2020届高三数学复习 数列解题方法集锦
高考数学数列题求解题技巧
高考数学数列题求解题技巧数学数列题是高考数学中常见的题型之一,也是考查学生对数列概念和性质的理解和运用能力的重要手段之一。
下面将给出一些解题技巧,帮助你在高考中更好地解答数列题。
1. 确定数列类型在解答数列题时,首先要明确数列的类型。
常见的数列类型包括等差数列、等比数列、斐波那契数列等。
通过观察数列的通项公式、公式中的递推关系或者数列中的规律,确定数列的类型,有助于我们更好地理解和解答问题。
2. 求解等差数列对于等差数列,我们通常可以使用以下几种方法进行求解:(1)已知前n项和:当已知等差数列的前n项和Sn 时,我们可以使用以下公式求解等差数列的的首项a1和公差d:Sn = (n/2)(a1 + an)Sn = (n/2)(2a1 + (n-1)d)其中n为项数,a1为首项,an为第n项,d为公差。
(2)已知前n项和的两倍:如果我们知道等差数列的前n项和Sn的两倍为2Sn,则可以使用以下公式求解首项a1:2Sn = n(2a1 + (n-1)d)(3)已知前n项和的平方:如果我们知道等差数列的前n项和Sn的平方为Sn²,则可以使用以下公式求解公差d:Sn² = n(2a1 + (n-1)d)²/43. 求解等比数列对于等比数列,我们通常可以使用以下几种方法进行求解:(1)已知前n项和:当已知等比数列的前n项和Sn 时,我们可以使用以下公式求解等比数列的的首项a1和公比q:Sn = a1(1 - qⁿ)/(1 - q)其中n为项数,a1为首项,q为公比。
(2)已知前n项积:若已知等比数列的前n项积为Pn,则可以使用以下公式求解首项a1和公比q: Sn = a1(1 - qⁿ)/(1 - q)4. 拆分序列有时,在解答数列题时,我们可以将给定的数列拆分为两个或多个较为简单的数列进行求解。
例如,当我们遇到递推关系较为复杂的数列时,可以考虑将数列拆分为两个或多个等差数列或等比数列,然后分别求解。
高中数学数列试题的解题方法与技巧分析
高中数学数列试题的解题方法与技巧分析
数列通常用来解决组合现象,广泛应用于数学实际问题中。
高中数学中,常用数列题
来考察学生对求和公式、等差数列、等比数列规律以及相关技巧的掌握程度。
下面讲解一
下高中数学数列试题的解题方法和技巧分析:
1、确定数列类型:当我们遇到一个数列试题时,首先要弄清楚该序列是等差数列还
是等比数列,因为这两种类型的数列的解法是不一样的。
在观察数列时要注意每项与它的
相邻项的差值是否相等,即等差数列;在观察数列时要注意每项与它的相邻项的比值是否
相等,即等比数列。
2、推导公式:既然确定了数列的类型,接下来就要推导出该类型数列的通项公式。
如果是等差数列,就要找出头项、公差和项数之间的关系;如果是等比数列,就要找出头项、公比和项数之间的关系。
3、求出指定项:当推出了相应数列的通项公式后,就可以求出指定项的值了。
如果
是等差数列,就要通过位移法;如果是等比数列,就可以通过乘幂法求出指定项的值。
4、计算总和:如果试题要求求解数列的总和,这时要用到求和公式。
对于等差数列,有Sn=n(a1+an)/2;对于等比数列,有Sn=a1(1-q^n)/(1-q)。
需要特别注意的是,求和公
式在求解数列总和时只有在数列的末项为无穷项时才能使用,否则就要使用暴力求和的方法。
以上就是高中数学数列试题的解题方法和技巧分析,熟练掌握这些方法和技巧,可以
让我们在数学考试中更加容易把握试题,轻松拿下高分。
数列解题方法总结
数列解题方法总结数列是数学中一个重要的概念,它是由一组按照一定规律排列的数所组成的序列。
解决数列问题是数学学习中的一个重要内容,也是数学建模和应用问题中常常遇到的情况。
本文将总结一些常见的数列解题方法,并且展开讨论它们的应用。
一、等差数列的解题方法:等差数列是最常见的一类数列,它的特点是任意两个相邻的项之间的差值都相等。
解决等差数列问题的方法非常简单,可以利用等差数列的通项公式来求解。
通项公式为:an = a1 + (n-1)d,其中an表示第n项,a1表示首项,d表示公差。
应用等差数列的解题方法可以解决一些简单的数学问题,如求和、确定项数等。
二、等比数列的解题方法:等比数列是一种特殊的数列,它的特点是任意两个相邻的项之间的比值都相等。
解决等比数列问题的方法也比较简单,可以利用等比数列的通项公式来求解。
通项公式为:an = a1 * r^(n-1),其中an表示第n项,a1表示首项,r表示公比。
应用等比数列的解题方法可以解决一些和增长、衰减、利率等有关的问题。
三、斐波那契数列的解题方法:斐波那契数列是一种特殊的数列,它的特点是每一项都是前两项的和。
解决斐波那契数列问题的方法相对复杂一些,可以利用递推关系式来求解。
递推关系式为:an = an-1 + an-2,其中an表示第n项。
应用斐波那契数列的解题方法可以解决一些和排列组合、递归、动态规划等有关的问题。
四、其他数列的解题方法:除了上述三种常见的数列,还有一些其他类型的数列,如等差等差数列、等比等比数列、二次数列等等。
解决这些数列问题的方法也各不相同,需要根据具体情况来选择。
可以利用数列的性质、递推关系、通项公式等方法来解决问题。
总之,解决数列问题需要灵活运用数学知识和方法,理解数列的特点和规律,并且应用数列的解题方法来进行推理和计算。
通过不断的练习和探索,可以提高解决数列问题的能力,培养数学思维和解决实际问题的能力。
高中物理数学高中数列10种解题技巧
高中物理数学高中数列10种解题技巧
当涉及到高中物理和数学中的数列问题时,以下是10种解题技巧:
确定数列类型:首先,确定数列是等差数列、等比数列还是其他类型的数列。
这将有助于你选择正确的解题方法。
寻找通项公式:对于等差数列和等比数列,寻找通项公式是解题的关键。
通过观察数列中的规律,尝试找到递推关系式,从而得到通项公式。
求和公式:对于需要求和的数列,使用相应的求和公式可以简化计算过程。
例如,等差数列的求和公式是Sn = (n/2)(2a + (n-1)d),其中Sn表示前n项和,a表示首项,d表示公差。
利用递推关系求解:对于一些复杂的数列问题,可以利用递推关系式逐步求解。
通过已知的前几项,推导出后续项的值。
利用数列性质:数列有许多性质和特点,例如对称性、周期性等。
利用这些性质可以简化问题,找到解题的突破口。
利用数列图像:将数列表示为图像,有时可以更直观地理解数列的规律。
通过观察图像,可以得到一些有用的信息。
利用数列的性质进行变形:有时,对数列进行一些变形可以使问题更容易解决。
例如,将等差数列转化为等比数列,或者将复杂的数列转化为简单的数列。
利用数列的对称性:如果数列具有对称性,可以利用对称性来简化问题。
例如,利用等差数列的对称性可以减少计算量。
利用数列的周期性:如果数列具有周期性,可以利用周期性来简化问题。
通过观察周期内的规律,可以推断出整个数列的性质。
多角度思考:对于复杂的数列问题,尝试从不同的角度思考,采用不同的解题方法。
有时,换一种思路可能会带来新的启示。
数列常用解题方法归纳总结
数列常用解题方法归纳总结一、 等差数列的定义与性质() 定义:为常数,a a d d a a n d n n n +-==+-111() 等差中项:,,成等差数列x A y A x y ⇔=+2()()前项和n S a a n nan n d n n =+=+-11212{}性质:是等差数列a n()若,则;1m n p q a a a a m n p q +=++=+{}{}{}()数列,,仍为等差数列;2212a a ka b n n n -+ S S S S S n n n n n ,,……仍为等差数列;232--()若三个数成等差数列,可设为,,;3a d a a d -+ ()若,是等差数列,为前项和,则;42121a b S T n a b S T n n n n m m m m =-- {}()为等差数列(,为常数,是关于的常数项为52a S an bn ab n n n ⇔=+0的二次函数){}S S an bn a n n n 的最值可求二次函数的最值;或者求出中的正、负分界=+2项,即:当,,解不等式组可得达到最大值时的值。
a d a a S n n n n 110000><≥≤⎧⎨⎩+当,,由可得达到最小值时的值。
a d a a S n n n n 110000<>≤≥⎧⎨⎩+{}如:等差数列,,,,则a S a a a S n n n n n n =++===--1831123(由,∴a a a a a n n n n n ++=⇒==----12113331()又·,∴S a a aa 31322233113=+===()()∴·S a a n a a n nn n n =+=+=+⎛⎝ ⎫⎭⎪=-12122131218 ∴=n 27) 二、等比数列的定义与性质 定义:(为常数,),a a q q q a a q n nn n +-=≠=1110 等比中项:、、成等比数列,或x G y G xy G xy ⇒==±2()前项和:(要注意)n S na q a q qq n n ==--≠⎧⎨⎪⎩⎪111111()()!{}性质:是等比数列a n()若,则··1m n p q a a a a m n p q +=+= (),,……仍为等比数列2232S S S S S n n n n n -- 三、求数列通项公式的常用方法1、公式法2、n n a S 求由;(时,,时,)n a S n a S S n n n ==≥=--121113、求差(商)法{}如:满足……a a a a n n n n 121212251122+++=+<>解:n a a ==⨯+=1122151411时,,∴n a a a n n n ≥+++=-+<>--2121212215212211时,……<>-<>=12122得:n n a ,∴a n n =+21,∴a n n n n ==≥⎧⎨⎩+141221()()[练习]{}数列满足,,求a S S a a a n n n n n +==++111534 (注意到代入得:a S S S S n n n n n+++=-=1114 {}又,∴是等比数列,S S S n n n144==n a S S n n n n ≥=-==--23411时,……·4、叠乘法{}例如:数列中,,,求a a a a nn a n n n n 1131==++ 解:a a a a a a n n a a nn n n 213211122311·……·……,∴-=-= 又,∴a a nn 133== 5、等差型递推公式由,,求,用迭加法a a f n a a a n n n -==-110()n a a f a a f a a f n n n ≥-=-=-=⎫⎬⎪⎪⎭⎪⎪-22321321时,…………两边相加,得:()()()a a f f f n n -=+++123()()()…… ∴……a a f f f n n =++++023()()() [练习]{}()数列,,,求a a a a n a n n n n n 111132==+≥--()()a n n=-1231 6、等比型递推公式()a ca d c d c c d n n =+≠≠≠-1010、为常数,,, ()可转化为等比数列,设a x c a x n n +=+-1()⇒=+--a ca c x n n 11令,∴()c x d x d c -==-11∴是首项为,为公比的等比数列a d c a dc c n +-⎧⎨⎩⎫⎬⎭+-111∴·a d c a d c c n n +-=+-⎛⎝ ⎫⎭⎪-1111∴a a d c c dc n n =+-⎛⎝⎫⎭⎪---1111[练习]{}数列满足,,求a a a a a n n n n 11934=+=+()a n n =-⎛⎝ ⎫⎭⎪+-843117、倒数法例如:,,求a a a a a n n n n 11122==++ ,由已知得:1221211a a a a n n n n+=+=+∴11121a a n n +-= , ∴⎧⎨⎩⎫⎬⎭=111121a a n 为等差数列,,公差为 ()()∴=+-=+11112121a n n n · ,∴a n n =+21三、 求数列前n 项和的常用方法1、公式法:等差、等比前n 项和公式2、裂项法:把数列各项拆成两项或多项之和,使之出现成对互为相反数的项。
(完整版)数列题型及解题方法归纳总结
(完整版)数列题型及解题方法归纳总结数列是数学中一个重要的概念,也是数学中常见的题型之一。
数列题目通常会给出一定的条件和规律,要求我们找出数列的通项公式、前n项和等相关内容。
下面对数列题型及解题方法进行归纳总结。
一、数列的基本概念1. 数列的定义:数列是按照一定规律排列的一列数,用通项公式a_n表示。
2. 首项和公差:对于等差数列,首项是指数列的第一个数,公差是指相邻两项之间的差值。
通常用a1表示首项,d表示公差。
3. 首项和公比:对于等比数列,首项是指数列的第一个数,公比是指相邻两项之间的比值。
通常用a1表示首项,r表示公比。
二、等差数列的常见题型及解题思路1. 找通项公式:(1)已知首项和公差,求第n项的值。
使用通项公式a_n = a1 + (n-1)d。
(2)已知相邻两项的值,求公差。
根据 a_(n+1) - a_n = d,解方程即可。
(3)已知首项和第n项的值,求公差。
根据 a_n = a1 + (n-1)d,解方程即可。
2. 找前n项和:(1)已知首项、公差和项数,求前n项和。
使用公式S_n= (n/2)(a1 + a_n)。
(2)已知首项、末项和项数,求公差。
由于S_n =(n/2)(a1 + a_n),可以列方程求解。
(3)已知首项、公差和前n项和,求项数。
可以列方程并解出项数。
3. 找满足条件的项数:(1)已知首项、公差和条件,求满足条件的项数。
可以列方程,并解出项数。
三、等比数列的常见题型及解题思路1. 找通项公式:(1)已知首项和公比,求第n项的值。
使用通项公式a_n = a1 * r^(n-1)。
(2)已知相邻两项的值,求公比。
根据 a_n / a_(n-1) = r,解方程即可。
(3)已知首项和第n项的值,求公比。
根据 a_n = a1 * r^(n-1),解方程即可。
2. 找前n项和:(1)已知首项、公比和项数,求前n项和。
使用公式S_n = (a1 * (1 - r^n)) / (1 - r)。
高中数学数列求解方法 (完整版)
高中数学数列解题方法总结类型一:)(1n f a a n n +=+()(n f 可以求和)−−−−→解决方法累加法例1、在数列{}n a 中,已知1a =1,当2n ≥时,有121n n a a n -=+-()2n ≥,求数列的通项公式。
解析:121(2)n n a a n n --=-≥∴213243113521n n a a a a a a a a n --=⎧⎪-=⎪⎪-=⎨⎪⎪-=-⎪⎩ 上述1n -个等式相加可得: 211n a a n -=- 2n a n ∴=类型二:1()n n a f n a +=⋅ (()f n 可以求积)−−−−→解决方法累积法 例2、在数列{}n a 中,已知11,a =有()11n n na n a -=+,(2n ≥)求数列{}n a 的通项公式。
解析:1232112321n n n n n n n a a a a a a a a a a a a -----=⋅⋅⋅⋅123211143n n n n n n --=⋅⋅⋅⋅+-21n =+ 又1a 也满足上式;21n a n ∴=+ *()n N ∈类型三:1(n n a Aa B +=+≠其中A,B 为常数A 0,1)−−−−→解决方法待定常数法 可将其转化为1()n n a t A a t ++=+,其中1Bt A =-,则数列{}n a t +为公比等于A 的等比数列,然后求n a 即可。
例3 在数列{}n a 中, 11a =,当2n ≥时,有132n n a a -=+,求数列{}n a 的通项公式。
解析:设()13n n a t a t -+=+,则132n n a a t -=+1t ∴=,于是()1131n n a a -+=+{}1n a ∴+是以112a +=为首项,以3为公比的等比数列。
1231n n a -∴=⋅-类型四:()110n n n Aa Ba Ca +-++=⋅⋅≠;其中A,B,C 为常数,且A B C 0可将其转化为()()()112n n n n A a a a a n αβα+-+=+≥-----(*)的形式,列出方程组A B C αββα⋅-=⎧⎨-⋅=⎩,解出,;αβ还原到(*)式,则数列{}1n na a α++是以21a a α+为首项, A β为公比的等比数列,然后再结合其它方法,就可以求出n a 。
(完整版)数列题型及解题方法归纳总结
pn2 qn ,则当 n 取最靠近
q 的非零自然数时 Sn 最大;
2p
2、若等差数列 an 的首项 a1 0 ,公差 d 0 ,则前 n 项和 Sn 有最小值
(ⅰ)若已知通项 an ,则 Sn 最小
an
0
;
an 1 0
(ⅱ)若已知 Sn
pn2 qn ,则当 n 取最靠近
q 的非零自然数时 Sn 最小;
an
an 1
可裂项为:
1
an an 1
11 (
d an
1 ),
1
an 1
an
an 1
1
( d
an 1
an )
等差数列前 n 项和的最值问题 :
1、若等差数列 an 的首项 a1 0 ,公差 d 0 ,则前 n 项和 Sn 有最大值。
(ⅰ)若已知通项 an ,则 Sn 最大
an
0
;
an 1 0
(ⅱ)若已知 Sn
知识框架
数列 的概念
数列的分类 数列的通项公式 数列的递推关系
函数角度理解
两个基 本数列
数列
等差数列
等差数列的定义 an 等差数列的通项公式 等差数列的求和公式 等差数列的性质 an
an 1 d (n 2)
an a1 (n 1)d
Sn n ( a1 an ) na1 n( n 1) d
2
2
am a p aq ( m n p q)
( n 1时, a1 S1, n 2时, a n Sn Sn 1)
3、求差(商)法
如: a n 满足 1 a1 2
1 22
a2
……
1 2n
an
2n 5
(完整版)数列题型及解题方法归纳总结
1知识框架111111(2)(2)(1)(1)()22()n n n n n n m p q n n n n a q n a a a qa a d n a a n d n n n S a a na d a a a a m n p q --=≥=⎧⎪←⎨⎪⎩-=≥⎧⎪=+-⎪⎪-⎨=+=+⎪⎪+=++=+⎪⎩两个基等比数列的定义本数列等比数列的通项公式等比数列数列数列的分类数列数列的通项公式函数角度理解的概念数列的递推关系等差数列的定义等差数列的通项公式等差数列等差数列的求和公式等差数列的性质1111(1)(1)11(1)()n n n n m p q a a q a q q q q S na q a a a a m n p q ---=≠--===+=+⎧⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎪⎪⎨⎪⎨⎪⎪⎨⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎩⎩⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩⎧⎨⎩⎩等比数列的求和公式等比数列的性质公式法分组求和错位相减求和数列裂项求和求和倒序相加求和累加累积归纳猜想证明分期付款数列的应用其他⎪⎪⎪⎪⎪⎪⎪⎪⎪掌握了数列的基本知识,特别是等差、等比数列的定义、通项公式、求和公式及性质,掌握了典型题型的解法和数学思想法的应用,就有可能在高考中顺利地解决数列问题。
一、典型题的技巧解法 1、求通项公式 (1)观察法。
(2)由递推公式求通项。
对于由递推公式所确定的数列的求解,通常可通过对递推公式的变换转化成等差数列或等比数列问题。
(1)递推式为a n+1=a n +d 及a n+1=qa n (d ,q 为常数) 例1、 已知{a n }满足a n+1=a n +2,而且a 1=1。
求a n 。
例1、解 ∵a n+1-a n =2为常数 ∴{a n }是首项为1,公差为2的等差数列∴a n =1+2(n-1) 即a n =2n-1 例2、已知{}n a 满足112n n a a +=,而12a =,求n a =?(2)递推式为a n+1=a n +f (n )例3、已知{}n a 中112a =,12141n n a a n +=+-,求n a . 解: 由已知可知)12)(12(11-+=-+n n a a n n )121121(21+--=n n令n=1,2,…,(n-1),代入得(n-1)个等式累加,即(a 2-a 1)+(a 3-a 2)+…+(a n -a n-1)22434)1211(211--=--+=n n n a a n ★ 说明 只要和f (1)+f (2)+…+f (n-1)是可求的,就可以由a n+1=a n +f (n )以n=1,2,…,(n-1)代入,可得n-1个等式累加而求a n 。
高考数学数列问题的答题技巧
高考数学数列问题的答题技巧高中数学中大家都学习了数列这一知识点,而数列在高考中也是经常出现的考点,数列问题有哪些技巧可以又快又准地解答?店铺为您准备了一些高考数列通项、求和的答题技巧,希望对您有所帮助!高考数列通项、求和的答题技巧(1)解题路线图①先求某一项,或者找到数列的关系式。
②求通项公式。
③求数列和通式。
(2)构建答题模板①找递推:根据已知条件确定数列相邻两项之间的关系,即找数列的递推公式。
②求通项:根据数列递推公式转化为等差或等比数列求通项公式,或利用累加法或累乘法求通项公式。
③定方法:根据数列表达式的结构特征确定求和方法(如公式法、裂项相消法、错位相减法、分组法等)。
④写步骤:规范写出求和步骤。
⑤再反思:反思回顾,查看关键点、易错点及解题规范。
高考数列问题的易错点1.忽视等递推关系成立的条件,从而忽视检验前几项。
2.忽视n为正整数的默认条件,冒然求导,或利用不等式得到非整数的取等条件。
也会因此心理忽视这一个很好用的条件。
3.裂项相消忘记留下了几项。
可以先写几项验证。
4.通过方程求解的数列可能会漏下情况。
5.等比数列注意公比为1不等同于常数列(如0)。
6.下角标的不规范可能会使“-1”模棱两可,需要注意。
7.累加法或累乘法漏掉第一项。
高考数学数列知识点总结等差数列公式等差数列的`通项公式为:an=a1+(n-1)d或an=am+(n-m)d前n项和公式为:Sn=na1+[n(n-1)/2] d或sn=(a1+an)n/2若m+n=2p则:am+an=2ap以上n均为正整数文字翻译第n项的值=首项+(项数-1)*公差前n项的和=(首项+末项)*项数/2公差=后项-前项等比数列公式等比数列求和公式(1) 等比数列:a (n+1)/an=q (n∈N)。
(2) 通项公式:an=a1×q^(n-1); 推广式:an=am×q^(n-m);(3) 求和公式:Sn=n×a1 (q=1) Sn=a1(1-q^n)/(1-q) =(a1-an×q)/(1-q) (q≠1) (q为公比,n为项数)(4)性质:①若 m、n、p、q∈N,且m+n=p+q,则am×an=ap×aq;②在等比数列中,依次每 k项之和仍成等比数列.③若m、n、q∈N,且m+n=2q,则am×an=aq^2(5)"G是a、b的等比中项""G^2=ab(G ≠ 0)".(6)在等比数列中,首项a1与公比q都不为零. 注意:上述公式中an表示等比数列的第n项。
数列题型及解题方法归纳总结
数列题型及解题方法归纳总结数列在数学中是一个非常重要的概念,它在各种数学问题中都有着重要的应用。
在学习数列的过程中,我们需要了解不同的数列题型及相应的解题方法,这样才能更好地掌握数列的知识,提高解题能力。
下面,我们将对数列题型及解题方法进行归纳总结,希望能对大家的学习有所帮助。
一、等差数列。
等差数列是最基本的数列之一,它的通项公式为:$a_n = a_1 + (n-1)d$。
在解等差数列的问题时,我们需要注意以下几种情况:1. 求前n项和,$S_n = \frac{n}{2}(a_1 + a_n)$;2. 求首项、公差或项数,$a_n = a_1 + (n-1)d$;3. 已知前几项求第n项,$a_n = a_m + (n-m)d$。
二、等比数列。
等比数列也是常见的数列类型,它的通项公式为:$a_n = a_1 \cdot q^{n-1}$。
解等比数列的问题时,需要注意以下几点:1. 求前n项和,$S_n = \frac{a_1(1-q^n)}{1-q}$;2. 求首项、公比或项数,$a_n = a_1 \cdot q^{n-1}$;3. 已知前几项求第n项,$a_n = a_m \cdot q^{n-m}$。
三、特殊数列。
除了等差数列和等比数列外,还有一些特殊的数列,如斐波那契数列、等差-等比数列等。
在解题时,需要根据具体情况选择合适的方法,不能生搬硬套。
四、解题方法。
在解数列题时,我们可以采用以下几种方法:1. 找规律法,观察数列的前几项,找出它们之间的规律,从而得出通项公式或前n项和的表达式;2. 递推法,根据数列的递推关系,逐步求解出数列的各项;3. 通项公式法,如果数列是等差数列或等比数列,可以直接利用其通项公式进行求解;4. 常用公式法,对于常见的数列题型,可以直接利用其前n项和的公式进行求解。
五、总结。
通过以上的归纳总结,我们可以看出,数列题型及解题方法是一个比较系统的知识体系,需要我们掌握一定的基本原理和方法。
2020高考数学必胜秘诀(三)数列
2020高考数学必胜秘诀(三)数列――概念、方法、题型、易误点及应试技巧总结三、数列1、数列的概念:数列是一个定义域为正整数集N*〔或它的有限子集{1,2, 3,…,n}〕的专门函数,如〔1〕a nI I *— (nN),那么在数列{a n}的最大项n 156为__〔答:1〕;〔2〕数列{a n}的通项为a25为〔答:a n a n 1〕; 〔3〕数列{a n}中,a数列的通项公式也确实是相应函数的解析式。
bTl,其中a,b均为正数,那么a n与a m的大小关系n2 n,且{a n}是递增数列,求实数的取值范畴〔答: 3〕;〔4〕一给定函数y f(x)的图象在以下图中,同时对任意a1 (0,1),由关系式务1 f (a n)得到的数列{a n}满足a n 1 a n(n N*),那么该函数的图象是〔〕〔答:A〕定义法N *为通项公式的数列{b n}为等差数列。
a na n 1(n 2)。
如设{a n}是等a n d(d为常数)或aCA2.等差数列的有关概念〔1〕等差数列的判定方法:差数列,求证:以b n= —並n〔2〕等差数列的通项:a n a1 (na2050,那么通项a n _________ 〔答:1)d 或a n10丨;数,那么公差的取值范畴是〔答:2n8a m (n m)d。
如(1)等差数列{a n}中,%30,〔2〕首项为-24的等差数列,从第10项起开始为正〔3〕等差数列的前n和:S n3n(a1 a n) S,S nanan 1〔2〕数列T n12n2n1 *—(n 2,n N ),a.2{a.}的前n项和S n2n (n 6, n N )3212n,前n项和S nn(n 1)dd 。
215,那么a1=―,2如〔1〕数列{a n}中,n =_〔答: a1 3,n 10〕;12n 72( n 6,n2n,求数列{| a n |}的前n项和人〔答:〔4〕等差中项:假设a,A,b成等差数列,那么A叫做a与b的等差中项,且提醒:〔1〕等差数列的通项公式及前n和公式中,涉及到5个元素:a1、d、d称作为差不多元素。
数学高中数列10种解题技巧
数学高中数列10种解题技巧数列是高中数学中一个非常重要且经常被考察的概念。
它在数学和实际应用中都有着广泛的应用。
但是,数列的解题方法非常多,有时候我们可能会感到困惑。
为此,本文总结了数学高中数列10种解题技巧,让我们一起来看看吧。
1. 求和公式有些数列如果求和,使用求和公式可以极大地简化计算。
例如,等差数列和等比数列的求和公式是非常常见和重要的。
2. 递推式递推式是数列的一种描述方法,是一种基于之前项和公式推导下一项的方法。
有些数列通过递推式很容易得到通项公式,进而求解问题。
3. 归纳法归纳法是数列题目解题的常用方法。
通过证明一个命题对于某个特定的数成立,以及每一个下一个数都满足这个性质,我们就可以得到它对于所有数都成立的结论。
4. 图像法有些数列的图像规律比较明显,通过观察它们的图像,我们可以得到一些结论,从而解决一些问题。
5. 交替数列交替数列是一种奇数项和偶数项分别出现不同的项的数列。
有时候,我们可以通过对它进行分割,分别计算奇数项和偶数项的和,然后再将结果相加。
6. 通项公式对于某些数列,如果能够求得它们的通项公式,那么我们就可以很方便地计算出它们的各个项。
常见的数列有等差数列、等比数列、斐波那契数列等等。
7. 变形技巧变形技巧是数列解题过程中常用的一种方法。
它通常用于将原有的数列问题转化为其他已知的数列问题,从而利用已有的知识来解决问题。
8. 逆推法逆推法是一种通过倒向考虑来解决数列问题的方法,通常它可以帮助我们找到某个数列的特定项。
9. 等比数列与等差数列之间的关系等比数列和等差数列是数列中最常见的两种类型,它们之间有着一些重要的关系。
通过研究它们之间的联系,我们可以更加深入的理解它们的性质和规律。
10. 特殊的数列有些数列非常特殊,它们没有通项公式,没有明显的规律,但是它们在实际应用中却有着广泛的应用。
如果我们能够了解这些特殊的数列及其应用,那么在应用数学中会有更多的灵活性和优越性。
高中数学数列解题技巧
高中数学数列解题技巧《高中数学数列解题技巧》一、基本概念:1、数列:按一定的规律排列的有限的数的有序集合。
2、公差:连续数列中任意两项之差。
3、首项:数列中的第一项。
4、项数:数列中的数的个数。
5、通项公式:一般形式的数列的每一项都可以用公式表示出来,此公式叫做通项公式。
二、求数列的通项公式:1、等差数列:①求首项 a1 和公差 d:(1)若知前两项,则:a1=第一项,d=第二项与第一项的差;(2)若知前三项,则:a1=第一项,d=第三项与第二项的差;(3)若知前四项,则:a1=第二项与第三项的差,d=第四项与第三项的差;(4)若知前五项,则:a1=第三项与第四项的差,d=第五项与第四项的差;(5)若知前六项,则:a1=第四项与第五项的差,d=第六项与第五项的差。
②求数列的通项公式:若知首项 a1 和公差 d,则数列的通项公式为 an=a1+(n-1)d。
2、等比数列:①求首项 a1 和公比 q:(1)若知前两项,则:a1=第一项, q=第二项与第一项的比;(2)若知前三项,则:a1=第一项,q=第三项与第二项的比;(3)若知前四项,则:a1=第二项与第三项的比,q=第四项与第三项的比;(4)若知前五项,则:a1=第三项与第四项的比,q=第五项与第四项的比;(5)若知前六项,则:a1=第四项与第五项的比,q=第六项与第五项的比。
②求数列的通项公式:若知首项 a1 和公比 q,则数列的通项公式为 an=a1qn-1。
三、求数列的和1、等差数列:若知首项 a1 和公差 d,则数列的和 Sn 为:Sn=n(a1+an)÷2=n(2a1+(n-1)d)÷2。
2、等比数列:若知首项 a1 和公比 q,则数列的和 Sn 为:Sn=a1+a2+…+an=a1(1-qn)÷(1-q)。
四、数列的应用:1、求圆的面积用等差数列求圆的面积:若一圆的半径按数列1,2,3,…,n递增,则该圆的面积 S 为:S=3.14(1+4+9+…+n2)。
高考数学:数列解题方法【精华推荐】
解题技巧(数列)一、典型例题解答示范例1.在等差数列中20151296=+++a a a a 求20S 解法一 d n a a n )1(1-+= ∴20)192(2)14()11()8()5(11111151296=+=+++++++=+++d a d a d a d a d a a a a a∴101921=+d a 那么100)192(102)(20120120=+=+=d a a a S解法二 由q p n m a a a a q p n m +=+⇒+=+20)(2)(2201156151296=+=+=+++a a a a a a a a【方法点评】 ⑴在等差数列中,由条件不能具体求出1a 和d ,但可以求出 1a 与d 的组合式,而所求的量往往可以用这个组合式表示,那么用“整体代值”的方法将值求出; ⑵ 利用q p n m a a a a q p n m +=+⇒+=+将所求量化为已知量也是“整体代值”的思想,它比用1a 和 d 表示更简捷。
例2.等差数列前m 项和为30,前2m 项和为100,则它的前3m 项和为 解法一 用方程的思想,由条件知10022)(302)(211=+=+m a a ma a m m ⇒ 100)(60)(211=+=+m a a m a a m m ∵m a 、m a 2、m a 3成等数列∴)2(23)(2321313m m m m a a a m a a m S -+=+=由②Χ2-①得 140)(21=-+m m a a a m 代入210140233=⨯=m S解法二 在等差数列中由性质知m S 、m m S S -2、m m S S 23-成等差数列m m m m m S S S S S --=-∴)(2223 210)(323=-=∴m m m S S S 解法三 等差数列}{n a 中d n n n a S n )1(211-+= 2)1(dn a n S n -+=∴ ①②即}{nS n 为以1a 为首项公差为2d的等差数列依题意条件知m S m ,m Sm 22,m S m 33成等差 ∴mS m S m S m m m +=⨯32232 ∴210)(323=-=m m m S S S【方法点评】 三种解法从不同角度反映等差数列所具有的特性,运用方程的方法、性质或构造新的等差数列都是数列中解决问题的常用方法且有价值,对解决某些问题极为方便。
高中高考数列万能解题方法
等和性: 等差数列a n等积性: 等比数列a n假设 m n p q那么a ma na p a q假设m np q 那么a m a na p a q主m n2 p 那么 a m a n 2a p推论:假设m n 2 p 那么 a a (a)2推论:假设p 要mn性 an k a n k 2a naa(a)2质n k nn ka 1 a na 2an 1a 3an 2a a a a a a21n 2 n 1 3 n 即:首尾颠倒相加,那么和相等 即:首尾颠倒相乘,那么积相等1、等差数列中连续 m 项的和,组成的新数列是等差数列。
即:s m , s 2 m s m , s 3 m s 2 m ,等 差 , 公 差 为其m 2 d 那么有 s 3 m3(s 2 ms m )2、从等差数列中抽取等距离的项组成的数列是一个等差数列。
如:a 1, a 4 , a 7 ,a 10,〔下标成等差数列〕3 、a n ,b n等 差 , 那么a2n,a2 n 1,ka n b,pa n qb n 也等差。
它4、等差数列a n 的通项公式是 n 的一次函数,即:a n dn c ( d 0 )等差数列a n的前 n 项和公式是一个没有常数项的n 的二次函数,即:S nAn 2Bn ( d 0 )性2n 1的等差数列有: 5、项数为奇数s 奇ns 奇 s 偶 a n a 中s 偶 n1s2n 1(2n 1)a n项数为偶数2n 的等差数列有:s 奇a n , s 偶 s 奇 nds 偶质 a n 11、等比数列中连续项的和, 组成的新数列是等比数列。
即:s m , s 2m s m , s 3 m s 2m ,等比,公比为q m 。
2、从等比数列中抽取等距离的项组成的数列是一个等比数列。
如:a 1, a 4, a 7 , a 10 , 〔下标成等差数列〕3 、 a n , b n 等比,那么a 2 n, a 2 n 1 ,ka n也等比。
2020高考数学数列的万能解法全归纳
2020高考数学数列的万能解法全归纳数列作为历年的重点考查内容之一,估测试题会出现在数列的知识、函数知识、不等式的知识和解析几何知识等的交汇点处命题,从而使数列试题呈现综合性强、立意新、角度新、难度大的特点。
直白点说,高考的20多道题目中,无论是最基本的题型还是最后的解答压轴题,考到数列部分的几率是相当大的,毕竟数列作为每年高考热点元老的存在。
在复习数列单元时,一定要以等差、等比数列为载体,以通项公式、求和公式为主线,注重基础,联系实际.通过对试题的练习,提高其运算能力、思辨能力、解决实际问题的能力,才能以不变应万变,在高考中立于不败之地。
简单2个字来形容掌握数列的要诀那就是规律。
这里我提供一份通过对历年来数列部分的解法归纳,希望能帮助冲刺阶段的同学更上一层楼。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020届高三数学复习 数列解题方法集锦数列是高中数学的重要内容之一,也是高考考查的重点。
而且往往还以解答题的形式出现,所以我们在复习时应给予重视。
近几年的高考数列试题不仅考查数列的概念、等差数列和等比数列的基础知识、基本技能和基本思想方法,而且有效地考查了学生的各种能力。
一、数列的基础知识 1.数列{a n }的通项a n 与前n 项的和S n 的关系它包括两个方面的问题:一是已知S n 求a n ,二是已知a n 求S n ; 1.1 已知S n 求a n对于这类问题,可以用公式a n =⎩⎨⎧≥-=-)2()1(11n S S n S n n .1.2 已知a n 求S n这类问题实际上就是数列求和的问题。
数列求和一般有三种方法:颠倒相加法、错位相减法和通项分解法。
2.递推数列:⎩⎨⎧==+)(11n n a f a aa ,解决这类问题时一般都要与两类特殊数列相联系,设法转化为等差数列与等比数列的有关问题,然后解决。
例1 已知数列{a n }的前n 项和S n =n 2-2n+3,求数列{a n }的通项a n ,并判断数列{a n }是否为等差数列。
解:由已知:S n =n 2-2n+3,所以,S n-1=(n-1)2-2(n-1)+3=n 2-4n+6,两式相减,得:a n =2n-3(n ≥2),而当n=1时,a 1=S 1=2,所以a n =⎩⎨⎧≥-=)2(32)1(2n n n .又a 2-a 1≠a 3-a 2,故数列{a n }不是等差数列。
注意:一般地,数列{a n }是等差数列⇔S n =an 2+bn ⇔S n2)(1n a a n +.数列{a n }是等比数列⇔S n =aq n-a.例2 已知数列{a n }的前n 项的和S n =2)(1n a a n +,求证:数列{a n }是等差数列。
证明:因为S n =2)(1n a a n +,所以,2))(1(111++++=n n a a n S两式相减,得:2)())(1(1111n n n a a n a a n a +-++=++,所以n n n na a n a a -++=++111)1(2,即:11)1(a na a n n n -=-+,同理: 11)1()2(a a n a n n n --=--,即:11)2()1(a a n a n n n +-=--,两式相加,得:n n n a n a n a n )22()1()1(11-=-+--+,即:n n n a a a 211=+-+,所以数列{a n }是等差数列。
例3 已知数列{a n }的前n 项的和S n + a n =2n+1,求数列{a n }的通项a n . 解:因为S n + a n =2n+1,所以, S n+1+a n+1=2(n+1)+1,两式相减,得: 2a n+1-a n =2,即:2a n+1-a n +2=4,2a n+1-4= a n -2,所以21221=--+n n a a ,而S 1+a 1=3,a 1=23,故a 1-2=21-,即:数列{a n }是以21-为首项,21为公比的等比数列,所以a n -2=21-(21)n-1= - (21)n ,从而a n =2 - (21)n 。
例 4 (2000年全国)设{a n }是首项为1的正项数列,且(n+1)a n+12-na n 2+a n+1a n =0,(n=1,2,3,…),则它的通项公式是a n = .分析:(1)作为填空题,不需要解题步骤,所以可以采用不完全归纳法。
令n=1,得:2a 22+a 2-1=0,解得,a 2=21.令n=2, 得:3a 32+21a 3-21=0, 解得,a 3=31.同理,a 4=41由此猜想:a n =n1. (2)由(n+1)a n+12-na n 2+a n+1a n =0,得:[(n+1)a n+1-na n ](a n+1+a n )=0, 所以(n+1)a n+1=na n ,这说明数列是常数数列,故na n =1,a n =n1. 也可以由(n+1)a n+1=na n ,得:11+=+n na a n n ,所以 nn n n n a a a a a a a a n n n n n 1121121112211=⋅⋅⋅--⋅-=⋅⋅⋅⋅=---ΛΛ。
例5 求下列各项的和 (1)nn n n n n n C n nC C C C )1(321210++++++-Λ.(2)1+2⨯21+3⨯22+4⨯23+…+n ⨯2n-1.(3)1⨯2+2⨯3+3⨯4+…+n(n+1).(4))2(1421311+++⨯+⨯n n Λ. 解:(1)设 S n =nn n n n n n C n nC C C C )1(321210++++++-Λ,则S n =0112)1(n n n n n n C C nC C n +++++-Λ,两式相加,得:2S n = (n+2)nn n n C n C n C )2()2(10+++++Λ =(n+2)(nn n n C C C +++Λ10)=(n+2)2n ,所以S n =(n+2)2n-1.思考:nn n n n n n n n C C C C C 112102242+-+++++Λ又如何求呢?(2)设S n =1+2⨯21+3⨯22+4⨯23+…+n ⨯2n-1,则2 S n = 1⨯2+2⨯22+3⨯23+…+(n-1)2n-1+n2n .两式相减。
得:- S n =1+21+22+…+2 n-1-n2 n =n nn 22121⋅---=2n (1-n)-1.S n =2n (n-1)+1.(3)1⨯2+2⨯3+3⨯4+…+n(n+1)=(12+1)+(22+2)+(32+3)+ … +(n 2+n) =(12+22+32+ … +n 2)+(1+2+3+ … +n) =)1(21)12)(1(61++++n n n n n =)2)(1(31++n n n . (4) ∵)211(21)2(1+-=+n n n n∴)2(1421311+++⨯+⨯n n Λ =)211111151314121311(21+-++--++-+-+-n n n n Λ =)2111211(21+-+-+n n =)2)(1(3243+++-n n n .二、等差数列与等比数列1.定义:数列{a n }为等差数列⇔a n+1-a n =d ⇔a n+1-a n =a n -a n-1;数列{b n }为等比数列⇔q a b n n =+1⇔11-+=n n n n b bb b 。
2.通项公式与前n 项和公式:数列{a n }为等差数列,则通项公式a n =a 1+(n-1)d, 前n项和S n =2)(1n a a n +=2)1(1dn n na -+. 数列{a n }为等比数列,则通项公式a n =a 1q n-1, 前n 项和S n =⎪⎩⎪⎨⎧≠--=)1(1)1()1(11q qq a q na n .3.性质:(4)函数的思想:等差数列可以看作是一个一次函数型的函数;等比数列可以看作是一个指数函数型的函数。
可以利用函数的思想、观点和方法分析解决有关数列的问题。
例6 设S n 是等差数列{a n }的前n 项的和,已知31S 3与41S 4的等比中项为51S 5,31S 3与41S 4的等差中项为1,求等差数列{a n }的通项。
(1997年高考题) 解:设等差数列的公差为d,则⎪⎪⎩⎪⎪⎨⎧=+=⋅24131)51(4131432543S S S S S ,即⎪⎪⎩⎪⎪⎨⎧=++++=+⋅+2)64(41)23(31)105(251)64(41)23(31112111d a d a d a d a d a , 解得:⎪⎩⎪⎨⎧=-=⎩⎨⎧==45121011a d a d 或,所以n a a n n 5125321-==或。
评说:当未知数与方程的个数相等时,可用解方程的方法求出这两类特殊数列的首项与公差或公比,然后再解决其他问题。
例7 设等比数列{a n }的前n 项的和为S n ,若S 3+S 6=2S 9,求数列{a n }的公比q (1996年高考题)。
解:若q=1,则S 3=3a 1,S 6=6a 1,S 9=9a 1, 由已知S 3+S 6=2S 9, 得:3a 1+6a 1=18a 1,解得:a 1=0,这与数列{a n }为等比数列矛盾,所以,q ≠1。
由已知S 3+S 6=2S 9, 得:qq a q q a q q a --=--+--1)1(21)1(1)1(916131,整理得: 0)12(363=--q q q ,解得:243-=q 。
例8 在等差数列{a n }中,已知a 7=8,求S 13.分析:在这个问题中,未知数有两个:首项a 1与公差d ,但方程只有一个,因此不能象例6那样通过解方程解决问题,必须利用这两类数列的性质或者利用整体性思想来解决问题。
解:因为a 7=8,所以a 1+a 13=2a 7=16,故S 13=.1042)(13131=+a a例9 在等差数列{a n }中,已知a 1>0,S n 是它的前n 项的和.已知S 3=S 11,求S n 的最大值。
分析:和例8一样,也是未知数的个数多于方程的个数,所以须考虑等差数列的性质。
解:由已知:S 3=S 11,故.0132,551133111<-=+=+a d d a d a 得:而因为S 3=S 11,得a 4+a 5+a 6+…+a 10+a 11=0.由于a 4+a 11=a 5+a 10=a 6+a 9=a 7+a 8,所以a 7+a 8=0。
故a 7>0,a 8<0,所以 S 7最大。
评说:(1)本题也可以利用函数的思想来解,即把S n 表示成某一变量的函数(比如n ),然后再求这个函数的最大值。
(2)本题还可以利用方程与不等式的思想来解,即S n 最大当且仅当a n >0同时a n+1<0,解这个不等式组即可。
三、数列综合问题对于综合问题,要注意与其他数学知识相联系,如函数、方程、不等式,还要注意数学思想方法的应用,如归纳法、类比、叠加等。
例10 已知等差数列{a n }的前n 项的和为S n ,令b n =n S 1,且b 4=101,S 6-S 3=15,求数列{b n }的通项公式和∑=∞→ni i n b 1lim 的值。
分析:欲求b n ,需先求S n ,而S n 是数列{a n }的前n 项的和,所以应首先求出a n 。
因为数列{a n }是等差数列,故只要能找到关于a 1与d 的两个方程即可。