2009年全国高考理科数学试题及答案-全国1

合集下载

09年全国高考数学试题——全国卷1(理科)含答案

09年全国高考数学试题——全国卷1(理科)含答案

09年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页,第II 卷3至4页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷考生注意:1.答题前,考生在答题卡上务必用0.5毫米黑色墨水签字笔将自己的姓名、准考证号、填写清楚 ,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.在试题卷上作答无效.......... 3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.参考公式:如果事件A B ,互斥,那么 球的表面积公式()()()P A B P A P B +=+ 24πS R =如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B = 球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 34π3V R = n 次独立重复试验中恰好发生k 次的概率其中R 表示球的半径()(1)(01,2)k k n k n n P k C P P k n -=-=,,, 一、选择题(1)设集合A={4,5,7,9},B={3,4,7,8,9},全集U=AB ,则集合[u (A B )中的元素共有 (A )3个 (B )4个 (C )5个 (D )6个(2)已知1iZ +=2+I,则复数z= (A )-1+3i (B)1-3i (C)3+I (D)3-i(3) 不等式11X X +-<1的解集为 (A ){x }{}011x x x 〈〈〉 (B){}01x x 〈〈(C ){}10x x -〈〈 (D){}0x x 〈(4)设双曲线22221x y a b-=(a >0,b >0)的渐近线与抛物线y=x 2 +1相切,则该双曲线的离心率等于(A (B )2 (C (D(5) 甲组有5名同学,3名女同学;乙组有6名男同学、2名女同学。

2009年全国高考理科数学试题及答案-安徽卷

2009年全国高考理科数学试题及答案-安徽卷

2009年普通高等学校招生全国统一考试(安徽卷)数学(理科)试题本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页。

第II 卷3 至4页。

全卷满分150分.考试时间120分钟。

考生注意事项:1.答题前.务必在试题卷、答题卡规定的地方填写自己的姓名、座位号.并认真核对答题卡上所粘贴的条形码中姓名.座位号与本人姓名、座位号是否一致。

务必在答题卡背面规定的地方填写姓名和座位号后两位。

2.答第I 卷时、每小题选出答案后.用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动.用橡皮檫干净后.在选涂其他答案标号。

3.答第II 卷时.必须用直径0.5毫米黑色黑水签字笔在答题卡上书写.要求字体工整、笔迹清晰。

作图题可先用铅笔在答题卡规定的位置绘出.确认后在用0.5毫米的黑色墨色签字笔清楚。

必须在标号所指示的答题区域作答.超出答题卡区域书写的答案无效.在试题卷、草稿纸上答题无效。

4.考试结束.务必将试题卷和答题卡一并上交。

参考公式:S 表示底面积.h 表示底面的高如果事件A 、B 互斥.那么 棱柱体积 V S h = P(A+B)=P(A)+P (B) 棱锥体积 13V S h =第I 卷 (选择题 共50分)一.选择题:本大题10小题.每小题5分.共50分.在每小题给出的四个选项中.只有一项是符合题目要求的。

(1)i 是虚数单位.若17(,)2ia bi ab R i+=+∈-.则乘积ab 的值是(B ) (A )-15 (B )-3 (C )3 (D )15 (2)若集合{}21|21|3,0,3x A x x B xx ⎧+⎫=-<=<⎨⎬-⎩⎭则A ∩B 是(D ) (A ) 11232x x x ⎧⎫-<<-<<⎨⎬⎩⎭或 (B) {}23x x <<(C) 122x x ⎧⎫-<<⎨⎬⎩⎭ (D) 112x x ⎧⎫-<<-⎨⎬⎩⎭(3(B )(A )22124x y -= (B )22142x y -= (C )22146x y -= (D )221410x y -=(4)下列选项中.p 是q 的必要不充分条件的是(A ) (A )p:a c +>b+d , q:a >b 且c >d(B )p:a >1,b>1. q:()(10)x f x a b a =-≠>的图像不过第二象限 (C )p: x=1, q:2x x =(D )p:a >1, q: ()log (10)a f x x a =≠>在(0,)+∞上为增函数(5)已知{}n a 为等差数列.1a +3a +5a =105.246a a a ++=99.以n S 表示{}n a 的前n 项和.则使得n S 达到最大值的n 是(B )(A )21 (B )20 (C )19 (D ) 18 (6)设a <b,函数2()()y x a x b =--的图像可能是(C )(7)若不等式组03434x x y x y ≥⎧⎪+≥⎨⎪+≤⎩所表示的平面区域被直线43y kx =+分为面积相等的两部分.则k 的值是(A ) (A )73 (B ) 37 (C )43 (D ) 34(8)已知函数()cos (0)f x x x ωωω+>.()y f x =的图像与直线2y =的两个相邻交点的距离等于π.则()f x 的单调区间是(C )(A )5[,],1212k k k Z ππππ-+∈ (B )511[,],1212k k k Z ππππ++∈(C )[,],36k k k Z ππππ-+∈ (D )2[,],63k k k Z ππππ++∈(9)已知函数()f x 在R 上满足2()2(2)88f x f x x x =--+-.则曲线()y f x =在点(1,(1))f 处的切线方程是(A )(A )21y x =- (B )y x = (C )32y x =- (D )23y x =-+(10)考察正方体6个面的中心.甲从这6个点中任意选两个点连成直线.乙也从这6个点中任意选两个点连成直线.则所得的两条直线相互平行但不重合的概率等于(D ) (A )175 (B ) 275 (C )375 (D )475二.填空题:本大题共5小题.每小题5分.共25分.把答案填在答题卡的相应位置。

2009年普通高等学校招生全国统一考试全国卷I数学理科

2009年普通高等学校招生全国统一考试全国卷I数学理科

2009年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)本试卷分第错误!未找到引用源。

卷(选择题)和第错误!未找到引用源。

卷(非选择题)两部分.第错误!未找到引用源。

卷1至2页,第错误!未找到引用源。

卷3至4页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷考生注意:1.答题前,考生在答题卡上务必用0.5毫米黑色墨水签字笔将自己的姓名、准考证号、填写清楚 ,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.在试题卷上作答无效..........3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.参考公式: 如果事件A B ,互斥,那么球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 34π3V R =n 次独立重复试验中恰好发生k 次的概率其中R 表示球的半径()(1)(01,2)k k n kn nP k C P P k n -=-=,,, 一、选择题(1)设集合A={4,5,7,9},B={3,4,7,8,9},全集U=A B ,则集合[u (AB )中的元素共有(A )3个 (B )4个 (C )5个 (D )6个 (2)已知1iZ+=2+I,则复数z= (A )-1+3i (B)1-3i (C)3+I (D)3-i (3) 不等式11X X +-<1的解集为 (A ){x }{}011x x x 〈〈〉 (B){}01x x 〈〈(C ){}10x x -〈〈 (D){}0x x 〈 (4)设双曲线22221x y a b-=(a >0,b >0)的渐近线与抛物线y=x 2+1相切,则该双曲线的离心率等于(A (B )2 (C )(D(5) 甲组有5名同学,3名女同学;乙组有6名男同学、2名女同学。

2009年高考全国卷I数学(理科)试题及参考答案

2009年高考全国卷I数学(理科)试题及参考答案

第三节个体心理咨询方案的实施易错考点参与性技术是站在求助者的角度来表达,主要是针对求助者;影响性技术是站在咨询师的角度来表达,主要是针对咨询师。

参与性技术影响性技术倾听是心理咨询的第一步,是建立良好咨询关系的基本要求面质又称质疑、对质、对峙、对抗、正视现实等,是指咨询师指出求助者身上存在的矛盾。

开放式询问与封闭式询问开放式询问通常使用“什么”、“如何”、“为什么”、“能不能”、“愿不愿意”等词来发问,让求助者就有关问题、思想、情感给予详细的说明。

封闭式询问通常使用“是不是”、“对不对”、“要不要”、“有没有”等词,而回答也是“是”“否”式的简单答案。

解释即运用某一种理论来描述求助者的思想、情感和行为的原因、实质等。

鼓励和重复技术即直接地重复求助者的话或仅以某些词语如“嗯”、“讲下去”、“还有吗”等,来强化求助者叙述的内容并鼓励其进一步讲下去。

指导即咨询师直接地指示求助者做某件事、说某些话以某种方式行动。

指导是影响力最明显的一种技巧。

内容反应也称释义或说明,是指咨询师把求助者的主要言谈、思想加以综合整理,再反馈给求助者。

情感表达即咨询师告诉自己的情绪、情感活动状况,让求助者明白。

情感反应与释义的区别,释义着重于求助者言谈内容的反馈,而情感反应则着重于求助者的情绪反应。

内容表达是指咨询师传递信息、提出建议、提供忠告,给予保证、进行褒贬和反馈等。

具体化指咨询师协助求助者清楚、准确地表示他们的观点、所用的概念、所体验到的情感以及所经历的事件。

自我开放亦称自我暴露、自我表露,指咨询师提出自己的情感、思想、经验与求助者共同分享。

参与性概述指咨询师把求助者的言语和非言语行为包括情感综合整理后,以提纲的方式再对求助者表达出来。

影响性概述咨询师将自己所叙述的主题、意见等经组织整理后,以简明扼要的形式表达出来。

非言语行为的理解与把握非言语行为的运用练习:八种参与性技术中不包括()A、倾听B、面质C、内容反应D、情感反应答案:B面质1、如何倾听1)倾听是心理咨询的第一步,是建立良好咨询关系的基本要求。

2009年高考试题(全国新课标)数学(理科)试卷及答案

2009年高考试题(全国新课标)数学(理科)试卷及答案

(新课标)2009年高考理科数学试题一、选择题(1)已知集合}{{}1,3,5,7,9,0,3,6,9,12A B ==,则N A C B =I ( )(A) }{1,5,7 (B) }{3,5,7 (C) }{1,3,9 (D) }{1,2,3 (2) 复数32322323i ii i+--=-+( ) (A )0 (B )2 (C )-2i (D)2(3)对变量x, y 有观测数据理力争(1x ,1y )(i=1,2,…,10),得散点图1;对变量u ,v 有观测数据(1u ,1v )(i=1,2,…,10),得散点图2. 由这两个散点图可以判断。

(A )变量x 与y 正相关,u 与v 正相关 (B )变量x 与y 正相关,u 与v 负相关 (C )变量x 与y 负相关,u 与v 正相关 (D )变量x 与y 负相关,u 与v 负相关(4)双曲线24x -212y =1的焦点到渐近线的距离为( )(A)(B )2 (C(D )1 (5)有四个关于三角函数的命题:1p :∃x ∈R, 2sin 2x +2cos 2x =122p : ∃x 、y ∈R, sin(x-y)=sinx-siny 3p : ∀x ∈[]0,π4p : sinx=cosy ⇒x+y=2π其中假命题的是( )(A )1p ,4p (B )2p ,4p (3)1p ,3p (4)2p ,4p(6)设x,y 满足241,22x y x y z x y x y +≥⎧⎪-≥-=+⎨⎪-≤⎩则( )(A )有最小值2,最大值3 (B )有最小值2,无最大值 (C )有最大值3,无最小值 (D )既无最小值,也无最大值(7)等比数列{}n a 的前n 项和为n s ,且41a ,22a ,3a 成等差数列。

若1a =1,则4s =( ) (A )7 (B )8 (3)15 (4)16(8) 如图,正方体1111ABCD A B C D -的棱线长为1,线段11B D 上有两个动点E ,F ,且2EF =,则下列结论中错误的是( ) (A )AC BE ⊥ (B )//EF ABCD 平面(C )三棱锥A BEF -的体积为定值 (D )异面直线,AE BF 所成的角为定值(9)已知O ,N ,P 在ABC ∆所在平面内,且,0OA OB OC NA NB NC ==++=,且P A P B P B P C P C P A ∙=∙=∙,则点O ,N ,P 依次是ABC ∆的( )(A )重心 外心 垂心 (B )重心 外心 内心 (C )外心 重心 垂心 (D )外心 重心 内心(10)如果执行右边的程序框图,输入2,0.5x h =-=,那么输出的各个数的和等于( ) (A )3 (B ) 3.5 (C ) 4 (D )4.5(11)一个棱锥的三视图如图,则该棱锥的全面积(单位:c 2m )为( )(A )(B )(C )(D )(12)用min{a,b,c}表示a,b,c 三个数中的最小值,设f (x )=min{2x, x+2,10-x} (x ≥ 0), 则f (x )的最大值为(A )4 (B )5 (C )6 (D )7 二、填空题(13)设已知抛物线C 的顶点在坐标原点,焦点为F(1,0),直线l 与抛物线C 相交于A ,B 两点。

2009年高考理科数学(全国)卷(I)

2009年高考理科数学(全国)卷(I)

2009年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页,第II 卷3至4页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷一、选择题:共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合A={4,5,7,9},B={3,4,7,8,9},全集U=A B ,则集合[u (A B )中的元素共有(A )3个 (B )4个 (C )5个 (D )6个 (2)已知1iZ+=2+I,则复数z= (A )-1+3i (B)1-3i (C)3+i (D)3-i (3) 不等式11X X +-<1的解集为 (A ){x }{}011x x x 〈〈〉 (B){}01x x 〈〈(C ){}10x x -〈〈 (D){}0x x 〈(4)设双曲线22221x y a b-=(a >0,b >0)的渐近线与抛物线y=x 2+1相切,则该双曲线的离心率等于(A (B )2 (C (D(5) 甲组有5名同学,3名女同学;乙组有6名男同学、2名女同学。

若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有(A )150种 (B )180种 (C )300种 (D)345种 (6)设a 、b 、c 是单位向量,且a ·b =0,则()()a c b c -∙-的最小值为(A )2- (B 2 (C )1- (D)1(7)已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 上的射影为BC 的中点,则异面直线AB 与1CC 所成的角的余弦值为(A (B (C (D) 34(8)如果函数()cos 2y x φ=3+的图像关于点43π⎛⎫⎪⎝⎭,0中心对称,那么π的最小值为 (A )6π (B )4π (C )3π (D) 2π(9) 已知直线y=x+1与曲线y ln()x a =+相切,则α的值为(A)1 (B)2 (C) -1 (D)-2(10)已知二面角α-l-β为600 ,动点P 、Q 分别在面α、β内,P 到β,Q到α的距离为P 、Q 两点之间距离的最小值为(B)2 (C) (D)4 (11)函数()f x 的定义域为R ,若(1)f x +与(1)f x -都是奇函数,则 (A) ()f x 是偶函数 (B) ()f x 是奇函数 (C) ()(2)f x f x =+ (D) (3)f x +是奇函数(12)已知椭圆C: 2212x y +=的又焦点为F ,右准线为L ,点A L ∈,线段AF 交C 与点B 。

2009年高考理科数学试题及答案-全国卷1

2009年高考理科数学试题及答案-全国卷1

2009年普通高等学校招生全国统一考试(全国1卷)理科数学(必修+选修Ⅱ)一、选择题(1)设集合A={4,5,7,9},B={3,4,7,8,9},全集U=A B ,则集合[u (AB )中的元素共有(A )3个 (B )4个 (C )5个 (D )6个 (2)已知1iZ+=2+I,则复数z= (A )-1+3i (B)1-3i (C)3+I (D)3-i (3) 不等式11X X +-<1的解集为 (A ){x }{}011x x x 〈〈〉 (B){}01x x 〈〈(C ){}10x x -〈〈 (D){}0x x 〈(4)设双曲线22221x y a b-=(a >0,b >0)的渐近线与抛物线y=x 2+1相切,则该双曲线的离心率等于(A (B )2 (C (D (5) 甲组有5名同学,3名女同学;乙组有6名男同学、2名女同学。

若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有 (A )150种 (B )180种 (C )300种 (D)345种 (6)设a 、b 、c 是单位向量,且a ·b =0,则()()a c b c -∙-的最小值为(A )2-(B 2 (C )1- (D)1(7)已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 上的射影为BC 的中点,则异面直线AB 与1CC 所成的角的余弦值为(A )4(B )4(C )4(D) 34(8)如果函数()cos 2y x φ=3+的图像关于点43π⎛⎫⎪⎝⎭,0中心对称,那么π的最小值为 (A )6π (B )4π (C )3π (D) 2π(9) 已知直线y=x+1与曲线y ln()x a =+相切,则α的值为(10)已知二面角α-l-β为600,动点P 、Q 分别在面α、β内,P 到βQ 到α的距离为则P 、Q 两点之间距离的最小值为(11)函数()f x 的定义域为R ,若(1)f x +与(1)f x -都是奇函数,则 (A) ()f x 是偶函数 (B) ()f x 是奇函数 (C) ()(2)f x f x =+ (D) (3)f x +是奇函数(12)已知椭圆C: 2212x y +=的又焦点为F ,右准线为L ,点A L ∈,线段AF 交C 与点B 。

2009高考数学全国卷及答案理

2009高考数学全国卷及答案理

2009年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)本试卷分第错误!未找到引用源。

卷(选择题)和第错误!未找到引用源。

卷(非选择题)两部分.第错误!未找到引用源。

卷1至2页,第错误!未找到引用源。

卷3至4页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷考生注意:1.答题前,考生在答题卡上务必用0.5毫米黑色墨水签字笔将自己的姓名、准考证号、填写清楚 ,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.在试题卷上作答无效.......... 3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.参考公式:如果事件A B ,互斥,那么 球的表面积公式如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B = 球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 34π3V R = n 次独立重复试验中恰好发生k 次的概率 其中R 表示球的半径一、选择题(1)设集合A={4,5,7,9},B={3,4,7,8,9},全集U=AB ,则集合[()u A B I 中的元素共有(A )(A )3个 (B )4个 (C )5个 (D )6个解:{3,4,5,7,8,9}A B =,{4,7,9}(){3,5,8}U A B C A B =∴=故选A 。

也可用摩根律:()()()U U U C A B C A C B =(2)已知1iZ +=2+i,则复数z=(B ) (A )-1+3i (B)1-3i (C)3+i (D)3-i 解:(1)(2)13,13z i i i z i =+⋅+=+∴=- 故选B 。

(3) 不等式11X X +-<1的解集为( D )(A ){x }{}011x x x 〈〈〉 (B){}01x x 〈〈(C ){}10x x -〈〈 (D){}0x x 〈解:验x=-1即可。

2009年全国高考理科数学试题(含答案)

2009年全国高考理科数学试题(含答案)

2009年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ) 3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.参考公式: 如果事件A B ,互斥,那么 球的表面积公式()()()P A B P A P B +=+24πS R = 如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B ∙=∙球的体积公式 如果事件A 在一次试验中发生的概率是P ,那么 34π3V R =n 次独立重复试验中恰好发生k 次的概率其中R 表示球的半径一、选择题(1)设集合A={4,5,7,9},B={3,4,7,8,9},全集U=A B ,则集合[()u A B I中的元素共有(A )(A )3个 (B )4个 (C )5个 (D )6个解:{3,4,5,A B = ,{4,7,9}()U A B C A B =∴= 故选A 。

也可用摩根律:()()(U U UC A B C A C B=(2)已知1iZ+=2+i,则复数z=(B ) (A )-1+3i (B)1-3i (C)3+i (D)3-i 解:(1)(2)13,13z i i i z i =+⋅+=+∴=- 故选B 。

(3) 不等式11X X +-<1的解集为( D )(A ){x }{}011x x x 〈〈〉 (B){}01x x 〈〈(C ){}10x x -〈〈 (D){}0x x 〈 解:验x=-1即可。

(4)设双曲线22221x y a b-=(a >0,b >0)的渐近线与抛物线y=x 2+1相切,则该双曲线的离心率等于( C )(A (B )2 (C (D 解:设切点00(,)P x y ,则切线的斜率为0'0|2x x yx ==.由题意有002y x x =又2001y x =+解得: 201,2,b x e a =∴===(5) 甲组有5名男同学,3名女同学;乙组有6名男同学、2名女同学。

2009年全国统一高考数学试卷(理科)(全国卷ⅰ)(含解析版)(附详细答案)

2009年全国统一高考数学试卷(理科)(全国卷ⅰ)(含解析版)(附详细答案)

2009年全国统一高考数学试卷(理科)(全国卷Ⅰ)一、选择题(共12小题,每小题5分,满分60分)1.(5分)已知=2+i,则复数z=()A.﹣1+3i B.1﹣3i C.3+i D.3﹣i2.(5分)设集合A={4,5,7,9},B={3,4,7,8,9},全集U=A∪B,则集合?U(A∩B)中的元素共有()A.3个B.4个C.5个D.6个3.(5分)不等式<1的解集为()A.{x|0<x<1}∪{x|x>1}B.{x|0<x<1}C.{x|﹣1<x<0}D.{x|x<0}4.(5分)已知双曲线﹣=1(a>0,b>0)的渐近线与抛物线y=x2+1相切,则该双曲线的离心率为()A.B.2C.D.5.(5分)甲组有5名男同学,3名女同学;乙组有6名男同学、2名女同学.若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有()A.150种B.180种C.300种D.345种6.(5分)设、、是单位向量,且,则?的最小值为()A.﹣2B.﹣2C.﹣1D.1﹣7.(5分)已知三棱柱ABC﹣A1B1C1的侧棱与底面边长都相等,A1在底面ABC上的射影D为BC的中点,则异面直线AB与CC1所成的角的余弦值为()A.B.C.D.8.(5分)如果函数y=3cos(2x+φ)的图象关于点(,0)中心对称,那么|φ|的最小值为()A.B.C.D.9.(5分)已知直线y=x+1与曲线y=ln(x+a)相切,则a的值为()A.1B.2C.﹣1D.﹣210.(5分)已知二面角α﹣l﹣β为60°,动点P、Q分别在面α、β内,P到β的距离为,Q到α的距离为,则P、Q两点之间距离的最小值为()A.1B.2C.D.411.(5分)函数f(x)的定义域为R,若f(x+1)与f(x﹣1)都是奇函数,则()A.f(x)是偶函数B.f(x)是奇函数C.f(x)=f(x+2)D.f(x+3)是奇函数12.(5分)已知椭圆C:+y2=1的右焦点为F,右准线为l,点A∈l,线段AF 交C于点B,若=3,则||=()A.B.2C.D.3二、填空题(共4小题,每小题5分,满分20分)13.(5分)(x﹣y)10的展开式中,x7y3的系数与x3y7的系数之和等于.14.(5分)设等差数列{a n}的前n项和为S n,若S9=81,则a2+a5+a8= .15.(5分)直三棱柱ABC﹣A1B1C1的各顶点都在同一球面上,若AB=AC=AA1=2,∠BAC=120°,则此球的表面积等于.16.(5分)若,则函数y=tan2xtan3x的最大值为.三、解答题(共6小题,满分70分)17.(10分)在△ABC中,内角A、B、C的对边长分别为a、b、c,已知a2﹣c2=2b,且sinAcosC=3cosAsinC,求b.18.(12分)如图,四棱锥S﹣ABCD中,底面ABCD为矩形,SD⊥底面ABCD,AD=,DC=SD=2,点M在侧棱SC上,∠ABM=60°(I)证明:M是侧棱SC的中点;(Ⅱ)求二面角S﹣AM﹣B的大小.19.(12分)甲、乙二人进行一次围棋比赛,约定先胜3局者获得这次比赛的胜利,比赛结束,假设在一局中,甲获胜的概率为0.6,乙获胜的概率为0.4,各局比赛结果相互独立,已知前2局中,甲、乙各胜1局.(I)求甲获得这次比赛胜利的概率;(Ⅱ)设ξ表示从第3局开始到比赛结束所进行的局数,求ξ的分布列及数学期望.20.(12分)在数列{a n}中,a1=1,a n+1=(1+)a n+.(1)设b n=,求数列{b n}的通项公式;(2)求数列{a n}的前n项和S n.21.(12分)如图,已知抛物线E:y2=x与圆M:(x﹣4)2+y2=r2(r>0)相交于A、B、C、D四个点.(Ⅰ)求r的取值范围;(Ⅱ)当四边形ABCD的面积最大时,求对角线AC、BD的交点P的坐标.22.(12分)设函数f(x)=x3+3bx2+3cx有两个极值点x1、x2,且x1∈[﹣1,0],x2∈[1,2].(1)求b、c满足的约束条件,并在下面的坐标平面内,画出满足这些条件的点(b,c)的区域;(2)证明:.2009年全国统一高考数学试卷(理科)(全国卷Ⅰ)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)已知=2+i,则复数z=()A.﹣1+3i B.1﹣3i C.3+i D.3﹣i【考点】A1:虚数单位i、复数.【分析】化简复数直接求解,利用共轭复数可求z.【解答】解:,∴z=1﹣3i故选:B.【点评】求复数,需要对复数化简,本题也可以用待定系数方法求解.2.(5分)设集合A={4,5,7,9},B={3,4,7,8,9},全集U=A∪B,则集合?U(A∩B)中的元素共有()A.3个B.4个C.5个D.6个【考点】1H:交、并、补集的混合运算.【分析】根据交集含义取A、B的公共元素写出A∩B,再根据补集的含义求解.【解答】解:A∪B={3,4,5,7,8,9},A∩B={4,7,9}∴?U(A∩B)={3,5,8}故选A.也可用摩根律:?U(A∩B)=(?U A)∪(?U B)故选:A.【点评】本题考查集合的基本运算,较简单.3.(5分)不等式<1的解集为()A.{x|0<x<1}∪{x|x>1}B.{x|0<x<1}C.{x|﹣1<x<0}D.{x|x<0}【考点】7E:其他不等式的解法.【分析】本题为绝对值不等式,去绝对值是关键,可利用绝对值意义去绝对值,也可两边平方去绝对值.【解答】解:∵<1,∴|x+1|<|x﹣1|,∴x2+2x+1<x2﹣2x+1.∴x<0.∴不等式的解集为{x|x<0}.故选:D.【点评】本题主要考查解绝对值不等式,属基本题.解绝对值不等式的关键是去绝对值,去绝对值的方法主要有:利用绝对值的意义、讨论和平方.4.(5分)已知双曲线﹣=1(a>0,b>0)的渐近线与抛物线y=x2+1相切,则该双曲线的离心率为()A.B.2C.D.【考点】KC:双曲线的性质;KH:直线与圆锥曲线的综合.【专题】11:计算题.【分析】先求出渐近线方程,代入抛物线方程,根据判别式等于0,找到a和b 的关系,从而推断出a和c的关系,答案可得.【解答】解:由题双曲线的一条渐近线方程为,代入抛物线方程整理得ax2﹣bx+a=0,因渐近线与抛物线相切,所以b2﹣4a2=0,即,故选:C.【点评】本小题考查双曲线的渐近线方程直线与圆锥曲线的位置关系、双曲线的离心率,基础题.5.(5分)甲组有5名男同学,3名女同学;乙组有6名男同学、2名女同学.若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有()A.150种B.180种C.300种D.345种【考点】D1:分类加法计数原理;D2:分步乘法计数原理.【专题】5O:排列组合.【分析】选出的4人中恰有1名女同学的不同选法,1名女同学来自甲组和乙组两类型.【解答】解:分两类(1)甲组中选出一名女生有C51?C31?C62=225种选法;(2)乙组中选出一名女生有C52?C61?C21=120种选法.故共有345种选法.故选:D.【点评】分类加法计数原理和分类乘法计数原理,最关键做到不重不漏,先分类,后分步!6.(5分)设、、是单位向量,且,则?的最小值为()A.﹣2B.﹣2C.﹣1D.1﹣【考点】9O:平面向量数量积的性质及其运算.【专题】16:压轴题.【分析】由题意可得=,故要求的式子即﹣()?+=1﹣cos=1﹣cos,再由余弦函数的值域求出它的最小值.【解答】解:∵、、是单位向量,,∴,=.∴?=﹣()?+=0﹣()?+1=1﹣cos=1﹣cos≥.故选:D.【点评】考查向量的运算法则;交换律、分配律但注意不满足结合律.7.(5分)已知三棱柱ABC﹣A1B1C1的侧棱与底面边长都相等,A1在底面ABC上的射影D为BC的中点,则异面直线AB与CC1所成的角的余弦值为()A.B.C.D.【考点】LO:空间中直线与直线之间的位置关系.【分析】首先找到异面直线AB与CC1所成的角(如∠A1AB);而欲求其余弦值可考虑余弦定理,则只要表示出A1B的长度即可;不妨设三棱柱ABC﹣A1B1C1的侧棱与底面边长为1,利用勾股定理即可求之.【解答】解:设BC的中点为D,连接A1D、AD、A1B,易知θ=∠A1AB即为异面直线AB与CC1所成的角;并设三棱柱ABC﹣A1B1C1的侧棱与底面边长为1,则|AD|=,|A1D|=,|A1B|=,由余弦定理,得cosθ==.故选:D.【点评】本题主要考查异面直线的夹角与余弦定理.8.(5分)如果函数y=3cos(2x+φ)的图象关于点(,0)中心对称,那么|φ|的最小值为()A.B.C.D.【考点】HB:余弦函数的对称性.【专题】11:计算题.【分析】先根据函数y=3cos(2x+φ)的图象关于点中心对称,令x=代入函数使其等于0,求出φ的值,进而可得|φ|的最小值.【解答】解:∵函数y=3cos(2x+φ)的图象关于点中心对称.∴∴由此易得.故选:A.【点评】本题主要考查余弦函数的对称性.属基础题.9.(5分)已知直线y=x+1与曲线y=ln(x+a)相切,则a的值为()A.1B.2C.﹣1D.﹣2【考点】6H:利用导数研究曲线上某点切线方程.【分析】切点在切线上也在曲线上得到切点坐标满足两方程;又曲线切点处的导数值是切线斜率得第三个方程.【解答】解:设切点P(x0,y0),则y0=x0+1,y0=ln(x0+a),又∵∴x0+a=1∴y0=0,x0=﹣1∴a=2.故选:B.【点评】本题考查导数的几何意义,常利用它求曲线的切线10.(5分)已知二面角α﹣l﹣β为60°,动点P、Q分别在面α、β内,P到β的距离为,Q到α的距离为,则P、Q两点之间距离的最小值为()A.1B.2C.D.4【考点】LQ:平面与平面之间的位置关系.【专题】11:计算题;16:压轴题.【分析】分别作QA⊥α于A,AC⊥l于C,PB⊥β于B,PD⊥l于D,连CQ,BD 则∠ACQ=∠PBD=60°,在三角形APQ中将PQ表示出来,再研究其最值即可.【解答】解:如图分别作QA⊥α于A,AC⊥l于C,PB⊥β于B,PD⊥l于D,连CQ,BD则∠ACQ=∠PDB=60°,,又∵当且仅当AP=0,即点A与点P重合时取最小值.故选:C.【点评】本题主要考查了平面与平面之间的位置关系,以及空间中直线与平面之间的位置关系,考查空间想象能力、运算能力和推理论证能力,属于基础题.11.(5分)函数f(x)的定义域为R,若f(x+1)与f(x﹣1)都是奇函数,则()A.f(x)是偶函数B.f(x)是奇函数C.f(x)=f(x+2)D.f(x+3)是奇函数【考点】3I:奇函数、偶函数.【专题】16:压轴题.【分析】首先由奇函数性质求f(x)的周期,然后利用此周期推导选择项.【解答】解:∵f(x+1)与f(x﹣1)都是奇函数,∴函数f(x)关于点(1,0)及点(﹣1,0)对称,∴f(x)+f(2﹣x)=0,f(x)+f(﹣2﹣x)=0,故有f(2﹣x)=f(﹣2﹣x),函数f(x)是周期T=[2﹣(﹣2)]=4的周期函数.∴f(﹣x﹣1+4)=﹣f(x﹣1+4),f(﹣x+3)=﹣f(x+3),f(x+3)是奇函数.故选:D.【点评】本题主要考查奇函数性质的灵活运用,并考查函数周期的求法.12.(5分)已知椭圆C:+y2=1的右焦点为F,右准线为l,点A∈l,线段AF 交C于点B,若=3,则||=()A.B.2C.D.3【考点】K4:椭圆的性质.【专题】11:计算题;16:压轴题.【分析】过点B作BM⊥x轴于M,设右准线l与x轴的交点为N,根据椭圆的性质可知FN=1,进而根据,求出BM,AN,进而可得|AF|.【解答】解:过点B作BM⊥x轴于M,并设右准线l与x轴的交点为N,易知FN=1.由题意,故FM=,故B点的横坐标为,纵坐标为±即BM=,故AN=1,∴.故选:A.【点评】本小题考查椭圆的准线、向量的运用、椭圆的定义,属基础题.二、填空题(共4小题,每小题5分,满分20分)13.(5分)(x﹣y)10的展开式中,x7y3的系数与x3y7的系数之和等于﹣240 .【考点】DA:二项式定理.【专题】11:计算题.【分析】首先要了解二项式定理:(a+b)n=C n0a n b0+C n1a n﹣1b1+C n2a n﹣2b2++C n r a n﹣r b r++Cn n a0b n,各项的通项公式为:Tr+1=C nr a n﹣r b r.然后根据题目已知求解即可.【解答】解:因为(x﹣y)10的展开式中含x7y3的项为C103x10﹣3y3(﹣1)3=﹣C103x7y3,含x3y7的项为C107x10﹣7y7(﹣1)7=﹣C107x3y7.由C103=C107=120知,x7y3与x3y7的系数之和为﹣240.故答案为﹣240.【点评】此题主要考查二项式定理的应用问题,对于公式:(a+b)n=C n0a n b0+C n1a n﹣1b1+C n2a n﹣2b2++C n r a n﹣r b r++C n n a0b n,属于重点考点,同学们需要理解记忆.14.(5分)设等差数列{a n}的前n项和为S n,若S9=81,则a2+a5+a8= 27 .【考点】83:等差数列的性质;85:等差数列的前n项和.【分析】由s9解得a5即可.【解答】解:∵∴a5=9∴a2+a5+a8=3a5=27故答案是27【点评】本题考查前n项和公式和等差数列的性质.15.(5分)直三棱柱ABC﹣A1B1C1的各顶点都在同一球面上,若AB=AC=AA1=2,∠BAC=120°,则此球的表面积等于20π.【考点】LR:球内接多面体.【专题】11:计算题;16:压轴题.【分析】通过正弦定理求出底面外接圆的半径,设此圆圆心为O',球心为O,在RT△OBO'中,求出球的半径,然后求出球的表面积.【解答】解:在△ABC中AB=AC=2,∠BAC=120°,可得由正弦定理,可得△ABC外接圆半径r=2,设此圆圆心为O',球心为O,在RT△OBO'中,易得球半径,故此球的表面积为4πR2=20π故答案为:20π【点评】本题是基础题,解题思路是:先求底面外接圆的半径,转化为直角三角形,求出球的半径,这是三棱柱外接球的常用方法;本题考查空间想象能力,计算能力.16.(5分)若,则函数y=tan2xtan3x的最大值为﹣8 .【考点】3H:函数的最值及其几何意义;GS:二倍角的三角函数.【专题】11:计算题;16:压轴题.【分析】见到二倍角2x 就想到用二倍角公式,之后转化成关于tanx的函数,将tanx看破成整体,最后转化成函数的最值问题解决.【解答】解:令tanx=t,∵,∴故填:﹣8.【点评】本题主要考查二倍角的正切,二次函数的方法求最大值等,最值问题是中学数学的重要内容之一,它分布在各块知识点,各个知识水平层面.以最值为载体,可以考查中学数学的所有知识点.三、解答题(共6小题,满分70分)17.(10分)在△ABC中,内角A、B、C的对边长分别为a、b、c,已知a2﹣c2=2b,且sinAcosC=3cosAsinC,求b.【考点】HR:余弦定理.【分析】根据正弦定理和余弦定理将sinAcosC=3cosAsinC化成边的关系,再根据a2﹣c2=2b即可得到答案.【解答】解:法一:在△ABC中∵sinAcosC=3cosAsinC,则由正弦定理及余弦定理有:,化简并整理得:2(a2﹣c2)=b2.又由已知a2﹣c2=2b∴4b=b2.解得b=4或b=0(舍);法二:由余弦定理得:a2﹣c2=b2﹣2bccosA.又a2﹣c2=2b,b≠0.所以b=2ccosA+2①又sinAcosC=3cosAsinC,∴sinAcosC+cosAsinC=4cosAsinCsin(A+C)=4cosAsinC,即sinB=4cosAsinC由正弦定理得,故b=4ccosA②由①,②解得b=4.【点评】本题主要考查正弦定理和余弦定理的应用.属基础题.18.(12分)如图,四棱锥S﹣ABCD中,底面ABCD为矩形,SD⊥底面ABCD,AD=,DC=SD=2,点M在侧棱SC上,∠ABM=60°(I)证明:M是侧棱SC的中点;(Ⅱ)求二面角S﹣AM﹣B的大小.【考点】LO:空间中直线与直线之间的位置关系;MJ:二面角的平面角及求法.【专题】11:计算题;14:证明题.【分析】(Ⅰ)法一:要证明M是侧棱SC的中点,作MN∥SD交CD于N,作NE⊥AB交AB于E,连ME、NB,则MN⊥面ABCD,ME⊥AB,设MN=x,则NC=EB=x,解RT△MNE即可得x的值,进而得到M为侧棱SC的中点;法二:分别以DA、DC、DS为x、y、z轴如图建立空间直角坐标系D﹣xyz,并求出S点的坐标、C点的坐标和M点的坐标,然后根据中点公式进行判断;法三:分别以DA、DC、DS为x、y、z轴如图建立空间直角坐标系D﹣xyz,构造空间向量,然后数乘向量的方法来证明.(Ⅱ)我们可以以D为坐标原点,分别以DA、DC、DS为x、y、z轴如图建立空间直角坐标系D﹣xyz,我们可以利用向量法求二面角S﹣AM﹣B的大小.【解答】证明:(Ⅰ)作MN∥SD交CD于N,作NE⊥AB交AB于E,连ME、NB,则MN⊥面ABCD,ME⊥AB,设MN=x,则NC=EB=x,在RT△MEB中,∵∠MBE=60°∴.在RT△MNE中由ME2=NE2+MN2∴3x2=x2+2解得x=1,从而∴M为侧棱SC的中点M.(Ⅰ)证法二:分别以DA、DC、DS为x、y、z轴如图建立空间直角坐标系D﹣xyz,则.设M(0,a,b)(a>0,b>0),则,,由题得,即解之个方程组得a=1,b=1即M(0,1,1)所以M是侧棱SC的中点.(I)证法三:设,则又故,即,解得λ=1,所以M是侧棱SC的中点.(Ⅱ)由(Ⅰ)得,又,,设分别是平面SAM、MAB的法向量,则且,即且分别令得z1=1,y1=1,y2=0,z2=2,即,∴二面角S﹣AM﹣B的大小.【点评】空间两条直线夹角的余弦值等于他们方向向量夹角余弦值的绝对值;空间直线与平面夹角的余弦值等于直线的方向向量与平面的法向量夹角的正弦值;空间锐二面角的余弦值等于他的两个半平面方向向量夹角余弦值的绝对值;19.(12分)甲、乙二人进行一次围棋比赛,约定先胜3局者获得这次比赛的胜利,比赛结束,假设在一局中,甲获胜的概率为0.6,乙获胜的概率为0.4,各局比赛结果相互独立,已知前2局中,甲、乙各胜1局.(I)求甲获得这次比赛胜利的概率;(Ⅱ)设ξ表示从第3局开始到比赛结束所进行的局数,求ξ的分布列及数学期望.【考点】C8:相互独立事件和相互独立事件的概率乘法公式;CG:离散型随机变量及其分布列;CH:离散型随机变量的期望与方差.【专题】11:计算题.【分析】(1)由题意知前2局中,甲、乙各胜1局,甲要获得这次比赛的胜利需在后面的比赛中先胜两局,根据各局比赛结果相互独立,根据相互独立事件的概率公式得到结果.(2)由题意知ξ表示从第3局开始到比赛结束所进行的局数,由上一问可知ξ的可能取值是2、3,由于各局相互独立,得到变量的分布列,求出期望.【解答】解:记A i表示事件:第i局甲获胜,(i=3、4、5)B i表示第j局乙获胜,j=3、4(1)记B表示事件:甲获得这次比赛的胜利,∵前2局中,甲、乙各胜1局,∴甲要获得这次比赛的胜利需在后面的比赛中先胜两局,∴B=A3A4+B3A4A5+A3B4A5由于各局比赛结果相互独立,∴P(B)=P(A3A4)+P(B3A4A5)+P(A3B4A5)=0.6×0.6+0.4×0.6×0.6+0.6×0.4×0.6=0.648(2)ξ表示从第3局开始到比赛结束所进行的局数,由上一问可知ξ的可能取值是2、3由于各局相互独立,得到ξ的分布列P(ξ=2)=P(A3A4+B3B4)=0.52P(ξ=3)=1﹣P(ξ=2)=1﹣0.52=0.48∴Eξ=2×0.52+3×0.48=2.48.【点评】认真审题是前提,部分考生由于考虑了前两局的概率而导致失分,这是很可惜的,主要原因在于没读懂题.另外,还要注意表述,这也是考生较薄弱的环节.20.(12分)在数列{a n}中,a1=1,a n+1=(1+)a n+.(1)设b n=,求数列{b n}的通项公式;(2)求数列{a n}的前n项和S n.【考点】8E:数列的求和;8H:数列递推式.【专题】11:计算题;15:综合题.【分析】(1)由已知得=+,即b n+1=b n+,由此能够推导出所求的通项公式.(2)由题设知a n=2n﹣,故S n=(2+4+…+2n)﹣(1++++…+),设T n=1++++…+,由错位相减法能求出T n=4﹣.从而导出数列{a n}的前n项和S n.【解答】解:(1)由已知得b1=a1=1,且=+,即b n+1=b n+,从而b2=b1+,b3=b2+,b n=b n﹣1+(n≥2).于是b n=b1+++…+=2﹣(n≥2).又b1=1,故所求的通项公式为b n=2﹣.(2)由(1)知a n=2n﹣,故S n=(2+4+…+2n)﹣(1++++…+),设T n=1++++…+,①T n=+++…++,②①﹣②得,T n=1++++…+﹣=﹣=2﹣﹣,∴T n=4﹣.∴S n=n(n+1)+﹣4.【点评】本题考查数列的通项公式和前n项和的求法,解题时要注意错位相减法的合理运用.21.(12分)如图,已知抛物线E:y2=x与圆M:(x﹣4)2+y2=r2(r>0)相交于A、B、C、D四个点.(Ⅰ)求r的取值范围;(Ⅱ)当四边形ABCD的面积最大时,求对角线AC、BD的交点P的坐标.【考点】IR:两点间的距离公式;JF:圆方程的综合应用;K8:抛物线的性质.【专题】15:综合题;16:压轴题.【分析】(1)先联立抛物线与圆的方程消去y,得到x的二次方程,根据抛物线E:y2=x与圆M:(x﹣4)2+y2=r2(r>0)相交于A、B、C、D四个点的充要条件是此方程有两个不相等的正根,可求出r的范围.(2)先设出四点A,B,C,D的坐标再由(1)中的x二次方程得到两根之和、两根之积,表示出面积并求出其的平方值,最后根据三次均值不等式确定得到最大值时的点P的坐标.【解答】解:(Ⅰ)将抛物线E:y2=x代入圆M:(x﹣4)2+y2=r2(r>0)的方程,消去y2,整理得x2﹣7x+16﹣r2=0(1)抛物线E:y2=x与圆M:(x﹣4)2+y2=r2(r>0)相交于A、B、C、D四个点的充要条件是:方程(1)有两个不相等的正根∴即.解这个方程组得,.(II)设四个交点的坐标分别为、、、.则直线AC、BD的方程分别为y﹣=?(x﹣x1),y+=(x﹣x1),解得点P的坐标为(,0),则由(I)根据韦达定理有x1+x2=7,x1x2=16﹣r2,则∴令,则S2=(7+2t)2(7﹣2t)下面求S2的最大值.由三次均值有:当且仅当7+2t=14﹣4t,即时取最大值.经检验此时满足题意.故所求的点P的坐标为.【点评】本题主要考查抛物线和圆的综合问题.圆锥曲线是高考必考题,要强化复习.22.(12分)设函数f(x)=x3+3bx2+3cx有两个极值点x1、x2,且x1∈[﹣1,0],x2∈[1,2].(1)求b、c满足的约束条件,并在下面的坐标平面内,画出满足这些条件的点(b,c)的区域;(2)证明:.【考点】6D:利用导数研究函数的极值;7B:二元一次不等式(组)与平面区域;R6:不等式的证明.【专题】11:计算题;14:证明题;16:压轴题.【分析】(1)根据极值的意义可知,极值点x1、x2是导函数等于零的两个根,根据根的分布建立不等关系,画出满足条件的区域即可;(2)先用消元法消去参数b,利用参数c表示出f(x2)的值域,再利用参数c 的范围求出f(x2)的范围即可.【解答】解:(Ⅰ)f'(x)=3x2+6bx+3c,(2分)依题意知,方程f'(x)=0有两个根x1、x2,且x1∈[﹣1,0],x2∈[1,2]等价于f'(﹣1)≥0,f'(0)≤0,f'(1)≤0,f'(2)≥0.由此得b,c满足的约束条件为(4分)满足这些条件的点(b,c)的区域为图中阴影部分.(6分)(Ⅱ)由题设知f'(x2)=3x22+6bx2+3c=0,则,故.(8分)由于x2∈[1,2],而由(Ⅰ)知c≤0,故.又由(Ⅰ)知﹣2≤c≤0,(10分)所以.【点评】本题主要考查了利用导数研究函数的极值,以及二元一次不等式(组)与平面区域和不等式的证明,属于基础题.。

2009年全国统一高考数学试卷(理科)(全国卷一)及答案

2009年全国统一高考数学试卷(理科)(全国卷一)及答案

2009年全国统一高考数学试卷(理科)(全国卷Ⅰ)一、选择题(共12小题,每小题5分,满分60分)1.(5分)设集合A={4,5,7,9},B={3,4,7,8,9},全集U=A∪B,则集合∁U(A∩B)中的元素共有()A.3个 B.4个 C.5个 D.6个2.(5分)已知=2+i,则复数z=()A.﹣1+3i B.1﹣3i C.3+i D.3﹣i3.(5分)不等式<1的解集为()A.{x|0<x<1}∪{x|x>1}B.{x|0<x<1}C.{x|﹣1<x<0}D.{x|x<0} 4.(5分)已知双曲线﹣=1(a>0,b>0)的渐近线与抛物线y=x2+1相切,则该双曲线的离心率为()A.B.2 C.D.5.(5分)甲组有5名男同学,3名女同学;乙组有6名男同学、2名女同学.若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有()A.150种B.180种C.300种D.345种6.(5分)设、、是单位向量,且,则•的最小值为()A.﹣2 B.﹣2 C.﹣1 D.1﹣7.(5分)已知三棱柱ABC﹣A1B1C1的侧棱与底面边长都相等,A1在底面ABC上的射影D为BC的中点,则异面直线AB与CC1所成的角的余弦值为()A.B.C.D.8.(5分)如果函数y=3cos(2x+φ)的图象关于点(,0)中心对称,那么|φ|的最小值为()A.B.C.D.9.(5分)已知直线y=x+1与曲线y=ln(x+a)相切,则a的值为()A.1 B.2 C.﹣1 D.﹣210.(5分)已知二面角α﹣l﹣β为60°,动点P、Q分别在面α、β内,P到β的距离为,Q到α的距离为,则P、Q两点之间距离的最小值为()A.1 B.2 C.D.411.(5分)函数f(x)的定义域为R,若f(x+1)与f(x﹣1)都是奇函数,则()A.f(x)是偶函数B.f(x)是奇函数C.f(x)=f(x+2) D.f(x+3)是奇函数12.(5分)已知椭圆C:+y2=1的右焦点为F,右准线为l,点A∈l,线段AF 交C于点B,若=3,则||=()A.B.2 C.D.3二、填空题(共4小题,每小题5分,满分20分)13.(5分)(x﹣y)10的展开式中,x7y3的系数与x3y7的系数之和等于.14.(5分)设等差数列{a n}的前n项和为S n,若S9=81,则a2+a5+a8=.15.(5分)直三棱柱ABC﹣A1B1C1的各顶点都在同一球面上,若AB=AC=AA1=2,∠BAC=120°,则此球的表面积等于.16.(5分)若,则函数y=tan2xtan3x的最大值为.三、解答题(共6小题,满分70分)17.(10分)在△ABC中,内角A、B、C的对边长分别为a、b、c,已知a2﹣c2=2b,且sinAcosC=3cosAsinC,求b.18.(12分)如图,四棱锥S﹣ABCD中,底面ABCD为矩形,SD⊥底面ABCD,AD=,DC=SD=2,点M在侧棱SC上,∠ABM=60°(I)证明:M是侧棱SC的中点;(Ⅱ)求二面角S﹣AM﹣B的大小.19.(12分)甲、乙二人进行一次围棋比赛,约定先胜3局者获得这次比赛的胜利,比赛结束,假设在一局中,甲获胜的概率为0.6,乙获胜的概率为0.4,各局比赛结果相互独立,已知前2局中,甲、乙各胜1局.(I)求甲获得这次比赛胜利的概率;(Ⅱ)设ξ表示从第3局开始到比赛结束所进行的局数,求ξ的分布列及数学期望.20.(12分)在数列{a n}中,a1=1,a n+1=(1+)a n+.(1)设b n=,求数列{b n}的通项公式;(2)求数列{a n}的前n项和S n.21.(12分)如图,已知抛物线E:y2=x与圆M:(x﹣4)2+y2=r2(r>0)相交于A、B、C、D四个点.(Ⅰ)求r的取值范围;(Ⅱ)当四边形ABCD的面积最大时,求对角线AC、BD的交点P的坐标.22.(12分)设函数f(x)=x3+3bx2+3cx在两个极值点x1、x2,且x1∈[﹣1,0],x2∈[1,2].(1)求b、c满足的约束条件,并在下面的坐标平面内,画出满足这些条件的点(b,c)的区域;(2)证明:.2009年全国统一高考数学试卷(理科)(全国卷Ⅰ)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2009•全国卷Ⅰ)设集合A={4,5,7,9},B={3,4,7,8,9},全集U=A∪B,则集合∁U(A∩B)中的元素共有()A.3个 B.4个 C.5个 D.6个【分析】根据交集含义取A、B的公共元素写出A∩B,再根据补集的含义求解.【解答】解:A∪B={3,4,5,7,8,9},A∩B={4,7,9}∴∁U(A∩B)={3,5,8}故选A.也可用摩根律:∁U(A∩B)=(∁U A)∪(∁U B)故选A2.(5分)(2009•全国卷Ⅰ)已知=2+i,则复数z=()A.﹣1+3i B.1﹣3i C.3+i D.3﹣i【分析】化简复数直接求解,利用共轭复数可求z.【解答】解:,∴故选B3.(5分)(2009•全国卷Ⅰ)不等式<1的解集为()A.{x|0<x<1}∪{x|x>1}B.{x|0<x<1}C.{x|﹣1<x<0}D.{x|x<0}【分析】本题为绝对值不等式,去绝对值是关键,可利用绝对值意义去绝对值,也可两边平方去绝对值.【解答】解:∵<1,∴|x+1|<|x﹣1|,∴x2+2x+1<x2﹣2x+1.∴x<0.∴不等式的解集为{x|x<0}.故选D4.(5分)(2009•全国卷Ⅰ)已知双曲线﹣=1(a>0,b>0)的渐近线与抛物线y=x2+1相切,则该双曲线的离心率为()A.B.2 C.D.【分析】先求出渐近线方程,代入抛物线方程,根据判别式等于0,找到a和b 的关系,从而推断出a和c的关系,答案可得.【解答】解:由题双曲线的一条渐近线方程为,代入抛物线方程整理得ax2﹣bx+a=0,因渐近线与抛物线相切,所以b2﹣4a2=0,即,故选择C.5.(5分)(2009•全国卷Ⅰ)甲组有5名男同学,3名女同学;乙组有6名男同学、2名女同学.若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有()A.150种B.180种C.300种D.345种【分析】选出的4人中恰有1名女同学的不同选法,1名女同学来自甲组和乙组两类型.【解答】解:分两类(1)甲组中选出一名女生有C51•C31•C62=225种选法;(2)乙组中选出一名女生有C52•C61•C21=120种选法.故共有345种选法.故选D6.(5分)(2009•全国卷Ⅰ)设、、是单位向量,且,则•的最小值为()A.﹣2 B.﹣2 C.﹣1 D.1﹣【分析】由题意可得=,故要求的式子即﹣()•+=1﹣cos=1﹣cos,再由余弦函数的值域求出它的最小值.【解答】解:∵、、是单位向量,,∴,=.∴•=﹣()•+=0﹣()•+1=1﹣cos=1﹣cos≥.故选项为D7.(5分)(2009•全国卷Ⅰ)已知三棱柱ABC﹣A1B1C1的侧棱与底面边长都相等,A1在底面ABC上的射影D为BC的中点,则异面直线AB与CC1所成的角的余弦值为()A.B.C.D.【分析】首先找到异面直线AB与CC1所成的角(如∠A1AB);而欲求其余弦值可考虑余弦定理,则只要表示出A1B的长度即可;不妨设三棱柱ABC﹣A1B1C1的侧棱与底面边长为1,利用勾股定理即可求之.【解答】解:设BC的中点为D,连接A1D、AD、A1B,易知θ=∠A1AB即为异面直线AB与CC1所成的角;并设三棱柱ABC﹣A1B1C1的侧棱与底面边长为1,则|AD|=,|A1D|=,|A1B|=,由余弦定理,得cosθ==.故选D.8.(5分)(2009•全国卷Ⅰ)如果函数y=3cos(2x+φ)的图象关于点(,0)中心对称,那么|φ|的最小值为()A.B.C.D.【分析】先根据函数y=3cos(2x+φ)的图象关于点中心对称,令x=代入函数使其等于0,求出φ的值,进而可得|φ|的最小值.【解答】解:∵函数y=3cos(2x+φ)的图象关于点中心对称.∴∴由此易得.故选A9.(5分)(2009•全国卷Ⅰ)已知直线y=x+1与曲线y=ln(x+a)相切,则a的值为()A.1 B.2 C.﹣1 D.﹣2【分析】切点在切线上也在曲线上得到切点坐标满足两方程;又曲线切点处的导数值是切线斜率得第三个方程.【解答】解:设切点P(x0,y0),则y0=x0+1,y0=ln(x0+a),又∵∴x0+a=1∴y0=0,x0=﹣1∴a=2.故选项为B10.(5分)(2009•全国卷Ⅰ)已知二面角α﹣l﹣β为60°,动点P、Q分别在面α、β内,P到β的距离为,Q到α的距离为,则P、Q两点之间距离的最小值为()A.1 B.2 C.D.4【分析】分别作QA⊥α于A,AC⊥l于C,PB⊥β于B,PD⊥l于D,连CQ,BD 则∠ACQ=∠PBD=60°,在三角形APQ中将PQ表示出来,再研究其最值即可.【解答】解:如图分别作QA⊥α于A,AC⊥l于C,PB⊥β于B,PD⊥l于D,连CQ,BD则∠ACQ=∠PDB=60°,,∴AC=PD=2又∵当且仅当AP=0,即点A与点P重合时取最小值.故答案选C.11.(5分)(2009•全国卷Ⅰ)函数f(x)的定义域为R,若f(x+1)与f(x﹣1)都是奇函数,则()A.f(x)是偶函数B.f(x)是奇函数C.f(x)=f(x+2) D.f(x+3)是奇函数【分析】首先由奇函数性质求f(x)的周期,然后利用此周期推导选择项.【解答】解:∵f(x+1)与f(x﹣1)都是奇函数,∴函数f(x)关于点(1,0)及点(﹣1,0)对称,∴f(x)+f(2﹣x)=0,f(x)+f(﹣2﹣x)=0,故有f(2﹣x)=f(﹣2﹣x),函数f(x)是周期T=[2﹣(﹣2)]=4的周期函数.∴f(﹣x﹣1+4)=﹣f(x﹣1+4),f(﹣x+3)=﹣f(x+3),f(x+3)是奇函数.故选D12.(5分)(2009•全国卷Ⅰ)已知椭圆C:+y2=1的右焦点为F,右准线为l,点A∈l,线段AF交C于点B,若=3,则||=()A.B.2 C.D.3【分析】过点B作BM⊥x轴于M,设右准线l与x轴的交点为N,根据椭圆的性质可知FN=1,进而根据,求出BM,AN,进而可得|AF|.【解答】解:过点B作BM⊥x轴于M,并设右准线l与x轴的交点为N,易知FN=1.由题意,故FM=,故B点的横坐标为,纵坐标为±即BM=,故AN=1,∴.故选A二、填空题(共4小题,每小题5分,满分20分)13.(5分)(2009•全国卷Ⅰ)(x﹣y)10的展开式中,x7y3的系数与x3y7的系数之和等于﹣240.【分析】首先要了解二项式定理:(a+b)n=C n0a n b0+C n1a n﹣1b1+C n2a n﹣2b2++C n r a n﹣r b r++C n n a0b n,各项的通项公式为:T r=C n r a n﹣r b r.然后根据题目已知求解即可.+1【解答】解:因为(x﹣y)10的展开式中含x7y3的项为C103x10﹣3y3(﹣1)3=﹣C103x7y3,含x3y7的项为C107x10﹣7y7(﹣1)7=﹣C107x3y7.由C103=C107=120知,x7y3与x3y7的系数之和为﹣240.故答案为﹣240.14.(5分)(2009•全国卷Ⅰ)设等差数列{a n}的前n项和为S n,若S9=81,则a2+a5+a8=27.【分析】由s9解得a5即可.【解答】解:∵∴a5=9∴a2+a5+a8=3a5=27故答案是2715.(5分)(2009•全国卷Ⅰ)直三棱柱ABC﹣A1B1C1的各顶点都在同一球面上,若AB=AC=AA1=2,∠BAC=120°,则此球的表面积等于20π.【分析】通过正弦定理求出底面外接圆的半径,设此圆圆心为O',球心为O,在RT△OBO'中,求出球的半径,然后求出球的表面积.【解答】解:在△ABC中AB=AC=2,∠BAC=120°,可得由正弦定理,可得△ABC外接圆半径r=2,设此圆圆心为O',球心为O,在RT△OBO'中,易得球半径,故此球的表面积为4πR2=20π故答案为:20π16.(5分)(2009•全国卷Ⅰ)若,则函数y=tan2xtan3x的最大值为﹣8.【分析】见到二倍角2x 就想到用二倍角公式,之后转化成关于tanx的函数,将tanx看破成整体,最后转化成函数的最值问题解决.【解答】解:令tanx=t,∵,∴故填:﹣8.三、解答题(共6小题,满分70分)17.(10分)(2009•全国卷Ⅰ)在△ABC中,内角A、B、C的对边长分别为a、b、c,已知a2﹣c2=2b,且sinAcosC=3cosAsinC,求b.【分析】根据正弦定理和余弦定理将sinAcosC=3cosAsinC化成边的关系,再根据a2﹣c2=2b即可得到答案.【解答】解:法一:在△ABC中∵sinAcosC=3cosAsinC,则由正弦定理及余弦定理有:,化简并整理得:2(a2﹣c2)=b2.又由已知a2﹣c2=2b∴4b=b2.解得b=4或b=0(舍);法二:由余弦定理得:a2﹣c2=b2﹣2bccosA.又a2﹣c2=2b,b≠0.所以b=2ccosA+2①又sinAcosC=3cosAsinC,∴sinAcosC+cosAsinC=4cosAsinCsin(A+C)=4cosAsinC,即sinB=4cosAsinC由正弦定理得,故b=4ccosA②由①,②解得b=4.18.(12分)(2009•全国卷Ⅰ)如图,四棱锥S﹣ABCD中,底面ABCD为矩形,SD⊥底面ABCD,AD=,DC=SD=2,点M在侧棱SC上,∠ABM=60°(I)证明:M是侧棱SC的中点;(Ⅱ)求二面角S﹣AM﹣B的大小.【分析】(Ⅰ)法一:要证明M是侧棱SC的中点,作MN∥SD交CD于N,作NE⊥AB交AB于E,连ME、NB,则MN⊥面ABCD,ME⊥AB,设MN=x,则NC=EB=x,解RT△MNE即可得x的值,进而得到M为侧棱SC的中点;法二:分别以DA、DC、DS为x、y、z轴如图建立空间直角坐标系D﹣xyz,并求出S点的坐标、C点的坐标和M点的坐标,然后根据中点公式进行判断;法三:分别以DA、DC、DS为x、y、z轴如图建立空间直角坐标系D﹣xyz,构造空间向量,然后数乘向量的方法来证明.(Ⅱ)我们可以以D为坐标原点,分别以DA、DC、DS为x、y、z轴如图建立空间直角坐标系D﹣xyz,我们可以利用向量法求二面角S﹣AM﹣B的大小.【解答】证明:(Ⅰ)作MN∥SD交CD于N,作NE⊥AB交AB于E,连ME、NB,则MN⊥面ABCD,ME⊥AB,设MN=x,则NC=EB=x,在RT△MEB中,∵∠MBE=60°∴.在RT△MNE中由ME2=NE2+MN2∴3x2=x2+2解得x=1,从而∴M为侧棱SC的中点M.(Ⅰ)证法二:分别以DA、DC、DS为x、y、z轴如图建立空间直角坐标系D﹣xyz,则.设M(0,a,b)(a>0,b>0),则,,由题得,即解之个方程组得a=1,b=1即M(0,1,1)所以M是侧棱SC的中点.(I)证法三:设,则又故,即,解得λ=1,所以M是侧棱SC的中点.(Ⅱ)由(Ⅰ)得,又,,设分别是平面SAM、MAB的法向量,则且,即且分别令得z1=1,y1=1,y2=0,z2=2,即,∴二面角S﹣AM﹣B的大小.19.(12分)(2009•全国卷Ⅰ)甲、乙二人进行一次围棋比赛,约定先胜3局者获得这次比赛的胜利,比赛结束,假设在一局中,甲获胜的概率为0.6,乙获胜的概率为0.4,各局比赛结果相互独立,已知前2局中,甲、乙各胜1局.(I)求甲获得这次比赛胜利的概率;(Ⅱ)设ξ表示从第3局开始到比赛结束所进行的局数,求ξ的分布列及数学期望.【分析】(1)由题意知前2局中,甲、乙各胜1局,甲要获得这次比赛的胜利需在后面的比赛中先胜两局,根据各局比赛结果相互独立,根据相互独立事件的概率公式得到结果.(2)由题意知ξ表示从第3局开始到比赛结束所进行的局数,由上一问可知ξ的可能取值是2、3,由于各局相互独立,得到变量的分布列,求出期望.【解答】解:记A i表示事件:第i局甲获胜,(i=3、4、5)B i表示第j局乙获胜,j=3、4(1)记B表示事件:甲获得这次比赛的胜利,∵前2局中,甲、乙各胜1局,∴甲要获得这次比赛的胜利需在后面的比赛中先胜两局,∴B=A3A4+B3A4A5+A3B4A5由于各局比赛结果相互独立,∴P(B)=P(A3A4)+P(B3A4A5)+P(A3B4A5)=0.6×0.6+0.4×0.6×0.6+0.6×0.4×0.6=0.648(2)ξ表示从第3局开始到比赛结束所进行的局数,由上一问可知ξ的可能取值是2、3由于各局相互独立,得到ξ的分布列P(ξ=2)=P(A3A4+B3B4)=0.52P(ξ=3)=1﹣P(ξ=2)=1﹣0.52=0.48∴Eξ=2×0.52+3×0.48=2.48.20.(12分)(2009•全国卷Ⅰ)在数列{a n}中,a1=1,a n+1=(1+)a n+.(1)设b n=,求数列{b n}的通项公式;(2)求数列{a n}的前n项和S n.【分析】(1)由已知得=+,即b n=b n+,由此能够推导出所求的通+1项公式.(2)由题设知a n=2n﹣,故S n=(2+4+…+2n)﹣(1++++…+),设T n=1++++…+,由错位相减法能求出T n=4﹣.从而导出数列{a n}的前n项和S n.【解答】解:(1)由已知得b1=a1=1,且=+,即b n=b n+,从而b2=b1+,+1b3=b2+,b n=b n﹣1+(n≥2).于是b n=b1+++…+=2﹣(n≥2).又b1=1,故所求的通项公式为b n=2﹣.(2)由(1)知a n=2n﹣,故S n=(2+4+…+2n)﹣(1++++…+),设T n=1++++…+,①T n=+++…++,②①﹣②得,T n=1++++…+﹣=﹣=2﹣﹣,∴T n=4﹣.∴S n=n(n+1)+﹣4.21.(12分)(2009•全国卷Ⅰ)如图,已知抛物线E:y2=x与圆M:(x﹣4)2+y2=r2(r>0)相交于A、B、C、D四个点.(Ⅰ)求r的取值范围;(Ⅱ)当四边形ABCD的面积最大时,求对角线AC、BD的交点P的坐标.【分析】(1)先联立抛物线与圆的方程消去y,得到x的二次方程,根据抛物线E:y2=x与圆M:(x﹣4)2+y2=r2(r>0)相交于A、B、C、D四个点的充要条件是此方程有两个不相等的正根,可求出r的范围.(2)先设出四点A,B,C,D的坐标再由(1)中的x二次方程得到两根之和、两根之积,表示出面积并求出其的平方值,最后根据三次均值不等式确定得到最大值时的点P的坐标.【解答】解:(Ⅰ)将抛物线E:y2=x代入圆M:(x﹣4)2+y2=r2(r>0)的方程,消去y2,整理得x2﹣7x+16﹣r2=0(1)抛物线E:y2=x与圆M:(x﹣4)2+y2=r2(r>0)相交于A、B、C、D四个点的充要条件是:方程(1)有两个不相等的正根∴即.解这个方程组得,.(II)设四个交点的坐标分别为、、、.则直线AC、BD的方程分别为y﹣=•(x﹣x1),y+=(x﹣x1),解得点P的坐标为(,0),则由(I)根据韦达定理有x1+x2=7,x1x2=16﹣r2,则∴令,则S2=(7+2t)2(7﹣2t)下面求S2的最大值.由三次均值有:当且仅当7+2t=14﹣4t,即时取最大值.经检验此时满足题意.故所求的点P的坐标为.22.(12分)(2009•全国卷Ⅰ)设函数f(x)=x3+3bx2+3cx在两个极值点x1、x2,且x1∈[﹣1,0],x2∈[1,2].(1)求b、c满足的约束条件,并在下面的坐标平面内,画出满足这些条件的点(b,c)的区域;(2)证明:.【分析】(1)根据极值的意义可知,极值点x1、x2是导函数等于零的两个根,根据根的分布建立不等关系,画出满足条件的区域即可;(2)先用消元法消去参数b,利用参数c表示出f(x2)的值域,再利用参数c 的范围求出f(x2)的范围即可.【解答】解:(Ⅰ)f'(x)=3x2+6bx+3c,(2分)依题意知,方程f'(x)=0有两个根x1、x2,且x1∈[﹣1,0],x2∈[1,2]等价于f'(﹣1)≥0,f'(0)≤0,f'(1)≤0,f'(2)≥0.由此得b,c满足的约束条件为(4分)满足这些条件的点(b,c)的区域为图中阴影部分.(6分)(Ⅱ)由题设知f'(x2)=3x22+6bx2+3c=0,则,故.(8分)由于x2∈[1,2],而由(Ⅰ)知c≤0,故.又由(Ⅰ)知﹣2≤c≤0,(10分)所以.。

2009年高考数学理科试题(全国卷I)

2009年高考数学理科试题(全国卷I)

2009年普通高等学校招生全国统一考试(全国卷I )数 学(理)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分. 参考公式:如果事件A B ,互斥,那么 球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 34π3V R =n 次独立重复试验中恰好发生k 次的概率其中R 表示球的半径()(1)(01,2)k k n kn n P k C P P k n -=-= ,,, 第Ⅰ卷一、选择题1.设集合A={4,5,7,9},B={3,4,7,8,9},全集U=A B ,则集合()U A B I ð中的元素共有( )A .3个 B .4个 C .5个 D .6个 2.已知21izi =++,则复数z =( ) A .-1+3i B .1-3i C .3+i D .3-i3.不等式111x x +<-的解集为( )A .{|01}{|1}x x x x <<> B .{|01}x x <<C .{|10}x x -<< D .{|0}x x < 4.设双曲线22221x y a b-=(a >0,b >0)的渐近线与抛物线21y x =+相切,则该双曲线的离心率等于( )A B .2 C D5.甲组有5名男同学,3名女同学;乙组有6名男同学、2名女同学。

若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有( )A .150种B .180种C .300种D .345种6.设a 、b 、c 是单位向量,且 a b =0,则()()--g a c b c 的最小值为 ( )A .2-B 2C .1-D .17.已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 上的射影为BC 的中点,则异面直线AB 与1CC 所成的角的余弦值为( )A B C D . 348.如果函数()cos 2y x φ=3+的图像关于点43π⎛⎫⎪⎝⎭0中心对称,那么||ϕ的最小值为( ) A .6π B .4π C .3π D . 2π9.已知直线y=x+1与曲线y ln()x a =+相切,则α的值为( )A .1 B .2 C . -1 D .-210.已知二面角l αβ--为60o,动点P 、Q 分别在面α、β内,P 到βQ 到α的距离为则P 、Q 两点之间距离的最小值为( C )A B .2 C . D .411.函数()f x 的定义域为R ,若(1)f x +与(1)f x -都是奇函数,则( )A . ()f x 是偶函数B . ()f x 是奇函数C . ()(2)f x f x =+D . (3)f x +是奇函数12.已知椭圆22:12x C y +=的右焦点为F ,右准线为l ,点A l ∈,线段AF 交C 于点B ,若3FA FB = ,则||AF=( )A B .2 C D .3第II 卷二、填空题:本大题共4小题,每小题5分,共20分。

2009年全国高考理科数学试题及答案-山东卷

2009年全国高考理科数学试题及答案-山东卷

2009年普通高等学校招生全国统一考试(山东卷)理科数学本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页.满分150分.考试时间120分钟。

考试结束后,将本试卷和答题卡一并交回. 注意事项:1.答题前.考生务必用0.5毫米黑色签字笔将自己的姓名、座号、准考证号、县区和科类填写在答题卡和试卷规定的位置上..并将准考证号条形码粘贴在答题卡上指定位置。

2.第Ⅰ卷每小题选出答案后.用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动.用橡皮擦干净后.再选涂其他答案标号.答案不能答在试卷上。

3.第Ⅱ卷必须用0.5毫米黑色签字笔在答题卡各题的答题区域内作答;不能写在试题卷上;如需改动.先画掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸,修正带,不按以上要求作答的答案无效。

4.填空题请直接填写答案,解答题应写出文字说明,证明过程或演算步骤.。

参考公式:柱体的体积公式V=Sh.其中S 是柱体的底面积.h 是锥体的高。

锥体的体积公式V=13Sh .其中S 是锥体的底面积.h 是锥体的高。

如果事件A,B 互斥,那么P(A+B)=P(A)+P(B);R 如果事件A,B 独立,那么P(AB)=P(A)P(B). 事件A 在一次试验中发生的概率是p ,那么n 次独立重复试验中事件A 恰好发生k 次的概率:()(1)(0,1,2,,)k k n kn nP k C p p k n -=-=.第Ⅰ卷(共60分)一、选择题:本大题共12小题.每小题5分.共60分。

在每小题给出的四个选项中.只有一项是符合题目要求的。

(1)集合{}0,2,A a =,{}21,B a =,若{}0,1,2,4,16AB =,则a 的值为(A )0 (B )1 (C )2 (D )4【解析】:∵{}0,2,A a =,{}21,B a =,{}0,1,2,4,16A B =∴2164a a ⎧=⎨=⎩∴4a =,故选D.答案:D【命题立意】:本题考查了集合的并集运算,并用观察法得到相对应的元素,从而求得答案,本题属于容易题. (2)复数31ii--等于 (A )i 21+ B )12i - C )2i + D )2i -【解析】: 223(3)(1)324221(1)(1)12i i i i i ii i i i i --++-+====+--+-,故选C.答案:C【命题立意】:本题考查复数的除法运算.分子、分母需要同乘以分母的共轭复数.把分母变为实数.将除法转变为乘法进行运算. (3)将函数sin 2y x =的图象向左平移4π个单位, 再向上平移1个单位,所得图象的函数解析式是(A )cos 2y x = (B )22cos y x = (C ))42sin(1π++=x y (D )22sin y x =【解析】:将函数sin 2y x =的图象向左平移4π个单位,得到函数sin 2()4y x π=+即sin(2)cos 22y x x π=+=的图象,再向上平移1个单位,所得图象的函数解析式为21cos22sin y x x =+=,故选D.答案:D【命题立意】:式的基本知识和基本技能,学会公式的变形.(4) 一空间几何体的三视图如图所示,则该几何体的体积为(A)2π+ (B ) 4π+ (C ) 2π+(D ) 4π 【解析】:该空间几何体为一圆柱和一四棱锥组成的, 圆柱的底面半径为1,高为2,体积为2π,四棱锥的底面边长为2.高为3.所以体积为2133⨯=侧(左)视图正(主)俯视图所以该几何体的体积为23π+. 答案:C【命题立意】:本题考查了立体几何中的空间想象能力,由三视图能够想象得到空间的立体图,并能准确地计算出.几何体的体积.(5) 已知α.β表示两个不同的平面.m 为平面α内的一条直线.则“αβ⊥”是“m β⊥”的(A )充分不必要条件 (B )必要不充分条件 (C )充要条件 (D )既不充分也不必要条件 【解析】:由平面与平面垂直的判定定理知如果m 为平面α内的一条直线,m β⊥,则αβ⊥,反过来则不一定.所以“αβ⊥”是“m β⊥”的必要不充分条件. 答案:B.【命题立意】:本题主要考查了立体几何中垂直关系的判定和充分必要条件的概念.(6) 函数x x x xe e y e e--+=-的图像大致为【解析】:函数有意义,需使0xxe e--≠,其定义域为{}0|≠x x ,排除C,D,又因为22212111x x x x x x x e e e y e e e e --++===+---,所以当0x >时函数为减函数,故选A答案:A.【命题立意】:本题考查了函数的图象以及函数的定义域、值域、单调性等性质.本题的难点DB在于给出的函数比较复杂,需要对其先变形,再在定义域内对其进行考察其余的性质. (7)设P 是△ABC 所在平面内的一点.2BC BA BP +=.则 (A )0PA PB += (B )0PC PA += (C )0PB PC += (D )0PA PB PC ++=【解析】:因为2BC BA BP +=.所以点P 为线段AC 的中点.所以应该选C 。

2009年全国高考理科数学试题及答案-安徽卷

2009年全国高考理科数学试题及答案-安徽卷

2009年普通高等学校招生全国统一考试(安徽卷)数学(理科)本试卷分第I卷(选择题)和第II卷(非选择题)两部分,第I卷1至2页。

第II卷3至4页。

全卷满分150分,考试时间120分钟。

考生注意事项:1.答题前,务必在试题卷、答题卡规定的地方填写自己的姓名、座位号,并认真核对答题卡上所粘贴的条形码中姓名,座位号与本人姓名、座位号是否一致。

务必在答题卡背面规定的地方填写姓名和座位号后两位。

2.答第I卷时、每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮檫干净后,在选涂其他答案标号。

3.答第II卷时,必须用直径0.5毫米黑色黑水签字笔在答题卡上书写,要求字体工整、笔迹清晰。

作图题可先用铅笔在答题卡规定的位置绘出,确认后在用0.5毫米的黑色墨色签字笔清楚。

必须在标号所指示的答题区域作答,超出答题卡区域书写的答案无效,在试题卷、草稿纸上答题无效。

4.考试结束,务必将试题卷和答题卡一并上交。

参考公式:S表示底面积,h表示底面的高如果事件A 、B 互斥,那么 棱柱体积 V Sh =P(A+B)=P(A)+P (B) 棱锥体积 13V Sh =第I 卷(选择题 共50分)一.选择题:本大题10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)i 是虚数单位,若17(,)2ia bi ab R i+=+∈-,则乘积ab 的值是(B ) (A )-15 (B )-3 (C )3 (D )15(2)若集合{}21|21|3,0,3x A x x B x x ⎧+⎫=-<=<⎨⎬-⎩⎭则A ∩B 是(D )(A ) 11232x x x ⎧⎫-<<-<<⎨⎬⎩⎭或 (B) {}23x x << (C) 122x x ⎧⎫-<<⎨⎬⎩⎭(D) 112x x ⎧⎫-<<-⎨⎬⎩⎭(3(B )(A )22124x y -= (B )22142x y -= (C )22146x y -= (D )221410x y -=(4)下列选项中,p 是q 的必要不充分条件的是(A ) (A )p:a c +>b+d , q:a >b 且c >d(B )p:a >1,b>1 q:()(10)x f x a b a =-≠>的图像不过第二象限 (C )p: x=1, q:2x x =(D )p:a >1, q: ()log (10)a f x x a =≠>在(0,)+∞上为增函数(5)已知{}n a 为等差数列,1a +3a +5a =105,246a a a ++=99,以n S 表示{}n a 的前n 项和,则使得n S 达到最大值的n 是(B )(A )21 (B )20 (C )19 (D ) 18 (6)设a <b,函数2()()y x a x b =--的图像可能是(C )(7)若不等式组03434x x y x y ≥⎧⎪+≥⎨⎪+≤⎩所表示的平面区域被直线43y kx =+分为面积相等的两部分,则k 的值是(A ) (A )73 (B ) 37 (C )43(D ) 34(8)已知函数()3cos (0)f x x x ωωω=+>,()y f x =的图像与直线2y =的两个相邻交点的距离等于π,则()f x 的单调区间是(C )(A )5[,],1212k k k Z ππππ-+∈ (B )511[,],1212k k k Z ππππ++∈(C )[,],36k k k Z ππππ-+∈ (D )2[,],63k k k Z ππππ++∈(9)已知函数()f x 在R 上满足2()2(2)88f x f x x x =--+-,则曲线()y f x =在点(1,(1))f 处的切线方程是(A )(A )21y x =- (B )y x = (C )32y x =- (D )23y x =-+ (10)考察正方体6个面的中心,甲从这6个点中任意选两个点连成直线,乙也从这6个点中任意选两个点连成直线,则所得的两条直线相互平行但不重合的概率等于(D )1 75(B)275(C)375(D)475(A)二.填空题:本大题共5小题,每小题5分,共25分,把答案填在答题卡的相应位置。

【深度解析高考真题】2009年全国统一高考数学试卷(理科)(全国卷ⅰ)(20200515082636)

【深度解析高考真题】2009年全国统一高考数学试卷(理科)(全国卷ⅰ)(20200515082636)

2 .3 .4 .5 .6 .7 . 2009年全国统一高考数学试卷(理科)、选择题(共12小题,每小题5分,满分60分)(5 分)设集合A={4,5, 7, 9},B={3,4,7,8,元素共有()A. 3个(5分)已知A.- 1+3i9},全集(全国卷I )U=A U B,则集合?u (A H B)中的A.—B.—C•丄 D.—64328. (5分)如果函数y=3cos(2x+®的图象关于点(丄-,0)中心对称,那么|创的最小值为()2B. 4个Z1+1=2+i,则复数z=(B. 1 - 3i(5分)不等式v 1的解集为A. {x| 0v x v 1} U{x|x> 1} C. {x| - 1 v x v 0}心率为()A.二C. 5个D.C. 3+i D.B. {x| 0v x v 1}D. {x|x v0}22X=(5分)已知双曲线B. 2 (a>0, b>0)的渐近线与抛物线y=/+1相切,则该双曲线的离D. 1■(5分)甲组有5名男同学,3名女同学;乙组有6名男同学、2名女同学.若从甲、各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有(乙两组中A. 150种B. 180种C. 300 种D. 345 种A.- 21的最小值为()B.二-2C.- 1D. 1-/2(5分)已知三棱柱ABC- A1B1C1的侧棱与底面边长都相等,A1在底面ABC上的射影中点,则异面直线AB与CG所成的角的余弦值为(D为BC的9. (5分)已知直线y=x+1与曲线y=ln (x+a)相切,贝U a的值为()A. 1B. 2C.- 1D.- 210 . (5分)已知二面角a- l - B为60°动点P、Q分别在面a B内,P到B的距离为'呢,Q到的距离为:-.■;,则P、Q两点之间距离的最小值为()C- 11 . (5分)函数f (x)的定义域为R,若f (x+1)与f (x- 1)都是奇函数,贝U()A. f (x)是偶函数B. f (x)是奇函数C. f (x)=f (x+2)D. f (x+3)是奇函数12. (5分)已知椭圆C:牙+/=1的右焦点为F,右准线为I,点A€ l,线段AF交C于点B,洞=O ,则I上I =()A. :B. 2C.二D. 3二、填空题(共4小题,每小题5分,满分20分)13. _____________________________________________________________ (5分)(x-y)的展开式中,x7y3的系数与x3y7的系数之和等于_____________________________ .14. _____________________________________________________________ (5分)设等差数{a n}的前n项和为S n,若S9=81,则a2+a5+a s= _________________________ .15. (5分)直三棱柱ABC- A1B1C1的各顶点都在同一球面上,若AB=AC=AA=2,/ BAC=120,则球的表面积等于_______ .TT TT16. (5 分)若—-■ _____________________ ,则函数y=tan2xtan3x 的最三、解答题(共6小题,满分70分)17. (10 分)在厶ABC中,内角A、B、C的对边长分别为a、b、c,已知a2-c2=2b,且sinAcosC=3cosAsinC 求b.18. (12分)如图,四棱锥S- ABCD中,底面ABCD为矩形,SD丄底面ABCD AD^2,DC=SD=2 点M在侧棱SC上,/ ABM=60(I)证明:M是侧棱SC的中点;(U)求二面角S- AM - B的大小.SB21 . (12分)如图,已知抛物线E: f=x与圆M : (x-4) 2+y2=r2(r>0)相交于A、B、C、D四个占八、、・(I )求r的取值范围;(U)当四边形ABCD的面积最大时,求对角线AC、BD的交点P的坐标.19. (12分)甲、乙二人进行一次围棋比赛,约定先胜3局者获得这次比赛的胜利,比赛结束,假设在一局中,甲获胜的概率为0.6,乙获胜的概率为0.4,各局比赛结果相互独立,已知前2局中,甲、乙各胜1局.(I)求甲获得这次比赛胜利的概率;(U)设E表示从第3局开始到比赛结束所进行的局数,求E的分布列及数学期望.22. (12 分)设函数f (x) =x^+3bx2+3cx有两个极值点X1、血,且X1 € [ - 1,0],X2 € [ 1,2].(1)求b、c 满足的约束条件,并在下面的坐标平面内,画出满足这些条件的点( b,c)的区域;(2)证明:亠—丄.2009年全国统一高考数学试卷(理科)(全国卷I )参考答案与试题解析20. (12分)在数列{a n}中,a i=1, a n+i= (1—) a n+ L. 门珂(1 )设b n=:,求数列{ b n}的通项公式;n(2)求数列{a n}的前n项和S.一、选择题(共12小题,每小题5分,满分60分)1. (5 分)设集合A={4, 5, 7, 9} , B={3, 4, 7, 8, 9},全集U=A U B,则集合?U(A H B)中的元素共有()A. 3个B. 4个C. 5个D. 6个【考点】1H:交、并、补集的混合运算.【分析】根据交集含义取A、B的公共元素写出A H B,再根据补集的含义求解.【解答】解:A U B={3, 4, 5, 7, 8, 9},A H B={4, 7, 9}二?U(A H B)={3, 5, 8}故选A.也可用摩根律:?U(A H B)= (?U A)U(?U B)故选:A.【点评】本题考查集合的基本运算,较简单.2. (5分)已知]=2+i,则复数z=()A.- 1+3iB. 1 - 3iC. 3+iD. 3-【考点】A1:虚数单位i、复数.【分析】化简复数直接求解,利用共轭复数可求z.【解答】解:| •亍「丨’■「,••• z=1 - 3i故选:B.【点评】求复数,需要对复数化简,本题也可以用待定系数方法求解.3. (5分)不等式一」v 1的解集为()A. {x|0v x v 1} U {x|x> 1}B. {x|0v x v 1}C. {x| - 1v x v 0}D. {x|x v 0} 【考点】7E:其他不等式的解法.【分析】本题为绝对值不等式,去绝对值是关键,可利用绝对值意义去绝对值,也可两边平方去绝对值.【解答】解:•••—< 1,•••|X+1| v|x- 1| ,••• x2+2x+1 v x2- 2x+1.••• xv 0.•••不等式的解集为{x| x v 0}.故选:D.【点评】本题主要考查解绝对值不等式,属基本题.解绝对值不等式的关键是去绝对值,去绝对值的方法主要有:利用绝对值的意义、讨论和平方.2 24. (5分)已知双曲线‘一 - =1 (a> 0, b> 0)的渐近线与抛物线y=xM相切,则该双曲线的离界b2心率为()A. 「;B. 2C. 口D. . '■【考点】KC:双曲线的性质;KH:直线与圆锥曲线的综合.【专题】11:计算题.【分析】先求出渐近线方程,代入抛物线方程,根据判别式等于0,找到a和b的关系,从而推断出a和c的关系,答案可得.2 2 ,【解答】解:由题双曲线的一条渐近线方程为—,a2 L a代入抛物线方程整理得ax2- bx+a=0,因渐近线与抛物线相切,所以b2- 4a2=0,即,-■:--,故选:C.【点评】本小题考查双曲线的渐近线方程直线与圆锥曲线的位置关系、双曲线的离心率,基础题.故选:D.【点评】考查向量的运算法则;交换律、分配律但注意不满足结合律.7. (5分)已知三棱柱ABC- A1B1C1的侧棱与底面边长都相等,A1在底面ABC上的射影D为BC的5. (5分)甲组有5名男同学,3名女同学;乙组有6名男同学、2名女同学.若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有()A. 150 种B. 180 种C. 300 种D. 345 种【考点】D1:分类加法计数原理;D2:分步乘法计数原理.【专题】50:排列组合.【分析】选出的4人中恰有1名女同学的不同选法,1名女同学来自甲组和乙组两类型.【解答】解:分两类(1)甲组中选出一名女生有C51?C31?C62=225种选法;(2)乙组中选出一名女生有C52?C61?C21=120种选法.故共有345种选法.故选:D.【点评】分类加法计数原理和分类乘法计数原理,最关键做到不重不漏,先分类,后分步!■ ■ -,则〔丄1的最小值为()【考点】90:平面向量数量积的性质及其运算.【专题】16:压轴题.【分析】由题意可得 b |W2,故要求的式子即日吐-(丑+b) ?c+芒=1 - |邑+b卜| c |cos衣小J [片1 - . Leos〔「]一,,,再由余弦函数的值域求出它的最小值.【解答】解』是单位向量,八|,二一_ i.,丨•- =:I .r ? \「,=-・:,—(「:,.)? ■+=0-(■:■)? +1=1 -| 一- I .,•COS< ..,=1 - 「cos:二-…J .厂匚A|1'电:;中点,则异面直线AB与CG所成的角的余弦值为()A. B.匹C. D.-4444【考点】L0:空间中直线与直线之间的位置关系.【分析】首先找到异面直线AB与CG所成的角(如/ A1AB);而欲求其余弦值可考虑余弦定理,则只要表示出A1B的长度即可;不妨设三棱柱ABC- A1B1C1的侧棱与底面边长为1,利用勾股定理即可求之.【解答】解:设BC的中点为D,连接A1D、AD、A1B,易知9= A1AB即为异面直线AB与CC所成的角;并设三棱柱ABC- A1B1C1的侧棱与底面边长为1,则| AD| = _ , | A1DI =- , | A1 B| =」,〜丄2由余弦定理,得cos 9故选:D.【点评】本题主要考查异面直线的夹角与余弦定理.8. (5 分)如果函数y=3cos(2x+©)的图象关于点(一,0)中心对称,那么|创的最小值为()K TT'IT7TA.——B.C.——D.——643且【考点】HB:余弦函数的对称性.【专题】11:计算题.【分析】先根据函数y=3cos(2x+"的图象关于点:—.-中心对称,令代入函数使其等3 -3于0,求出©的值,进而可得I ©I的最小值.【解答】解:•••函数y=3cos(2x+©)的图象关于点:—.-中心对称.3— - t1 1 .—•••:_-:『--- .玄匚E由此易得 |> ' K. 故选:A.【点评】本题主要考查余弦函数的对称性.属基础题.9. (5分)已知直线y=x+1与曲线y=ln (x+a)相切,贝U a的值为()D.—2【考点】6H:利用导数研究曲线上某点切线方程.【分析】切点在切线上也在曲线上得到切点坐标满足两方程;又曲线切点处的导数值是切线斜率得第三个方程.【解答】解:设切点P (x o, y o),贝U y o=x o+1, y o=ln (x o+a),--x o+a=1【考点】LQ:平面与平面之间的位置关系.【专题】11:计算题;16:压轴题.【分析】分别作QA丄a于A, AC丄l于C, PB丄B于B, PD丄l于D,连CQ BD则/ ACQ=Z PBD=60 , 在三角形APQ中将PQ表示出来,再研究其最值即可.【解答】解:如图分别作QA丄a于A, AC丄l于C, PB丄B于B, PD丄l于D,连CQ, BD 则/ ACQ=/ PDB=60,总二:,I :,又T :厂.“ T- - .: |当且仅当AP=0,即点A与点P重合时取最小值.故选:C.O, x o=—1:B.评】本题考查导数的几何意义,常利用它求曲线的切线10A. 1B. 2C.—1的距离为一•,则P、Q两点之间距离的最小值为()B内,P到B的距离为V, Q到a【点评】本题主要考查了平面与平面之间的位置关系,以及空间中直线与平面之间的位置关系,考查空间想象能力、运算能力和推理论证能力,属于基础题.11. (5分)函数f (x)的定义域为R,若f (x+1)与f (x- 1)都是奇函数,贝U( )A. f (x)是偶函数B. f (x)是奇函数C. f (x) =f (x+2)D. f (x+3)是奇函数【考点】31:奇函数、偶函数.【专题】16:压轴题.【分析】首先由奇函数性质求f (x)的周期,然后利用此周期推导选择项. 【解答】解::f (x+1)与f (x- 1)都是奇函数,•••函数f (x)关于点(1 , 0)及点(-1, 0)对称,二 f (x) +f (2 - x) =0, f (x) +f (- 2 - x) =0,故有 f (2 -x) =f (- 2 -x),函数f (x)是周期T=[2-( - 2) ]=4的周期函数.f (- x- 1+4) =- f (x- 1 +4),f (- x+3) =- f (x+3),f (x+3)是奇函数.故选:D.【点评】本题主要考查奇函数性质的灵活运用,并考查函数周期的求法. 由题意丨—I ■,故FM二,故B点的横坐标为丄,纵坐标为土二3 3 3即BM二-,3故AN=1,故选:A.【点评】本小题考查椭圆的准线、向量的运用、椭圆的定义,属基础题.2 「_,12. (5 分)已知椭圆C^-+y2=1的右焦点为F,右准线为I,点A€ I,线段AF交C于点B,若F23FE, 则| '11=()A. 二B. 2C. 「;D. 3【考点】K4:椭圆的性质.【专题】11:计算题;16:压轴题.【分析】过点B作BM丄x轴于M,设右准线I与x轴的交点为N,根据椭圆的性质可知FN=1,进而根据祝二3五,求出BM, AN,进而可得| AF| .【解答】解:过点B作BM丄x轴于M ,二、填空题(共4小题,每小题5分,满分20分)13. (5分)(x-y) 10的展开式中,x7y3的系数与x3y7的系数之和等于-240【考点】DA:二项式定理.【专题】11:计算题.【分析】首先要了解二项式定理:(a+b) n=C n0a n b0+C n1a n- 1b1+C n2a n-2b2++C n r a n-r b r++C n n a0b n,各项的通项公式为:T r+1=G r a n-r b r.然后根据题目已知求解即可.【解答】解:因为(x-y) 10的展开式中含x7y3的项为C103x10 - 3y3(- 1) 3=- Ce^y3, 含x3y7的项为Ci07x10-7y7 (- 1) 7二-C107x3y7.由Ci03=G07=120知,x7y3与x3y7的系数之和为-240.故答案为-240.【点评】本题是基础题,解题思路是:先求底面外接圆的半径,转化为直角三角形,求出球的半径, 这是三棱柱外接球的常用方法;本题考查空间想象能力,计算能力.• a2+a5+a8=3a5=27 故答案是27【点评】本题考查前n项和公式和等差数列的性质.16. (5分)若——=,则函数y=tan2xtan3x的最大值为—_15. (5分)直三棱柱ABC- A1B1C1的各顶点都在同一球面上,若AB=AC=AA=2,/ BAC=120,则此球的表面积等于20n .【考点】LR球内接多面体.【专题】11:计算题;16:压轴题.【分析】通过正弦定理求出底面外接圆的半径,设此圆圆心为0',球心为0,在RT^OBO中,求出球的半径,然后求出球的表面积.【解答】解:在△ ABC中AB=AC=2 / BAC=120,可得■ : : ■;由正弦定理,可得△ ABC外接圆半径r=2,设此圆圆心为O',球心为O,在RT\OBO中,易得球半径J.,故此球的表面积为4nR=20n故答案为:20 n【考点】3H:函数的最值及其几何意义;GS:二倍角的三角函数.【专题】11:计算题;16:压轴题.【分析】见到二倍角2x就想到用二倍角公式,之后转化成关于tanx的函数,将tanx看破成整体,最后转化成函数的最值问题解决.n, 3 2tan4z 2t42/. ■' . -ii—.-.-ii. .■- , ^|17“ 丄丄,1 1 ' 1畀t2乜三)刁故填:-8.【点评】本题主要考查二倍角的正切,二次函数的方法求最大值等,最值问题是中学数学的重要内容之一,它分布在各块知识点,各个知识水平层面.以最值为载体,可以考查中学数学的所有知识点.三、解答题(共6小题,满分70分)17. (10分)在厶ABC中,内角A、B、C的对边长分别为a、b、c,已知a2- 4=20且sinAcosC=3cosAsinp 【考点】HR余弦定理.【分析】根据正弦定理和余弦定理将sinAcosC=3cosAsin(化成边的关系,再根据a2- c2=2b即可得到答案.【解答】解:法一:在△ ABC中I sinAcosC=3cosAsinC则由正弦定理及余弦定理有:【点评】此题主要考查二项式定理的应用问题,对于公式:(a+b)n=C h0a n b0+C n1a n _1b1+C n2a n_2b2++G r a n 「r b r++C n n a°b n,属于重点考点,同学们需要理解记忆.14. (5分)设等差数列{a n}的前n项和为S n,若S9=81,则a2+a5+a s= 27【考点】83:等差数列的性质;85:等差数列的前n项和.【分析】由S9解得a5即可.a5=9【解答】9(ai+an)-【解答】解:令tanx=t,v——宀,^-=-8亠bH屮~2ab —-3―2bZ~'c,化简并整理得:2 (a2- c2) =b2.又由已知a2- c2=2b^ 4b=b2.解得b=4或b=0 (舍);法二:由余弦定理得:a2- c2=b2- 2bccosA又a2- c2=2b, 0.所以b=2ccosA+2①又sinAcosC=3cosAsinC••• sin AcosC+cosAsi nC=4cosAs in Csin A+C) =4cosAs inC即sinB=4cosAsinC由正弦定理得.…二,c故b=4ccosA②由①,②解得b=4.【点评】本题主要考查正弦定理和余弦定理的应用.属基础题.18. (12分)如图,四棱锥S—ABCD中,底面ABCD为矩形,SD丄底面ABCD AD农,DC=SD=2 点M在侧棱SC上,/ ABM=60(I)证明:M是侧棱SC的中点;(U)求二面角S- AM - B的大小.【考点】L0:空间中直线与直线之间的位置关系;MJ:二面角的平面角及求法.【专题】11:计算题;14:证明题.【分析】(I )法一:要证明M是侧棱SC的中点,作MN // SD交CD于N,作NE丄AB交AB于E,连ME、NB,贝U MN 丄面ABCD,ME丄AB,砸二设MN=x,贝U NC=EB=x 解RT\ MNE 即可得x的值,进而得到M为侧棱SC的中点;法二:分别以DA、DC DS为x、y、z轴如图建立空间直角坐标系D-xyz,并求出S点的坐标、C 点的坐标和M点的坐标,然后根据中点公式进行判断;法三:分别以DA、DC、DS为x、y、z轴如图建立空间直角坐标系D-xyz,构造空间向量,然后数乘向量的方法来证明.(U)我们可以以D为坐标原点,分别以DA、DC、DS为x、y、z轴如图建立空间直角坐标系D- xyz,我们可以利用向量法求二面角S- AM - B的大小.【解答】证明:(I )作MN // SD交CD于N, 作NE丄AB交AB于E,连ME、NB,贝U MN 丄面ABCD, ME丄AB,E=AD=^设MN=x,贝U NC=EB=x在RT\ MEB 中,•••/ MBE=60 、二.在RT\ MNE 中由ME^NE^+MN2:3x2=x2+2解得x=1,从而w二丄一i • M为侧棱SC的中点M .(I )证法二:分别以DA、DC、DS为x、y、z轴如图建立空间直角坐标系 D - xyz,则A S,o, OL B(近,c(o?占眄现 o, 2:.设M (0, a, b) (a>0, b>0),解得入=1所以M是侧棱SC的中点.(U)由(I)得1 :!. 1:1 r, -- 一_:,19. (12分)甲、乙二人进行一次围棋比赛,约定先胜3局者获得这次比赛的胜利,比赛结束,假设在一局中,甲获胜的概率为0.6,乙获胜的概率为0.4,各局比赛结果相互独立,已知前2局中,甲、乙各胜1局.(I)求甲获得这次比赛胜利的概率;(U)设E表示从第3局开始到比赛结束所进行的局数,求E的分布列及数学期望.设 f j :. ;,.■ . ■■. | , r 分别是平面SAM、MAB 的法向量,」丄y-[「二二,」.:,得严kSM『或-2(") 二12-/(a-2)2+b2f2_2a=2(b-2)个方程组得a=1, b=1即M (0, 1, 1)(口■!!扎二0 f T1 厂N扎二0 上一且工一D!•AS=O n2•AB=O分别令「十,■亍得z i=i, yi=i, y2=o, z2=2,>=2+0+2 _V6面角S- AM - B的大小arcco证法三:设■":',—亠:.圧「-亠•亠- :"| . ' : : '■【点评】空间两条直线夹角的余弦值等于他们方向向量夹角余弦值的绝对值;空间直线与平面夹角的余弦值等于直线的方向向量与平面的法向量夹角的正弦值; 空间锐二面角的余弦值等于他的两个半平面方向向量夹角余弦值的绝对值;是侧棱SC的中点.S【考点】C8:相互独立事件和相互独立事件的概率乘法公式; CH:离散型随机变量的期望与方差.【专题】11:计算题. CG:离散型随机变量及其分布列【分析】(1)由题意知前2局中,甲、乙各胜1局,甲要获得这次比赛的胜利需在后面的比赛中先胜两局,根据各局比赛结果相互独立,根据相互独立事件的概率公式得到结果.(2)由题意知E表示从第3局开始到比赛结束所进行的局数,由上一问可知E的可能取值是2、3, 由于各局相互独立,得到变量的分布列,求出期望.【解答】解:记A i表示事件:第i局甲获胜,(i=3、4、5)B表示第j局乙获胜,j=3、4(1)记B表示事件:甲获得这次比赛的胜利,•••前2局中,甲、乙各胜1局,•••甲要获得这次比赛的胜利需在后面的比赛中先胜两局,B=A3A4+ B3A4A5 +A3 B4A5由于各局比赛结果相互独立,•P (B)=P (A3A4)+P (B3A4A5)+P (A3B4A5)=0.6X 0.6+0.4 x 0.6 x 0.6+0.6 x 0.4 x 0.6=0.648(2)E表示从第3局开始到比赛结束所进行的局数,由上一问可知E的可能取值是2、3由于各局相互独立,得到E的分布列P ( E =2 =P (A3A4+B3B4)=0.52P(E =)=1 - p(三=2 =1- 0.52=0.48•E E =X 0.52+3x 0.48=2.48.【点评】认真审题是前提,部分考生由于考虑了前两局的概率而导致失分,这是很可惜的,主要原因在于没读懂题•另外,还要注意表述,这也是考生较薄弱的环节.【专题】11:计算题;15:综合题.【分析】(1 )由已知得n+1+ -2n,即b n+1=b n+~2n,由此能够推导出所求的通项公式.(2 )由题设知a n=2 n - '12n_1,由错位相减法能求出T n=4-,故 ( 2+4+-+2n )22(佬+'.从而导出数列{a n}的前n项+••+■■2叶1【解答】解:(1 )由已知得b1=ai=1,且n+1即b n+1=b n+ -,从而b2=b1丄,严I 2护b n=b n- 1 +b3=b2+于是2n_L4丄+••+丄=2 -—-—2尹|严(n> 2).(n> 2).又b1=1,故所求的通项公式为b n=2(2)由(1) 知a n=2n1|2n_1nn-120. (12分)在数列{&}中,a1=1,a n+1= (1」)a n+ -.n 2n(1)设山二〜’,求数列{b n}的通项公式;n(2)求数列{a n}的前n项和S h.【考点】8E:数列的求和;8H:数列递推式.21i +•+•• +-/ -,①23),故S n= (2+4+-+2n),②1T n=1[1—=2123•T n=4;=2n+22叶1221••• Sn=n (n+1) +)" - - 4.2W【点评】本题考查数列的通项公式和前n项和的求法,解题时要注意错位相减法的合理运用. *進弧滲2 2 .4V _ ______________ 解这个方程组得-I— -. "2 221. (12分)如图,已知抛物线E: y2=x与圆M : (x-4) 2+y2=r2(r>0)相交于A、B、C、D四个占八、、・(I )求r的取值范围;(U)当四边形ABCD的面积最大时,求对角线AC BD的交点P的坐标. (II)设四个交点的坐标分别为•「.、匚;工二, > 、u:]・1 .【考点】IR:两点间的距离公式;JF:圆方程的综合应用;K8:抛物线的性质.【专题】15:综合题;16:压轴题.【分析】(1)先联立抛物线与圆的方程消去y,得到x的二次方程,根据抛物线E: f=x与圆M : (x-4) 2+y2=r2 (r>0)相交于A、B、C、D四个点的充要条件是此方程有两个不相等的正根,可求出r的范围.(2)先设出四点A,B,C, D的坐标再由(1)中的x二次方程得到两根之和、两根之积,表示出面积并求出其的平方值,最后根据三次均值不等式确定得到最大值时的点P的坐标. 【解答】解:(I )将抛物线E: y2=x代入圆M: (x- 4) 2+y2=r2(r>0)的方程,消去y2,整理得x2—7x+16- r2=0 (1)抛物线E: y2=x与圆M : (x-4) 2+y2=r2 (r>0)相交于A、B、C、D四个点的充要条件是:方程(1)有两个不相等的正根[49-4 (16-r2)>0• K [ + 竝2= 了 > 0则直线AC BD的方程分别为y-伍=、:[;"' ? (x-X1), y两J jY 1 (x-X1), 解得点P的坐标为(.—二,0),则由(I)根据韦达定理有X1+X2=7,X1x2=16-r2,-亠八;-U则=一一・_? | :•: -7 、厂--'■- ■-'■•:I ,「一 . :•:,•- ■:. j-,-:■■- I 一二「丁 . r 一、一—-- i -r -l L令 r -■,则今=(7+2t) 2( 7 - 2t)下面求S2的最大值.由三次均值有:!'当且仅当7+2t=14 - 4t,即十-丄时取最大值.6经检验此时:」「「满足题意.iui故所求的点P的坐标为—-I .【点评】本题主要考查抛物线和圆的综合问题.圆锥曲线是高考必考题,要强化复习.22. (12 分)设函数f (x) =x3+3bx2+3cx有两个极值点X1、x2,且X1 € [ - 1,0],x2 € [ 1,2].(1)求b、c 满足的约束条件,并在下面的坐标平面内,画出满足这些条件的点( b, c)的区域;Vis(2)证明:亠厂—■丄.【考点】6D:利用导数研究函数的极值;7B:二元一次不等式(组)与平面区域;R6:不等式的证明.【专题】11:计算题;14:证明题;16:压轴题. 【分析】(1)根据极值的意义可知,极值点X1、X2是导函数等于零的两个根,根据根的分布建立不等关系,画出满足条件的区域即可;(2)先用消元法消去参数b,利用参数c表示出f (X2)的值域,再利用参数c的范围求出f (X2) 的范围即可.【解答】解:(I) f (x) =3x2+6bx+3c, (2 分)依题意知,方程f (x) =0有两个根*、X2,且X1 € [ - 1,0],X2€ [1,2] 等价于f (- 1)> 0,f (0)< 0,f (1)< 0,f (2)> 0.r c>2b-l 由此得b,c满足的约束条件为(4分)、亡>-4匕-4满足这些条件的点(b,c)的区域为图中阴影部分.(6分)【点评】本题主要考查了利用导数研究函数的极值,以及二元一次不等式(组)与平面区域和不等式的证明,属于基础题.(II )由题设知f(X2)=3x22+6bx2+3c=0, 则 X _ —■-,故二〔_ 工•- —::'. (8分)由于X2€ [1, 2],而由(I )知c<0,故[I M ■- : i — l •又由(I )知-2< c<0,(10 分)所以-1 -;'一丄.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2009年普通高等学校招生考试 理科数学(必修+选修Ⅱ)本试卷分第卷(选择题)和第卷(非选择题)两部分.第卷1至2页,第卷3至4页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷考生注意: 1.答题前,考生在答题卡上务必用0.5毫米黑色墨水签字笔将自己的姓名、准考证号、填写清楚 ,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.在试题卷上作答无效.......... 3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.参考公式: 如果事件A B ,互斥,那么球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B ∙=∙球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 34π3V R =n 次独立重复试验中恰好发生k 次的概率其中R 表示球的半径一、选择题(1)设集合A={4,5,7,9},B={3,4,7,8,9},全集U=A B ,则集合[()u A B I 中的元素共有(A )(A )3个 (B )4个 (C )5个 (D )6个解:{3,4,5,7,8,9}A B = ,{4,7,9}(){3,5,8}U A B C A B =∴= 故选A 。

也可用摩根律:()()()U U U C A B C A C B =(2)已知1iZ +=2+i,则复数z=(B )(A )-1+3i (B)1-3i (C)3+i (D)3-i 解:(1)(2)13,13z i i i z i =+⋅+=+∴=- 故选B 。

(3) 不等式11X X +-<1的解集为( D )(A ){x }{}011x x x 〈〈〉 (B){}01x x 〈〈 (C ){}10x x -〈〈 (D){}0x x 〈 解:验x=-1即可。

(4)设双曲线22221x y ab-=(a >0,b >0)的渐近线与抛物线y=x 2+1相切,则该双曲线的离心率等于( C )(A )3 (B )2 (C )5 (D )6 解:设切点00(,)P x y ,则切线的斜率为0'0|2x x y x ==.由题意有0002y x x =又2001y x =+解得: 2201,2,1()5b b x e aa=∴==+=.(5) 甲组有5名男同学,3名女同学;乙组有6名男同学、2名女同学。

若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有( D ) (A )150种 (B )180种 (C )300种 (D)345种解: 分两类(1) 甲组中选出一名女生有112536225C C C ⋅⋅=种选法(2) 乙组中选出一名女生有211562120C C C ⋅⋅=种选法.故共有345种选法.选D(6)设a 、b 、c 是单位向量,且a ·b =0,则()()a c b c -∙-的最小值为 ( D ) (A )2- (B )22- (C )1- (D)12-解: ,,a b c是单位向量()()2()a c b c a b a b c c ∴-∙-=∙-+∙+1||||12cos ,12a b c a b c =-+∙=-<+>≥-故选D.(7)已知三棱柱111A B C A B C -的侧棱与底面边长都相等,1A 在底面A B C 上的射影为B C 的中点,则异面直线A B 与1C C 所成的角的余弦值为( D )BCB C A 111AD(A )34(B )54(C )74(D)34解:设B C 的中点为D ,连结1A D ,AD ,易知1A AB θ=∠即为异面直线A B 与1C C 所成的角,由三角余弦定理,易知113co c s 4os cos AD AD A AD D AB A AABθ=∠∠⋅=⋅=.故选D(8)如果函数()cos 2y x φ=3+的图像关于点43π⎛⎫⎪⎝⎭,0中心对称,那么||ϕ的最小值为(A )6π(B )4π(C )3π(D)2π解: 函数()cos 2y x φ=3+的图像关于点43π⎛⎫⎪⎝⎭,0中心对称 4232k ππφπ∴⋅+=+13()6k k Z πφπ∴=-∈由此易得m in ||6πφ=.故选A(9) 已知直线y=x+1与曲线y ln()x a =+相切,则α的值为( B )(A)1 (B)2 (C) -1 (D)-2 解:设切点00(,)P x y ,则0000ln 1,()y x a y x =+=+,又0'01|1x x y x a===+00010,12x a y x a ∴+=∴==-∴=.故答案选B(10)已知二面角l αβ--为60o,动点P 、Q 分别在面α、β内,P 到β的距离为3,Q 到α的距离为23,则P 、Q 两点之间距离的最小值为( C ) (A)(B)2 (C) 23 (D)4解:如图分别作,,,QA A AC l C PB B αβ⊥⊥⊥于于于PD l D ⊥于,连,60,CQ BD ACQ PBD ∠=∠=︒则 23,3A Q B P ==,2AC PD ∴==又2221223PQ AQ APAP =+=+≥当且仅当0A P =,即A P 点与点重合时取最小值。

故答案选C。

(11)函数()f x 的定义域为R ,若(1)f x +与(1)f x -都是奇函数,则( D )(A) ()f x 是偶函数 (B) ()f x 是奇函数 (C) ()(2)f x f x =+ (D) (3)f x +是奇函数解: (1)f x +与(1)f x -都是奇函数,(1)(1),(1)(1)f x f x f x f x ∴-+=-+--=--,∴函数()f x 关于点(1,0),及点(1,0)-对称,函数()f x 是周期2[1(1)]4T =--=的周期函数.(14)(14)f x f x ∴--+=--+,(3)(3)f x f x -+=-+,即(3)f x +是奇函数。

故选D12.已知椭圆22:12xC y +=的右焦点为F ,右准线为l ,点A l ∈,线段A F 交C 于点B ,若3FA FB = ,则||AF=( A )(A). 2 (B). 2 (C).3 (D). 3解:过点B 作BM l ⊥于M,并设右准线l 与X 轴的交点为N ,易知FN=1.由题意3FA FB =,故2||3B M =.又由椭圆的第二定义,得222||233BF =⋅=||2A F ∴=.故选A第II 卷二、填空题:13. ()10x y -的展开式中,73x y 的系数与37x y 的系数之和等于 。

解: 373101010()2240C C C -+-=-=-14. 设等差数列{}n a 的前n 项和为n S ,若972S =,则249a a a ++= 。

解: {}n a 是等差数列,由972S =,得599,S a ∴=58a =∴2492945645()()324a a a a a a a a a a ++=++=++==.15. 直三棱柱111A B C A B C -的各顶点都在同一球面上,若12A B A C A A ===, 120B A C ∠=︒,则此球的表面积等于 。

解:在A B C ∆中2AB AC ==,120B A C ∠=︒,可得23BC =,由正弦定理,可得A B C∆外接圆半径r=2,设此圆圆心为O ',球心为O ,在RT OBO '∆中,易得球半径5R =,故此球的表面积为2420R ππ=. 16. 若42x ππ<<,则函数3tan 2tan y x x =的最大值为 。

解:令tan ,x t =142x t ππ<<∴>,4432224222tan 2222tan 2tan 81111111tan 1()244x ty x x xtttt∴=====≤=-------三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤。

17(本小题满分10分)(注意:在试题卷上作答无效............) 在A B C ∆中,内角A 、B 、C 的对边长分别为a 、b 、c ,已知222a c b -=,且s in c o s 3c o s s in ,A C A C = 求b 分析:此题事实上比较简单,但考生反应不知从何入手.对已知条件(1)222a c b -=,左侧是二次的右侧是一次的,学生总感觉用余弦定理不好处理,而对已知条件(2)sin cos 3cos sin ,A C A C =过多的关注两角和与差的正弦公式,甚至有的学生还想用现在已经不再考的积化和差,导致找不到突破口而失分.解法一:在A B C ∆中sin cos 3cos sin ,A C A C = 则由正弦定理及余弦定理有:2222223,22a b cb c aa c abbc+-+-∙=∙化简并整理得:2222()a c b -=.又由已知222a c b -=24b b ∴=.解得40(b b ==或舍). 解法二:由余弦定理得:2222cos a c b bc A -=-.又 222a c b -=,0b ≠。

所以 2cos 2b c A =+…………………………………① 又 sin cos 3cos sin A C A C =,sin cos cos sin 4cos sin A C A C A C ∴+=sin()4cos sin A C A C +=,即sin 4cos sin B A C =由正弦定理得sin sin b B C c=,故 4cos b c A =………………………② 由①,②解得4b =。

评析:从08年高考考纲中就明确提出要加强对正余弦定理的考查.在备考中应注意总结、提高自己对问题的分析和解决能力及对知识的灵活运用能力.另外提醒:两纲中明确不再考的知识和方法了解就行,不必强化训练。

18.(本小题满分12分)(注意:在试题卷上作答无效).............如图,四棱锥S A B C D -中,底面A B C D 为矩形,SD ⊥底面A B C D ,2AD =,2D C SD ==,点M 在侧棱S C 上,ABM ∠=60°(I )证明:M 在侧棱S C 的中点 (II )求二面角S A M B --的大小。

解法一:(I )作M E ∥C D 交S D 于点E ,则M E ∥AB ,M E ⊥平面SAD 连接AE ,则四边形ABME 为直角梯形 作M F AB ⊥,垂足为F ,则AFME 为矩形 设M E x =,则SE x =,222(2)2AE ED ADx =+=-+2(2)2,2M F AE x FB x ==-+=-由2tan 60,(2)23(2)M F FB x x =∙-+=-。

相关文档
最新文档