第六讲--一次函数专题训练

合集下载

一次函数基础训练题

一次函数基础训练题

一次函数基础训练题一、一次函数的定义与表达式1. 题目下列函数中,是一次函数的是()A. y = (1)/(x)+1B. y = x^2+1C. y = 2x 1D. y=√(x)+1解析一次函数的一般形式为y = kx + b(k,b为常数,k≠0)。

选项A,y=(1)/(x)+1是反比例函数与常数函数的和,不是一次函数,因为反比例函数y = (1)/(x)不符合一次函数形式。

选项B,y = x^2+1是二次函数,因为自变量x的次数是2,不符合一次函数自变量次数为1的要求。

选项C,y = 2x 1符合一次函数y = kx + b的形式,其中k = 2,b=-1。

选项D,y=√(x)+1,自变量x在根号下,不是一次函数。

所以答案是C。

2. 题目已知一次函数y=(m 1)x+3,求m的取值范围。

解析因为一次函数的一般形式为y = kx + b(k≠0),在函数y=(m 1)x+3中,k = m 1。

要使函数为一次函数,则m 1≠0,解得m≠1。

二、一次函数的图象与性质1. 题目一次函数y = 2x+1的图象经过哪几个象限?解析对于一次函数y = kx + b(k,b为常数,k≠0),当k>0,b>0时,图象经过一、二、三象限。

在函数y = 2x+1中,k = 2>0,b = 1>0,所以图象经过一、二、三象限。

2. 题目已知一次函数y=-3x + b的图象经过点(1, -1),求b的值,并判断函数图象的单调性。

解析因为函数y=-3x + b的图象经过点(1,-1),将x = 1,y=-1代入函数可得:-1=-3×1 + b-1=-3 + b移项可得b=-1 + 3=2。

对于一次函数y = kx + b,这里k=-3<0,所以函数y=-3x + 2的图象是单调递减的,即y随x的增大而减小。

三、一次函数的应用1. 题目某汽车油箱中原有油100升,汽车每行驶50千米耗油9升,求油箱剩余油量y(升)与汽车行驶路程x(千米)之间的函数关系式。

完整版)一次函数专项练习题

完整版)一次函数专项练习题

完整版)一次函数专项练习题一次函数专项练题题型一、点的坐标在x轴上的点,其纵坐标为0,在y轴上的点,其横坐标为0.若两个点关于x轴对称,则它们的横坐标相同,纵坐标互为相反数;若两个点关于y轴对称,则它们的纵坐标相同,横坐标互为相反数;若两个点关于原点对称,则它们的横坐标互为相反数,纵坐标也互为相反数。

1、若点A(m,n)在第二象限,则点(|m|,-n)在第三象限;2、若点P(2a-1,2-3b)是第二象限的点,则a的范围为(0,1/2],b的范围为(0,2/3];3、已知A(4,b),B(a,-2),若A,B关于x轴对称,则a=4,b=-(-2)=2;若A,B关于y轴对称,则a=-4,b=b;若A,B关于原点对称,则a=-4,b=-b;4、若点M(1-x,1-y)在第二象限,那么点N(1-x,y-1)关于原点的对称点在第一象限。

题型二、关于点的距离的问题点到x轴的距离用纵坐标的绝对值表示,点到y轴的距离用横坐标的绝对值表示。

任意两点A(xA,yA),B(xB,yB)的距离为√[(xA-xB)²+(yA-yB)²];A(xA,0),B(xB,0)的距离为|xA-xB|;若AB∥y轴,则A(0,yA),B(0,yB)的距离为|yA-yB|;点A(xA,yA)到原点之间的距离为√(xA²+yA²)。

1、点B(2,-2)到x轴的距离是2;到y轴的距离是2;2、点C(0,-5)到x轴的距离是5;到y轴的距离是0;到原点的距离是5;3、点D(a,b)到x轴的距离是|b|;到y轴的距离是|a|;到原点的距离是√(a²+b²);4、已知点P(3,0),Q(-2,0),则PQ=5;已知点M(0,1),N(0,-1),则MN=2;已知点E(2,-1),F(2,-8),则EF的距离是7;已知点G(2,-3)、H(3,4),则GH两点之间的距离是7.5、求出点(3,-4)和(5,a)间的距离为2,可以利用两点间距离公式:$\sqrt{(5-3)^2+(a+4)^2}=2$,化简后得到$(a+4)^2=4$,解得$a=-2,2$。

一次函数的应用练习题及答案

一次函数的应用练习题及答案

一次函数的应用练习题及答案一次函数是数学中一个非常基础且常见的函数类型,其形式为 y = ax + b。

在现实生活中,我们经常会遇到一次函数的应用场景。

本文将提供一些基于一次函数的应用练习题,并附带答案,希望能够帮助读者更好地理解一次函数的概念和应用。

练习题1:某公司的年工资总额与员工人数之间存在一次函数关系。

已知当公司的员工人数为100人时,年工资总额为500万元;当员工人数为200人时,年工资总额为800万元。

求该公司年工资总额与员工人数的一次函数表达式,并根据该函数回答以下问题:a) 当员工人数为300人时,年工资总额是多少?b) 当员工人数为0人时,年工资总额是多少?解答:设年工资总额为 y,员工人数为 x。

根据题意,我们可以列出两个方程:100a + b = 500200a + b = 800通过解这个方程组,我们可以得到 a 的值为 1.5,b 的值为 350。

因此,该公司的年工资总额与员工人数的一次函数表达式为 y = 1.5x + 350。

a) 当员工人数为 300 人时,将 x = 300 代入函数表达式中,可得年工资总额为 1.5 * 300 + 350 = 850 万元。

b) 当员工人数为 0 人时,将 x = 0 代入函数表达式中,可得年工资总额为 1.5 * 0 + 350 = 350 万元。

练习题2:某手机品牌的某款手机的售价与销量之间存在一次函数关系。

已知当该手机的销量为3000部时,售价为2000元/部;当销量为5000部时,售价为1500元/部。

求该手机的售价与销量的一次函数表达式,并根据该函数回答以下问题:a) 当销量为4000部时,售价是多少?b) 当销量为0部时,售价是多少?解答:设售价为 y,销量为 x。

根据题意,我们可以列出两个方程:3000a + b = 20005000a + b = 1500通过解这个方程组,我们可以得到 a 的值为 -0.1,b 的值为 500。

八年级一次函数专题训练

八年级一次函数专题训练

八年级一次函数专题训练1. 什么是一次函数?一次函数也被称为线性函数,表示为y = ax + b的形式,其中a和b是常数。

它的特点是变量x的最高次数为1,因此图像是一条直线。

a称为斜率,表示直线的倾斜程度;b称为截距,表示直线与y轴的交点。

2. 一次函数的图像有什么特点?一次函数的图像是一条直线。

斜率a决定了直线的倾斜方向和程度,正斜率表示直线向上倾斜,负斜率表示直线向下倾斜,斜率为0表示直线水平。

截距b表示直线与y轴的交点,当b为正数时,直线在y轴上方交点;当b为负数时,直线在y轴下方交点。

3. 如何确定一次函数的斜率和截距?一次函数的斜率可以通过两点间的坐标差来计算,即斜率a = (y2 y1) / (x2 x1),其中(x1, y1)和(x2, y2)是直线上的两个点的坐标。

截距b可以通过直线与y轴的交点来确定,即直线与y轴的交点为(0, b)。

4. 如何根据一次函数的图像确定其表达式?根据一次函数的图像可以确定其斜率和截距。

斜率a可以通过选择图像上两个点,计算它们的坐标差来确定;截距b可以通过观察图像与y轴的交点来确定。

确定了斜率和截距后,可以将其代入一次函数的标准表达式y = ax + b中得到具体的函数表达式。

5. 一次函数的斜率和截距对函数图像有什么影响?斜率a决定了直线的倾斜程度,当a增大时,直线的倾斜程度也增大;当a减小时,直线的倾斜程度减小。

截距b决定了直线与y轴的交点,当b增大时,直线的交点上移;当b减小时,直线的交点下移。

6. 如何根据一次函数的表达式绘制函数图像?根据一次函数的表达式y = ax + b,可以选择合适的x值,计算出对应的y值,然后将这些点连成一条直线即可绘制出函数图像。

可以选择几个不同的x值,计算对应的y值,然后在坐标系中标出这些点,并用直线连接它们。

7. 一次函数有哪些常见的应用?一次函数在数学中有广泛的应用。

例如,它可以用来描述物体的运动,其中x表示时间,y表示位置;它也可以用来描述成本和收益之间的关系,其中x表示生产量,y表示成本或收益。

一次函数复习与练习题(专题练习)

一次函数复习与练习题(专题练习)

一次函数专题复习一、一次函数解析式问题1.已知一次函数y=kx+b(k≠0)在x=1时,y=5,且它的图象与x 轴交点的横坐标是6,求这个一次函数的解析式。

2.已知2y -3与3x +1成正比例,且x=2时,y=5,(1)求y 与x 之间的函数关系式,并指出它是什么函数;(2)若点(a ,2)在这个函数的图象上,求a .3.若一次函数y=kx+b 的自变量x 的取值范围是-2≤x≤6,相应的函数值的范围是-11≤y≤9, 求此函数的解析式。

4.某一次函数的图象与直线y=6-x 交于点A (5,k ),且与直线y=2x-3无交点,求此函数的关系式.5.如图,直线的解析表达式为,且与轴交于点,直线经过点,直线、交于点.(1)求点的坐标;(2)求直线的解析表达式;(3)求的面积;(4)在直线上存在异于点的另一点,使得与的面积相等,请直接写出点的坐标.6.如图,折线ABC 是在某市乘出租车所付车费y (元)与行车里程x (km )之间的函数关系图象. ①根据图象,写出该图象的函数关系式;②某人乘坐2.5km ,应付多少钱?③某人乘坐13km ,应付多少钱?④若某人付车费30.8元,出租车行驶了多少千米?二、次函数平移问题1. 直线y=2x+1向上平移4个单位得到直线 ;直线y=-3x+5向下平移6个单位得到直线 .1l 33y x =-+1l x D 2l AB ,1l 2lCD 2l ADC △2l C P ADP △ADC △P2. 直线y=5x-3向左平移2个单位得到直线 ; 直线y=-x-2向右平移3个单位得到直线 .3.把函数y=3x+1的图像向右平移2个单位再向上平移3个单位,可得函数是____________; 规律总结:“上加下减在末梢,左加右减在括号”.4. 过点(2,-3)且平行于直线y=-3x+1的直线是___________.5.已知直线y=kx+b 与直线y= -3x+7关于y 轴对称,求k 、b 的值。

一次函数专项训练及答案

一次函数专项训练及答案

一次函数专项训练及答案一、选择题1.若A (x 1,y 1)、B (x 2,y 2)是一次函数y=ax+x-2图像上的不同的两点,记()()1212m x x y y =--,则当m <0时,a 的取值范围是( )A .a <0B .a >0C .a <-1D .a >-1【答案】C【解析】【分析】【详解】∵A (x 1,y 1)、B (x 2,y 2)是一次函数2(1)2y ax x a x =+-=+-图象上的不同的两点,()()12120m x x y y =--<,∴该函数图象是y 随x 的增大而减小,∴a+1<0,解得a<-1,故选C.【点睛】此题考查了一次函数图象上点的坐标特征,要根据函数的增减性进行推理,是一道基础题.2.如图,函数4y x =-和y kx b =+的图象相交于点()8A m-,,则关于x 的不等式()40k x b ++>的解集为( )A .2x >B .02x <<C .8x >-D .2x <【答案】A【解析】【分析】 直接利用函数图象上点的坐标特征得出m 的值,再利用函数图象得出答案即可.【详解】解:∵函数y =−4x 和y =kx +b 的图象相交于点A (m ,−8),∴−8=−4m ,解得:m =2,故A 点坐标为(2,−8),∵kx +b >−4x 时,(k +4)x +b >0,则关于x 的不等式(k +4)x +b >0的解集为:x >2.故选:A .【点睛】此题主要考查了一次函数与一元一次不等式,正确利用函数图象分析是解题关键.3.如图,已知一次函数22y x =-+的图象与坐标轴分别交于A 、B 两点,⊙O 的半径为1,P 是线段AB 上的一个点,过点P 作⊙O 的切线PM ,切点为M ,则PM 的最小值为( )A .22B .2C .5D .3【答案】D【解析】【分析】【详解】 解:连结OM 、OP ,作OH ⊥AB 于H ,如图,先利用坐标轴上点的坐标特征:当x=0时,y=﹣x+22=22,则A (0,22),当y=0时,﹣x+22=0,解得x=22,则B (22,0),所以△OAB 为等腰直角三角形,则AB=2OA=4,OH=12AB=2, 根据切线的性质由PM 为切线,得到OM ⊥PM ,利用勾股定理得到PM=22OP OM -=21OP -, 当OP 的长最小时,PM 的长最小,而OP=OH=2时,OP 的长最小,所以PM 的最小值为2213-=.故选D .【点睛】本题考查切线的性质;一次函数图象上点的坐标特征.4.下列关于一次函数()0,0y kx b k b =+<>的说法,错误的是( )A .图象经过第一、二、四象限B .y 随x 的增大而减小C .图象与y 轴交于点()0,bD .当b x k >-时,0y > 【答案】D【解析】【分析】由k 0<,0b >可知图象经过第一、二、四象限;由k 0<,可得y 随x 的增大而减小;图象与y 轴的交点为()0,b ;当b x k >-时,0y <; 【详解】∵()0,0y kx b k b =+<>,∴图象经过第一、二、四象限,A 正确;∵k 0<,∴y 随x 的增大而减小,B 正确;令0x =时,y b =,∴图象与y 轴的交点为()0,b ,∴C 正确;令0y =时,b x k =-, 当b x k>-时,0y <; D 不正确;故选:D .【点睛】本题考查一次函数的图象及性质;熟练掌握一次函数解析式y kx b =+中,k 与b 对函数图象的影响是解题的关键.5.下列函数(1)y =x (2)y =2x ﹣1 (3)y =1x(4)y =2﹣3x (5)y =x 2﹣1中,是一次函数的有( )A .4个B .3个C .2个D .1个 【答案】B【解析】【分析】分别利用一次函数、二次函数和反比例函数的定义分析得出即可.【详解】解:(1)y =x 是一次函数,符合题意;(2)y =2x ﹣1是一次函数,符合题意;(3)y =1x 是反比例函数,不符合题意;(4)y =2﹣3x 是一次函数,符合题意;(5)y =x 2﹣1是二次函数,不符合题意;故是一次函数的有3个.故选:B .【点睛】此题考查一次函数、二次函数和反比例函数的定义,正确把握相关定义是解题关键.6.已知直线3y mx =+经过点(2,0),则关于x 的不等式 30mx +>的解集是( )A .2x >B .2x <C .2x ≥D .2x ≤【答案】B【解析】【分析】求出m 的值,可得该一次函数y 随x 增大而减小,再根据与x 轴的交点坐标可得不等式解集.【详解】解:把(2,0)代入3y mx =+得:023m =+, 解得:32m =-,∴一次函数3y mx =+中y 随x 增大而减小,∵一次函数3y mx =+与x 轴的交点为(2,0),∴不等式 30mx +>的解集是:2x <,故选:B .【点睛】本题考查了待定系数法的应用,一次函数与不等式的关系,判断出函数的增减性是解题的关键.7.一次函数y mx n =-+( )A .mB .m -C .2m n -D .2m n -【答案】D【解析】【分析】根据题意可得﹣m <0,n <0,再进行化简即可.【详解】∵一次函数y =﹣mx +n 的图象经过第二、三、四象限,∴﹣m <0,n <0,即m >0,n <0,=|m﹣n|+|n|=m﹣n﹣n=m﹣2n,故选D.【点睛】本题考查了二次根式的性质与化简以及一次函数的图象与系数的关系,熟练掌握一次函数的图象与性质是解题的关键.8.已知直线y1=kx+1(k<0)与直线y2=mx(m>0)的交点坐标为(12,12m),则不等式组mx﹣2<kx+1<mx的解集为()A.x>12B.12<x<32C.x<32D.0<x<32【答案】B 【解析】【分析】由mx﹣2<(m﹣2)x+1,即可得到x<32;由(m﹣2)x+1<mx,即可得到x>12,进而得出不等式组mx﹣2<kx+1<mx的解集为12<x<32.【详解】把(12,12m)代入y1=kx+1,可得1 2m=12k+1,解得k=m﹣2,∴y1=(m﹣2)x+1,令y3=mx﹣2,则当y3<y1时,mx﹣2<(m﹣2)x+1,解得x<32;当kx+1<mx时,(m﹣2)x+1<mx,解得x>12,∴不等式组mx﹣2<kx+1<mx的解集为12<x<32,故选B.【点睛】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.9.将直线21y x =+向下平移n 个单位长度得到新直线21y x =-,则n 的值为( )A .2-B .1-C .1D .2【答案】D【解析】【分析】直接根据“上加下减”的原则进行解答即可.【详解】解:由“上加下减”的原则可知:直线y=2x+1向下平移n 个单位长度,得到新的直线的解析式是y=2x+1-n ,则1-n=-1,解得n=2.故选:D .【点睛】本题考查的是一次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.10.若一次函数(2)1y k x =-+的函数值y 随x 的增大而增大,则( )A .2k <B .2k >C .0k >D .k 0<【答案】B【解析】【分析】根据一次函数图象的增减性来确定(k-2)的符号,从而求得k 的取值范围.【详解】∵在一次函数y=(k-2)x+1中,y 随x 的增大而增大,∴k-2>0,∴k >2,故选B.【点睛】本题考查了一次函数图象与系数的关系.在直线y=kx+b (k≠0)中,当k >0时,y 随x 的增大而增大;当k <0时,y 随x 的增大而减小.11.若实数a 、b 、c 满足a+b+c=0,且a <b <c ,则函数y=ax+c 的图象可能是( )A .B .C .D .【答案】A【解析】【分析】∵a+b+c=0,且a <b <c ,∴a <0,c >0,(b 的正负情况不能确定也无需确定).a<0,则函数y=ax+c图象经过第二四象限,c>0,则函数y=ax+c的图象与y轴正半轴相交,观察各选项,只有A选项符合.故选A.【详解】请在此输入详解!12.一辆慢车和一辆快车沿相同的路线从A地到B地,所行驶的路程与时间的函数图形如图所示,下列说法正确的有()①快车追上慢车需6小时;②慢车比快车早出发2小时;③快车速度为46km/h;④慢车速度为46km/h;⑤A、B两地相距828km;⑥快车从A地出发到B地用了14小时A.2个B.3个C.4个D.5个【答案】B【解析】【分析】根据图形给出的信息求出两车的出发时间,速度等即可解答.【详解】解:①两车在276km处相遇,此时快车行驶了4个小时,故错误.②慢车0时出发,快车2时出发,故正确.③快车4个小时走了276km,可求出速度为69km/h,错误.④慢车6个小时走了276km,可求出速度为46km/h,正确.⑤慢车走了18个小时,速度为46km/h,可得A,B距离为828km,正确.⑥快车2时出发,14时到达,用了12小时,错误.故答案选B.【点睛】本题考查了看图手机信息的能力,注意快车并非0时刻出发是解题关键.13.关于一次函数y=3x+m﹣2的图象与性质,下列说法中不正确的是()A.y随x的增大而增大B.当m≠2时,该图象与函数y=3x的图象是两条平行线C.若图象不经过第四象限,则m>2D.不论m取何值,图象都经过第一、三象限【答案】C【解析】【分析】根据一次函数的增减性判断A ;根据两条直线平行时,k 值相同而b 值不相同判断B ;根据一次函数图象与系数的关系判断C 、D .【详解】A 、一次函数y=3x+m ﹣2中,∵k=3>0,∴y 随x 的增大而增大,故本选项正确;B 、当m≠2时,m ﹣2≠0,一次函数y=3x+m ﹣2与y=3x 的图象是两条平行线,故本选项正确;C 、若图象不经过第四象限,则经过第一、三象限或第一、二、三象限,所以m ﹣2≥0,即m≥2,故本选项错误;D 、一次函数y=3x+m ﹣2中,∵k=3>0,∴不论m 取何值,图象都经过第一、三象限,故本选项正确. 故选:C .【点睛】本题考查了两条直线的平行问题:若直线y 1=k 1x+b 1与直线y 2=k 2x+b 2平行,那么k 1=k 2,b 1≠b 2.也考查了一次函数的增减性以及一次函数图象与系数的关系.14.如图所示,已知()121,,2,2A y B y ⎛⎫ ⎪⎝⎭为反比例函数1y x =图象上的两点,动点(),0P x 在x 轴正半轴上运动,当AP BP -的值最大时,连结OA ,AOP ∆的面积是 ( )A .12B .1C .32D .52【答案】D 【解析】【分析】先根据反比例函数解析式求出A ,B 的坐标,然后连接AB 并延长AB 交x 轴于点P ',当P 在P '位置时,PA PB AB -=,即此时AP BP -的值最大,利用待定系数法求出直线AB 的解析式,从而求出P '的坐标,进而利用面积公式求面积即可.【详解】当12x =时,2y = ,当2x =时,12y = , ∴11(,2),(2,)22A B .连接AB 并延长AB 交x 轴于点P ',当P 在P '位置时,PA PB AB -=,即此时AP BP -的值最大.设直线AB 的解析式为y kx b =+ , 将11(,2),(2,)22A B 代入解析式中得 122122k b k b ⎧+=⎪⎪⎨⎪+=⎪⎩解得152k b =-⎧⎪⎨=⎪⎩ , ∴直线AB 解析式为52y x =-+. 当0y =时,52x =,即5(,0)2P ', 115522222AOP A S OP y '∴=⋅=⨯⨯=. 故选:D .【点睛】 本题主要考查一次函数与几何综合,掌握待定系数法以及找到AP BP -何时取最大值是解题的关键.15.若一次函数y=(k-3)x-1的图像不经过第一象限,则A .k<3B .k>3C .k>0D .k<0【答案】A【解析】【分析】根据图象在坐标平面内的位置关系确定k ,b 的取值范围,从而求解.【详解】解:∵一次函数y=(k-3)x-1的图象不经过第一象限,且b=-1,∴一次函数y=(k-3)x-1的图象经过第二、三、四象限,∴k-3<0,解得k <3.故选A .【点睛】本题主要考查一次函数图象在坐标平面内的位置与k 、b 的关系.解答本题注意理解:直线y=kx+b 所在的位置与k 、b 的符号有直接的关系.k >0时,直线必经过一、三象限.k <0时,直线必经过二、四象限.b >0时,直线与y 轴正半轴相交.b=0时,直线过原点;b <0时,直线与y 轴负半轴相交.16.如图,已知直线1y x b =+与21y kx =-相交于点P ,点P 的横坐标为1-,则关于x 的不等式1x b kx +≤-的解集在数轴上表示正确的是( ).A .B .C .D .【答案】D【解析】 试题解析:当x >-1时,x+b >kx-1,即不等式x+b >kx-1的解集为x >-1.故选A .考点:一次函数与一元一次不等式.17.函数()312y m x =+-中,y 随x 的增大而增大,则直线()12y m x =---经过( )A .第一、三、四象限B .第二、三、四象限C .第一、二、四象限D .第一、二、三象限【答案】B【解析】【分析】根据一次函数的增减性,可得310m +>;从而可得10m --<,据此判断直线()12y m x =---经过的象限.【详解】 解:函数()312y m x =+-中,y 随x 的增大而增大, 310m ∴+>,则13m >- 10m ∴--<,∴直线()12y m x =---经过第二、三、四象限.故选:B .【点睛】本题考查了一次函数的性质,正确掌握一次函数图象与系数的关系是解题的关键.即一次函数y=kx+b (k≠0)中,当k >0时,y 随x 的增大而增大,图象经过一、三象限;当k <0时,y 随x 的增大而减小,图象经过二、四象限;当b >0时,此函数图象交y 轴于正半轴;当b <0时,此函数图象交y 轴于负半轴.18.函数12y x =-与23y ax =+的图像相交于点(),2A m ,则( )A .1a =B .2a =C .1a =-D .2a =-【答案】A【解析】【分析】将点(),2A m 代入12y x =-,求出m ,得到A 点坐标,再把A 点坐标代入23y ax =+,即可求出a 的值.【详解】 解:函数12y x =-过点(),2A m , 22m ∴-=,解得:1m =-,()1,2A ∴-,函数23y ax =+的图象过点A ,32a ∴-+=,解得:1a =.故选:A .【点睛】本题考查了两条直线的交点问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解.也考查了一次函数图象上点的坐标特征.19.对于一次函数24y x =-+,下列结论正确的是( )A .函数值随自变量的增大而增大B .函数的图象不经过第一象限C .函数的图象向下平移4个单位长度得2y x =-的图象D .函数的图象与x 轴的交点坐标是()0,4【答案】C【解析】【分析】根据一次函数的系数结合一次函数的性质,即可得知A 、B 选项不正确,代入y=0求出与之对应的x 值,即可得出D 不正确,根据平移的规律求得平移后的解析式,即可判断C 正确,此题得解.【详解】解:A 、∵k=-2<0,∴一次函数中y 随x 的增大而减小,故 A 不正确;B 、∵k=-2<0,b=4>0,∴一次函数的图象经过第一、二、四象限,故B 不正确;C 、根据平移的规律,函数的图象向下平移4个单位长度得到的函数解析式为y=-2x+4-4,即y=-2x , 故C 正确;D 、令y=-2x+4中y=0,则x=2,∴一次函数的图象与x 轴的交点坐标是(2,0)故D 不正确.故选:C .【点睛】此题考查一次函数的图象以及一次函数的性质,解题的关键是逐条分析四个选项.本题属于基础题,难度不大,解决该题时,熟悉一次函数的性质、一次函数图象上点的坐标特征以及一次函数图象与系数的关系是解题的关键.20.将直线23y x =-向右平移2个单位,再向上平移3个单位后,所得的直线的表达式为( ) A .24y x =-B .24y x =+C .22y x =+D .22y x =-【答案】A【解析】【分析】直接根据“上加下减”、“左加右减”的原则进行解答即可.【详解】由“左加右减”的原则可知,将直线y=2x-3向右平移2个单位后所得函数解析式为y=2(x-2)-3=2x-7,由“上加下减”原则可知,将直线y=2x-7向上平移3个单位后所得函数解析式为y=2x-7+3=2x-4, 故选A.【点睛】本题考查了一次函数的平移,熟知函数图象平移的法则是解答此题的关键.。

中考冲刺指南(最新版):第六讲 一次函数

中考冲刺指南(最新版):第六讲   一次函数

中考冲刺指南第六讲一次函数班级学号姓名一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出四个选项中,只有一个是正确的.注意可以用多种不同的方法来选取正确的答案.1.(2013•资阳)在函数y=中,自变量x的取值范围是(D)2.(2013•益阳)已知一次函数y=x﹣2,当函数值y>0时,自变量x的取值范围在数轴上表示正确的是(B).B...3.(2013•徐州)下列函数中,y随x的增大而减少的函数是(C)4.(2013•陕西)根据表中一次函数的自变量x与函数y的对应值,可得p的值为(A)5.(2013•重庆)万州某运输公司的一艘轮船在长江上航行,往返于万州、朝天门两地.假设轮船在静水中的速度不变,长江的水流速度不变,该轮船从万州出发,逆水航行到朝天门,停留一段时间(卸货、装货、加燃料等),又顺水航行返回万州.若该轮船从万州出发后所用的时间为x(小时),轮船距万州的距离为y(千米),则下列各图形中,能够反映y与x 之间函数关系的大致图象是(C)B6.(2013•陕西)如果一个正比例函数的图象经过不同象限的两点A(2,m),B(n,3),那么一定有(D)7.(2013•黔东南州)直线y=﹣2x+m与直线y=2x﹣1的交点在第四象限,则m的取值范围是()8.(2013•福州)A,B两点在一次函数图象上的位置如图所示,两点的坐标分别为A(x+a,y+b),B(x,y),下列结论正确的是(B)9.(2013•天津)如图,是一对变量满足的函数关系的图象,有下列3个不同的问题情境:①小明骑车以400米/分的速度匀速骑了5分,在原地休息了4分,然后以500米/分的速度匀速骑回出发地,设时间为x分,离出发地的距离为y千米;②有一个容积为6升的开口空桶,小亮以1.2升/分的速度匀速向这个空桶注水,注5分后停止,等4分后,再以2升/分的速度匀速倒空桶中的水,设时间为x分,桶内的水量为y升;③矩形ABCD中,AB=4,BC=3,动点P从点A出发,依次沿对角线AC、边CD、边DA 运动至点A停止,设点P的运动路程为x,当点P与点A不重合时,y=S△ABP;当点P与点A重合时,y=0.其中,符合图中所示函数关系的问题情境的个数为(C)10.(2013•舟山)对于点A(x1,y1),B(x2,y2),定义一种运算:A⊕B=(x1+x2)+(y1+y2).例如,A(﹣5,4),B(2,﹣3),A⊕B=(﹣5+2)+(4﹣3)=﹣2.若互不重合的四点C,D,E,F,满足C⊕D=D⊕E=E⊕F=F⊕D,则C,D,E,F四点(A)二、认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整的填写答案.11.(2013•盐城)写出一个过点(0,3),且函数值y随自变量x的增大而减小的一次函数关系式:y=﹣x+3.(填上一个答案即可)12.(2013•潍坊)一次函数y=﹣2x+b 中,当x=1时,y <1,当x=﹣1时,y >0.则b 的取值范围是 ﹣2<b <3 .13.(2013•成都)已知点(3,5)在直线y=ax+b (a ,b 为常数,且a ≠0)上,则的值为 31. 14.(2013•孝感)如图,一个装有进水管和出水管的容器,从某时刻开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,接着关闭进水管直到容器内的水放完.假设每分钟的进水量和出水量是两个常数,容器内的水量y (单位:升)与时间x (单位:分)之间的部分关系.那么,从关闭进水管起 8 分钟该容器内的水恰好放完.15.(2013•东营)如图,已知直线l :y=x ,过点A (0,1)作y 轴的垂线交直线l 于点B ,过点B 作直线l 的垂线交y 轴于点A 1;过点A 1作y 轴的垂线交直线l 于点B 1,过点B 1作直线l 的垂线交y 轴于点A 2;…按此作法继续下去,则点A 2013的坐标为 (0,42013)或(0,24026)(注:以上两答案任选一个都对) . 16.(2013•重庆)如图,平面直角坐标系中,已知直线y=x 上一点P (1,1),C 为y 轴上一点,连接PC ,线段PC 绕点P 顺时针旋转90°至线段PD ,过点D 作直线AB ⊥x 轴,垂足为B ,直线AB 与直线y=x 交于点A ,且BD=2AD ,连接CD ,直线CD 与直线y=x 交于点Q ,则点Q 的坐标为 (,) .三、全面答一答(本题有7个小题,共66分)解答应写出文字说明,证明过程或演算步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以. 17.(本题6分)(2012•湘潭)已知一次函数y=kx+b (k ≠0)图象过点(0,2),且与两坐标轴围成的三角形面积为2,求此一次函数的解析式. 解:∵一次函数y=kx+b (k ≠0)图象过点(0,2), ∴b=2,令y=0,则x=﹣,∵函数图象与两坐标轴围成的三角形面积为2, ∴×2×|﹣|=2,即|﹣|=2, 当k >0时,=2,解得k=1;当k<0时,﹣=2,解得k=﹣1.故此函数的解析式为:y=x+2或y=﹣x+2.18.(本题8分)(2013•株洲)某生物小组观察一植物生长,得到植物高度y(单位:厘米)与观察时间x(单位:天)的关系,并画出如图所示的图象(AC是线段,直线CD平行x 轴).(1)该植物从观察时起,多少天以后停止长高?(2)求直线AC的解析式,并求该植物最高长多少厘米?解:(1)∵CD∥x轴,∴从第50天开始植物的高度不变,即50天后停止长高;(2)设直线AC的解析式为y=kx+b(k≠0),∵经过点A(0,6),B(30,12),∴,解得.所以,直线AC的解析式为y=x+6,当x=50时,y=×50+6=16cm.19.(本题8分)(2012•抚顺)如图,已知一次函数y=﹣x+b的图象经过点A(2,3),AB⊥x轴,垂足为B,连接OA.(1)求此一次函数的解析式;(2)设点P为直线y=﹣x+b上的一点,且在第一象限内,经过P作x轴的垂线,垂足为Q.若S△POQ=S△AOB,求点P的坐标.解:(1)∵一次函数y=﹣x+b的图象经过点A(2,3),∴3=(﹣)×2+b,解得b=4,故此一次函数的解析式为:y=﹣x+4;(2)设P(p,d),p>0,∵点P在直线y=﹣x+4的图象上,∴d=﹣p+4①,∵S△POQ=S△AOB=××2×3,∴pd=②,①②联立得,,解得或,∴P点坐标为:(3,)或(5,).20.(本题10分)(2013•滨州)根据要求,解答下列问题:(1)已知直线l1的函数表达式为y=x,请直接写出过原点且与l1垂直的直线l2的函数表达式;(2)如图,过原点的直线l3向上的方向与x轴的正方向所成的角为30°.①求直线l3的函数表达式;②把直线l3绕原点O按逆时针方向旋转90°得到的直线l4,求直线l4的函数表达式.(3)分别观察(1)(2)中的两个函数表达式,请猜想:当两直线垂直时,它们的函数表达式中自变量的系数之间有何关系?请根据猜想结论直接写出过原点且与直线y=﹣垂直的直线l5的函数表达式.解:(1)根据题意得:y=﹣x;(2)①设直线l3的函数表达式为y=k1x(k1≠0),∵过原点的直线l3向上的方向与x轴的正方向所成的角为30°,直线过一、三象限,∴k1=tan30°=,∴直线l3的函数表达式为y=x;②∵l3与l4的夹角是为90°,∴l4与x轴的夹角是为60°,设l4的解析式为y=k2x(k2≠0),∵直线l4过二、四象限,∴k2=﹣tan60°=﹣,∴直线l4的函数表达式为y=﹣x;(3)通过观察(1)(2)中的两个函数表达式可知,当两直线互相垂直时,它们的函数表达式中自变量的系数互为负倒数关系,∴过原点且与直线y=﹣垂直的直线l5的函数表达式为y=5x.21.(本题10分)(2013•遂宁)四川省第十二届运动会将于2014年8月18日在我市隆重开幕,根据大会组委会安排,某校接受了开幕式大型团体操表演任务.为此,学校需要采购一批演出服装,A、B两家制衣公司都愿成为这批服装的供应商.经了解:两家公司生产的这款演出服装的质量和单价都相同,即男装每套120元,女装每套100元.经洽谈协商:A公司给出的优惠条件是,全部服装按单价打七折,但校方需承担2200元的运费;B公司的优惠条件是男女装均按每套100元打八折,公司承担运费.另外根据大会组委会要求,参加演出的女生人数应是男生人数的2倍少100人,如果设参加演出的男生有x人.(1)分别写出学校购买A、B两公司服装所付的总费用y1(元)和y2(元)与参演男生人数x之间的函数关系式;(2)问:该学校购买哪家制衣公司的服装比较合算?请说明理由.解:(1)总费用y1(元)和y2(元)与参演男生人数x之间的函数关系式分别是:y1=0.7[120x+100(2x﹣100)]+2200=224x﹣4800,y2=0.8[100(3x﹣100)]=240x﹣8000;(2)由题意,得当y1>y2时,即224x﹣4800>240x﹣8000,解得:x<200当y1=y2时,即224x﹣4800=240x﹣8000,解得:x=200当y1<y2时,即224x﹣4800<240x﹣8000,解得:x>200即当参演男生少于200人时,购买B公司的服装比较合算;当参演男生等于200人时,购买两家公司的服装总费用相同,可任一家公司购买;当参演男生多于200人时,购买A公司的服装比较合算.22.(本题12分)(2013•徐州)为增强公民的节约意识,合理利用天然气资源,某市自1月1日起对市区民用管道天然气价格进行调整,实行阶梯式气价,调整后的收费价格如表所示:(1)若甲用户3月份的用气量为60m,则应缴费元;(2)若调价后每月支出的燃气费为y(元),每月的用气量为x(m3),y与x之间的关系如图所示,求a的值及y与x之间的函数关系式;(3)在(2)的条件下,若乙用户2、3月份共用1气175m3(3月份用气量低于2月份用气量),共缴费455元,乙用户2、3月份的用气量各是多少?解:(1)由题意,得60×2.5=150(元);(2)由题意,得a=(325﹣75×2.5)÷(125﹣75),a=2.75,∴a+0.25=3,设OA的解析式为y1=k1x,则有2.5×75=75k1,∴k1=2.5,∴线段OA的解析式为y1=2.5x(0≤x≤75);设线段AB的解析式为y2=k2x+b,由图象,得,解得:,∴线段AB的解析式为:y2=2.75x﹣18.75(75<x≤125);(385﹣325)÷3=20,故C(145,385),设射线BC的解析式为y3=k3x+b1,由图象,得,解得:,∴射线BC的解析式为y3=3x﹣50(x>125)(3)设乙用户2月份用气xm3,则3月份用气(175﹣x)m3,当x>125,175﹣x≤75时,3x﹣50+2.5(175﹣x)=455,解得:x=135,175﹣135=40,符合题意;当75<x≤125,175﹣x≤75时,2.75x﹣18.75+2.5(175﹣x)=455,解得:x=145,不符合题意,舍去;当75<x≤125,75<175﹣x≤125时,2.75x﹣18.75+2.75(175﹣x)=455,此方程无解.∴乙用户2、3月份的用气量各是135m3,40m3.23.(本题12分)(2013•牡丹江)如图,平面直角坐标系中,矩形OABC的对角线AC=12,tan∠ACO=,(1)求B、C两点的坐标;(2)把矩形沿直线DE对折使点C落在点A处,DE与AC相交于点F,求直线DE的解析式;(3)若点M在直线DE上,平面内是否存在点N,使以O、F、M、N为顶点的四边形是菱形?若存在,请直接写出点N的坐标;若不存在,请说明理由.解:(1)在直角△OAC中,tan∠ACO=,∴设OA=x,则OC=3x,根据勾股定理得:(3x)2+(x)2=AC2,即9x2+3x2=144,解得:x=2.故C的坐标是:(6,0),B的坐标是(6,6);(2)直线AC的斜率是:﹣=﹣,则直线DE的斜率是:.F是AC的中点,则F的坐标是(3,3),设直线DE的解析式是y=x+b,则9+b=3,解得:b=﹣6,则直线DE的解析式是:y=x﹣6;(3)OF=AC=6,∵直线DE的斜率是:.∴DE与x轴夹角是60°,当FM是菱形的边时(如图1),ON∥FM,则∠NOC=60°或120°.当∠NOC=60°时,过N作NG⊥y轴,则NG=ON•sin30°=6×=3,OG=ON•cos30°=6×=3,则N的坐标是(3,3);当∠NOC=120°时,与当∠NOC=60°时关于原点对称,则坐标是(﹣3,﹣3);当OF是对角线时(如图2),MN关于OF对称.∵F的坐标是(3,3),∴∠FOD=∠NOF=30°,在直角△ONH中,OH=OF=3,ON===2.作NL⊥y轴于点L.在直角△ONL中,∠NOL=30°,则NL=ON=,OL=ON•cos30°=2×=3.故N的坐标是(,3).则N的坐标是:(3,3)或(﹣3,﹣3)或(,3).。

一次函数各类题型详解加练习

一次函数各类题型详解加练习
∴A的坐标为(0,2),B的坐标为(0,-3)
令 +2=-2 -3,解得 =
(提示:求两个函数之间的交点,令两个解析式相等即可得到交点横坐标)
将 = 带入y₁= +2
得:y₁= +2=
∴点C的坐标为( , )
(2)AB=2-(-3)=5(提示:AB与y轴重合,上y减下y求长度。)
(分析:以AB为底,点C到AB的距离为高,就可以求出△ABC的面积。)
求线段AB、CD的长度。
解:∵AB∥x轴
∴AB=6-(-3)= 9
(右x减左x,即可求得长度)
同理∵CD∥x轴
∴CD=5-2=3
③既不平行于x轴,也不平行于y轴:如:点A(x₁,y₁),点B(x₂,y₂),则使用求线段的通用公式AB=
例:点A的坐标为(3,3),点B的坐标为(-3,-5),
求线段AB的长度。
S△COP=
OC·OP= ×8×(2t-8)=8t-32(t≥4)
(上一问中刚求出)
-8t+32=2×16(0≤t<4)
S△COP=2S△AOB,即或解,得:t=0或者t=8
8t-32=2×16(t≥4)
(4)思路:在△COP和△AOB中:∠COP=∠AOB=90°,OC =OA=8
还差一组条件就能证明两三角形全等了,因为整个题目并未有角度的信息,
解:AB中点的坐标为:( , )整理,得( ,3)
∵直线AB的k₁=2,且k₁·k₂=-1
∴垂直于AB的直线的k₂=
设垂直平分线解析式为:y= +b,将( ,3)代入解析式,
可得AB中垂线的解析式为y= +
把y=0代入解析式可得
点P的坐标为:( ,0)
综上:符合要求的点P共有4个:

一次函数知识点总结及练习题

一次函数知识点总结及练习题

一次函数知识点总结6.1.1 变量和函数1、变量:在一个变化过程中可以取不同数值的量。

常量:在一个变化过程中只能取同一数值的量。

2、函数:一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就把x称为自变量,把y称为因变量,y 是x的函数。

例如:y=±x,当x=1时,y有两个对应值,所以y=±x不是函数关系。

对于不同的自变量x的取值,y的值可以相同,例如,函数:y=|x|,当x=±1时,y的对应值都是13、定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。

4、确定函数取值范围的方法:(1)关系式为整式时,函数定义域为全体实数;(2)关系式含有分式时,分式的分母不等于零;(3)关系式含有二次根式时,被开方数大于等于零;(4)关系式中含有指数为零的式子时,底数不等于零;(5)实际问题中,函数定义域还要和实际情况相符合,使之有意义6.1.2 函数的表示法1、三种表示方法列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。

公式法:即函数解析式,简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。

图象法:形象直观,但只能近似地表达两个变量之间的函数关系。

2、列表法:列一张表,第一行表示自变量取的各个值,第二行表示相应的函数值(即应变量的对应值)3、公式法:用含有表示自变量的字母的代数式表示因变量的式子叫做解析式。

一般情况下,等号右边的变量是自变量,等号左边的变量是因变量。

用函数解析式表示函数关系的方法就是公式法。

4、函数的图像一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.5、描点法画函数图形的一般步骤(通常选五点法)第一步:列表(根据自变量的取值范围从小到大或从中间向两边取值);第二步:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点);第三步:连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来)。

第六章一次函数(动点、全等、三角形存在性问题压轴)(原卷版)

第六章一次函数(动点、全等、三角形存在性问题压轴)(原卷版)

第六章 一次函数(压轴题专练)一、动点函数问题1.如图,在长方形ABCD 中,动点P 从A 出发,以一定的速度,沿A B C D A ®®®®方向运动到点A 处停止(提示:当点P 在AB 上运动时,点P 到DC 的距离始终等于AD 和BC ).设点P 运动的路程为x ,PCD V 的面积为y ,如果y 与x 之间的关系如图所示,那么长方形ABCD 的面积为( )A .6B .9C .15D .182.已知动点H 以每秒x 厘米的速度沿图1的边框(边框拐角处都互相垂直)按从A B C D E F -----的路径匀速运动,相应的HAF △的面积 ()2cm S 关于时间(s)t 的关系图象如图2,已知8cm AF =,则下列说法正确的有几个( )①动点H 的速度是2cm/s ;②BC 的长度为3cm ;③b 的值为14;④在运动过程中,当HAF △的面积是230cm 时,点H 的运动时间是3.75s 和1025s ..A .1个B .2个C .3个D .4个3.如图1,四边形ABCD 中,90DAB ∠=︒,AB CD ∥,点P 从点A 出发,以每秒1个单位长度的速度,沿路线A -B-C -D 运动.设P 点的运动时间为ts ,PAD V 的面积为S ,当P 运动到BC 的中点时,PAD V 的面积为A .7B .7.5C .84.如图,在长为形ABCD 中,5cm 16cm AB AD ==,,点3cm 4cm AM AE ==,,连线CE ,动点P 从点B 出发,以运动到点A 即停止运动,连接MP ,设点P 运动的时间为(1)如图1,线段CE = cm ;当10t =时,线段EP = cm ;(2)如图1,点P 在线段BC 上运动的过程中,连接EM EP ,,当EMP V 是以EM 为直角边的直角三角形时,请求出对应的时间的值;(1)求线段OC的长;(2)若点E是点C关于y轴的对称点,求(3)已知y轴上有一点P,若以点标.(1)求n和b的值;△是直角三角形,求点P的坐标;(2)若ACP∠=∠,求点P的坐标.(3)当PBE BAC(1)求点D的坐标;(2)点E是线段CD上一动点,直线BE与x轴交于点i)若BDFV的面积为8,求点F的坐标;ii)如图2,当点F在x轴正半轴上时,将直线接FM,若1OF MF=+,求线段MF的长.(1)求直线AB的解析式;(2)已知点D为直线BC上第三象限的一点,连接AD,设点D的横坐标为t 间的函数关系式(不要求写出变量t的取值范围);(3)在(2)的条件下,256S=,点D关于y轴的对称点为点E,点F在第一象限直线。

一次函数的基础训练(专题)

一次函数的基础训练(专题)

一次函数的概念【知识点】形如()0y kx b k =+≠,则y 叫x 做的一次函数。

特征:(1)自变量的表达式kx b +是整式(2)自变量x 的次数是1次(3)常数k 不等于0当0b =时,()0y kx k =≠为正比例函数,是一次函数的特殊形式。

【巩固练习】1、判断下各式是否为一次函数:(1)49y x =-( )(2)3y x =-+( ) (4)12x y -=-( )(5)221y x =+( )(6)12y x =+( )(7)32x y π+=( )(8)2y x -=( )(9)y kx b =+( ) 2、若()22y a x a =-++是一次函数,则a3、若()212my m x =-+是一次函数,则m =4、若21y x a =-+是正比例函数,则a 的值是5、当()239y k x k =-+-是正比例函数时,满足的条件是: 是一次函数时满足的条件是:6、已知函数:()512y k x m =-+- (1)当,k m 取何值时,这个函数是一次函数?(2)当,k m 取何值时,这个函数是正比例函数?7、已知()13ky k x =-+是一次函数,求3k +的平方根?8、当,m n 为何值时,()()253ny m x n m -=-++是一次函数?是正比例函数?★ 9、当m 为何值时,()135m y m x x +=-+是正比例函数?并写出这个函数的表达式。

一次函数的图象与性质【知识点】对于()0y kx b k =+≠和()0y kx k =≠1、图象是一条直线 2、k 的特征:① k 的正负决定图象的升降(0k >上升,0k <下降) ②增减性:0k >时两变量,x y 取值变化一致,0k <时,两变量,x y 变化相反 ③两直线位置:在同一坐标系中,若直线111y k x b =+平行直线222y k x b =+,则12k k =。

一次函数专项练习(经典题型收集)

一次函数专项练习(经典题型收集)

一次函数专项练习(经典题型收集)1.自变量x的取值范围为x≠-1.2.自变量x的取值范围为x≠0.3.代入点P(-2,m),得m=2*(-2)+1=-3.4.交点坐标分别为(0,-1)和(1,1)。

5.由于函数经过原点,代入得m=2.6.答案为B,即(-2,1)。

7.底为y,面积为1/2*y*x=8,解得y=16/x。

8.图象为y=x^2,不是一次函数。

9.长度剩余y与时间x成反比例关系,即y=20-5x。

10.代入交点(1,6),解得k=1,b=-3.一次函数练(二)1.n=2.2.解析式为y=(2m-1)/(m^2-3)。

3.m<1/2.4.解得m=4或m=-2.5.y=-6.6.答案为(-2,-4)。

7.根据比例关系,y-2=kx,代入x=-2和y=4,解得k=-3/2,再代入x=6,解得y=7.1.一次函数是指函数的自变量的最高次数为1的函数。

因此,③y=x和④y=-x-1是一次函数。

2.首先将函数展开,得到y=mx^5+10x- m^2+3.由于一次函数的解析式为y=kx+b,因此要求m使得y=mx^5+10x-m^2+3满足一次函数的形式。

因为一次函数的自变量的最高次数为1,因此只有当m=4或m=-4时,y才能写成一次函数的形式。

此时解析式分别为y=4x+3和y=-4x+3.3.当m=1时,y=(m+2)x+m-1变为y=3x,为一次函数;当m=-2时,y=(m+2)x+m-1变为y=-4x-5,为正比例函数。

4.向下平移1个单位后,直线y=-2x的解析式变为y=-2x-1.5.直线y=2x-4与x轴的交点坐标为(2,0),与y轴的交点坐标为(0,-4),三角形的底为2,高为4,因此面积为4.6.当a=-2时,直线经过原点,此时解析式为y=-2x;当a=1时,直线与y轴交于点(0,-2),此时解析式为y=3x-1.7.将点A的坐标代入函数y=2x-1中,得到1-a=2(a+2)-1,解得a=1.8.因为直线与y轴平行,所以斜率为2.又因为过点(-2,1),所以解析式为y=2x+5.9.由于两个函数的图象平行,因此它们的斜率相等。

一次函数专项训练题

一次函数专项训练题

一次函数专项训练题一、选择题1. 下列函数中,是一次函数的是()A. y = 2/xB. y = 3x²C. y = x + 1D. y = √x解析:一次函数的一般形式为y = kx + b(k、b 为常数,k≠0)。

A 选项是反比例函数;B 选项是二次函数;C 选项符合一次函数形式;D 选项不是一次函数。

答案是C。

2. 若函数y = (m - 1)x + m² - 1 是一次函数,则m 的值为()A. m = 1B. m = -1C. m ≠ 1D. m = ±1解析:因为是一次函数,所以x 的系数不能为0,即m - 1≠0,解得m≠1。

答案是C。

二、填空题1. 已知一次函数y = 2x - 3,则当x = 2 时,y = _____。

解析:把x = 2 代入函数y = 2x - 3,可得y = 2×2 - 3 = 1。

2. 若一次函数y = kx + 3 的图象经过点(1,5),则k = _____。

解析:把点(1,5)代入函数y = kx + 3,可得 5 = k×1 + 3,解得k = 2。

三、解答题1. 已知一次函数y = 3x + b 的图象经过点(-2,5),求这个一次函数的解析式。

解析:把点(-2,5)代入函数y = 3x + b,可得 5 = 3×(-2) + b,解得 b = 11。

所以这个一次函数的解析式为y = 3x + 11。

2. 若一次函数y = (2m - 1)x + 3 - 2m 的图象经过第一、二、四象限,求m 的取值范围。

解析:因为图象经过第一、二、四象限,所以斜率小于0,在y 轴上的截距大于0。

即2m - 1<0 且 3 - 2m>0。

解2m - 1<0 得m<1/2;解 3 - 2m>0 得m<3/2。

综合起来,m 的取值范围是m<1/2。

3. 已知一次函数y = kx + b 的图象与直线y = -2x + 1 平行,且经过点(2,-1),求这个一次函数的解析式。

一次函数专题训练(含答案)-

一次函数专题训练(含答案)-

一次函数专题训练(含答案)一、填空题:1.若正比例函数y=(m-1)²32-m x 的图象经过二、四象限,则m 的值是 .2.对于函数y=6-2x ,y 随x 的增大而 .3.汽车由南京驶往相距300千米的上海,它的平均速度是100千米/时,则汽车距上海 的路程s (千米)与行驶时间t (小时)的函数关系式是 .4.若直线y=kx+b 经过第一、二、四象限,则直线y=-bx+k 不经过第 象限,5.直线271+-=x y 向下平移3个单位,得直线 . 6.已知三条直线112,34,7-=-=+=x y x y ax y 相交于一点,则a= .7.某城市出租车在2千米以内收10元,以后每100元加收a 元,乘坐距离s ≥2 000 米时,付款y (元)与s 之间的函数关系式是 .8.多边形内角和α与边数n 之间的函数关系式是 ,这是 函 数,自变量取值范围是 .9.等腰三角形顶角y 与底角x 之间的函数关系式是 ,这是 函 数,自变量取值范围是 .10.矩形的一条边长为3cm ,那么它的面积y 与另一条边长x 的函数关系式是 , 当另一条边为长313cm 时,面积为 . 11.函数13-=x y 的图象是 ,它过(0, )与( ,0), y 随x 增大而 .12.若函数k x y -+=34的图象经过原点,那么k= .13.已知等腰三角形ABC 的顶点A 在y 轴上,底边BC 与x 轴重合,直线62+=x y 经 过点A 和B ,则经过点A 和点C 的直线b kx y +=的解析式是 . 14.k= 时,一次函数4)1(2-++=k x k y 的图象经过点(-1,1),且y 随x 的增大而减小.15.若直线1)4(2-+--=m x m m y 与直线32-=x y 平行,则m= . 二、选择题16.下列各题中,变量之间成正比例函数关系的是( )A.正方体的体积V 与边长aB.三角形的面积S 与高hC.如果速度均匀,微机打字个数N 与操作时间t (分)D.轮船航行的路程y (千米)与航行速度x (千米/时)17.直线b kx y +=,当k >0,b <0时,它的图象大致是( )18.点A 为正比例函数图象的一点,它到原点的距离为5,到x 轴的距离为3,若点A 在第二象限内,则这个正比例函数解析式为( ) A.x y 43= B.x y 43-= C.x y 34= D.x y 34-= 19.已知函数b kx y +=,当x 增加2时,y 减少了2,则k 等于( )A.-1B.-2C.1D.220.直线83+=x y 关于y 轴对称的直线是( )A.83-=x yB.83--=x yC.838+=x y D.83+-=x y 21.若一次函数22m mx y -+=,当x >1时,y <0;而当x <1时,y >0,则m 的值等于 ( )A .2或-1 B.-1 C.2 D.-2或122.若一次函数b kx y +=的图象经过第二、三、四象限,则k ,b 的取值范围是( )A.k >0;b >0B.k >0;b <0C.k <0;b <0D.k <0;b >023.下列各题中的两个变量y 与x 成正比例关系的是( )A.某人的体重y 与他的年龄xB.路程不变;速度y 与时间xC.三角形面积不变,底y 与底边上的高xD.密度不变,物质的质量y 与体积x24.下列函数中为一次函数的是( )A.12-=x yB.21+=xy C.x y 2131-= D.12-=x y 25.如果2)1(m x m y -=是正比例函数,那么m 的值是( )A.0B.1C.-1D.±126.若等腰三角形的周长为12cm ,则腰长y 与底边长x 的函数关系式是( )A.122+-=x yB.6+-=x yC.621+-=x y D.621+=x y 27.若一次函数n mx y +-=随x 的增大而减小,那么( ) A.m >0 B.m <0 C.n >0 D.n <028.如果y 是x 的正比例函数,x 是z 的一次函数,那么y 是z 的( )A.正比例函数B.一次函数C.正比例函数或一次函数D.不构成函数关系29.一辆汽车从A 地出发,先行驶了s 0米之后,又以υ米/秒的速度行驶了t 秒,汽车行驶的全部路程s (米)等于( )A.υtB.s 0+υtC.s 0+υ+tD.(s 0+υ)t30.关于x 的函数bc abx y +-=(c 与a ,b 不同号)的图象不通过( )A.第一象限B.第二象限C.第三象限D.第四象限三、解答题31.某地长途汽车客运公司规定旅客可随身携带一定质量的行李,如果超过规定,则需 要购买行李票,行李票费用y (元)是行李质量x (公斤)的一次函数,其图象如图代13-2-9所示.求:(1)y 与x 之间的函数关系式;(1)旅客最多可免费携带行李的公斤数.32.已知:如图代13-2-10,在直角坐标系中,直线AB 交y 轴于点A ,交x 轴于点B ,其解析式为243+-=x y .又O 1是x 轴上一点,且⊙O 1与直线AB 切于点C ,与y 轴切于原点O.(1)求点C 的纵坐标;(2)如图代13-2-11,以AO 为直径作⊙O 2,交直线AB 于D ,交⊙O 1于N ,连ON 并延 长交DC 于G ,求△ODG 的面积;(3)另有一圆过点O1,与y轴切于点O2,与直线AB交于M,P,求证:O1M²O1P=2.33.如图代13-2-12,已知⊙O'与x轴交于A,B两点,与y轴交于C,D两点,圆心的坐标是(1,-1)半径是5.(1)比较线段AB与CD的大小;(2)求A,B,C,D四点的坐标;(3)过点D作⊙O'的切线,求这条切线的解析式.34.如图代13-2-13,A,B分别是x轴上位于原点左、右两侧的点,点P(2,p)在第一象限,直线PA交y轴于点C(0,2),直线PB交y轴于点D.S△AOP=6(1)求S△COP的面积;(2)求点A的坐标及p的值;(3)若S△BOP=S△DOP,求直线BD的函数解析式.35.某个体商贩以每件200元的价格批量购进紧俏商品A,为了促进他自己商店的其他商品的销售,商贩决定将A以每件不低于购进价,但每件的毛利润又不高于购进价的25%,的可变价格出售(毛利润=售出价-购进价).一学生通过市场调查发现,每当该商贩改变A(1 增加一元,其他商品出售所得的收入是增加,还是减少多少元?(2)如果商贩欲使当天售完200件A 所得的毛利润与出售其他商品所得的收入之和不 少于25 000元,请你为A 确定售出价的范围.36.有两条直线l 1∶y 1=ax+b 和l 2∶y 2=cx+5,学生甲解出它们的交点为(3,-2);学生 乙因把c 抄错而解出它们的交点为(41,43),试写出两条直线函数的表达式. 37.如图代13-2-14,在直角坐标系xOy 中,直线l 过点B (0,3),且x 轴的正半 轴交于点A ,点P ,Q 在线段AB 上,点M ,N 在线段OA 上,且△POM 与△QMN 是相似比为3∶1的两个等边三角形,试求:(1)AM/MO 的值;(2)直线l 的解析式.38.如图代13-2-15,直线133+-=x y 和x 轴、y 轴分别交于点A 、点B ,以线段AB 为边在第一象限内作等边三角形ABC ,如果在第一象限内有一点)21,(m P ,且△ABP 的面积与△ABC 的面积相等,求m 的值.39.已知直线111b x k y +=经过点(1,6)及点(-3,-2),它和x 轴、y 轴的交点是B , A ;直线222b x k y +=经过点(2,-2),且在y 轴上的截距为-3,它和x 轴、y 轴的交点是D ,C.(1)分别写出直线222111,b x k y b x k y +=+=的解析式,并画出它们的图象;(2)计算四边形ABCD 的面积;(3)若直线AB 和直线DC 交于E ,求S △BCE ∶S ABCD 的值.参 考 答 案动手动脑1.∵ -1<x <3,∴ -2<2x <6.∴-2<y <6,即y=2x.又 -2<2x <6.∴-6<-2x <2.∴-2<-2x+4<6.∵ -2<y <6,∴ y=-2x+4.∴y=2x 或y=-2x+4.应选C.2.依题意,得⎪⎩⎪⎨⎧=⋅=+.321,5OB OA OB OA 解方程组,得⎩⎨⎧==⎩⎨⎧==.3,2;2,3OB OA OB OA 或 ∴A (3,0),B (0,2),或A (2,0),B (0,3).故可设y=ax+2或y=ax+3,进而可求:2332-=-=a a 或. ∴函数解析式为232+-=x y 或323+-=x y . 3.C=[2+0.5(P-1)](元)4.(1)经过B ,C 的解析式是:33+=x y .(2)当点E 在线段OC 上移动时,直线BC 与⊙O '有三种位置关系:相离、相切、 相交.当5/52=b 时,直线BE 与⊙O '相切;当5/52<b <3时,直线BE 与⊙O '相交;当0<B <5/52时,直线BE 与⊙O '相离; 5.773+=x y 或777+=x y .【思考】 1.如何根据题意画出示意图?2.如何用代数式表示运往各地的机器台数?3. 如何找出相等关系式?4.一次函数有什么性质?【思路分析】 本例必须依题意画出示意图,把运往各地机器台数列好代数式,再结 合题意便可列出关系式,再借助一次函数性质,思路便可 现.解:(1)运输方案示意图如图代13-2-16.根据示意图,结合题意,得)]10(12[8)6(5)10(43x x x x y --+-+-+=百元,∴ 862+=x y 百元.(2)∵y ≤90,∴206090862≤≤⇒⎭⎬⎫≤≤≤+x x x . ∴x=0,1,2,即有三种调运方案.(3)∵0≤x ≤2,由一次函数的性质可知,x=0时,y 值最小,y min =86(百元),此时 总运费最低,最低运费是86百元,即8 600元.调运方案为:由B 市运往C 市0台,运住D 市6台,由A 市运往C 市10台,运住D 市2台.本例展示了用所学一次函数知识创造性地应用到商品经济中,帮助人们运筹帷幄,决策准确,服务于社会,提高经济效益的例子,这种一次函数应用题,打破了传统应用题的框式,给应用题增加了新的活力,必须转变传统观念,适应商品经济大潮,才能运用所学知识,创造性地解决商海中的问题。

初中数学北师大版《八年级上》《第六章 一次函数》同步精选专题

初中数学北师大版《八年级上》《第六章 一次函数》同步精选专题

初中数学北师大版《八年级上》《第六章一次函数》同步精选专题初中数学北师大版《八年级上》《第六章一次函数》同步精选专题北京师范大学初中数学版《八年级》、《第六章初等函数》同步精选专题训练【18】(含答案考点及解析)类别:_________________;分数:___________1.如图所示,在△abc中,∠b=90o,ab=3,ac=5,将△abc折叠,使点c与点a重合,折痕为de,则△abe的周长为.[答:]7【考点】初中数学知识点》图形与证明》三角形【解析】试题分析:首先根据勾股定理计算BC的长度,然后根据图折叠变换的性质得到AE=CE,然后计算BC的周长△ 阿贝试题解析:∵在△abc中,∠b=90°,ab=3,ac=5,∴bc=,∵△ade是△cde翻折而成,∴ae=ce,∴ae+be=bc=4,周界△ Abe=AB+BC=3+4=7考点:1.翻折变换(折叠问题);2.勾股定理.2.如图所示,已知直线L:y=x,通过点a(0,1)的y轴的垂直线与点B处的直线L相交,通过点B的直线为L的垂线交y轴于点a1;过点a1作y轴的垂线交直线l于点b1,过点b1作直线l的垂线交y轴于点a2;……按此作法继续下去,则点a2021的坐标为.[答:]。

【考点】初中数学知识点》函数及其图像》一次函数【解析】∵直线与x轴正方向的夹角为30。

在在同理……∵ OA=1,∵ ob=2。

In=8,In=4,即点的坐标是(0,4)。

=16,即点坐标是。

在里面依次类推,点的坐标为。

3.食品安全是老百姓关心的话题。

食品中添加过量的添加剂对人体有害,但适量的添加剂对人体无害,有利于食品的储存和运输。

饮料加工厂生产的a和B饮料都需要添加相同的添加剂。

每瓶a饮料需要2克添加剂,每瓶B饮料需要3克添加剂,已知270克这种添加剂可以生产100瓶a和B饮料。

a和B饮料分别生产多少瓶?【答案】a饮料生产了30瓶,b饮料生产了70瓶.【考点】初中数学知识点方程(组)和不等式(组)二元初等方程【分析】试题分析:设a饮料生产了x瓶,b饮料生产了y瓶,根据“a饮料每瓶需加该添加剂2克,b饮料每瓶需加该添加剂3克,已知270克该添加剂恰好生产了a、b两种饮料共100瓶”即可列方程组求解.让a饮料生产X瓶,B饮料生产y瓶解得A:生产了30瓶A饮料和70瓶B饮料测试点:二元一阶方程的应用点评:解题的关键是读懂题意,找到两个等量关系,正确列出方程组求解.4.以下方程式为二元线性方程式(a)【答案】d【考点】初中数学知识点方程(组)和不等式(组)二元初等方程【分析】试题分析:含有两个未知数,且所含未知数的次数均为1的整式方程叫做二元一次方程.a.误;d.这是一个一次二元方程。

八年级数学上册-一次函数第6课时一次函数与一元一次方程一元一次

八年级数学上册-一次函数第6课时一次函数与一元一次方程一元一次

八年级数学上册-一次函数第6课时一次函数与一元一次方程一元一次第6课时一次函数与一元一次方程、一元一次不等式一.选择题(共8小题)1.一次函数y=k某+b的图象如图所示,则方程k某+b=0的解为()A.某=2B.y=2C.某=﹣1D.y=﹣12.一次函数y=k某+b(k,b为常数,且k≠0)的图象如图所示,根据图象信息可求得关于某的方程k某+b=0的解为()A.某=﹣1B.某=2C.某=0D.某=33.一元一次方程a某﹣b=0的解某=3,函数y=a某﹣b的图象与某轴的交点坐标为()A.(3,0)B.(﹣3,0)C.(a,0)D.(﹣b,0)4.已知方程k某+b=0的解是某=3,则函数y=k某+b的图象可能是()A.B.C.D.5.若方程某﹣3=0的解也是直线y=(4k+1)某﹣15与某轴的交点的横坐标,则k的值为()A.﹣1B.0C.1D.±16.如图,直线y1=某+b与y2=k某﹣1相交于点P,点P的横坐标为﹣1,则关于某的不等式某+b>k某﹣1的解集在数轴上表示正确的是()A.B.C.D.7.如图,直线y=﹣某+m与y=n某+4n(n≠0)的交点的横坐标为﹣2,则关于某的不等式﹣某+m>n某+4n>0的整数解为()A.﹣1B.﹣5C.﹣4D.﹣38.如图,一次函数y=k某+b的图象经过A、B两点,则不等式k某+b <0的解集是()A.某<0B.0<某<1C.某<1D.某>1二.填空题(共10小题)9.若直线y=2某+b与某轴交于点(﹣3,0),则方程2某+b=0的解是_________.10.如图是一次函数y=k某+b的图象,则方程k某+b=0的解为_________.11.一次函数y=k某+b(k,b为常数,且k≠0)的图象如图所示,根据图象信息可求得关于某的方程k某+b=0的解为_________.212.如图,已知直线y=a某﹣b,则关于某的方程a某﹣1=b的解某=_________.13.如图,直线y=k某+b分别交某轴和y轴于点A、B,则关于某的方程k某+b=0的解为_________.14.如图,已知函数y=2某+b和y=a某﹣3的图象交于点P(﹣2,﹣5),根据图象可得方程2某+b=a某﹣3的解是_________.15.如图,已知函数y=2某+b与函数y=k某﹣3的图象交于点P,则不等式k某﹣3>2某+b的解集是_________.16.如图,直线y=k某+b过A(﹣1,2)、B(﹣2,0)两点,则0≤k某+b≤﹣2某的解集为_________.3417.一次函数y1=k某+b与y2=某+a的图象如图,则k某+b>某+a的解集是_________.18.如图,函数y=k某和的图象相交于A(a,2),则不等式的解集为_________.三.解答题(共4小题)19.如图,根据函数y=k某+b(k,b是常数,且k≠0)的图象,求:(1)方程k某+b=0的解;(2)式子k+b的值;(3)方程k某+b=﹣3的解.520.如图,直线l1:y=2某与直线l2:y=k某+3在同一平面直角坐标系内交于点P.(1)写出不等式2某>k某+3的解集:_________;(2)设直线l2与某轴交于点A,求△OAP的面积.21.在平面直角坐标系某0y中,直线y=k某+b(k≠0)过(1,3)和(3,1)两点,且与某轴、y轴分别交于A、B两点,求不等式k 某+b≤0的解.22.在直角坐标系某Oy中,直线y=k某+b(k≠0)经过(﹣2,1)和(2,3)两点,且与某轴、y轴分别交于A、B两点,求不等式k某+b≥0的解集.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一次函数专题训练一、考察一次函数定义1、若函数是y 关于x 的一次函数,则的值为 ;解析式为 .2、要使y =(m -2)x n -1+n 是关于x 的一次函数,n ,m 应满足 , . 二、考查图像性质1、已知一次函数y =(m -2)x +m -3的图像经过第一,第三,第四象限,则m 的取值范围是________.2、若一次函数y =(2-m )x +m 的图像经过第一、•二、•四象限,•则m •的取值范围是______3、已知m 是整数,且一次函数(4)2y m x m =+++的图象不过第二象限,则m 为 .4、直线y kx b =+经过一、二、四象限,则直线y bx k =-的图象只能是图4中的( )5、直线0px qy r ++=(0)pq ≠如图5,则下列条件正确的是( ).,1A p q r == .,0B p q r == .,1C p q r =-= .,0D p q r =-=6、如果0ab >,0a c <,则直线a cy x b b=-+不通过( )A .第一象限B .第二象限C .第三象限D .第四象限7、如图6,两直线1y kx b =+和2y bx k =+在同一坐标系内图象的位置可能是( )8、如果0ab >,0a c <,则直线a cy x b b=-+不通过( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限9、b 为 时,直线2y x b =+与直线34y x =-的交点在x 轴上. 10、要得到y =-32x -4的图像,可把直线y =-32x ( ). (A )向左平移4个单位(B )向右平移4个单位 (C )向上平移4个单位 (D )向下平移4个单位11、已知一次函数y =-kx +5,如果点P 1(x 1,y 1),P 2(x 2,y 2)都在函数的图像上,且当x 1<x 2时,有y 1<y 2成立,那么系数k 的取值范围是________.()213m y m x=-+m12、已知点(-4,y 1),(2,y 2)都在直线y =- 12x +2上,则y 1 、y 2大小关系是( )(A )y 1 >y 2 (B )y 1 =y 2 (C )y 1 <y 2 (D )不能比较常见题型一、选择题1.已知一次函数,若随着的增大而减小,则该函数图象经过( ) (A )第一、二、三象限 (B )第一、二、四象限 (C )第二、三、四象限 (D )第一、三、四象限 2.若正比例函数y =kx 的图象经过点(1,2),则k 的值为 A . B .-2 C .D .2 3.点P 1(1,1),点P 2(2,2)是一次函数=-4 + 3 图象上的两个点,且1<2,则1与2的大小关系是( )(A )1>2 (B )1>2>0 (C )1<2 (D )1=24.下列图形中,表示一次函数=+与正比例函数y =(、为常数,且≠0)的图象的是( )5.某棵果树前x 年的总产量y 与x 之间的关系如图所示,从目前记录的结果看,前x 年的年平均产量最高,则x 的值为( )A .3B .5C .7D .96.根据下表中一次函数的自变量x 与函数y 的对应值,可得p 的值为( )7.如果一个正比例函数的图象经过不同..象限的两点A (2,m ),B (n ,3),那么一定有( )A .m >0,n >0 B .m >0,n <0 C .m <0,n >0 D .m <0,n <08.已知一次函数y =x ﹣2,当函数值y >0时,自变量x 的取值范围在数轴上表示正确的是( ) A .B .C .D .9.体育课上,20人一组进行足球比赛,每人射点球5次,已知某一组的进球总数为49个,进球情况记录如下表,其中进2个球的有x人,进3个球的有y 人,若(x ,y )恰好是两条y kx k =-y x 12-12x y x y y x x x y y y y y y y y y y y mx n mnx m n mn直线的交点坐标,则这两条直线的解析式是( )进球数 01 2 3 4 5人数1 5 x y 3 2A .y =x +9与B .y =﹣x +9与C .y =﹣x +9与D .y =x +9与10.P 1(x 1,y 1),P 2(x 2,y 2)是正比例函数图象上的两点,下列判断中,正确的是( )A .y 1>y 2B .y 1<y 2C .当x 1<x 2时,y 1<y 2D .当x 1<x 2时,y 1>y 2 11.对于函数y =﹣3x +1,下列结论正确的是( )A .它的图象必经过点(﹣1,3)B .它的图象经过第一、二、三象限C .当x >1时,y <0D .y 的值随x 值的增大而增大12.假期到了,17名女教师去外地培训,住宿时有2人间和3人间可供租住,每个房间都要住满,她们有几种租住方案( )A .5种B .4种C .3种D .2种 13.函数y =3x ﹣4与函数y =2x +3的交点的坐标是( ) A . (5,6) B . (7,﹣7) C . (﹣7,﹣17) D . (7,17)14.如图表示某加工厂今年前5个月每月生产某种产品的产量c (件)与时间t (月)之间的关系,则对这种产品来说,该厂( )A .1月至3月每月产量逐月增加,4、5两月产量逐月减小B .1月至3月每月产量逐月增加,4、5两月产量与3月持平C .1月至3月每月产量逐月增加,4、5两月产量均停止生产D .1月至3月每月产量不变, 4、5两月均停止生产 15.若反比例函数的图象过点(﹣2,1),则一次函数y =kx ﹣k 的图象过( ) A .第一、二、四象限 B .第一、三、四象限 C .第二、三、四象限 D .第一、二、三象限16.方程的根可视为函数的图象与函数的图象交点的横坐标,则方程的实根x 0所在的范围是( )A .B .C .D . 17.今年校团委举办了“中国梦,我的梦”歌咏比赛,张老师为鼓励同学们,带了50元钱取购买甲、乙两种笔记本作为奖品.已知甲种笔记本每本7元,乙种笔记本每本5元,每种笔记本至少买3本,则张老师购买笔记本的方案共有( ) A .3种 B .4种 C .5种 D .6种 18.已知正比例函数的图象经过点(1,-2),则正比例函数的解析式为( )y x 22233=+y x 22233=+y x 22233=-+y x 22233=-+y 2x 1=-ky x=2x 3x 10+-=y x 3=+1y x=3x 2x 10+-=010<x <4011<x <43011<x <3201<x <12()y kx k 0=≠A .B .C .D . 19.小文、小亮从学校出发到青少年宫参加书法比赛,小文步行一段时间后,小亮骑自行车沿相同路线行进,两人均匀速前行.他们的路程差s (米)与小文出发时间t (分)之间的函数关系如图所示.下列说法:①小亮先到达青少年宫;②小亮的速度是小文速度的2.5倍;③a =24;④b =480.其中正确的是( )A .①②③B .①②④C .①③④D .①②③④20.对于点A (x 1,y 1),B (x 2,y 2),定义一种运算:.例如,A (-5,4),B (2,﹣3),.若互不重合的四点C ,D ,E ,F ,满足,则C ,D ,E ,F 四点( ) A .在同一条直线上 B .在同一条抛物线上C .在同一反比例函数图象上D .是同一个正方形的四个顶点三、交点问题1、若直线y =3x -1与y =x -k 的交点在第四象限,则k 的取值范围是( ).(A )k <13 (B )13<k <1 (C )k >1 (D )k >1或k <132、若直线y x a =-+和直线y x b =+的交点坐标为(,8)m ,则a b += .3、一次函数y kx b =+的图象过点(,1)m 和(1,)m 两点,且1m >,则k = ,b 的取值范围是 .4、直线y kx b =+经过点(1,)A m -,(,1)B m (1)m >,则必有( )A . 0,0k b >> .0,0B k b >< .0,0C k b <> .0,0D k b << 5、如图所示,已知正比例函数和一次函数,它们的图像都经过点P (a ,1),且一次函数图像与y 轴交于Q 点。

(1)求a 、b 的值;(2)求△PQO 的面积。

四、面积问题1、若直线y =3x +6与坐标轴围成的三角形的面积为S ,则S 等于( ). A .6 B .12 C .3 D .242、若一次函数y =2x +b 的图像与坐标轴围成的三角形的面积是9,则b =_______.3、已知一次函数2y x a =+与y x b =-+的图像都经过(2,0)A -,且与y 轴分别交于点B ,c ,则ABC ∆的面积为( )A .4B .5C .6D .7y 2x =y 2x =-1y x 2=1y x 2=-()()1212A B x x y y ⊕=+++()()A B 52432⊕=-++-=-C D D E E F F D ⊕=⊕=⊕=⊕x y 21-=b x y +=4、已知一次函数y=kx+b的图像经过点(-1,-5),且与正比例函数1y=x2的图像相交于点(2,a),求(1)a的值;(2)k、b的值;(3)这两个函数图像与x轴所围成的三角形面积。

五、一次函数解析式的求法(1)定义型例1. 已知函数是一次函数,求其解析式。

(2)点斜型例2. 已知一次函数的图像过点(2,-1),求这个函数的解析式。

(3)两点型例3.已知某个一次函数的图像与x轴、y轴的交点坐标分别是(-2,0)、(0,4),则这个函数的解析式为_____________。

(4)图像型例 4. 已知某个一次函数的图像如图所示,则该函数的解析式为__________。

(5)斜截型例5. 已知直线与直线平行,且在y轴上的截距为2,则直线的解析式为。

(6)平移型例 6.①把直线向上平移2个单位得到的图像解析式为。

②把直线向下平移2个单位得到的图像解析式为。

③把直线向左平移2个单位得到的图像解析式为。

④把直线向右平移2个单位得到的图像解析式为。

规律:(7)实际应用型例7. 某油箱中存油20升,油从管道中匀速流出,流速为0.2升/分钟,则油箱中剩油量Q(升)与流出时间t(分钟)的函数关系式为。

(8)面积型例8. 已知直线与两坐标轴所围成的三角形面积等于4,则直线解析式为。

相关文档
最新文档