19、五年级数学奥数专题讲座第四课(最大公约数和最小公倍数)
五年级奥数上册第四讲.最大公约数和最小公倍数
分类讨论
• • • • • • 如果d=1时: 由d(a1-b1)=4得a1-b1=4; 由d×da1b1=252可得a1b1=252 252=1×252=4×63=7×36=9×28 但此时都不满足a1-b1=4 所以d≠1
• • • • • • • • • • •
如果d=2时: 由d(a1-b1)=4得 a1-b1=2; 由d×da1b1=252可得 a1b1=63 63=1×63=7×9 此时63-1=62≠2不满足a1-b1=2 , 9-7=2满足a1-b1=2 所以d=2并且a1=9、b1=7 所以a=18、b=14 答:这两个数为18和14。
(二)已知最大公约数和最小公倍数求两个数
• 例2、已知两数的最大公约数是21,最小公倍数 是126。求着两个数的和是多少? • 分析:思路1,由最大公约数与最小公倍数的积等 于两个数的积可得到两个数的积为 • 21×126=2646, • 再利用分解质因数后重新组合即可 • 2646=2×3×3×3×7×7 • =(3×7×2)×(3×7×3)=42×63 • 或 =(3×7)×(3×7×2×3)=21×126
如果d =1则a1+b1=54 a1×b1-1=114 即a1×b1=115 115=1×115=5×23 但是1+115=116≠54 5+23=28≠54 d≠1 下面分别讨论d=2、3、6的情况得到: d=6是成立,此时a1=4,b1=5 a=6×4=24 b=6×5=30
• 例6、已知两个自然数的差为4,它们的最 大公约数与最小公倍数的积为252,求这两 个自然数 • 分析:差为4即a-b=4即d(a1-b1)=4 • 最大公约数与最小公倍数的积为252即 • d×da1b1=d×da1b1=252=2×2×3×3×7 • 所以d是6的约数,即d是4与6的公约数, d=1或2
小学奥数-最大公约数与最小公倍数完整
例5、一次会餐有三种饮料,餐后统 计,三种饮料共用了65瓶;已知,平 均每2人饮用一瓶A饮料,每3人饮用 一瓶B饮料,每4人饮用一瓶C饮料。 问参加会餐的人数是多少人?
分析:由题意知参加会餐的人数应当 是2、3、4的公倍数。试一下看看
解:∵ [2,3,4] =12 ∴参加会餐的人数应当是12 的倍数, 又∵每12人用 12÷2+12÷3+12÷4 =6+4+3=13 (个饮料瓶) 65÷13=5 ∴ 参加会餐的人数是12×5=60 (人) 答:参加会餐的人数是60人。
2 18 39
3
2 30 3 15
5
公有的质因 数的积就是 最大公约数
18= 2 × 3 ×3 (18,30)=2×3=6 30= 2 × 3 ×5
(3)短除法
例如:求18和30的最大公约数。
2 18 30 18和30的最大公约数:
39
15
(18,30)=2 × 3 =6
35
5、怎样求最小公倍数
三、最大公约数与最小公倍数的关系
例9、两个数的最大公约数是4,最小公 倍数是252,其中一个是28,另一个数 是多少?
分析:最大公约数与最小公倍数的乘积 等于这两个数的乘积 即:(a,b)× [a,b] =a×b 利用这个关系可以迅速 地解答此类问题。如果不理解这 28
应用举例(3)不同长度的拆分
例3、有三段铁丝,长度分别是120厘 米、180厘米和300厘米,现在要将它 们截成长度相等的小段,每根都不能 有剩余,每小段最长多少厘米?一共 可以截成多少段?
分析:要截成相等的小段,每段长度 应当是120、180、300的公约数;最 长,长度应当是120、180、300的最 大公约数
五年级奥数最大公约数和最小公倍数的比较和应用
最大公约数和最小公倍数的比较和应用最大公约数与最小公倍数的应用比较在整除的应用当中,最大公约数和最小公倍数的应用最为广泛,也是最重要的部分。
一道应用题,到底是用最大公约数解题还是用最小公倍数解题,学生最容易混乱。
不妨试用下面这种土方法判断下,问题就会迎刃而解了。
判断法则:如果题目已知总体,求部分,一般用最大公约数解题,先求出总体的最大公约数,再依题意解答;如果题目已知部分,求总体,一般用最小公倍数解题,先求出部分的最小公倍数,再依题意解答。
对比例子(一)1.把一张长60厘米,宽40厘米的长方形纸板剪成边长是整数厘米数的小正方形,且无剩余,最少可以剪成多少块?分析:正方形是在长方形里面剪,所以长方形是总体,正方形是部分。
题目告诉你了长方形的长与宽,告诉了总体,求的是小正方形,求部分,所以用最大公约数解题。
具体分析:由于题中求剪后无剩余,所以小正方形的边长必须是60和40的公约数。
又因为求最少剪多少块,就要求小正方形的边长最大,所以小正方形的边长一定是60和40的最大公约数。
(60,40)=20 -------这就是小正方形的边长。
(60÷20)×(40÷20)=6(块)或用面积计算:(60×40)÷(20×20)=6(块)2.用长5CM,宽3CM的长方形硬纸片摆成一个正方形(中间无空隙),至少要用几个长方形硬纸片?分析:多个长方形摆成正方形,所以正方形是总体,长方形是部分。
题目告诉你了长方形的长与宽,即告诉了部分,求正方形,即求总体,所以用最小公倍数解题。
具体分析:由于拼摆后正好一个正方形,所以正方形的边长必须是长方形的长与宽的公倍数,又因为要用最少的长方形来摆,所以正方形的边长一定是最小的公倍数。
〔5,3〕=15 CM------这就是正方形的边长(15÷5)×(15÷3)=15(个)长方形或用面积计算:(15×15)÷(5×3)=15(个)对比例子(二)1.一长方体木块,长56CM,宽40CM,高24CM,把它锯成尽可能大,且大小相同的正方体,且无剩余,能锯成多少块?分析:小正方体是从长方体中锯出来的,长方体就是总体,小正方体为部分。
五年级奥数最小公倍数讲座及练习答案
五年级奥数最小公倍数讲座及练习答案回忆:1、什么叫公倍数及最小公倍数?2、自然数a、b的最小公倍数可以记作[a、b],当(a、b)=1时,[a、b]=a某b。
3、两个数的最大公约数某最小公倍数=两数的乘积例1:一块砖长20厘米,宽12厘米,高6厘米,要堆成正方体至少需要这样的砖头多少块?分析:把若干个长方体堆成正方体,它的棱长是长方体长、宽、高的公倍数,现在要求长方体砖块最少,它的棱长应是长方体长方体长、宽、高的最小公倍数。
要多少块砖,即用正方休的体积除以长方体的体积。
[20,12,6]=6060某60某60÷(20某12某6)=150(块)答:至少需要这样的砖头150块。
【巩固练习】:用长9厘米,宽6厘米,高7厘米的长方体木块叠成一个正方体,至少需要用这样的长方体多少块?解:用长9厘米,宽6厘米,高7厘米的长方体木块叠成一个正方体,要求至少需要用这样的长方体多少块,也就是求9、7、6的最小公倍数是多少。
[9、6、7]=126.答:至少需要用这样的长方体126块.。
例2:甲每秒跑3米,乙每秒跑4米,丙每秒跑2米,三人沿600米的环形跑道从同一点同时同方向跑步,经过多少时间三人又同时从出发点出发?分析:甲跑一圈需要600÷3=200(秒)乙跑一圈需要600÷4=150(秒)丙跑一圈需要600÷2=300(秒)。
要使三人再次从出发点一齐出发,经过的时间一不定期是200、150、300的最小公倍数,[200、150、300]=600,所以,经过600秒后三人又同时从出发点出发。
【巩固练习】:一环形跑道长240米,甲、乙、丙从同一处同方向骑车而行,甲每秒行8米,乙每秒行6米,丙每秒行5米,至少经过几分钟后三人再次从原出发点同时出发?解:一环形跑道长240米,甲、乙、丙从同一处同方向骑车而行,甲每秒行8米,那么骑完一圈需240÷8=30(秒)乙每秒行6米,骑完一圈需240÷6=40(秒)丙每秒行5米,骑完一圈需240÷5=48(秒),求至少经过几分钟后三人再次从原出发点同时出发,就是求30、40、48的最小公倍数是多少。
5年级奥数讲义(最大公约数最小公倍数)
第五讲最大公因数与最小公倍数 (教师版)例1、437与323的最大公约数是多少?基本概念:1、公约数和最大公约数 几个数公有的约数........,叫做这几个数的公约数..........;其中最大的一个.......,叫做这几个数的最大公约数............。
例如:12的约数有1,2,3,4,6,12;30的约数有1,2,3,5,6,10,15,30。
12和30的公约数有1,2,3,6,其中6是12和30的最大公约数。
一般地我们用(a,b )表示a,b 这两个自然数的最大公约数,如(12,30)=6。
如果(a,b )=1,则a,b 两个数是互质数。
2、公倍数和最小公倍数几个数公有的倍数,叫做这几个数的公倍数;其中最小的一个,叫做这几个数的最小公倍数。
例如:12的倍数有12,24,36,48,60,72,… 18的倍数有18,36,72,90,…12和18的公倍数有:36,72…其中36是12和 18的最小公倍数。
一般地,我们用[a,b]表示自然数,a,b 的最小公倍数,如[12,18]=36。
3、最大公约数与最小公倍数的求法A .最大公约数求两个数的最大公约数一般有以下几种方法 (1)分解质因数法 (2)短除法 (3)辗转相除法 (4)小数缩倍法 (5)公式法前两种方法在数学课本中已经学过,在这里我们主要介绍辗转相除法。
当两个整数不容易看出公约数时(一般是数字比较大),我们可以合用辗转相除法。
B .最小公倍数求几个数的最小公倍数的方法也有以下几种方法: (1)分解质因数法 (2)短除法 (3)大数翻倍法(4)a×b =(a,b )×[a,b]上面的公式表示:两个数的乘积等于这两个数的最大公约数和最小公倍数的乘积。
例2、24871和3468的最小公倍数是多少?练习254216933的最简分数是多少?例3、把一块长90厘米,宽42厘米的长方形铁板剪成边长都是整厘米,面积都相等的小正方形铁板,恰无剩余。
小学五年级奥数知识点 第四讲 最大公约数和最小公倍数
如果d=6,由d×(a1+b1)=54,有a1+b1=9;又由d×(a1b1-1)=114,有a1b1=20。
20表示成两个互质数的乘积有两种形式:20=1×20=4×5,虽然1+20=21≠9,但是有4+5=9,所以取d=6是合适的,并有a1=4,b1=5。
252表示成两个互质数的乘积有4种形式:252=1×252=4×63=7×36=9×28,但是252-1=251≠4,63-4=59≠4,36-7=29≠4,28-9=19≠4,所以d≠1。
如果d=2,由d×(a1-b1)=4,有a1-b1=2;又由d2×a1b1=252,有a1b1=63。
假设(a1,b1)≠1,可设(a1,b1)=m(m>1),于是有a1=a2m,b1=b2m.(a2,b2是整数)
所以a=a1d=a2md,b=b1d=b2md。
那么md是a、b的公约数。
又∵m>1,∵md>d。
这就与d是a、b的最大公约数相矛盾.因此,(a1,b1)≠1的假设是不正确的.所以只能是(a1,b1)=1,也就是(a÷d,b÷d)=1。
解:设这两个自然数分别为a与b,a<b.因为这两个自然数的最大公约数是5,故设a=5a1,b=5b1,且(a1,b1)=1,a1<b1。
因为 a+b=50, 所以有5a1+5b1=50,
a1+b1=10。
满足(a1,b1)=1,a1<b1的解有:
答:这两个数为5与45或15与35。
定理2 两个数的最小公倍数与最大公约数的乘积等于这两个数的乘积.(证明略)
定理3 两个数的公约数一定是这两个数的最大公约数的约数.(证明略)
求两个数的最大公约数和最小公倍数课件
性质多样
最大公约数和最小公倍数还有许多其他有趣的 性质和定理。
最大公约数和最小公倍数的关系
最大公约数和最小公倍数的乘积
两数的最大公约数乘以最小公倍数等于这两个数 的乘积。
最大公约数和最小公倍数的关系
最大公约数是最小公倍数的因子,最小公倍数是最 大公约数的倍数。
结论和要点
• 最大公约数是两个或多个整数的公共因子中最大的一个。 • 最小公倍数是两个或多个整数的公共倍数中最小的一个。 • 可以用欧几里得算法、质因数分解法等方法求最大公约数。 • 可以用公式法、分解法等方法求最小公倍数。 • 最大公约数和最小公倍数有许多应用和有趣的性质。
花坛布置
最大公约数和最小公倍数可以帮 助布置花坛,让花朵的位置更加 均匀美观。
最大公约数和最小公倍数的性质
交换律
最大公约数和最小公倍数满足交换律,在计算 中可以任意改变数字的位置。
结合律
最大公约数和最小公倍数满足结合律,计算时 可以先计算一部分数字的最大公约数或最小公 倍数。
单位元
最大公约数和最小公倍数都有一个单位元,即1, 与任何数的最大公约数和最小公倍数都是1。
求两个数的最大公约数和 最小公倍数ppt课件
最大公约数和最小公倍数是数学中常见的概念。本课件将帮助您了解它们的 定义、计算方法、应用以及性质。
最大公约数和最小公倍数的定义
1 最大公约数
2 最小公倍数
是两个或多个整数的公共因子中最大的一个。
是两个或多个整数的公共倍数中最小的一个。
求最大公约数的方法
别取出各个质因数的最高次幂相乘。
3
公式法
最小公倍数等于两数的乘积除以最大公 约数。
相对质数法
首先计算出两个数的最大公约数,然后 将两个数相乘再除以最大公约数。
小学奥数-最大公约数与最小公倍数PPT课件
2021
4
3.怎样求两个数的最大公约数
(1)列举法: (2)分解质因数法: (3)短除法:
2021
5
(1)列举法
例如,求18和30的最大公约数。
18的约数: 30的约数:
1 2 3 6 9 18 1 2 3 5 6 10 15 30
公约数:
1、2、3、6
最大公约数:6
2021
6
6
(除法求最大公约数
解
5 30 60 75 3 6 12 15
2 45
(30,60,75)=5×3=15
答:这个数最大是15。
2021
15
(2)整除中几个数共同的被除 数——最小公倍数
例2、一个数用3、4、5除都能整除, 这个数最小是多少?
分析:这个数能被3、4、5整除, 说明它是3、4、5的公倍数,
分析:要使生产均衡,各道工序生产 出的零件应当一样多,且正好是3、 10和5的公倍数。
2021
19
解:要使生产均衡,各道工序生产出的零件应当一样 多,并且是3、10和5的公倍数。
[3,10,5]
5 3 10 5 32 1
=5×3×2×1= 30
各道工序均应加工30个零件。
30÷3=10 30÷10=3 30÷5=6。
答:三道工序至少分别需要10个、 3个、6个工人。
2021
20
例5、一次会餐有三种饮料,餐后统 计,三种饮料共用了65瓶;已知,平 均每2人饮用一瓶A饮料,每3人饮用 一瓶B饮料,每4人饮用一瓶C饮料。 问参加会餐的人数是多少人?
35
2021
8
8
5、怎样求最小公倍数
1、列举法 2、分解因数法 3、短除法
五年级 第4讲 最大公因数与最小公倍数(教师版)【修订版1.0】
第4讲最大公因数与最小公倍数一、教学目标1.掌握公因数与公倍数、最大公因数与最小公倍数的概念.2.学会求多个数的最大公因数与最小公倍数的方法.3.学会利用最大公因数与最小公倍数解决实际应用题.二、知识要点1.公因数与最大公因数:公因数,亦称“公约数”,即多个自然数公共的因数.它是一个能同时整除若干个整数的整数.其中最大的一个,叫做这几个数的最大公约数,a、b 的最大公因数记作:(a,b).公因数只有1的两个数,叫互质数.例如,8和9是一组互质数,也可以说8和9互质.注意:对任意的若干个正整数,1总是它们的公因数.2.最小公倍数:同理,公倍数即几个自然数公有的倍数,叫做这几个数的公倍数,其中最小的一个自然数,叫做这几个数的最小公倍数,a、b的最小公倍数记作:[a,b].3.短除法:短除符号与除式倒过来的符号十分相似,待分解的数放在被除数位置,除数位置放能整除待分解数的一个共有约数,一直除到商互质为止.格式如图:口诀:最大公因算一边,最小公倍算一圈.被除数待分解21812396324.最大公因数的性质:①几个数都除以它们的最大公约数,所得的几个商是互质数;①几个数的公约数,都是这几个数的最大公约数的约数;①几个数都乘一个自然数n,所得的积的最大公约数等于这几个数的最大公约数乘以n.5.最小公倍数的性质:①两个数的任意公倍数都是它们最小公倍数的倍数.①两个互质的数的最小公倍数是这两个数的乘积.①两个数具有倍数关系,则它们的最大公约数是其中较小的数,最小公倍数是较大的数.三、例题精选【例1】51与87的最大公因数与最小公倍数分别是多少?【①①①①①】【解析】(51,87)=3,[51,87]=1479.51=3×17,87=3×29,(51,87)=3,[51,87]=3×17×29=1479.【巩固1】24与60的最大公因数与最小公倍数分别是多少?【①①①①①】【解析】(24,60)=12,[24,60]=120.24=23×3,60=22×3×5,(24,60)=22×3=12,[24,60]=23×3×5=120.【例2】12、28与36的最大公因数与最小公倍数分别是?【①①①①①】【解析】(12,28,36)=4,[12,28,36]=252.12=22×3,28=22×7,36=22×32;(12,28,36)=22=4,[12,28,36]=22×32×7=252.【巩固2】15、20与45的最大公因数与最小公倍数分别是?【①①①①①】【解析】(15,20,45)=5,[15,20,45]=180.15=3×5,20=22×5,45=32×5;(15,20,45)=5,[15,20,45]=22×32×5=180.【例3】有三根铁丝,长度分别是120厘米、180厘米和300厘米.现在要把它们截成相等的小段,每根都不能有剩余,每小段最长多少厘米?一共可以截成多少段?【①①①①①】【解析】60厘米,10段.需要截成相等的小段且无剩余,则每段长度必须是120、180、300的公因数.又要求每段尽可能长,则所求应为其最大公因数.(120,180,300)=60,所以每小段最长为60厘米.(120+180+300)÷60=10(段)【巩固3】长48分米,宽40分米的长方形卧室铺地砖,请问最大可以选用边长为多少分米的方砖,能铺的又整齐又节约?【①①①①①】【解析】8分米.正方形边长相等,所以要求的边长长度必须是48和40的公因数,又问边长最大可取多少,则所求应为其最大公因数.(48,40)=8,所以边长最大可取8分米.【例4】一次会餐供有三种饮料.餐后统计,三种饮料共用了65瓶.平均每2个人饮用一瓶A饮料,每3人饮用一瓶B饮料,每4人饮用一瓶C饮料.问参加会餐的人数是多少人?【①①①①①】【解析】60人.由题意可知,参加会餐人数应是2、3、4的公倍数,首先求出2、3、4的最小公倍数:[2,3,4]=12,故参加会餐的人数应是12的倍数,又12人共需:12÷2+12÷3+12÷4=13(瓶),即12人需要13瓶饮料.一共用了65瓶饮料,65÷13=5,则知参加会餐的总人数应是12的5倍,12×5=60(人),即得参加会餐的总人数为60人.【巩固4】加工某种机器零件,要经过三道工序.第一道工序每个工人每小时可完成3个零件,第二道工序每个工人每小时可完成10个,第三道工序每个工人每小时可完成5个,要使加工生产均衡,三道工序至少各分配几个工人?【①①①①①】【解析】第一道工序10人,第二道工序3人,第三道工序6人.要使加工生产均衡,各道工序生产的零件总件数应是3、10、5的公倍数.要求三道工序“至少”要多少工人,首先求3、5、10的最小公倍数.[3,5,10]=30,均衡各道工序,一轮最少应加工30个零件,各道工序最少需要:3÷3=10(人),30÷10=3(人),30÷5=6(人)【例5】两个自然数的和是125,它们的最大公约数是25,两个数是多少?【①①①①①】【解析】25、100或50、75.125÷25=5,5=1+4=2+3,所以两数可以为1×25=25、4×25=100或2×25=50、3×25=75.【巩固5】已知两数的最大公约数是21,最小公倍数是126,求这两个数的和是多少?【①①①①①】【解析】105或147.假设这两个数是21a和21b,易得21×a×b=126,所以a×b=6,由a和b互质,就有6=1×6=2×3这两种情况.所以甲乙是21×1=21、21×6=126或21×2=42、21×3=63这两种情况,它们的和是147或105.【例6】在一根长木棍上用红、黄、蓝三种颜色做标记,分别将木棍平均分成了10等份、12等份和15等份.如果沿这三种标记把木棍锯断,木棍总共被锯成多少段?【①①①①①】【解析】28段.首先求10、12、15最小公倍数:[10,12,15]=60.60÷10=6、60÷12=5、60÷15=4,则知将木棍分成60小份后,每隔6小份有一个红标记,5小份有一个黄标记,4小份有一个蓝标记,因此断点为:4,5,6,8,10,12,15,16,18,20,24,25,28,30,32,35,36,40,42,44,45,48,50,52,54,55,56,则知木棍一共被锯成28段.【巩固6】父子二人在雪地散步,父亲在前,每步80厘米,儿子在后,每步60厘米.在120米内一共留下多少个脚印?【①①①①①】【解析】301个.首先求60、80最小公倍数:[60,80]=240.则知每240厘米,即2.4米有一个脚印踩到了一起,120÷2.4=50,则知120米可以分成50个2.4米,每2.4米中,爸爸脚印有240÷80=3(个),儿子脚印有240÷60=4(个),排除重复脚印则一共有3+4-1=6(个),50个2.4米则有50组6步,故有50×6=300(个),又在0米处二人开始走时也有一个脚印,即共有脚印300+1=301(个).四、回家作业【作业1】18与48的最大公因数与最小公倍数分别是多少?【①①①①①】【解析】(18,48)=6,[18,48]=144.18=2×32,48=24×3,(18,48)=2×3=6,[18,48]=24×32=144.【作业2】12、24与36的最大公因数与最小公倍数分别是多少?【①①①①①】【解析】(12,24,36)=12,[12,24,36]=72.12=22×3,24=23×3,36=22×32;(12,24,36)=12,[12,24,36]=23×32=72.【作业3】有三根棉线,长度分别是9厘米、18厘米和36厘米.现在要把它们截成相等的小段,每根都不能有剩余,每小段最长多少厘米?一共可以截成多少段?【①①①①①】【解析】7段.需要截成相等的小段且无剩余,则每段长度必须是9、18、36的公因数.又要求每段尽可能长,则所求应为其最大公因数.(9,18,36)=9,所以每小段最长为9厘米.(9+18+36)÷9=7(段)【作业4】一个汽车站有1路车和3路车,1路车每隔20分钟发一辆车,3路车每隔25分钟发一辆车.已知上午8时正1路车和3路车同时出发,再过多长时间两车又同时从车站出发?是几时几分?【①①①①①】【解析】100分(1时40分)后,9时40分;首先求20、25最小公倍数:[20,25]=100.则知100分后辆车又同时出发,100分=1时40分.8时+1时40分=9时40分.【作业5】已知两个自然数的最大公约数为4,最小公倍数为60,两个数是多少?【①①①①①】【解析】4与60、12与20.这两个数分别除以最大公约数所得的商乘积等于最小公倍数除以最大公约数的商,60÷4=15,将30分解成两个互质数的乘积,有1、15,3、5。
五年级奥数下册第四讲最大公约数和最小公陪数
五年级奥数下册:第四讲最大公约数和最小公陪数弟凶iff震穴公约載和戴小公苗載本讲重点解决与最大公约数和最小公倍数有关的另一类问题一一^关两个自然数尼们的最大各约数、最水公倍数之间的相互关系的问题。
定理1两个自然数分别除以它们的最大公约数-所得的商互质•即如果(a f b)二d,那么(a^ d( b*d〕=1*证明:i殳n—d二企、b d=b:J那么a =岂击Wbd假设(a P bj)产1,可设〔如bj =m (m>l),于是有角=會・b M= b;nt〔包,毎是整藪)所臥3=鱼泌二岂md" b = b,d=b;nid fl那么说是氐b■的公约数。
又'「m> 1, '/ iud〉<L这就与d是i b的最大公约数相矛盾,因此,(沁叽)#1的假设是不正确的.所反只能是:(晋.b) =1,也就是〔通m)= K定理z两个数的最小公倍数与最大公约数的乘积等于这两个数的乘杞〔证明略)定理3两个数的公约数一定是这两个数的最大公约数的约数.(证明略)下面我们就应用这些知识来解决一些具体的问题。
例1甲数是弧甲、乙两数的最大公约数是务最小公倍数是出&求乙数.解法1:由甲数X乙数二甲.乙两数的最大公约数X两数的最小公倍数'可得旣X乙数=4X288,乙数=4X288-36,解出乙数答;乙数是3厶解法2:因为甲、乙两数的最大公约数为4,则甲数二4X9, i殳乙数=4Xb P 且(叽,9)二1。
因为甲、乙两数的最小公倍数是2別,则288=4XgXb:,b. = 288-36,解出b产&所以,乙数=4X8=32.答‘乙数杲32。
例2己知两数的最大公约数是21,最小公倍数是126,求这两个数的和是多少?解:要求这两个数的和,我们可先求出这两个数各是多少.i殳这两个数为因为这两个数的最大公约数是21,故设护21j b=21b;,且bj =因为这两个数的最小公倍数是126,所以126=21 X^Xb^于是虫Xb产6,ml 3=21X1=21, fa=21X2 = 42 则{ b=21X6=126, |b= 21X3 = 63.因此,这两个数的和为21+ 126二147,或42+ 63二105。
五年级奥数分解质因数讲座及练习答案
五年级奥数集训专题讲座(四)——分解质因数把一个合数,用质因数相乘的形式表达出来,叫做分解质因数。
我们课本上介绍的分解质因数,是为求最大公约数和最小公倍数服务的。
其实,把一个数分解成质因数相乘的形式,能启发我们寻找解答许多难题的突破口,从而顺利解题。
例1:把18个苹果平均分成若干份,每份大于1个,小于18个,一共有多少种不同的分法?分析:18的约数有1、2、3、6、9、18。
除去1和18,还有4个约数,所以,一共有4种不同的分法。
例2:写出若干个连续的自然数,使它的积是15120。
分析:先把15120分解质因数,进而组合因数,使几个因数成为连续的自然数。
15120=2×2×2×2×3×3×3×5×7=5×(2×3)×(2×2×2)×(3×3)=5×6×7×8×9【巩固练习】:有四个孩子,恰好一个比一个大1岁,4人的年龄积是3024,问这4个孩子中最大的几岁?解:3024=2×2×2×2×2×3×3×3×7=8×6×9×7答:这四个孩子中年龄最大的是9岁。
例3:将2、5、×14、24、27、55、56、99八个数平均分成两组,使这两组数的乘积相等。
分析:14=2×7 24=2×2×2×3 27=3×3×3 55=5×1156=2×2×2×7 99=3×3×11 2 5可以看出,这八个数中,共含有八个2,六个3,二个5,二个7和二个11,如果要把这八个数分成两组且积相等,那么,每组数中应含有四个2,三个3,一个5,一个7,一个11。
小学五年级数学上册《最小公倍数》教案:最小公倍数和最大公约数的计算方法有哪些?
小学五年级数学上册《最小公倍数》教案:最小公倍数和最大公约数的计算方法有哪些?一、知识目标1、了解最小公倍数的定义和性质;2、熟悉最小公倍数的求法;3、掌握最大公约数和最小公倍数的关系。
二、教学内容与方法1、最小公倍数1)定义最小公倍数是指几个整数公有的倍数中最小的一个,也就是为这些数的公倍数中最小的一个。
2)性质① 最小公倍数大于等于这几数之中的每一个数。
② 所有数的倍数都是最小公倍数的倍数。
3)求法① 分解质因数法:将每个数分解质因数,各取一次出现次数多的质数作为它们的公因数,各选取最多出现次数作为它们的公倍数的质因数。
② 倍数法:将这几数乘以适当的数,使它们的倍数相等,这个数就是最小公倍数。
2、最大公约数1)定义最大公约数是指几个数中公有约数中最大的一个,也就是这些数的因数中最大的一个。
2)求法① 分解质因数法:将每个数分解质因数,各取一次出现次数少的质数作为它们的公因数,这些因数的乘积就是最大公约数。
② 辗转相除法:将两个数分别除以它们的公约数,再将所得的商与原来的较小的那个数做商除法,以此类推,直到余数为零,此时的除数即为最大公约数。
三、教学过程一、导入老师先出示两个数,让学生思考它们的倍数可能有哪些。
二、设计情景,引入知识点老师出示两个数,让学生计算这四个数的公倍数,并与同桌分享计算过程和结果。
三、讲解知识点最小公倍数的定义和性质、求法。
最大公约数的定义和求法。
四、练习与讲评老师根据不同学生的情况,针对性地出题,让学生上台展示解题过程和结果。
五、巩固与拓展老师可根据具体情况,引导学生举一些实际例子,让学生运用最小公倍数和最大公约数,解决实际问题。
六、课堂小结老师对本节课学习的知识点进行总结,并对存在的问题进行梳理。
四、讲义拓展1、最小公倍数和最大公约数的关系假设两个数的最大公约数为a,最小公倍数为b,则有公式:a×b=这两个数的积。
2、如何用最小公倍数简化分数① 找出每个分母的最小公倍数。
五年级奥数--最小公倍数与最大公因数
最大公因数(约数)与最小公倍数(2)专题分析:这一讲主要讲最大公约数与最小公倍数的关系,并对最大公约数与最小公倍数的概念加以推广。
两个自然数的最大公约数与最小公倍数的乘积,等于这两个自然数的乘积。
即,(a,b)×[a,b]=a×b。
例1、两个自然数的最大公约数是6,最小公倍数是72。
已知其中一个自然数是18,求另一个自然数。
例2、两个自然数的最大公约数是7,最小公倍数是210。
这两个自然数的和是77,求这两个自然数。
例3、已知a与b,a与c的最大公约数分别是12和15,a,b,c的最小公倍数是120,求a,b,c。
例4、某幼儿园借阅图书,如借35本,平均分给每个小朋友差1本;如借56本,平均分给每个小朋友后还剩2本;如借69本,平均分给每个小朋友则差3本。
这个班的小朋友最多有多少人?例5、一些三位数能同时被2、5、7整除,这样的三位数按由小到大的顺序排成一行,中间的一个数是多少?例6、有甲、乙、丙三种溶液,分别重614千克、433千克、922千克。
现在要将它们全部分别装入小瓶中,每个小瓶装入液体的重量相同。
问:每瓶最多装多少千克?练习1、将72和120的乘积写成它们的最大公约数和最最小公倍数的乘积的形式。
2、两个自然数的最大公约数是12,最小公倍数是72。
满足条件的自然数有哪几组?3、两个数的积为5766,且它们的最大公因数为30,那么这两个数各为多少?4、以知A 数为24,A 与B 的最小公倍数为168,最大公因数为4,那么B 数为多少?5、有一个班的同学去划船,他们算了一下,如果增加一条船,正好每船坐6人,如果减少一条船,正好每船坐9人,求这个班有多少人?6、两个数的最大公因数为21,最小公倍数为126,那么这两数的和为多少?7、有一批砖,长45厘米,宽为30厘米,至少用这样的砖多少块,才能铺成一个正方型?8、在一条长96米的路两侧,计划每隔4米栽一棵树,画好“记号”后发现距离过近,改为每隔6米栽一棵树,还要重新做多少个“记号”?9、有一根180厘米长的绳子,从一端开始每隔3厘米做一个记号,每隔4厘米也做一个记号,然后沿有记号的地方剪断。
奥数最大公因数最小公倍数讲义及答案
数的整除(3)最大公因数、最小公倍数教室姓名学号【知识要点】1、几个数公有的因数,叫做这几个数的公因数;其中最大的一个叫做这几个数的最大公因数。
自然数a、b的最大公因数记作(a,b)。
2、几个数公有的倍数,叫做这几个数的公倍数;其中最小的一个叫做这几个数的最小公倍数。
自然数a、b的最小公倍数记作[a,b]。
3、两个自然数的最大公因数和最小公倍数的性质:(1)(a,b)×[a,b]=a×b;(2)若a>b,则a-b与b的最大公因数就等于a与b的最大公因数。
(3)a+b与b的最大公因数,等于a与b的最大公因数。
【典型例题】例1.甲数是24,甲、乙两数的最小公倍数是168,最大公因数是4,求乙数。
解:由性质(1)得到乙数=168×4÷24=28.例2.将长为90厘米,宽为42厘米的长方形铁皮剪成边长是整厘米数,面积相等的正方形铁皮,恰无剩余,问至少剪成多少块?解:把长方形铁皮剪成边长是整厘米数,面积相等的正方形,则正方形的边长应是长方形的长和宽的公因数,又要求所剪正方形铁片块数最少,因此正方形边长是长方形长与宽的最大公因数。
(90,42)=6.至少能剪90×42÷(6×6)=105(块).例 3.马鹏和李虎计算甲、乙两个自然数的乘积,马鹏把甲数的个位数字看错了,得乘积473;李虎把甲数的十位数字看错了,得乘积407,那么甲、乙两数的乘积应是多少?解:473与407的最大公因数是11,而11是质数,所以乙数是11,又473=43×11,407=37×11,所以甲数是47,甲乙两数的乘积应为:47×11=517或1×477=477.例4.有一种自然数,它加上1是2的倍数,加上2是3的倍数,加上3是4的倍数,加上4是5的倍数,加上5是6的倍数,加上6是7的倍数,则这种自然数中除1以外,最小数是多少?解:根据已知,若这个数分别加上1、2、3、4、5、6是2、3、4、5、6、7的倍数,求这个数最小是多少,即这个数是2,3,4,5,6,7的最小公倍数加上1.[2,3,4,5,6,7]=420,最小数是:420+1=421。
奥数最大公因数最小公倍数讲义及答案
数的整除(3)最大公因数、最小公倍数教室姓名学号【知识要点】1、几个数公有的因数,叫做这几个数的公因数;其中最大的一个叫做这几个数的最大公因数。
自然数a、b的最大公因数记作(a,b)。
2、几个数公有的倍数,叫做这几个数的公倍数;其中最小的一个叫做这几个数的最小公倍数。
自然数a、b的最小公倍数记作[a,b]。
3、两个自然数的最大公因数和最小公倍数的性质:(1)(a,b)×[a,b]=a×b;(2)若a>b,则a-b与b的最大公因数就等于a与b的最大公因数。
(3)a+b与b的最大公因数,等于a与b的最大公因数。
【典型例题】例1.甲数是24,甲、乙两数的最小公倍数是168,最大公因数是4,求乙数。
解:由性质(1)得到乙数=168×4÷24=28.例2.将长为90厘米,宽为42厘米的长方形铁皮剪成边长是整厘米数,面积相等的正方形铁皮,恰无剩余,问至少剪成多少块?解:把长方形铁皮剪成边长是整厘米数,面积相等的正方形,则正方形的边长应是长方形的长和宽的公因数,又要求所剪正方形铁片块数最少,因此正方形边长是长方形长与宽的最大公因数。
(90,42)=6.至少能剪90×42÷(6×6)=105(块).例 3.马鹏和李虎计算甲、乙两个自然数的乘积,马鹏把甲数的个位数字看错了,得乘积473;李虎把甲数的十位数字看错了,得乘积407,那么甲、乙两数的乘积应是多少?解:473与407的最大公因数是11,而11是质数,所以乙数是11,又473=43×11,407=37×11,所以甲数是47,甲乙两数的乘积应为:47×11=517或1×477=477.例4.有一种自然数,它加上1是2的倍数,加上2是3的倍数,加上3是4的倍数,加上4是5的倍数,加上5是6的倍数,加上6是7的倍数,则这种自然数中除1以外,最小数是多少?解:根据已知,若这个数分别加上1、2、3、4、5、6是2、3、4、5、6、7的倍数,求这个数最小是多少,即这个数是2,3,4,5,6,7的最小公倍数加上1.[2,3,4,5,6,7]=420,最小数是:420+1=421。