPM+∠AEF=180°.故答案是:∠AEF=∠FMP+∠FPM,∠FMP+∠FPM+∠AEF=180°.点评:本题比较简单,考查的是平行线的性质及三角形内角与外角的关系.三、解答题(共50分)21.(4分)(202X春•北京校级期中)(1)已知:(x+1)2=16,求x的值.(2)计算:2(﹣1)+|﹣2|+.考点:实数的运算;平方根.专题:计算题.分析:(1)利用平方根定义开方即可求出x的值;(2)原式第一项利用去括号法则化简,第二项利用绝对值的代数意义化简,最后一项利用立方根定义计算即可得到结果.解答:解:(1)方程开方得:x+1=4或x+1=﹣4,解得:x=3或x=﹣5;(2)原式=2﹣2+2﹣﹣4=﹣4.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.22.(4分)(202X春•北京校级期中)解不等式3(2x+5)>2(4x+3).并将解集在数轴上表示出来.考点:解一元一次不等式;在数轴上表示不等式的解集.分析:去括号,移项,合并同类项,系数化成1,最后在数轴上表示出不等式的解集即可.解答:解:3(2x+5)>2(4x+3),6x+15>8x+6,6x﹣8x>6﹣15,﹣2x>﹣9,x<4.5,在数轴上表示不等式的解集为:.点评:本题考查了解一元一次不等式,在数轴上表示不等式的解集的应用,解此题的关键是能正确求出不等式的解集.23.(5分)(202X春•顺义区期末)完成下面的证明.已知:如图,D是BC上任意一点,BE⊥AD,交AD的延长线于点E,CF⊥AD,垂足为F.求证:∠1=∠2.证明:∵BE⊥AD,∴∠BED=90°(垂直定义).∵CF⊥AD,∴∠CFD=90°.∴∠BED=∠CFD.∴BE∥CF(内错角相等,两直线平行).∴∠1=∠2(两直线平行,内错角相等).考点:平行线的判定与性质.专题:推理填空题.分析:由BE垂直于AD,利用垂直的定义得到∠BED为直角,再由CF垂直于AD,得到∠CFD为直角,得到一对内错角相等,进而确定出BE与CF平行,利用两直线平行内错角相等即可得证.解答:证明:∵BE⊥AD,∴∠BED=90°(垂直定义),∵CF⊥AD,∴∠CFD=90°,∴∠BED=∠CFD,∴BE∥CF(内错角相等,两直线平行),∴∠1=∠2(两直线平行,内错角相等).故答案为:90;垂直的定义;90;内错角相等,两直线平行;两直线平行,内错角相等点评:此题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解本题的关键.24.(4分)计算:.考点:实数的运算.专题:计算题.分析:先根据算术平方根、绝对值的性质计算出各数,再根据实数混合运算的法则进行计算即可.解答:解:原式=3﹣﹣2﹣+1=2﹣2.点评:本题考查的是实数的运算,熟知实数混合运算的法则是解答此题的关键.25.(5分)(202X春•北京校级期中)解不等式组并求出不等式组的整数解.考点:解一元一次不等式组;一元一次不等式组的整数解.分析:先求出每个不等式的解集,再求出其公共部分,然后得到其整数解.解答:解:解不等式(1)得x>﹣2,解不等式(2)得x≤1,∴不等式组的解集为﹣2<x≤1,∴不等式组的整数解为﹣1、0、1.点评:本题考查了解一元一次不等式组和一元一次不等式组的整数解,熟悉不等式的性质是解题的关键.26.(3分)(202X春•北京校级期中)按要求画图:(1)作BE∥AD交DC于E;(2)连接AC,作BF∥AC交DC的延长线于F;(3)作AG⊥DC于G.考点:作图—基本作图.分析:(1)过点B作∠BEC=∠D即可得出答案;(2)延长DC,作∠BFC=∠ACD即可得出答案;(3)过点A作AG⊥CD,直接作出垂线即可.解答:解:(1)如图所示:BE即为所求;(2)如图所示:BF即为所求;(3)如图所示:AG即为所求.点评:此题主要考查了基本作图,正确根据要求作出图形是作图的基本能力.27.(4分)(202X春•北京校级期中)如图,在边长为1个单位的小正方形组成的网格中,△ABC的顶点都在小正方形的顶点上.(1)求出△ABC的面积;(2)将△ABC向左平移2个单位,再向上平移4个单位.请在图中画出平移后的△A′B′C′及△A′B′C′的高C′D′.考点:作图-平移变换.分析:(1)根据三角形的面积公式即可得出结论;(2)根据图形平移的性质画出平移后的△A′B′C′及△A′B′C′的高C′D′即可.解答:解:(1)S△ABC=×4×4=8;(2)如图所示.点评:本题考查的是作图﹣平移变换,熟知图形平移不变性的性质是解答此题的关键.28.(5分)(202X春•北京校级期中)某市统计资料表明,现在该市的城市建成区面积为1500平方千米,城市建成区园林绿地率为15%,计划五年后,该市城市建成区面积增加400平方千米,并且城市建成区园林绿地率超过20%,那么该市计划增加的城市建成区园林绿地面积应超过多少平方千米?考点:一元一次不等式的应用.分析:设该市计划增加的城市建成区园林绿地面积应为x平方千米.则依据题中的不等关系列出不等式进行计算.解答:解:设该市计划增加的城市建成区园林绿地面积应为x平方千米.根据题意,得.解得x>155.答:该市计划增加的城市建成区园林绿地面积应超过155平方千米.点评:本题考查了一元一次不等式的应用.解决问题的关键是读懂题意,依题意列出不等式进行求解.29.(6分)(202X春•北京校级期中)在平面直角坐标系xOy中,A(﹣3,0),B(1,4),BC∥y轴,与x轴相交于点C,BD∥x轴,与y轴相交于点D.(1)如图1,直接写出①C点坐标(1,0),②D点坐标(0,4);(2)如图1,直接写出△ABD的面积2;(3)在图1中,平移△ABD,使点D的对应点为原点O,点A、B的对应点分别为点A′、B′,画出图形,并解答下列问题:①AB与A′B′的关系是:AB∥A′B′,AB=A′B′,②四边形A A′OD的面积为12;(4)如图2,H(﹣,2)是AD的中点,平移四边形ACBD使点D的对应点为DO的中点E,直接写出图中阴影部分的面积是.考点:几何变换综合题.分析:(1)由点B的坐标,直接得出C、D两点的坐标即可;(2)△ABD的底是1,高是4,由此利用三角形的面积求得答案即可;(3)由平移的性质可知:①AB与A′B′平行且相等;②四边形A A′OD的底为4,高为3,由此求得面积即可;(4)利用原四边形ACBD的面积减去x轴以上空白四边形的面积即可.解答:解:(1)①C点坐标(1,0),②D点坐标(0,4);(2)△ABD的面积=×1×4=2;(3)如图;①AB与A′B′的关系是:AB∥A′B′,AB=A′B′;②四边形A A′OD的面积为4×3=12;(4)图中阴影部分的面积是:(1+4)×4×﹣(1+)×2×=.点评:此题考查几何变换中的平移,掌握点的坐标在平面直角坐标系中的平移特点以及基本平面图形的面积求法是解决问题的关键.30.(6分)(202X春•北京校级期中)如图,在四边形ABCD中,AB∥CD,∠A=110°,∠ABC=∠ADC,BE平分∠ABC,与CD相交于点E,DF平分∠ADC,与AB相交于点F.(1)求证:BE∥DF;(2)求∠BED的度数.考点:平行线的判定与性质.分析:(1)欲证明BE∥DF,只需推知∠FDE+∠BED=180°,依据“同旁内角互补,两直线平行”证得结论;(2)利用平行线的性质和角平分线的性质得到∠FDE=∠ADC=35°.然后再根据“两直线平行,同旁内角互补”得到:∠BED=180°﹣∠FDE=145°.解答:(1)证明:∵BE平分∠ABC,DF平分∠ADC,∴∠FBE=∠ABC,∠FDE=∠ADC.∵∠ABC=∠ADC,∴∠FBE=∠FDE.∵AB∥CD,∴∠FBE+∠BED=180°.∴∠FDE+∠BED=180°.∴BE∥DF;(2)解:∵AB∥CD,∴∠A+∠ADC=180°.∵∠A=110°,∴∠ADC=70°.∴∠FDE=∠ADC=35°.∵BE∥DF,∴∠BED=180°﹣∠FDE=145°.点评:本题考查了平行线的判定与性质.平行线的判定是由角的数量关系判断两直线的位置关系.平行线的性质是由平行关系来寻找角的数量关系.三.自学探究(每题4分)31.(4分)(202X春•大同期末)若不等式组有解,则k的取值范围是()A.k<2 B.k≥2 C.k<1 D.1≤k<2考点:解一元一次不等式组.专题:计算题.分析:根据不等式组的解集为两个不等式解集的公共部分,所以在有解的情况下,k的值必须小于2.解答:解:因为不等式组有解,根据口诀可知k只要小于2即可.故选A.点评:主要考查了已知一元一次不等式解集求不等式中的字母的值,同样也是利用口诀求解,但是要注意当两数相等时,解集也是x>2,不要漏掉相等这个关系.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到.32.(4分)若关于x的不等式的整数解共有4个,则m的取值范围是()A.6<m<7 B.6≤m<7 C.6≤m≤7 D.6<m≤7考点:一元一次不等式组的整数解.分析:首先确定不等式组的解集,先利用含m的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于m的不等式,从而求出m的范围.解答:解:由(1)得,x<m,由(2)得,x≥3,故原不等式组的解集为:3≤x<m,∵不等式的正整数解有4个,∴其整数解应为:3、4、5、6,∴m的取值范围是6<m≤7.故选:D.点评:本题是一道较为抽象的中考题,利用数轴就能直观的理解题意,列出关于m的不等式组,再借助数轴做出正确的取舍.二.填空题33.(3分)(2012春•朝阳区期末)由一些正整数组成的数表如下(表中下一行中数的个数是上一行中数的个数的2倍):第1行 2第2行 4 6第3行8 10 12 14……若规定坐标号(m,n)表示第m行从左向右第n个数,则(7,4)所表示的数是134;(5,8)与(8,5)表示的两数之积是12144;数2012对应的坐标号是(10,495).考点:规律型:数字的变化类.分析:根据每行的第一个数分别为:2,4=22,8=23,故第n行的第一个数为:2n,进而得出每一行的数字即可分别求出对应数字,再利用每行数字个数,得出2012所在位置.解答:解:根据每行的第一个数分别为:2,4=22,8=23,故第n行的第一个数为:2n,则(7,4)所表示的数是:∵第7行第一个数为:27=128,∴第4个数为:134;(5,8)所表示的数是:∵第5行第一个数为:25=32,∴第8个数为:46;(8,5)所表示的数是:∵第8行第一个数为:28=256,∴第5个数为264;∴(5,8)与(8,5)表示的两数之积是:46×264=12144;∵每一行的数字个数为:1=20,2=21,4=22,…第n行为:2n﹣1,∴20+21+22+…+29=1+2+4+8+16+32+64+128+256+512=1023,∵2012÷2=1006,1023﹣1006=17,∴数2012在第10行,从右向左数17个数,得出512﹣17=495,故数2012对应的坐标号是(10,495).故答案为:134;12144;(10,495).点评:此题主要考查了数字变化规律,利用每行中数字的个数以及每行第一个数字变化规律得出是解题关键.34.(3分)(202X春•北京校级期中)已知两个整数a、b,满足0<b<a<10,且是整数,那么数对(a,b)有7个.考点:一元一次不等式组的整数解.分析:由题意知,要使是整数,则分母a+b必须能被3整除,且a+b<18,然后分情况讨论即可.解答:解:∵0<b<a<10,∴a+b>a.∴使是整数,则分母a+b必须能被3整除,且a+b<18,∴a+b可选的值为3,6,9,12,15;①a+b=3或9时,只要满足a>b即可,有5组.(2,1)(8,1)(7,2)(6,3)(5,4);②a+b=6时,满足a>b且a被2整除,只有(4,2);③a+b=12时,满足a>b且a被4整除,只有(8,4);④a+b=15时,满足a>b且a被5整除,无解;综上所述有7组数满足.故答案为7.点评:考查了数对,分式的值为整数,需要从分式的意义,分母、分子的取值,综合考虑,此题还涉及了分类讨论思想,注意不要漏解,是一道易错的好题.35.(3分)(202X春•北京校级期中)现有100个整数a1,a2,a3,…,a99,a100,同时满足下列四个条件:①﹣1≤a i≤2(i=1,2,3,…,99,100);②a1+a2+a3+…+a99+a100=60;③a12+a22+a32+…+a992+a1002=160;④a13+a23+a33+…+a993+a1003=180.求a14+a24+a34+…+a994+a1004的平方根.考点:有理数无理数的概念与运算.专题:整体思想.分析:不妨设这100个整数中有a个﹣1,b个0,c个1,d个2,则a14+a24+a34+…+a994+a1004=a+c+16d.根据题意可得到关于a、b、c、d的方程组,求出a、b、c、d的值,就可解决问题.解答:解:设这100个整数中有a个﹣1,b个0,c个1,d个2,则a14+a24+a34+…+a994+a1004=a+c+16d.根据题意可得:,解得:,∴a+c+16d=30+50+16×20=400,即a14+a24+a34+…+a994+a1004=400.∴a14+a24+a34+…+a994+a1004的平方根为±20.点评:本题考查了解方程组、求平方根等知识,运用整体思想是解决本题的关键.36.(3分)在平面直角坐标系xOy中,我们把横、纵坐标都是整数的点叫做整点.已知点A(0,4),点B是x轴正半轴上的整点,记△AOB内部(不包括边界)的整点个数为m.当m=3时,点B的横坐标的所有可能值是3或4;当点B的横坐标为4n(n为正整数)时,m=6n﹣3(用含n的代数式表示).考点:点的坐标.专题:压轴题;规律型.分析:根据题意画出图形,根据图形可得当点B的横坐标为8时,n=2时,此时△AOB所在的四边形内部(不包括边界)每一行的整点个数为4×2+1﹣2,共有3行,所以此时△AOB 所在的四边形内部(不包括边界)的整点个数为(4×2+1﹣2)×3,因为四边形内部在AB上的点是3个,所以此时△AOB内部(不包括边界)的整点个数为m==9,据此规律即可得出点B的横坐标为4n(n为正整数)时,m的值.解答:解:如图:当点B在(3,0)点或(4,0)点时,△AOB内部(不包括边界)的整点为(1,1)(1,2)(2,1),共三个点,所以当m=3时,点B的横坐标的所有可能值是3或4;当点B的横坐标为8时,n=2时,△AOB内部(不包括边界)的整点个数m==9,当点B的横坐标为12时,n=3时,△AOB内部(不包括边界)的整点个数m==15,所以当点B的横坐标为4n(n为正整数)时,m==6n﹣3;另解:网格点横向一共3行,竖向一共是4n﹣1列,所以在y轴和4n点形成的矩形内部一共有3(4n﹣1)个网格点,而这条连线为矩形的对角线,与3条横线有3个网格点相交,所以要减掉3点,总的来说就是矩形内部网格点减掉3点的一半,即为[3(4n﹣1)﹣3]÷2=6n ﹣3.故答案为:3或4,6n﹣3.点评:此题考查了点的坐标,关键是根据题意画出图形,找出点B的横坐标与△AOB内部(不包括边界)的整点m之间的关系,考查数形结合的数学思想方法.四.附加题(4分)37.(4分)(202X春•北京校级期中)已知四边形AOCD是放置在平面直角坐标系内的梯形,其中O是坐标原点,点A,C,D的坐标分别为(0,8),(5,0),(3,8).若点P在梯形内,且△PAD的面积等于△POC的面积,△PAO的面积等于△PCD的面积.请直接写出点P的坐标(,3).考点:坐标与图形性质;三角形的面积.分析:利用△PAD的面积等于△POC的面积,得出EO的长,进而得出PE的长,即可得出P点坐标.解答:解:如图,过点P作PE⊥y轴于点E.因为△PAD的面积等于△POC的面积,所以3AE=5OE,即3(8﹣OE)=5OE,解得:OE=3所以△PAD的面积=△POC的面积=×3×5=7.5,△PAO的面积=△PCD的面积=[﹙3﹢5﹚×8÷2﹣2×7.5]÷2=8.5,则×8PE=8.5,即PE=,所以点P的坐标是(,3).故答案为:(,3).点评:此题主要考查了坐标与图形的性质以及三角形面积,利用三角形面积关系得出EO,PE的长是解题关键.。
人教版北京市鲁迅中学2014—2015学年第二学期七年级数学期中测试题含答案.docx
![人教版北京市鲁迅中学2014—2015学年第二学期七年级数学期中测试题含答案.docx](https://img.taocdn.com/s3/m/96b234aeed630b1c59eeb5d9.png)
北京市鲁迅中学七年级数学期中测试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,其中第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)共100分。
考试时间100分钟。
第Ⅰ卷(共 30分)一、精心选一选(共10个小题,每小题3分,共30分)在下列各题的四个备选答案中, 只有一个是正确的,请把正确结论的代号写在题后的括号内.1.若a<0,则点A (-a ,2)在 ( ).A .第一象限 B. 第二象限 C. 第三象限 D. 第四象限 2.不等式x +1≥2的解集在数轴上表示正确的是 ( ).3.下列各式中,正确的是 ( ).A. 2)2(2-=-B.332=-C. 393-=-D. 39±=±4.若a >b ,则下列不等式中错误..的是 ( ). A .a -1>b -1B. a +1>b +1C. 2a >2bD.-2a >-2b5.如图,利用直尺和三角尺过直线外一点画已知直线的平行线,这种画法依据的是 ( ). A .同位角相等,两直线平行 B. 两直线平行,同位角相等 C. 内错角相等,两直线平行 D. 两直线平行,内错角相等6. ()20.7-的平方根是 ( ) A .0.7- B .0.7± C .0.7 D .0.49 7.估计76 的大小应在( ).A.7~8之间B.8.0~8.5之间C. 8.5~9.0之间D. 9.0~9.5之间 8.适合条件∠ A=∠ B=21∠C 的三角形一定是( )(A )锐角三角形 (B )钝角三角形 (C )直角三角形 (D )任意三角形9.如图所示,将△ABC沿着XY方向平移一定的距离就得到△MNL,则下列结论中正确的有().①AM∥BN;②AM=BN;③BC=ML;④∠ACB=∠MNLA.1个B.2个C.3个D.4个10题图图①图②10.如图①,一张四边形纸片ABCD,∠A=50°,∠C=150°.若将其按照图②所示方式折叠后,恰好MD′∥AB,ND′∥BC,则∠D的度数为( ).A. 70°B. 75°C. 80°D. 85°第Ⅱ卷(非选择题共70分)二、细心填一填(共10个小题,每小题2分,共20分)11.点A(-1,-3)关于x轴对称点的坐标是,.关于原点对称的点坐标是。
2015北京市鲁迅中学初一(下)期中数 学
![2015北京市鲁迅中学初一(下)期中数 学](https://img.taocdn.com/s3/m/2574d9f7284ac850ac02420f.png)
2015北京市鲁迅中学初一(下)期中数 学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,其中第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)共100分。
考试时间100分钟。
第Ⅰ卷(共 30分)一、精心选一选(共10个小题,每小题3分,共30分)在下列各题的四个备选答案中, 只有一个是正确的,请把正确结论的代号写在题后的括号内. 1.若a<0,则点A (-a ,2)在 ( ). A .第一象限 B. 第二象限 C. 第三象限 D. 第四象限 2.不等式x +1≥2的解集在数轴上表示正确的是 ( ).3.下列各式中,正确的是 ( ). A. 2)2(2-=- B.332=- C. 393-=- D. 39±=±4.若a >b ,则下列不等式中错误..的是 ( ). A .a -1>b -1B. a +1>b +1C. 2a >2bD.-2a >-2b5.如图,利用直尺和三角尺过直线外一点画已知直线的平行线,这种画法依据的是 ( ). A .同位角相等,两直线平行 B. 两直线平行,同位角相等 C. 内错角相等,两直线平行 D. 两直线平行,内错角相等6. ()20.7-的平方根是 ( ) A .0.7- B .0.7± C .0.7 D .0.497.估计76 的大小应在 ( ). A.7~8之间 B.8.0~8.5之间 C. 8.5~9.0之间 D. 9.0~9.5之间 8. 适合条件∠A =∠B =21∠C 的三角形一定是 ( ) (A )锐角三角形 (B )钝角三角形 (C )直角三角形 (D )任意三角形9.如图所示,将△ABC 沿着XY 方向平移一定的距离就得到△MNL ,则下列结论中正确的有( ).①AM ∥BN ;②AM =BN ;③BC =ML ;④∠ACB =∠MNL A.1个 B.2个 C.3个 D.4个10题图 图① 图②10.如图①,一张四边形纸片ABCD ,∠A =50°,∠C =150°.若将其按照图②所示方式折叠后,恰好MD ′∥AB ,ND ′∥BC ,则∠D 的度数为 ( ).9题图A. 70°B. 75°C. 80°D. 85°第Ⅱ卷(非选择题 共70分)二、细心填一填(共10个小题,每小题2分,共20分)11.点A(-1,-3)关于x 轴对称点的坐标是 ,.关于原点对称的点坐标是 。
(完整版)七年级数学下册期中试卷及答案 - 百度文库
![(完整版)七年级数学下册期中试卷及答案 - 百度文库](https://img.taocdn.com/s3/m/6fb0f98182d049649b6648d7c1c708a1284a0af4.png)
(完整版)七年级数学下册期中试卷及答案 - 百度文库一、选择题1.4的算术平方根是()A .2-B .2±C .2D .12- 2.如图,△ABC 沿BC 所在直线向右平移得到△DEF ,已知EC =2,BF =8,则平移的距离为( )A .3B .4C .5D .6 3.在平面直角坐标系中,点(﹣1,m 2+1)一定在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 4.下列四个说法:①连接两点之间的线段叫做这两点间的距离;②经过直线外一点,有且只有一条直线与这条直线平行;③a 2的算术平方根是a ;④64的立方根是4.其中假命题的个数有( )A .1个B .2个C .3个D .4个5.如图,//AB CD ,AC 平分BAD ∠,B CDA ∠=∠,点E 在AD 的延长线上,连接EC ,2B CED ∠=∠,下列结论:①//BC AD ;②CA 平分BCD ∠;③AC EC ⊥;④ECD CED ∠=∠.其中正确的个数为( )A .1个B .2个C .3个D .4个 6.下列计算正确的是( ) A .93=±B .382-=C .2(7)5=D .222= 7.一副直角三角板如图所示摆放,它们的直角顶点重合于点O ,//CO AB ,则BOD ∠=( )A .30B .45︒C .60︒D .90︒8.如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O 1,O 2,O 3,… 组成一条平滑的曲线,点P 从原点O 出发,沿这条曲线向右运动,速度为每秒2π个单位长度,则第2021秒时,点P 的坐标是( )A .(2020,0)B .(2021,-1)C .(2021,1)D .(2022,0)二、填空题9.若()2320a b -++=,则a b +=______.10.点P 关于y 轴的对称点是(3,﹣2),则P 关于原点的对称点是__.11.在△ABC 中,AD 为高线,AE 为角平分线,当∠B=40º,∠ACD=60º,∠EAD 的度数为_________.12.如图,直线//AB CD ,若30ABE ∠=︒,150BEC ∠=︒,ECD ∠=______.13.如图,在△ABC 中,将∠B 、∠C 按如图所示的方式折叠,点B 、C 均落于边BC 上的点Q 处,MN 、EF 为折痕,若∠A=82°,则∠MQE= _________14.如图,在纸面上有一数轴,点A 表示的数为﹣1,点B 表示的数为3,点C 表示的数为3.若子轩同学先将纸面以点B 为中心折叠,然后再次折叠纸面使点A 和点B 重合,则此时数轴上与点C 重合的点所表示的数是_______.15.第二象限内的点()P x,y 满足x =9,2y =4,则点P 的坐标是___.16.如图,在平面直角坐标系中,有若干个整数点(纵横坐标都是整数的点),其顺序按图中“→”方向排列如(1,1),(2,1),(2,2),(1,2),(1,3),(2,3)…根据这个规律探索可得,第2021个点的坐标为_____.三、解答题17.计算:(1)23272-;(2)432+-.18.求下列各式中的x .(1)x 2-81=0(2)(x ﹣1)3=819.如图,已知∠1+∠AFE =180°,∠A =∠2,求证:∠A=∠C +∠AFC证明:∵ ∠1+∠AFE =180°∴ CD ∥EF ( , )∵∠A=∠2 ∴( )( , )∴ AB ∥CD ∥EF ( , )∴ ∠A = ,∠C = ,( , )∵ ∠AFE =∠EFC +∠AFC ,∴ = .20.在图所示的平面直角坐标系中表示下面各点:()0,3A ;()3,5B -;()3,5C --;()3,5D ;()5,7E ;(1)A 点到原点O 的距离是________;(2)将点B 向x 轴的负方向平移6个单位,则它与点________重合;(3)连接BD ,则直线BD 与y 轴是什么关系?(4)点E 分别到x 、y 轴的距离是多少?21.已知某正数的两个平方根分别是12a -和4,421a a b ++-的立方根是3,c 是13的整数部分.(1)求, , a b c 的值;(2)求2a b c ++的算术平方根.22.已知在44⨯的正方形网格中,每个小正方形的边长为1.(1)计算图①中正方形ABCD 的面积与边长.(2)利用图②中的正方形网格,作出面积为8的正方形,并在此基础上建立适当的数轴,在数轴上表示实数8和8-.23.如图1,MN ∥PQ ,点C 、B 分别在直线MN 、PQ 上,点A 在直线MN 、PQ 之间. (1)求证:∠CAB =∠MCA +∠PBA ;(2)如图2,CD ∥AB ,点E 在PQ 上,∠ECN =∠CAB ,求证:∠MCA =∠DCE ;(3)如图3,BF 平分∠ABP ,CG 平分∠ACN ,AF ∥CG .若∠CAB =60°,求∠AFB 的度数.【参考答案】一、选择题1.C解析:C【分析】根据算术平方根的计算方法求解即可;【详解】∵4=2,∴4的算术平方根是2.故答案选C.【点睛】本题主要考查了算术平方根的计算,准确计算是解题的关键.2.A【分析】根据平移的性质证明BE=CF即可解决问题.【详解】解:由平移的性质可知,BC=EF,∴BE=CF,∵BF=8,EC=2,∴BE+CF=8﹣2=6,∴CF=BE=3,故选:解析:A【分析】根据平移的性质证明BE=CF即可解决问题.【详解】解:由平移的性质可知,BC=EF,∴BE=CF,∵BF=8,EC=2,∴BE+CF=8﹣2=6,∴CF=BE=3,故选:A.【点睛】本题考查平移的性质,掌握平移的性质是解题的关键.3.B【分析】应先判断出点的横纵坐标的符号,进而判断点所在的象限.【详解】解:因为点(﹣1,m2+1),横坐标﹣1<0,纵坐标m2+1一定大于0,所以满足点在第二象限的条件.故选:B.【点睛】本题主要考查平面直角坐标系里象限的坐标,熟练掌握每个象限的坐标符号特点是解题的关键.4.C【分析】利用两点间的距离的定义、平行线的判定、算术平方根的定义及立方根的求法分别判断后即可确定正确的选项.【详解】解:①连接两点之间的线段的长度叫做这两点间的距离,故原命题错误,是假命题,符合题意;②经过直线外一点,有且只有一条直线与这条直线平行,正确,是真命题,不符合题意;③a2的算术平方根是a(a≥0),故原命题错误,是假命题,符合题意;2,故原命题错误,是假命题,符合题意;假命题有3个,故选:C.【点睛】本题主要考查真假命题,两点见的距离,平行线的判定,算术平方根,立方根的求法等知识点,熟知相关定义以及运算法则是解题的关键.5.D【分析】结合平行线性质和平分线判断出①②正确,再结合平行线和平分线根据等量代换判断出③④正确即可.【详解】解:∵AB//CD,∴∠1=∠2,∵AC平分∠BAD,∴∠2=∠3,∴∠1=∠3,∵∠B=∠CDA,∴∠1=∠4,∴∠3=∠4,∴BC//AD,∴①正确;∴CA平分∠BCD,∴②正确;∵∠B=2∠CED,∴∠CDA=2∠CED,∵∠CDA=∠DCE+∠CED,∴∠ECD=∠CED,∴④正确;∵BC//AD,∴∠BCE+∠AEC= 180°,∴∠1+∠4+∠DCE+∠CED= 180°,∴∠1+∠DCE = 90°,∴∠ACE= 90°,∴AC⊥EC,∴③正确故其中正确的有①②③④,4个,故选:D.【点睛】此题考查平行线的性质和角平分线的性质,难度一般,利用性质定理判断是关键.6.D【分析】根据算术平方根、立方根、二次根式的乘法逐项判断即可得.【详解】A3=,此项错误;B2=-,此项错误;C、27=≠D2==,此项正确;故选:D.【点睛】本题考查了算术平方根、立方根、二次根式的乘法,熟练掌握算术平方根与立方根是解题关键.7.C【分析】由AB //CO 得出∠BAO =∠AOC ,即可得出∠BOD .【详解】解://AB CO ,60OAB AOC ∴∠=∠=︒6090150BOC ∴∠=︒+︒=︒90AOC DOA DOA BOD ∠+∠=∠+∠=︒60AOC BOD ∴∠=∠=︒故选:C .【点睛】本题考查两直线平行内错角相等的知识点,掌握这一点才能正确解题.8.C【分析】根据图象可得移动4次图象完成一个循环,从而可得出点P 的坐标.【详解】解:半径为1个单位长度的半圆的周长为×2π×1=π,∵点P 从原点O 出发,沿这条曲线向右运动,速度为每秒个单位长解析:C【分析】根据图象可得移动4次图象完成一个循环,从而可得出点P 的坐标.【详解】解:半径为1个单位长度的半圆的周长为12×2π×1=π,∵点P 从原点O 出发,沿这条曲线向右运动,速度为每秒2π个单位长度, ∴点P 每秒走12个半圆,∴当点P 从原点O 出发,沿这条曲线向右运动,运动时间为1秒时,点P 的坐标为(1,1),当点P 从原点O 出发,沿这条曲线向右运动,运动时间为2秒时,点P 的坐标为(2,0), 当点P 从原点O 出发,沿这条曲线向右运动,运动时间为3秒时,点P 的坐标为(3,-1), 当点P 从原点O 出发,沿这条曲线向右运动,运动时间为4秒时,点P 的坐标为(4,0), 当点P 从原点O 出发,沿这条曲线向右运动,运动时间为5秒时,点P 的坐标为(5,1), 当点P 从原点O 出发,沿这条曲线向右运动,运动时间为6秒时,点P 的坐标为(6,0), …,∵2021÷4=505余1,∴P 的坐标是(2021,1),故选:C .【点睛】此题考查了点的规律变化,解答本题的关键是仔细观察图象,得到点的变化规律,解决问题.二、填空题9.1【分析】根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解.【详解】解:根据题意得,a-3=0,b+2=0,解得a=3,b= -2,所以3+(-2)=1.故答案为1.解析:1【分析】根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解.【详解】解:根据题意得,a-3=0,b+2=0,解得a=3,b= -2,+=3+(-2)=1.所以a b故答案为1.【点睛】本题考查平方数非负数,算术平方根非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.10.【分析】直接利用关于y轴对称点的性质得出P点坐标,再利用关于原点对称点的性质得出答案.【详解】解:∵点P关于y轴的对称点是,∴点,则P关于原点的对称点是.故答案为:.【点睛】本题考3,2解析:()【分析】直接利用关于y轴对称点的性质得出P点坐标,再利用关于原点对称点的性质得出答案.【详解】3,-2,解:∵点P关于y轴的对称点是()∴点()3,2P --,则P 关于原点的对称点是()3,2.故答案为:()3,2.【点睛】本题考查关于x 轴、y 轴对称的点的坐标求法、关于原点对称的点的坐标求法,牢记相关性质是解题关键.11.10°或40°;【分析】首先根据三角形的内角和定理求得∠BAC ,再根据角平分线的定义求得∠BAE ,再根据三角形的一个外角等于和它不相邻的两个内角和求得∠AED ,最后根据直角三角形的两个锐角互余即解析:10°或40°;【分析】首先根据三角形的内角和定理求得∠BAC ,再根据角平分线的定义求得∠BAE ,再根据三角形的一个外角等于和它不相邻的两个内角和求得∠AED ,最后根据直角三角形的两个锐角互余即可求解.【详解】解:当高AD 在△ABC 的内部时.∵∠B=40°,∠C=60°,∴∠BAC=180°-40°-60°=80°,∵AE 平分∠BAC ,∴∠BAE=12∠BAC=40°,∵AD ⊥BC ,∴∠BDA=90°,∴∠BAD=90°-∠B=50°,∴∠EAD=∠BAD-∠BAE=50°-40°=10°.当高AD 在△ABC 的外部时.同法可得∠EAD=10°+30°=40°故答案为10°或40°.【点睛】此题考查三角形内角和定理,角平分线的定义,三角形的外角性质,解题关键在于求出∠BAE 的度数12.60°.【分析】过点E 作EF ∥AB ,由平行线的性质,先求出∠CEF=120°,即可求出的度数.【详解】解:过点E 作EF ∥AB ,如图:∴,∴,,∵,∴∠CEF=120°,∴;故答解析:60°.【分析】过点E 作EF ∥AB ,由平行线的性质,先求出∠CEF =120°,即可求出ECD ∠的度数.【详解】解:过点E 作EF ∥AB ,如图:∴////EF AB CD ,∴30BEF ABE ∠=∠=︒,180ECD CEF ∠+∠=︒,∵150BEC ∠=︒,∴∠CEF =120°,∴18012060ECD ∠=︒-︒=︒;故答案为:60°.【点睛】本题考查了平行线的性质,解题的关键是掌握平行线的性质,正确的作出辅助线,从而进行解题.13.【分析】根据折叠的性质得到,,再根据的度数即可求出的度数,再根据求解即可.【详解】解:∵折叠,∴,,∵,∴,∴.故答案是:.【点睛】本题考查折叠问题,解题的关键是掌握折叠的性质解析:82︒【分析】根据折叠的性质得到B MQN ∠=∠,C EQF ∠=∠,再根据A ∠的度数即可求出MQN EQF ∠+∠的度数,再根据()180MQE MQN EQF ∠=︒-∠+∠求解即可.【详解】解:∵折叠,∴B MQN ∠=∠,C EQF ∠=∠,∵82A ∠=︒,∴1808298MQN EQF B C ∠+∠=∠+∠=︒-︒=︒,∴()1801809882MQE MQN EQF ∠=︒-∠+∠=︒-︒=︒.故答案是:82︒.【点睛】本题考查折叠问题,解题的关键是掌握折叠的性质.14.4+或6﹣或2﹣.【分析】先求出第一次折叠与A 重合的点表示的数,然后再求两点间的距离即可;同理再求出第二次折叠与C 点重合的点表示的数即可.【详解】解:第一次折叠后与A 重合的点表示的数是:3+解析:62【分析】先求出第一次折叠与A 重合的点表示的数,然后再求两点间的距离即可;同理再求出第二次折叠与C 点重合的点表示的数即可.【详解】解:第一次折叠后与A 重合的点表示的数是:3+(3+1)=7.与C 重合的点表示的数:3+(36 第二次折叠,折叠点表示的数为:12(3+7)=5或12(﹣1+3)=1.此时与数轴上的点C 重合的点表示的数为:5+(5﹣11)=2故答案为:62【点睛】本题主要考查了数轴上的点和折叠问题,掌握折叠的性质是解答本题的关键.15.(-9, 2)【分析】点在第二象限内,那么其横坐标小于,纵坐标大于,进而根据所给的条件判断具体坐标.【详解】∵点在第二象限,∴,,又∵,,∴,,∴点的坐标是.【点睛】本题主要考查解析:(-9, 2)【分析】点在第二象限内,那么其横坐标小于0,纵坐标大于0,进而根据所给的条件判断具体坐标.【详解】∵点()P x y ,在第二象限,∴0x <,0y >,又∵9x =,24y =,∴9x =-,2y =,∴点P 的坐标是()92-,. 【点睛】本题主要考查了绝对值的性质和有理数的乘方以及平面直角坐标系中第二象限的点的坐标的符号特点,记住各象限内点的坐标的符号是解决的关键.16.(45,5)【分析】观察图形可知,以最外边的矩形边长上的点为准,点的总个数等于正方形直线上,最右边的点的横坐标的平方,并且点的横坐标是奇数时,最后以横坐标为该数,纵坐标为1结束,当右下角的点横坐解析:(45,5)【分析】观察图形可知,以最外边的矩形边长上的点为准,点的总个数等于正方形1y =直线上,最右边的点的横坐标的平方,并且点的横坐标是奇数时,最后以横坐标为该数,纵坐标为1结束,当右下角的点横坐标是偶数时,以偶数为横坐标,纵坐标为右下角横坐标的偶数的点结束,根据此规律解答即可.【详解】解:根据图形,以最外边的矩形边长上的点为准,点的总个数等于1y =直线上最右边的点的横坐标的平方,例如:右下角的点的横坐标为1,共有1个,211=,右下角的点的横坐标为2时,如下图点(2,1)A ,共有4个,242=,右下角的点的横坐标为3时,共有9个,293=,右下角的点的横坐标为4时,如下图点(4,1)B ,共有16个,2164=,⋯右下角的点的横坐标为n 时,共有2n 个, 2452025=,45是奇数,∴第2025个点是(45,1),202520214-=,点是(45,1)向上平移4个单位,∴第2021个点是(45,5).故答案为:(45,5).【点睛】本题考查了点的坐标的规律变化,观察出点的个数按照平方数的规律变化是解题的关键.三、解答题17.(1)-1;(2).【分析】(1)按照立方根的定义与平方的含义分别计算,再求差即可;(2)按照算术平方根的含义与绝对值的应用先化简,再合并即可.【详解】解:(1)原式.(2)原式.【点解析:(1)-1;(2)4.【分析】(1)按照立方根的定义与平方的含义分别计算,再求差即可;(2)按照算术平方根的含义与绝对值的应用先化简,再合并即可.【详解】=-=-.解:(1)原式341(2)原式224=+【点睛】本题考查的是立方根,乘方,算术平方根,绝对值的运算,实数的加减运算,掌握运算法则是解题关键.18.(1)x=±9;(2)x=3【分析】(1)方程整理后,利用平方根定义开方即可求出解;(2)利用立方根定义开立方即可求出解.【详解】解:(1)方程整理得:x2=81,开方得:x=±9;(解析:(1)x=±9;(2)x=3【分析】(1)方程整理后,利用平方根定义开方即可求出解;(2)利用立方根定义开立方即可求出解.【详解】解:(1)方程整理得:x2=81,开方得:x=±9;(2)方程整理得:(x-1)3=8,开立方得:x-1=2,解得:x=3.【点睛】本题考查了平方根、立方根,熟练掌握各自的定义是解本题的关键.19.同旁内角互补两直线平行;AB∥CD;同位角相等,两直线平行;两条直线都与第三条直线平行,则这两直线也互相平行;∠AFE,∠EFC;两直线平行,内错角相等;∠A,∠C+∠AFC .【分析】根据同旁解析:同旁内角互补两直线平行;AB∥CD;同位角相等,两直线平行;两条直线都与第三条直线平行,则这两直线也互相平行;∠AFE,∠EFC;两直线平行,内错角相等;∠A,∠C+∠AFC.【分析】根据同旁内角互补,两直线平行可得 CD∥EF,根据∠A=∠2利用同位角相等,两直线平行,AB∥CD,根据平行同一直线的两条直线平行可得AB∥CD∥EF根据平行线的性质可得∠A=∠AFE,∠C=∠EFC,根据角的和可得∠AFE =∠EFC+∠AFC即可.【详解】证明:∵∠1+∠AFE=180°∴ CD∥EF(同旁内角互补,两直线平行),∵∠A=∠2 ,∴(AB∥CD)(同位角相等,两直线平行),∴AB∥CD∥EF(两条直线都与第三条直线平行,则这两直线也互相平行)∴∠A= ∠AFE,∠C= ∠EFC,(两直线平行,内错角相等)∵∠AFE =∠EFC+∠AFC,∴∠A = ∠C+∠AFC.故答案为同旁内角互补两直线平行;AB∥CD;同位角相等,两直线平行;两条直线都与第三条直线平行,则这两直线也互相平行;∠AFE,∠EFC;两直线平行,内错角相等;∠A,∠C+∠AFC.【点睛】本题考查平行线的性质与判定,角的和差,掌握平行线的性质与判定是解题关键.20.(1)3;(2)C;(3)平行;(4)7,5【分析】先在平面直角坐标中描点.(1)根据两点的距离公式可得A点到原点O的距离;(2)找到点B向x轴的负方向平移6个单位的点即为所求;(3)横坐解析:(1)3;(2)C;(3)平行;(4)7,5【分析】先在平面直角坐标中描点.(1)根据两点的距离公式可得A点到原点O的距离;(2)找到点B向x轴的负方向平移6个单位的点即为所求;(3)横坐标相同的两点所在的直线与y轴平行;(4)点E分别到x、y轴的距离分别等于纵坐标和横坐标的绝对值.【详解】解:(1)∵A(0,3),∴A点到原点O的距离是3;(2)将点B向x轴的负方向平移6个单位,则坐标为(-3,-5),与点C重合;(3)如图,BD与y轴平行;(4)∵E (5,7),∴点E 到x 轴的距离是7,到y 轴的距离是5.【点睛】本题考查了平面内点的坐标的概念、平移时点的坐标变化规律,及坐标轴上两点的距离公式.本题是综合题型,但难度不大.21.(1),,c=4;(2)4【分析】(1)由题意可得出,得出a 的值,代入中得出b 的值,再根据即可得出c 的值;(2)代入a 、b 、c 的值求出代数式的值,再求算术平方根即可.【详解】解:(1)∵某解析:(1)5a =,4b =,c=4;(2)4【分析】(1)由题意可得出(12)(4)0a a -++=,得出a 的值,代入3421327a b +-==中得出b 的值,再根据3134<即可得出c 的值;(2)代入a 、b 、c 的值求出代数式的值,再求算术平方根即可.【详解】解:(1)∵某正数的两个平方根分别是12a -和4a∴(12)(4)0a a -++=∴5a =又∵421a b +-的立方根是3∴3421327a b +-==∴4b =又∵3134<,c 13∴3c =(2)2524316a b c ++=+⨯+=故2a b c ++的算术平方根是4.【点睛】本题考查的知识点是平方根、算术平方根、立方根、估算无理数的大小,属于基础题目,解此题的难点在于c 值的确定,学会用“逼近法”求无理数的整数部分是解此题的关键. 22.(1)正方形的面积为10,正方形的边长为;(2)见解析【分析】(1)利用正方形的面积减去4个直角三角形的面积即可求出正方形的面积,然后根据算术平方根的意义即可求出边长;(2)根据(1)的方法画解析:(1)正方形ABCD 的面积为10,正方形ABCD 的边长为10;(2)见解析【分析】(1)利用正方形的面积减去4个直角三角形的面积即可求出正方形ABCD 的面积,然后根据算术平方根的意义即可求出边长;(2)根据(1)的方法画出图形,然后建立数轴,根据算术平方根的意义即可表示出结论.【详解】解:(1)正方形ABCD 的面积为4×4-4×12×3×1=10则正方形ABCD 的边长为10;(2)如下图所示,正方形的面积为4×4-4×12×2×2=8,所以该正方形即为所求,如图建立数轴,以数轴的原点为圆心,正方形的边长为半径作弧,分别交数轴于两点∴8∴弧与数轴的左边交点为8888【点睛】此题考查的是求网格中图形的面积和实数与数轴,掌握算术平方根的意义和利用数轴表示无理数是解题关键.23.(1)证明见解析;(2)证明见解析;(3)120°.【分析】(1)过点A 作AD ∥MN ,根据两直线平行,内错角相等得到∠MCA =∠DAC ,∠PBA =∠DAB ,根据角的和差等量代换即可得解;(2)解析:(1)证明见解析;(2)证明见解析;(3)120°.【分析】(1)过点A作AD∥MN,根据两直线平行,内错角相等得到∠MCA=∠DAC,∠PBA=∠DAB,根据角的和差等量代换即可得解;(2)由两直线平行,同旁内角互补得到∴、∠CAB+∠ACD=180°,由邻补角定义得到∠ECM+∠ECN=180°,再等量代换即可得解;(3)由平行线的性质得到,∠FAB=120°﹣∠GCA,再由角平分线的定义及平行线的性质得到∠GCA﹣∠ABF=60°,最后根据三角形的内角和是180°即可求解.【详解】解:(1)证明:如图1,过点A作AD∥MN,∵MN∥PQ,AD∥MN,∴AD∥MN∥PQ,∴∠MCA=∠DAC,∠PBA=∠DAB,∴∠CAB=∠DAC+∠DAB=∠MCA+∠PBA,即:∠CAB=∠MCA+∠PBA;(2)如图2,∵CD∥AB,∴∠CAB+∠ACD=180°,∵∠ECM+∠ECN=180°,∵∠ECN=∠CAB∴∠ECM=∠ACD,即∠MCA+∠ACE=∠DCE+∠ACE,∴∠MCA=∠DCE;(3)∵AF∥CG,∴∠GCA+∠FAC=180°,∵∠CAB=60°即∠GCA+∠CAB+∠FAB=180°,∴∠FAB=180°﹣60°﹣∠GCA=120°﹣∠GCA,由(1)可知,∠CAB=∠MCA+∠ABP,∵BF平分∠ABP,CG平分∠ACN,∴∠ACN=2∠GCA,∠ABP=2∠ABF,又∵∠MCA=180°﹣∠ACN,∴∠CAB=180°﹣2∠GCA+2∠ABF=60°,∴∠GCA﹣∠ABF=60°,∵∠AFB+∠ABF+∠FAB=180°,∴∠AFB=180°﹣∠FAB﹣∠FBA=180°﹣(120°﹣∠GCA)﹣∠ABF=180°﹣120°+∠GCA﹣∠ABF=120°.【点睛】本题主要考查了平行线的性质,线段、角、相交线与平行线,准确的推导是解决本题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北京市鲁迅中学初一年级数学期中测试题
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)二部分,其中第Ⅰ卷(选择题)和第Ⅱ卷共100分。
另附加题20分。
考试时间100分钟。
第Ⅰ卷(共 30分)
选择题:本大题共10小题,每小题3分,共30分. 在每小题的4个选项中,只有一项是符合题目要求的.
1.以下列各组线段为边,能组成三角形的是( ) A .2cm ,3cm ,5cm B .5cm ,6cm ,10cm C .1cm ,1cm ,3cm D .3cm ,4cm ,9cm
2.如果点A (x ,y )在第三象限,则点B (-x ,y -1)在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限
3.-8的立方根与4的平方根的和是 ( ) A 、0 B 、0或4 C 、4 D 、0或-4
4.下列各式中,正确的是( )
A.
±±34 B.
34; C.
±38
±3
4
5.下列说法正确的是: ( ) A .5-是25的平方根 B .25的平方根是5- C .5-是2(5)-的算术平方根 D .5±是2(5)-的算术平方根
6.点P(a,b)在第四象限,则点P 到x 轴的距离是( )
A.a
B.b
C.│a │
D.│b │ 7.若一个多边形的每个外角都等于60°,则它的内角和等于( ) A .180° B.720° C.1080° D.540°
8.一个三角形的两边长分别是3和7,且第三边长为整数,这样的三角形周长最大的值为( ) A .15 B .16 C .18 D .19
9.同一平面内的四条直线满足a ⊥b ,b ⊥c ,c ⊥d ,则下列式子成立的是( ). A .a ∥b B .b ⊥d C .a ⊥d D .b ∥c
10.两架编队飞行(即平行飞行)的两架飞机A 、B 在坐标系中的坐标分别为A (-1,2)、
B (-2,3),当飞机A 飞到指定位置的坐标是(2,-1)时,飞机B 的坐标是( ) .
A.(l ,5)
B.(-4,5) C .(1,0) D.(-5,6)
第Ⅱ卷(共70分)
一、 填空题:本大题共10小题,每空2分,共20分.把答案填在题中横线上. 1.36的平方根是___________,81的算术平方根是______,
2.38
7
-1=________ 3.若2-a + | b 2-9 | = 0,则ab = ____________
2
1
4.已知a ,b ,c 是△ABC 的三边,化简:|a +b -c|+|b -a -c|-|c +b -a|=________.
5.如图,折叠宽度相等的长方形纸条,若∠1=630,则∠2=______ .
6.在数轴上离原点的距离为35的点表示的数_______________
7.在平面直角坐标系中,点A 的坐标为(-1,3),线段AB ∥X 轴,且AB=4,则点B 的坐标为 .
8.如果一个多边形的边数增加1倍,它的内角和就为2160°,那么原来那个多边形是______边形.
9.如右图,AB∥CD,∠A=34°,∠C=70°,则∠F=_____°
第5题
10.如图,直角△ABC 的周长为2017,在其内部有5个小直角三角形,且这5个小直角三角形都有一条边与BC 平行,则这5个小直角三角形的周长之和是 。
三、计算题: (每小题5分) 1.(1)100254-+
; (2) 3
3
3
27125
1
2
5
81---
2.求x 的值:(1) ()25122
=-x ; (2) ()375433
-=-x ;
A
B
C
D
E
F
C
B
A
第10题
第9题
四、证明与解答(每题6分)
1、如图,已知:AB ∥DE ,∠ABC+∠DEF=180°, 求证:BC ∥EF 。
G
2.等腰三角形的两边长a 、b 满足|a -4|+(b -9)2=0.求这个等腰三角形的周长.
3.如图,已知AD ,AE 分别是△ABC 的高和中线,AB =6 cm ,AC =8 cm ,BC =10 cm , ∠CAB=90°, 求:
(1)△ABC 的面积; (2)AD 的长;
(3)△ACE 和△ABE 的周长的差.
A B C D
F
E
4.如图,在四边形ABCD中,∠A=∠C=90°,BE平分∠ABC,DF平分∠ADC.则BE与DF有何位置关系?试说明理由.
5.如图,在直角坐标系中,A(-1,3),B(3,-2).
(1)求ΔAOB的面积;
(2)设AB交y轴于点C,求C点的坐标.
附加题:(20分)
1.如图,在第1个△ABA 1中,∠B=40°,∠BAA 1=∠BA 1A ,在A 1B 上取一点C ,延长AA 1到A 2,使
得在第2个△A 1CA 2中,∠A 1CA 2=∠A 1 A 2C ;在A 2C 上取一点D ,延长A 1A 2到A 3,使得在第3个△A 2DA 3中,∠A 2DA 3=∠A 2 A 3D ;……,按此做法进行下去,第3个三角形中以A 3为顶点的内角的度数为 ; 第n 个三角形中以A n 为顶点的内角的度数为 .
2.在图中填上恰当的数,使每一行、每一列、每一条对角线上的3个数的和都是0.
3. 先阅读下面的文字,然后解答问题.
大家知道2是无理数,而无理数是无限不循环小数,因此2的小数部分我们不可能全部写出来,于是小明用2-1表示2的小数部分,你同意小明的表示方法吗?
事实上,小明的表示方法是有道理的,因为2的整数部分是1,将这个数减去其整数部分,差就是小数部分.
由此我们还可以得到一个真命题:
如果2=x y +,其中x 是整数,且01y <<,那么1,21x y ==. 请解答下列问题:
(1)如果5a b =+,其中a 是整数,且01b <<,那么a = ,b = ; (2)已知25m n +=+,其中m 是整数,且04n <<,求m n -的值.
E
D
C
B A
A n
A 4
A 3
A 2
A 1
北京市鲁迅中学初一年级数学期中测试题答案及评分标准
一、选择题:本大题共10小题,每小题3分,共30分. 在每小题的4个选项中,只有一项是符
合题目要求的.
二、填空题:本大题共10小题,每小题2分,共20分. 1. 6±
,9 2. -4,1/2 3. 6± 4.3a-b-c 5.54°
6.±35
7.( -5,3)或(3,3 )
8.7
9.36 10.2017
三、计算题:
1.(本题共4小题,每小题5分) (1)-3 (2) 3
2.(1)3,221=-=x x (2)X=-1 四、证明与解答 1.
证明: ∵AB ∥DE,
∴∠B=_∠BGE___ 又∵∠B+∠E=180° ∴∠BGE+__∠E =180° ∴BC ∥EF 2. 解:由题意可知
a-4=0且 b-9=0 所以a=4且b=9
所以等腰三角形的三边为 4、4、9(舍)或4、9、9 所以周长为4+9+9=22 3.(1)24 (2)4.8 (3)2 4.BE ∥DF
5.解:分别过A\B 作X 轴、Y 轴垂线交于M 点,连接OM
7
4 2
5
10
2
1 2
1
2 1
=
--
=
⋅
-
⋅
-
⋅
=
-
-
=
∆
∆
∆
∆
OP
BM
ON
AM
BM
AM
s
s
s
s BMO
AMO
AMB
aob
2。