(新)采暖管道水力计算表
燃气管道水力计算表
三化业务建设燃气管道水力计算表设计和使用说明完成部门:完成时间:目录一、燃气管道水力计算表的适用范围 (3)二、燃气管道水力计算表的编制依据 (3)三、燃气管道管材和管件的选用 (5)四、燃气管道水力计算表的使用步骤 (6)五、燃气管道管径的推荐值 (7)一、燃气管道水力计算表的适用范围本计算表的适用范围:适用于常温下,中压和低压庭院燃气管道阻力的计算。
可使用本计算表求出给定流量和管径的燃气管道的单位长度压力损失,通过确认单位长度压力损失、总压力损失是否在合理范围内,从而判断所选管径是否合理;平时工作中可使用本计算表求出庭院燃气管道和入户燃气管道的流量、管道阻力损失,得出每个接点的燃气管道压力值。
二、燃气管道水力计算表的编制依据2.1 燃气管道流量的计算根据《城镇燃气设计规范》(GB50028-2006)的10.2.9节,居民生活用燃气计算流量可按下式计算:n h kNQ Q ∑= (1)Q h ——燃气管道的计算流量(m 3/h ); k ——燃具同时工作系数;N ——同种燃具或成组燃具的数目; Q n ——燃具的额定流量(m 3/h );燃具为燃气双眼灶、快速热水器时,同时使用系数按《城镇燃气设计规范》GB50028-2006附录F 取值。
燃具为热水器、浴槽水加热器或采暖炉时,同时使用系数《家用燃气燃烧器具安装及验收规程》CJJ12-99表3.3.6-2取值。
附件xls 文件第一张表中列出了2000户之内的同时使用系数。
2.2 摩擦阻力系数的计算通过求解《城镇燃气设计规范》(GB50028-2006)的6.2.5节给出的柯列勃洛克公式可求出摩擦阻力系数,柯列勃洛克公式为:⎥⎦⎤⎢⎣⎡λ+-=λRe 51.2d 7.3Klg 21 (2)λ——燃气管道摩擦阻力系数;K ——管壁内表面的当量绝对粗糙度(mm ),对钢管:输送天然气和气态液化石油气时取0.1mm ;输送人工煤气时取0.15mm ;d ——管道内径(mm );Re ——雷诺数,无量纲。
采暖供热管道水力计算表
注:
1.各立管删减散热器时,请从最后一组(每组三行)整
2.如增加散热器,整行(三行)拷贝,从干管行(灰色
3.从各立管回水温度计算值可验证操作是否正确。
4.增加环路时,由计算人复制并修改“环路阻力叠加”
采暖管径计算(适用于采用钢管
请从最后一组(每组三行)整行删除。
三行)拷贝,从干管行(灰色)前插入,需修改立管总负荷(D列)计算公式及干管“环路阻力叠加”栏公式。
值可验证操作是否正确。
复制并修改“环路阻力叠加”和“不平衡率计算”栏公式,计算总阻力时,可人为判断最不利环路。
用钢管的一般(竖向)单管系统)
环路阻力叠加”栏公式。
最不利环路。
空调冷热水和冷却水管道水力计算
Pm L
v2
dj 2
(1.2.1)
式中 △Pm ——计算管段的沿程水头损失(Pa) ; L ——计算管段长度(m) ; λ ——管段的摩擦阻力系数; dj ——水管计算内径(m) ,按本院技术措施表 A.1.1-2~A.1.1-9 编制取值; 3 ρ ——流体的密度(kg/m ),水的密度按本院技术措施表 A.2.3 编制取值; 。 v ——流体在管内的流速,根据水量、管径计算确定(m/s) 1.3 管道摩擦阻力系数λ 采用钢管的空调热水管道摩擦阻力系数λ 采用以下计算公式: 1) 层流区(Re≤2000)
1.5.5 冷却水(开式)系统循环泵 1 泵流量按对应冷水机组生产厂提供的数值确定。 2 泵扬程按下式计算:
H c 1.1(H1 H 2 H3 H 4 )
(1.5.7)
式中 Hc——冷却水循环泵扬程(m) ; H1——系统管道管件(包括控制阀、除污器等)阻力(m) ; H2——冷凝器阻力(m),由冷水机组制造厂提供; H3——冷却塔布水器所需水头(m),由冷却塔制造厂提供,缺乏资料时可参考表 1; H4——冷却塔集水盘水位至布水器的高差(设置集水箱时为水箱水位至冷却塔布水 器的高差) (m) 。
式中 QL —— 对应冷水机组制冷量(kW) ; 3 GL —— 空调冷水循环泵流量(m /h) ; tg、th——供、回水温度(℃) 。 水泵扬程按下式计算:
(1.5.1)
2
H L 1.1(H1 H 2 H3 H 4+H5 )
(1.5.2)
式中 HL——空调冷水循环泵扬程(m) ; H1──蒸发器阻力(m),由冷水机组制造厂提供; H2──制冷站管道阻力(m) ; H3──系统管道管件阻力(m) ,从空调末端供回水管计算至分集水器; H4──最不利末端设备阻力(m) ,由末端设备制造厂提供; H5──末端设备自控阀阻力(m) ,一般 H5=H4; 1.5.2 空调冷水复式泵(闭式)系统一级泵 1 水泵流量按(1.5.1)式计算。 2 水泵扬程按(1.5.2)式计算,其中 H2 仅计算制冷站内冷源侧(以旁通管为界)阻力,H3、 H4、H5 为 0。 1.5.3 空调冷水复式泵(闭式)系统二级泵 1 二级泵供水区域的总流量按下式计算:
暖通水力计算
热网水力计算的一般要求1.计算热负荷时应按近期热负荷计算,并应考虑计入发展热负荷,对于分期建设设计热负荷,可以留有余地或考虑增设设计管网的可能性。
2.管网水力计算时,应绘管道平面图、简易计算系统图,在图中注明各热用户和管段的集合展开长度及计算温度、管道附件、补偿器、流量孔板、阀门等。
热水管网还应注明各管段的始、标高。
3.在进行热水水力计算时,应注意提高整个供热系统的水力稳定性,为防止水力失调可以采取如下措施:1)减小管网干管的压力损失,宜取较小的比压降,适当增大管径;2)增大热用户系统的压力损失,一般在热用户入口处安装手动调节阀或平衡阀、调压孔板,控制和调节入口压力;3)高温水采暖系统的热源内部压力损失,对管网的水力稳定性也有影响,一般在热源内部留有一定的富裕压头,在正常情况下,富裕压头消耗在循环泵的出口阀门上。
当管网流量发生变化引起热源出口放入压力变化时,可调整循环水泵出口阀门的开度,使出口压力保持稳定。
4)供热主管网的管径DN,不论热负荷多少,均不小于50mm,而通向单体建筑物(热用户)的管径一般不宜小于如下尺寸:蒸汽管网25 mm热水管网32 mm5)在供热管网计算中,有的点出现静压超过允许极限值时,一般从此点与其它系统分开,设置独立的供热系统。
6)热水采暖管网,宜采用双管闭式系统,其供回水应采取系统的管径。
主要设备选择1.热网循环水泵热网循环水泵应按供热系统的调节方式来选择(1)供热系统采用中央质调节热循环水泵的总流量按向热用户提供的热水总流量的110%选取,数量不少于两台。
热网循环水泵扬程H按下式计算:H=1.2(H1+ H2+ H3+ H4+ H5)式中H:热水循环水泵扬程,mH2O(10kpa);H1:热水通过供热站中锅炉或热网加热器的流动阻力,mH2O(10kpa);H2,H3:热水通过供、回水热网管道的流动阻力,mH2O(10kpa);H4:热水在热用户(或热力站)的压力损失,mH2O(10kpa);H5:热源系统内部其它损失(如过滤器,阀门等处),mH2O(10kpa);(2)供热系统采用中央质-量调节(连续变流量调节)热网循环水水泵的流量、台数、扬程可参照中央质调节的选择方法。
供热系统水力计算
p -压强水头,(压力能水头)表明流体在断面压强作用 g
下,测压管上升的高度。
Z -位置水头,相对于基准面的高度。
2 -流速水头,(动能水头)以初速度铅直上升射流时的
2g
理论高度
总水头:
H p Z 2
g
2g
即压力能水头、位置水头之和动能水
头三者之和
总水头线(A-B线)
测压管水头线——水压线(C-D线)
管道直径(如何计算?) 管段压力损失(实际值) 管道流量(管径、管段允许压降已知)
◆水力计算有什么用处?
一、热水网路水力计算基本公式
2、管段的压力 (能量) 损失包括 哪两部分?
沿程阻力损失 p y 局部阻力损失 p j
○总阻力损失 p p y p j
一、热水网路水力计算基本公式
3、管段的沿程损失计算公式?
问题思考
请问:教材P36例2-4中各供暖热用户与 外网可采取何种连接方式?
用户1: 用户2:? 用户3:? 用户4:
To be continued
§4.4热网水泵的选择
一、热网循环水泵的选择方法 1、选择参数的确定 1)流量的确定
流速与质量流量的关系?
3.实际中往往不修正的原因是什么? (P23例子)
§4.2水力计算的方法与步骤
简述水力计算步骤?
0
+2
Q2=1.05×106 W
F2
P3=2.0×104 Pa
+4
+2 60m
0
h3=33m -2 -3
-5
-8
A 150m
B
160m
C
200m D 3
100m
Q3=0.69×106 W P3=1.45×104 Pa
第四章供暖系统水力计算
第二节机械循环单管热水供暖系统管路的水力 计算方法和例题
• 机械循环系统的作用半径大,其室内热水供暖系统的总 压力损失一般控制在10-20kPa,对水平式或较大型系统, 可达20-50kPa • 进行水力计算时,机械循环室内热水供暖系统一般先设 定入口处的资用循环压力,按最不利循环环路的平均比 摩阻Rpj,来选用该环路的各管段管径。当入口处的资用 压力较高,管道流速和系统的实际总压力损失可相应提 高。但在实际工程设计中,最不利循环环路的各管段水 流速过高(即管径过小),各并联环路的压力损失势必 难以平衡。所以常用控制Rpj值的方法,取Rpj=60120Pa/m选取管径,剩余的资用循环压力,用入口处的 调压装置节流。
3)根据G、 Rpj,查水力计算表,选择接近Rpj的管径, 查出d、R、v列入表中。 例如管段1,Q=74800W,则 根据G=2573kg/h, Rpj=45.3Pa/m,查表,d=40mm, 用插入法计算出R=116.41Pa/m,v=0.552m/s
R的计算: 118.76 110.04 (2573 2500) 110.04 116.41 Pa/m 2600 2500 v的计算: 0.56 0.53 (2573 2500) 0.53 0.55 m/s 2600 2500
6)求各管的阻力△P P Py Pj Rl Pj 7) 求最不利环路的总压力损失(总阻力)
( Rl P )
j 112
8633 Pa
入口处的剩余循环作用压力用调节阀门节流消耗掉。 4.确定其它立管的管径。立管Ⅳ: 1)求立管Ⅳ的资用压力 它与立管Ⅴ为并联环路,即与 管段6、7为并联环路。根据并联环路节点压力平衡原 理, △P’Ⅳ=(△Py+△Pj)6、7-( △P’Ⅴ-△P’Ⅳ) = (△Py+△Pj)6、7 Pa 2)求Rpj R pj P 0.5 2719 81.4 Pa/m
水力计算表格
设计软件:浩辰暖通工程设计软件 鉴定信息:建设行业科技成果评估证书 建科评[2009]062号
垂直采暖水力计算书
分支1水力计算表
分支1-立管1水力计算表
分支1-立管2水力计算表
分支1-立管3水力计算表
分支1-立管4水力计算表
分支1-立管5水力计算表
分支1-立管6水力计算表
分支1-立管7水力计算表
分支2水力计算表
分支2-立管1水力计算表
分支2-立管2水力计算表
分支2-立管3水力计算表
分支2-立管4水力计算表
分支2-立管5水力计算表
分支2-立管6水力计算表
分支2-立管7水力计算表
分支2-立管8水力计算表
算书。
机械循环采暖系统水力计算书
4.1、每层户内水平环路水阻约为 A= 80KPa;4.2、楼栋入口热计量装置水阻约为 B=110KPa4.3、不平衡率计算(每层户内为同程循环):4.3.1、低区不平衡率计算一~十三层:近端最底层环路总损失约为:C=一层(供水干管总损失+回水干管总损失)+A+B Kpa。
一~十三层:远端最高层环路总损失约为:D=(一~十三层)(供水干管总损失+回水干管总损失)+A+B Kpa。
不平衡率为:(D-C)/D≤15%,4.3.2、高区不平衡率计算十四~二十六层:近端最底层环路总损失约为:E=(一~十四层)(供水干管总损失+回水干管总损失)+A+B Kpa。
十四~二十六层:远端最高层环路总损失约为:F=(一~二十六层)(供水干管总损失+回水干管总损失)+A+B Kpa。
不平衡率为:(F-E)/F≤15%,结论:需考虑管道中水冷却产生的自然作用压力和其他因素影响,每层回水总管处需设置静态流量平衡阀。
4.4、室外小区管网各楼栋环路之间平衡通过入户总管阀门调节。
二、采暖管道补偿计算:1、计算公式:热膨胀量△L=α x L x (t2-t1)注:α--管材线膨胀系数 mm/m.℃;L--管道长度 m;t2--介质温度 ℃;t2--管道安装时候温度 ℃举例说明如下;|2.1、户内管材采用PB聚丁烯管,采暖管道热伸长量:△L=αxLx(t2-t1)=0.13x40x95=494 mm补偿措施结论:通过户内管道多级L形补偿进行自然补偿。
2.2、一~十三层低区采暖立管热伸长量:△L=αxLx(t2-t1)=0.012x46x95=52.44 mm补偿措施结论:通过增设轴向型波纹管补偿器补偿(补偿量72mm)。
2.3、十四~二十六层高区采暖立管热伸长量:△L=αxLx(t2-t1)x1000=0.012x75x95=85.5 mm补偿措施结论:通过增设轴向型波纹管补偿器补偿(补偿量144mm)。
2.4、单个轴向波纹管补偿器安装示意图如下:图例说明:D--管道直径,最大导向支架间距 Lmax--0.157x√(EJ/(pA+Kδ))E-管子弹性模量,J-管子断面惯性矩,p-工作压力,A-补偿器刚度,K-安全系数,一般取1.2~1.3,δ-最大补偿量。
采暖管道水力计算(精)
K ——管壁的当量绝对粗糙度(m),室内闭式采暖热水管路K =0.2×103m ,室外供热管网
-
K =0.5×103m ;
v ——热媒在管内的流速,根据热量和供回水温差计算确定(m/s);
,根据供回水平均温度按按本院技术措施表A. 2.1取值。 γ——热媒的运动粘滞系数(m2/s)
λ={
d j ⎡
1.4 热水采暖的垂直双管系统各层支管之间重力水头H z
H z =
2
h (ρh −ρg g (Pa ) 3
式中 h ——计算环路散热器中心之间的高差 (m;
1.5 单管跨越式系统水温降
1.5.1 单管跨越式系统的散热器和跨越管流量分配
1 单管跨越式系统散热器支路和跨越管支路的流量通过以下2式求得:
=G
t si ——第i 组散热器的出水温度(℃); t i ——第i 组散热器与之后的管道温度(℃); t i-1——第i 组散热器之前的管道温度(℃)。 ∑Q, G,t 0
i-1
si
ki
si i h
1.6 散热器数量N
N =N ' ⋅β1⋅β2⋅β3=
Q
β1⋅β2⋅β3 (1.6) n
C ⋅Δt s
N ’——设计工况下散热器数量(长度或片数);
表7:适用于采用钢管的一般垂直单管系统;(包括立管及干管,计算至建筑热力入口与室外干线连接处。为提高计算速度,本表管道摩擦阻力系数λ采用阿里特苏里公式) 2.1.4 室外供热管道
表8:适用于采用钢管的室外供热管道。
2.2 双管系统
2.2.1 住宅等水平双管系统
1、 一般最远端散热器支路为该户最不利环路。
1.3.3 室外热水供热管网局部阻力按与沿程阻力的比值计算确定,见下表:
供热管网水力平衡计算及分析
供热管网水力平衡计算及分析1 问题的提出中南建筑设计院西区(生活区)集中低温热水采暖系统于1991年完成设计及施工,并于当年年底投入运行。
系统运行至今已有十年,大大改善了我院职工的生活条件。
但该热水采暖系统自运行之初起,就存在着热力失衡问题。
后随着用户的增加,管网作用半径的增大,随着燃煤蒸汽锅炉、汽-水换热器、热水循环泵运行效率的降低,也随着采暖系统阀件及沿程管道性能的弱化,采暖系统运行效率降低,热力失衡问题越来越严重,具体表现在管网末端用户的采暖效果越来越差。
为配合我院沿街开发的形势,院西区两栋临街多层住宅拆除,由于采暖用户(以下均指单栋或单元建筑)减少采暖外网须相应调整,此举可部分程度缓解采暖系统效果恶化情况,但热力管网水力失衡问题尚未得到解决。
2 管网水力计算及平衡分析基于上述原因,我们对院西区采暖热网进行水力计算及分析,拟采取水力平衡阀等技术措施对该采暖热网进行水力平衡,以期改善西区整体采暖效果。
2.1 计算条件已知条件(1)外网各环路管段管径及沿程长度,各单位采暖设计热负荷及总设计热负荷。
各环路用户采暖热负荷说“表1”表一1,34,7北大28单29单幼儿幼儿用户名称单元单元单元单元单元板元元园南园北热负荷126.1 126.1 160.0 51.0 33.6 44.1 38.0 70.7 70.7 78.2 (kw) 续表一3334357,1011,14中南海15,21用户名称 23户中单单元单元单元单元单元单元热负荷(kw) 55.7 60.9 60.9 155.8 184.7 184.7 527.6 115.0(2)各环路用户室采暖水系统所需资用压头,由各单体采暖设计图纸及资料获得,参见“表四”及“表五”中“用户所需资用压头”项。
假定条件:(1)由于锅炉及换热器效率的降低,根据该系统运行经验采暖供水最高温度为80?,最大供回水温差15,18?。
采暖供回水温度取80/60?。
(2)由于系统运行多年外管内壁粗糙度增大,外管内壁粗糙度取K=0.5mm。
热水采暖系统水力计算
1.0 1.3 1.5 1.8 2.0 2.5 3.0
25 40 50 55 60 70 80
11 16 20 22 24 28 32
14
>50
热水采暖管道的推荐流速
管径 (DN) 15 20 25 32 流速 (m/s) 0.26 0.35 0.41 0.52 管径 (DN) 40 50 70 ≥80 流速 (m/s) 0.64 0.78 0.91 1.1
11
2、热水采暖系统的各并联环路之间的计算压力 热水采暖系统的各并联环路之间的计算压力 损失相差额 允许差值 (%) 15 允许差值 (%) 10
系统形式
系统形式 单管同程式
双管同程式 双管异程式
25
单管异程式
15
12
3、确定热水主干线管径时,宜采用经济比摩阻。 、确定热水主干线管径时,宜采用经济比摩阻。 室内系统主干线设计比摩阻一般可取 80~ 160 ~ Pa/m 室外管网的主干线比摩阻一般可取40~ 室外管网的主干线比摩阻一般可取 ~ 80 Pa/m 4、蒸汽热力网的凝结水管道设计比摩阻可采用 、 80~100 Pa/m。 。
18
管路阻力计算当量法
一、当量阻力法P72 将沿程阻力折合成局部阻力计算 二、当量长度法P73 将局部阻力折合成沿程阻力计算
19
20
课程设计单元设计系统参考
21
第三节 热水采暖系统设计步骤
22
热水采暖系统设计步骤:
1、计算建筑物热负荷--按房间计算 建筑物维护结构基本耗热量(温差修正、朝 向修正) 维护结构的附加耗热量(高度附加、外门附 加、风力附加) 冷风渗透耗热量(缝隙法、换气次数法、百 分比法)
13
管道内热媒的最大允许流速( 管道内热媒的最大允许流速(m/s) ) 管径
采暖系统水力计算汇总
实例:
附件6.2关于地板辐射采暖水力计算的方法和步骤(天正暖通软件辅助完成)
6.2.1水力计算界面:
根据施工图
“供水方式”选择“下供下回”
接着再根据施工图:
“立管形式”选择“双管”
“立管关系”选择“异程”
勾选“分户计量”
“采暖形式”选择“地板采暖”
点击“确定”
2.第二步在【设置】菜单中的【生成框架】完成下列内容:
楼层数:6层
系统分支数:1
分支1样式
分支2样式
本住宅楼样式同分支1,所以系统分支数为“1”
b、如右图:一个环路可能承担两个或两个以上房间,如果是这样,计算此环路所带负荷的时候,应该把所承担的房间负荷进行累加,假如某环路承担的是某个整个房间和另一个房间的一部分,如图中环路3,既承担客厅又承担部分餐厅,这时该环路负荷取那个整个房间的负荷与那个承担部分房间的部分负荷(可以用相对盘管面积,相对负荷的原则,按他们所占的面积进行取值。如果这部分靠近外围护结构,应该把其适当的放大,比如乘以1.2的修正系数,以减少实际情况与理论分析的误差。)
每支分支立管数:2
每楼层用户数:2
每用户分支数:3
(见下图单元盘管图)
3.第三步【设置】菜单中“设计条件”
4.第四步在【生成框架】对话框中点击“生成”,如下图
5.第五步在树视图中依次打开“立管1”、“楼层6”、“户1”,如下图:
6.第六步在上图中完成以下几项内容的输入:
1)负荷:指某盘管分支(环路)热媒提供的热量。
【精品】塑料采暖管道快速水力计算表
【关键字】精品耐热聚乙烯管道快速水力计算表刘学来1,2 李永安1 李继志21、山东建筑大学2、中国石油大学摘要:根据塑料管道的特点,阐述了采暖塑料管道的选择原则及注意事项。
对塑料采暖管道水力计算进行了数学描述,通过计算机编程计算编制了耐热聚乙烯管道的水力计算表。
工程技术人员在实际工作中可以快速查询,方便应用。
关键词:塑料管材水力计算分级体系采暖Plastic Heating Tubes Quick Hydraulic Calculating TableLiu Xue-lai1 Li Yong-an1 Li Ji-zhi21. 2.ChinaAbstract According to plastic tubes characteristic, elaborated the heating plastic tubes selection principle and the matters needing attention. Has carried on mathematics description to the heating plastic tubes water power computation and has established the commonly used plastic tubes water power computation table through the computer programming computation. The tables may be used to the engineering personnel in practice.Keywords plastic tubing ; hydraulic calculating ; graduation system ; heating1、引言塑料管道具有不锈蚀、施工简单、不结垢、环保、无污染、沿程阻力小等优点。
管道的水力计算及强度计算
第三章管道的水力计算及强度计算第一节管道的流速和流量流体最基本的特征就是它受外力或重力的作用便产生流动。
如图3—1所示装置,如把管道中的阀门打开,水箱内的水受重力作用,以一定的流速通过管道流出。
如果水箱内的水位始终保持不变,那么管道中的流速也自始至终保持不变。
管道中的水流速度有多大?每小时通过管道的流量是多少?这些都是实际工作中经常遇到的问题。
图3—1水在管道内的流动为了研究流体在管道内流动的速度和流量,这里先引出过流断面的概念。
图3—2为水通过管道流动的两个断面1—1及2—2,过流断面指的是垂直于流体流动方向上流体所通过的管道断面,其断面面积用符号A来表示,它的单位为m2或cm2。
图32管流的过流断面a)满流b)不满流流量是指单位时间内,通过过流断面的流体体积。
以符号q v表示,其单位为m3/h,cm3/h或m3/s,cm3/s。
流速是指单位时间内,流体流动所通过的距离。
以符号。
表示,其单位为m/s或cm /s。
图3—3管流中流速、流量、过流断面关系示意图流量、流速与过流断面之间的关系如下:以水在管道中流动为例,如图3—3所示,在管段上取过流断面1—1,如果在单位时间内水从断面1—1流到断面2—2,那么断面1—1和断面2—2所包围的管段的体积即为单位时间内通过过流断面1—1时水的流量q v,而断面1—1和断面2—2之间的距离就是单位时间内水流所通过的路程,即流速。
由上可知,流量、流速和过流断面之间的关系式为q v=vA (3—1)式(3—1)叫做流量公式,它说明流体在管道中流动时,流速、流量和过流断面三者之间的相互关系,即流量等于流速与过流断面面积的乘积。
如果在一段输水管道中,各过流断面的面积及所输送的水量一定,即在管道中途没有支管与其连接,既没有水流出,也没有水流入,那么管道内各过流断面的水流速度也不会变化;若管段的管径是变化的(即过流断面的面积A是变化的),那么管段中各过流断面处的流速也随着管径的变化而变化。