北京十五中2016届九年级(上)期中数学试卷(解析版)

合集下载

2015-2016学年度北师大版九年级上期中考试数学试题及答案

2015-2016学年度北师大版九年级上期中考试数学试题及答案

2015—2016学年度九年级第一学期期中考试数学试卷考试时间120分钟;试卷总分100分※ 考生注意:请在答题卡各题目规定答题区域内作答,答在本试卷上无效。

一、选择题(每小题2分,共16分) 1、下列方程,是一元二次方程的是( ) ①3x 2+x=20,②2x 2—3xy+4=0,③x 2-1x =4,④x 2=0,⑤x 2—3x+3=0 A .①② B .①④⑤ C .①③④ D .①②④⑤ 2、已知1=x 是方程022=++ax x 的一个根,则方程的另一个根为( ) A .2 B .2- C .3 D .3- 3、观察下列表格,一元二次方程21.1x x -=的一个近似解是( )x1.1 1。

2 1。

3 1.4 1。

5 1.6 1。

7 1.8 1.9 2x x -0。

110.240。

390。

560。

750。

961。

191。

441。

71A .0。

11B .1。

6C .1。

7D .1。

19 4、如图,已知菱形ABCD 的边长为2,∠DAB =60°,则对角线BD 的长是 ( ) A .1B .3C .2D .234题图5题图a b cA B C DEF mn6题图5、如图,已知直线a ∥b ∥c ,直线m 、n 与a 、b 、c 分别交于点A 、C 、E 、B 、D 、F ,AC = 4,CE = 6,BD = 3,则BF 等于( ) A . 7 B . 7。

5C . 8D . 8。

56、某小组做“用频率估计概率"的实验时,统计了某一结果出现的频率,绘制了如图所示的折线统计图,则符合这一结果的实验最有可能的是( ) A .在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀"B .一副去掉大、小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃C .暗箱中有1个红球和2个黄球,它们只有颜色上的区别,从中任取一球是黄球D .掷一个质地均匀的正六面体骰子,向上的面点数是47、如图,矩形ABCG (AB<BC )与矩形CDEF 全等,点B 、C 、D 在同一条直线上,∠APE 的顶点在线段BD 上移动,使∠APE 为直角的点P 的个数是( ) A .0 B .1 C .2 D .38、如图,边长一定的正方形ABCD ,Q 为CD 上一个动点,AQ 交BD 于点M ,过M 作MN ⊥AQ 交BC 于点N ,作NP ⊥BD 于点P,连接NQ ,下列结论:①AM=MN;②MP=BD ;③BN+DQ=NQ ;④为定值.其中一定成立的是( )A .①②③B .①②④C .②③④D .①②③④7题图11题图8题图二、填空题(每小题2分,共16分)9、()x x 6542=+-化成一般形式是____________,其中一次项系数是___________10、抽屉里有2只黑色和1只白色的袜子,它们混在一起,随意抽出两只刚好配成一双的概率是 ___________11、如图,为了测量某棵树的高度,小明用长为2m 的竹竿做测量工具,移动竹竿,使竹竿、树的顶端的影子恰好落在地面的同一点。

北京市xx初中2016-2017学年度初三上数学期中试卷含答案

北京市xx初中2016-2017学年度初三上数学期中试卷含答案

2016-2017学年度九年级数学期中测试 2016年11月一、选择题(本题共30分,每小题3分)第1-10题均有四个选项,符合题意的选项只有一个。

1.下列图形中,既是轴对称图形,又是中心对称图形的是( ).2.在平面直角坐标系中,将抛物线24y x =-先向右平移2个单位,再向上平移2个单位,得到的抛物线解析式为( ).A .2(2)2y x =++B .2(2)2y x =--C .2(2)2y x =-+D .2(2)2y x =+-3.如果45a b =(ab ≠0),那么下列比例式变形正确的是( ) A .54a b = B .45a b = C .45a b = D .45ba = 4.如图,在△ABC 中,点D 、E 分别在AB 、AC 边上,且 DE ∥BC ,如果 AD ∶DB=3∶2,那么AE ∶AC 等于( )A .3∶2B .3∶1C .2∶3D .3∶55.在平面直角坐标系xoy 中,如果⊙O 是以原点O (0,0)为圆心,以5为半径的圆,那么点A (-3,-4)与⊙O 的位置关系是( ) A. 在⊙O 内 B.在⊙O 上 C.在⊙O 外 D. 不能确定 6.如图,将△ABC 绕着点C 按顺时针方向旋转20°, B 点落在B '位置,A 点落在A '位置,若B A AC ''⊥, 则BAC ∠的度数是( ).A .50° B.60° C. 70° D.40°A. B. C. D.D7.如右图,线段AB是⊙O的直径,弦CD丄AB,∠CAB=20°,则∠AOD等于()A.120°B. 140° C.150° D. 160°8.二次函数223y x x=--的最小值为()A. 5B. 0C. -3D. -49.如图,AB是⊙O的切线,B为切点,AO的延长线交⊙O于C点,连接BC,如果30A∠=,AB=AC的长等于( ) .A. 6B. 4C.D.10.如图1,AD、BC是⊙O的两条互相垂直的直径,点P从点O出发沿图中某一个扇形顺时针...匀速运动,设∠APB=y(单位:度),如果y与点P运动的时间x(单位:秒)的函数关系的图象大致如图2所示,那么点P的运动路线可能为( ).A.O→B→A→O B.O→A→C→O C.O→C→D→O D.O→B→D→O二、填空题(本题共18分,每小题3分)11.写出一个抛物线开口向下,与y轴交于(0,2)点的函数表达式 .12.把二次函数的表达式y = x2-6x+5化为()2y a x h k=-+的形式,那么h k+=_____. 13.颐和园是我国现存规模最大,保存最完整的古代皇家园林,它和承德避暑山庄、苏州拙政园、苏州留园并称为中国四大名园.该园有一个六角亭,如果它的地基是半径为2米的正六边形,那么这个地基的面积是米2.14.“圆材埋壁”是我国古代著名数学著作《九章算术》中的问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”用数学语言可以表述为:“如图,CD为⊙O的直径,弦AB CD⊥于E,如果CE = 1,AB = 10,那么直径CD的长为 .”15.弦AB的长等于⊙O的半径,那么弦AB所对的圆周角的度数是____________.AB图2图116.阅读下面材料:在数学课上,老师提出如下问题: 小涵的主要作法如下:老师说:“小涵的作法正确.”请回答:小涵的作图依据是 .三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28分7分,第9题8分)解答应写出文字说明、演算步骤或证明过程。

2015-2016学年北京XX中学九年级上期中数学试卷含答案

2015-2016学年北京XX中学九年级上期中数学试卷含答案
()
(2)以坐标原点 O 为位似中心,在第二象限内再画一个放大的△A2B2C2,使得它与△ABC 的位似比等于 2:1.
21.如图,在 Rt△ABC 中,∠C=90°,D、E 分别为 AB、AC 边上的点,且 = ,连结 DE.若 AC=3,AB=5.求证: (1)△ABC∽△AED; (2)DE⊥AB.
A.2:1 B.1:2 C.4:1 D.1:4
3.如图,D 是△ABC 的边 AC 上的一点,则下列条件中不能判定△ABC∽△ADE 的是 ()
A.∠ADE=∠B B. = C.∠AED=∠C D. =
4.如图,A,B 两地被池塘隔开,小明通过下列方法测出了 A、B 间的距离:先在 AB 外
选一点 C,然后测出 AC,BC 的中点 M,N,并测量出 MN 的长为 12m,由此他就知道了
x

0
1
2
3
4
y

4
1
0
1
4
点 A(x1,y1)、B(x2,y2)在函数的图象上,则当 1<x1<2,3<x2<4 时,y1 与 y2C.y1≥y2 D.y1 ≤y
2
10.如图,正方形 ABCD 中,AB=8cm,对角线 AC,BD 相交于点 O,点 E,F 分别从 B,C 两点同时出发,以 1cm/s 的速度沿 BC,CD 运动,到点 C,D 时停止运动,设运动 时间为 t(s),△OEF 的面积为 s(cm2),则 s(cm2)与 t(s)的函数关系可用图象表示为
A、B 间的距离.有关他这次探究活动的描述错误的是(
)
A.AB=24m B.MN∥AB C.△CMN∽△CAB D.CM:MA=1:2
5.下列四个三角形中,与图中的三角形相似的是(

北京市教院附中2015-2016学年九年级数学上学期期中试题(含解析)

北京市教院附中2015-2016学年九年级数学上学期期中试题(含解析)

北京市教院附中2015-2016学年九年级数学上学期期中试题一、选择题(共10道小题,每小题3分,共30分)下列各题均有四个选项,其中只有一个是符合题意的.1.二次函数y=﹣(x+1)2﹣2的最大值是()A.﹣2 B.﹣1 C.1 D.22.如果4x=5y(y≠0),那么下列比例式成立的是()A. =B. =C. =D. =3.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,如果AC=3,AB=6,那么AD的值为()A.B.C.D.34.如图,在△ABC中,若DE∥BC,AD:BD=1:2,若△ADE的面积等于2,则△ABC的面积等于()A.6 B.8 C.12 D.185.如图,△ABC中,∠C=90°,AC=2,BC=1,则cosB的值是()A.B.C.D.6.把抛物线y=x2+1向右平移3个单位,再向下平移2个单位,得到抛物线()A.y=(x+3)2﹣1 B.y=(x+3)2+3 C.y=(x﹣3)2﹣1 D.y=(x﹣3)2+37.已知二次函数y=ax2+bx+c的图象如图所示,则a、b、c满足()A.a<0,b<0,c>0 B.a<0,b<0,c<0 C.a<0,b>0,c>0 D.a>0,b<0,c>08.如图,△ABC和△A1B1C1是以点O为位似中心的位似三角形,若C1为OC的中点,AB=4,则A1B1的长为()A.1 B.2 C.4 D.89.二次函数y=ax2+bx+c的部分图象如图所示,则下列结论中正确的是()A.a>0B.不等式ax2+bx+c>0的解集是﹣1<x<5C.a﹣b+c>0D.当x>2时,y随x的增大而增大10.如图,在等边△ABC中,AB=4,当直角三角板MPN的60°角的顶点P在BC上移动时,斜边MP 始终经过AB边的中点D,设直角三角板的另一直角边PN与AC相交于点E.设BP=x,CE=y,那么y 与x之间的函数图象大致是()A.B.C.D.二、填空题(本题共18分,每小题3分)11.点P(﹣2,y1)和点Q(﹣1,y2)分别为抛物线y=x2﹣4x+3上的两点,则y1y2.(用“>”或“<”填空).12.在某一时刻,测得一根高为2m的竹竿的影长为1m,同时测得一栋建筑物的影长为12m,那么这栋建筑物的高度为m.13.在△ABC中,∠C=90°,tanA=,则sinB= .14.如图,点D为△ABC外一点,AD与BC边的交点为E,AE=3,DE=5,BE=4,要使△BDE∽△ACE,且点B,D的对应点为A,C,那么线段CE的长应等于.15.二次函数y=ax2+bx的图象如图,若一元二次方程ax2+bx+m=0有实数根,则m的最大值为.16.如图,点A1、A2、A3、…,点B1、B2、B3、…,分别在射线OM、ON上,A1B1∥A2B2∥A3B3∥A4B4∥….如果A1B1=2,A1A2=2OA1,A2A3=3OA1,A3A4=4OA1,….那么A2B2= ,A n B n= .(n 为正整数)三、解答题(本题共30分,每小题5分)17.计算:tan60°﹣cos30°×tan45°+sin30°.18.若二次函数y=ax2+bx+3的图象经过A(1,0)、B(2,﹣1)两点,求此二次函数的解析式.19.已知:如图,在△ABC中,D是AC上一点,E是AB上一点,且∠AED=∠C.(1)求证:△AED∽△ACB;(2)若AB=6,AD=4,AC=5,求AE的长.20.如图,△ABC的顶点在格点上,且点A(﹣5,﹣1),点C(﹣1,﹣2).以原点O为位似中心,位似比为2,在第一象限内将△ABC放大,画出放大后的图形△A′B′C′并写出△A′B′C′各顶点坐标.21.已知二次函数的解析式是y=x2﹣2x﹣3.(1)与x轴的交点坐标是,顶点坐标是;y的取值范围是.22.如图,小聪用一块有一个锐角为30°的直角三角板测量树高,已知小聪和树都与地面垂直,且相距米,小聪身高AB为1.7米,求这棵树的高度.四、解答题(本题共20分,每小题5分)23.如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB的中点,(1)求证:AC2=AB•AD;(2)求证:CE∥AD;(3)若AD=4,AB=6,求的值.24.已知抛物线y=x2﹣(2m﹣1)x+m2﹣m.(1)求证:此抛物线与x轴必有两个不同的交点;(2)若此抛物线与直线y=x﹣3m+3的一个交点在y轴上,求m的值.25.某工厂设计了一款产品,成本为每件20元.投放市场进行试销,经调查发现,该种产品每天的销售量y(件)与销售单价x(元)之间满足y=﹣2x+80 (20≤x≤40),设销售这种产品每天的利润为W(元).(1)求销售这种产品每天的利润W(元)与销售单价x(元)之间的函数表达式;(2)当销售单价定为多少元时,每天的利润最大?最大利润是多少元?26.有这样一个问题:探究函数y=x2+的图象与性质.小东根据学习函数的经验,对函数y=x2+的图象与性质进行了探究.下面是小东的探究过程,请补充完整:(1)函数y=x2+的自变量x的取值范围是;1﹣(3)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(4)进一步探究发现,该函数图象在第一象限内的最低点的坐标是(1,),结合函数的图象,写出该函数的其它性质(一条即可).五、解答题(本题共22分,第27题7分,第28题7分,第29题8分)27.在平面直角坐标系xOy中,过点(0,2)且平行于x轴的直线,与直线y=x﹣1交于点A,点A 关于直线x=1的对称点为B,抛物线C1:y=x2+bx+c经过点A,B.(1)求点A,B的坐标;(2)求抛物线C1的表达式及顶点坐标;(3)若抛物线C2:y=ax2(a≠0)与线段AB恰有一个公共点,结合函数的图象,求a的取值范围.28.对于二次函数y=x2﹣3x+2和一次函数y=﹣2x+4,把y=t(x2﹣3x+2)+(1﹣t)(﹣2x+4)称为这两个函数的“再生二次函数”,其中t是不为零的实数,其图象记作抛物线L.现有点A(2,0)和抛物线L上的点B(﹣1,n),请完成下列任务:【尝试】(1)当t=2时,抛物线y=t(x2﹣3x+2)+(1﹣t)(﹣2x+4)的顶点坐标为;(2)判断点A是否在抛物线L上;(3)求n的值;【发现】通过(2)和(3)的演算可知,对于t取任何不为零的实数,抛物线L总过定点,坐标为.【应用】二次函数y=﹣3x2+5x+2是二次函数y=x2﹣3x+2和一次函数y=﹣2x+4的一个“再生二次函数”吗?如果是,求出t的值;如果不是,说明理由.29.矩形ABCD一条边AD=8,将矩形ABCD折叠,使得点B落在CD边上的点P处.(1)如图1,已知折痕与边BC交于点O,连接AP、OP、OA.①求证:△OCP∽△PDA;②若△OCP与△PDA的面积比为1:4,求边AB的长.(2)如图2,在(1)的条件下,擦去AO和OP,连接BP.动点M在线段AP上(不与点P、A重合),动点N在线段AB的延长线上,且BN=PM,连接MN交PB于点F,作ME⊥BP于点E.试问动点M、N 在移动的过程中,线段EF的长度是否发生变化?若不变,求出线段EF的长度;若变化,说明理由.2015-2016学年北京市教院附中九年级(上)期中数学试卷参考答案与试题解析一、选择题(共10道小题,每小题3分,共30分)下列各题均有四个选项,其中只有一个是符合题意的.1.二次函数y=﹣(x+1)2﹣2的最大值是()A.﹣2 B.﹣1 C.1 D.2【考点】二次函数的最值.【分析】所给形式是二次函数的顶点式,易知其顶点坐标是(﹣1,﹣2),也就是当x=﹣1,函数有最大值﹣2.【解答】解:∵y=﹣(x+1)2﹣2,∴此函数的顶点坐标是(﹣1,﹣2),即当x=﹣1函数有最大值﹣2故选:A.【点评】本题考查了二次函数的最值,解题关键是掌握二次函数顶点式,并会根据顶点式求最值.2.如果4x=5y(y≠0),那么下列比例式成立的是()A. =B. =C. =D. =【考点】比例的性质.【分析】根据等式的性质:等式的两边都除以同一个不为零的数,结果不变,可得答案.【解答】解:4x=5y(y≠0),两边都除以20,得=,故B正确;故选:B.【点评】本题考查了比例的性质,利用了等式的性质:等式的两边都除以20是解题关键.3.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,如果AC=3,AB=6,那么AD的值为()A.B.C.D.3【考点】射影定理.【分析】根据射影定理得到:AC2=AD•AB,把相关线段的长度代入即可求得线段AD的长度.【解答】解:如图,∵在Rt△ABC中,∠ACB=90°,CD⊥AB,∴AC2=AD•AB,又∵AC=3,AB=6,∴32=6AD,则AD=.故选:A.【点评】本题考查了射影定理.每一条直角边是这条直角边在斜边上的射影和斜边的比例中项.4.如图,在△ABC中,若DE∥BC,AD:BD=1:2,若△ADE的面积等于2,则△ABC的面积等于()A.6 B.8 C.12 D.18【考点】相似三角形的判定与性质.【分析】由条件可以求出AD:BD=2;3,再由条件可以得出△ADE∽△ABC,最后由相似三角形的性质就可以得出结论.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∵AD:BD=1:2,∴AD:AB=DE:BC=1:3,∴S△ADE:S△ABC=(AD)2:(AB)2=1:9,∵△ADE的面积等于2,∴△ABC的面积等于18,故选:D.【点评】本题考查了相似三角形的判定及相似三角形的面积之比等于相似比的平方运用.解答本题求出两三角形相似是关健.5.如图,△ABC中,∠C=90°,AC=2,BC=1,则cosB的值是()A.B.C.D.【考点】锐角三角函数的定义.【分析】根据勾股定理,可得AB的长,根据余弦等于邻边比斜边,可得答案.【解答】解:在Rt,△ABC中,∠C=90°,AC=2,BC=1,由勾股定理,得AB==.cosB===,故选:C.【点评】本题考查了锐角三角函数,利用勾股定理求出斜边,再利用余弦等于邻边比斜边.6.把抛物线y=x2+1向右平移3个单位,再向下平移2个单位,得到抛物线()A.y=(x+3)2﹣1 B.y=(x+3)2+3 C.y=(x﹣3)2﹣1 D.y=(x﹣3)2+3【考点】二次函数图象与几何变换.【分析】易得原抛物线的顶点及平移后抛物线的顶点,根据平移不改变抛物线的二次项系数可得新的抛物线解析式.【解答】解:由题意得原抛物线的顶点为(0,1),∴平移后抛物线的顶点为(3,﹣1),∴新抛物线解析式为y=(x﹣3)2﹣1,故选:C.【点评】考查二次函数的几何变换;用到的知识点为:二次函数的平移不改变二次项的系数;得多新抛物线的顶点是解决本题的突破点.7.已知二次函数y=ax2+bx+c的图象如图所示,则a、b、c满足()A.a<0,b<0,c>0 B.a<0,b<0,c<0 C.a<0,b>0,c>0 D.a>0,b<0,c>0【考点】二次函数图象与系数的关系.【专题】压轴题.【分析】由于开口向下可以判断a<0,由与y轴交于正半轴得到c>0,又由于对称轴x=﹣<0,可以得到b<0,所以可以找到结果.【解答】解:根据二次函数图象的性质,∵开口向下,∴a<0,∵与y轴交于正半轴,∴c>0,又∵对称轴x=﹣<0,∴b<0,所以A正确.故选A.【点评】考查二次函数y=ax2+bx+c系数符号的确定.8.如图,△ABC和△A1B1C1是以点O为位似中心的位似三角形,若C1为OC的中点,AB=4,则A1B1的长为()A.1 B.2 C.4 D.8【考点】位似变换.【专题】计算题.【分析】根据位似变换的性质得到=,B1C1∥BC,再利用平行线分线段成比例定理得到=,所以=,然后把OC1=OC,AB=4代入计算即可.【解答】解:∵C1为OC的中点,∴OC1=OC,∵△ABC和△A1B1C1是以点O为位似中心的位似三角形,∴=,B1C1∥BC,∴=,∴=,即=∴A1B1=2.故选B.【点评】本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.注意:①两个图形必须是相似形;②对应点的连线都经过同一点;③对应边平行.9.二次函数y=ax2+bx+c的部分图象如图所示,则下列结论中正确的是()A.a>0B.不等式ax2+bx+c>0的解集是﹣1<x<5C.a﹣b+c>0D.当x>2时,y随x的增大而增大【考点】二次函数图象与系数的关系;二次函数与不等式(组).【分析】根据图象开口方向向下得出a的符号,进而利用图象的对称轴得出图象与x轴的交点坐标,再利用图象得出不等式ax2+bx+c>0的解集.【解答】解:A、图象开口方向向下,则a<0,故此选项错误;B、∵图象对称轴为直线x=2,则图象与x轴另一交点坐标为:(﹣1,0),∴不等式ax2+bx+c>0的解集是﹣1<x<5,故此选项正确;C、当x=﹣1,a﹣b+c=0,故此选项错误;D、当x>2时,y随x的增大而减小,故此选项错误.故选:B.【点评】此题主要考查了二次函数图象与系数的关系以及二次函数与不等式的解集,利用数形结合得出是解题关键.10.如图,在等边△ABC中,AB=4,当直角三角板MPN的60°角的顶点P在BC上移动时,斜边MP 始终经过AB边的中点D,设直角三角板的另一直角边PN与AC相交于点E.设BP=x,CE=y,那么y 与x之间的函数图象大致是()A.B.C.D.【考点】动点问题的函数图象.【分析】根据等边三角形的性质得BD=2,PC=4﹣x,∠B=∠C=60°,由于∠MPN=60°,易得∠DPB=∠PEC,根据三角形相似的判定方法得到△BPD∽△CEP,利用相似比即可得到y=x(4﹣x),配方得到y=﹣(x﹣2)2+2,然后根据二次函数的性质对各选项进行判断.【解答】解:∵等边△ABC中,AB=4,BP=x,∴BD=2,PC=4﹣x,∠B=∠C=60°,∵∠MPN=60°,∴∠DPB+∠EPC=120°,∵∠EPC+∠PEC=120°,∴∠DPB=∠PEC,∴△BPD∽△CEP,∴=,即=,∴y=x(4﹣x)=﹣(x﹣2)2+2,(0≤x≤4).故选B.【点评】本题考查了动点问题的函数图象:通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.用图象解决问题时,要理清图象的含义即会识图.也考查了等边三角形的性质.二、填空题(本题共18分,每小题3分)11.点P(﹣2,y1)和点Q(﹣1,y2)分别为抛物线y=x2﹣4x+3上的两点,则y1>y2.(用“>”或“<”填空).【考点】二次函数图象上点的坐标特征.【分析】先根据函数解析式确定出对称轴为直线x=2,再根据二次函数的增减性,x<2时,y随x 的增大而减小解答.【解答】解:∵y=x2﹣4x+3=(x﹣2)2﹣1,∴二次函数图象的对称轴为直线x=2,∵2>﹣1>﹣2,∴y1>y2.故答案为:>.【点评】本题考查了二次函数图象上点的坐标特征,主要利用了二次函数的增减性,求出对称轴解析式是解题的关键.12.在某一时刻,测得一根高为2m的竹竿的影长为1m,同时测得一栋建筑物的影长为12m,那么这栋建筑物的高度为24 m.【考点】相似三角形的应用.【分析】根据同时同地的物高与影长成正比列式计算即可得解.【解答】解:设这栋建筑物的高度为xm,由题意得, =,解得x=24,即这栋建筑物的高度为24m.故答案为:24.【点评】本题考查了相似三角形的应用,熟记同时同地的物高与影长成正比是解题的关键.13.在△ABC中,∠C=90°,tanA=,则sinB= .【考点】互余两角三角函数的关系.【分析】根据题意画出图形,设BC=4x,则AC=3x,根据勾股定理求出AB的长,进而可得出结论.【解答】解:如图所示,∵在△ABC中,∠C=90°,tanA=,∴设BC=4x,则AC=3x,∴AB==5x,∴s inB===.故答案为:.【点评】本题考查的是互余两三角函数的关系,根据题意画出图形,利用数形结合求解是解答此题的关键.14.如图,点D为△ABC外一点,AD与BC边的交点为E,AE=3,DE=5,BE=4,要使△BDE∽△ACE,且点B,D的对应点为A,C,那么线段CE的长应等于.【考点】相似三角形的判定.【专题】计算题.【分析】根据对顶角相等得到∠AEC=∠BED,则根据两组对应边的比相等且夹角对应相等的两个三角形相似,当=时,△BDE∽△ACE,然后利用比例性质计算CE的长.【解答】解:∵∠AEC=∠BED,∴当=时,△BDE∽△ACE,即=,∴CE=.故答案为.【点评】本题考查了相似三角形的判定:两组对应边的比相等且夹角对应相等的两个三角形相似,此判定方法要合理使用公共角或对顶角.15.二次函数y=ax2+bx的图象如图,若一元二次方程ax2+bx+m=0有实数根,则m的最大值为 3 .【考点】抛物线与x轴的交点.【分析】先根据抛物线的开口向上可知a>0,由顶点纵坐标为﹣3得出b与a关系,再根据一元二次方程ax2+bx+m=0有实数根可得到关于m的不等式,求出m的取值范围即可.【解答】解:∵抛物线的开口向上,顶点纵坐标为﹣3,∴a>0.﹣=﹣3,即b2=12a,∵一元二次方程ax2+bx+m=0有实数根,∴△=b2﹣4am≥0,即12a﹣4am≥0,即12﹣4m≥0,解得m≤3,∴m的最大值为3,故答案为3.【点评】本题考查的是抛物线与x轴的交点,根据题意判断出a的符号及a、b的关系是解答此题的关键.16.如图,点A1、A2、A3、…,点B1、B2、B3、…,分别在射线OM、ON上,A1B1∥A2B2∥A3B3∥A4B4∥….如果A1B1=2,A1A2=2OA1,A2A3=3OA1,A3A4=4OA1,….那么A2B2= 6 ,A n B n= n(n+1).(n为正整数)【考点】相似三角形的判定与性质.【专题】规律型.【分析】根据OA1=1,求出A1A2、A2A3、A3A4的值,推出A n A n﹣1的值,根据平行线分线段成比例定理得出=,代入求出A2B2=6=2×(2+1),A3B3=12=3×(3+1),A4B4=20=4(4+1),推出A n B n=n(n+1)即可.【解答】解:∵OA1=1,∴A1A2=2×1=2,A2A3=3×1=3,A3A4=4,…A n﹣2A n﹣1=n﹣1,A n﹣1A n=n,∵A1B1∥A2B2∥A3B3∥A4B4∥…,∴=,∴=,∴A2B2=6=2×(2+1),A3B3=12=3×(3+1),A4B4=20=4(4+1),…,∴A n B n=n(n+1),故答案为:6,n(n+1).【点评】本题考查了平行线分线段成比例定理的应用,解此题的关键是根据求出的结果得出规律,题型较好,但是有一定的难度.三、解答题(本题共30分,每小题5分)17.计算:tan60°﹣cos30°×tan45°+sin30°.【考点】特殊角的三角函数值.【分析】将特殊角的三角函数值代入求解.【解答】解:原式=﹣×1+=+.【点评】本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.18.若二次函数y=ax2+bx+3的图象经过A(1,0)、B(2,﹣1)两点,求此二次函数的解析式.【考点】待定系数法求二次函数解析式.【专题】计算题.【分析】先把A点和B点坐标代入y=ax2+bx+3得到关于a和b的方程组,然后解方程组即可.【解答】解:根据题意得,解得.所以此二次函数的解析式为y=x2﹣4x+3.【点评】本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.19.已知:如图,在△ABC中,D是AC上一点,E是AB上一点,且∠AED=∠C.(1)求证:△AED∽△ACB;(2)若AB=6,AD=4,AC=5,求AE的长.【考点】相似三角形的判定与性质.【分析】(1)根据有两对角相等的两个三角形相似证明即可.(2)由(1)中的相似三角形可得关于AE的比例式,代入已知数据计算即可求出AE的长.【解答】(1)证明:∵∠AED=∠ABC,∠A=∠A,∴△AED∽△ABC;(2)∵△AED∽△ABC,∴,∵AB=6,AD=4,AC=5,∴,∴AE=.【点评】本题考查相似三角形的判定.识别两三角形相似,除了要掌握定义外,还要注意正确找出两三角形的对应边、对应角,可利用数形结合思想根据图形提供的数据计算对应角的度数、对应边的比.本题中把若干线段的长度用同一线段来表示是求线段是否成比例时常用的方法.20.如图,△ABC的顶点在格点上,且点A(﹣5,﹣1),点C(﹣1,﹣2).以原点O为位似中心,位似比为2,在第一象限内将△ABC放大,画出△ABC放大后的图形△A′B′C′并写出△A′B′C′各顶点坐标.【考点】作图-位似变换.【分析】直接利用位似图形的性质结合位似比得出对应点坐标,进而得出答案.【解答】解:如图所示:△A′B′C′即为所求,A′(10,2),B′(10,6),C′(2,4).【点评】此题主要考查了位似变换,根据题意得出对应点位置是解题关键.21.已知二次函数的解析式是y=x2﹣2x﹣3.(1)与x轴的交点坐标是(﹣1,0),(3,0),顶点坐标是(1,﹣4);y的取值范围是当﹣2<x<1时,﹣4<y<5;当1<x<2时,﹣4<y<﹣3 .【考点】二次函数的图象;二次函数的性质.【分析】(1)根据抛物线y=x2﹣2x﹣3,可以求得抛物线与x轴和y轴的交点;(2)根据第一问中的三个坐标和二次函数图象具有对称性,在表格中填入合适的数据,然后再描点作图即可;(3)根据第二问中的函数图象结合对称轴可以直接写出答案.【解答】解:(1)令y=0,则0=x2﹣2x﹣3.解得x1=﹣1,x2=3.抛物线y=x2﹣2x﹣3与x轴交点的坐标为(﹣1,0),(3,0).y=x2﹣2x﹣3=(x﹣1)x2﹣4,所以它的顶点坐标为(1,﹣4);图象如图所示:;(3)当﹣2<x<1时,﹣4<y<5;当1<x<2时,﹣4<y<﹣3.【点评】本题考查二次函数的图象与性质,二次函数与x轴、y轴的交点、求顶点坐标,画二次函数的图象,关键是可以根据图象得出所求问题的答案.22.如图,小聪用一块有一个锐角为30°的直角三角板测量树高,已知小聪和树都与地面垂直,且相距米,小聪身高AB为1.7米,求这棵树的高度.【考点】解直角三角形的应用.【分析】先根据题意得出AD的长,在Rt△ACD中利用锐角三角函数的定义求出CD的长,由CE=CD+DE 即可得出结论.【解答】解:由题意,易知∠CAD=30°,∠CDA=90°,AD=3,CE⊥BE,DE=AB=1.7米,∴,∴.∴CE=3+1.7=4.7.答:这棵树的高度为4.7米.【点评】本题考查的是解直角三角形在实际生活中的应用,熟知锐角三角函数的定义是解答此题的关键.四、解答题(本题共20分,每小题5分)23.如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB的中点,(1)求证:AC2=AB•AD;(2)求证:CE∥AD;(3)若AD=4,AB=6,求的值.【考点】相似三角形的判定与性质;直角三角形斜边上的中线.【分析】(1)由AC平分∠DAB,∠ADC=∠ACB=90°,可证得△ADC∽△ACB,然后由相似三角形的对应边成比例,证得AC2=AB•AD;(2)由E为AB的中点,根据在直角三角形中,斜边上的中线等于斜边的一半,即可证得CE=AB=AE,继而可证得∠DAC=∠ECA,得到CE∥AD;(3)易证得△AFD∽△CFE,然后由相似三角形的对应边成比例,求得的值.【解答】(1)证明:∵AC平分∠DAB,∴∠DAC=∠CAB,∵∠ADC=∠ACB=90°,∴△ADC∽△ACB,∴AD:AC=AC:AB,∴AC2=AB•AD;(2)证明:∵E为AB的中点,∴CE=AB=AE,∴∠EAC=∠ECA,∵∠DAC=∠CAB,∴∠DAC=∠ECA,∴CE∥AD;(3)解:∵CE∥AD,∴△AFD∽△CFE,∴AD:CE=AF:CF,∵CE=AB,∴CE=×6=3,∵AD=4,∴,∴.【点评】此题考查了相似三角形的判定与性质、等腰三角形的性质以及直角三角形的性质.此题难度适中,注意掌握数形结合思想的应用.24.已知抛物线y=x2﹣(2m﹣1)x+m2﹣m.(1)求证:此抛物线与x轴必有两个不同的交点;(2)若此抛物线与直线y=x﹣3m+3的一个交点在y轴上,求m的值.【考点】抛物线与x轴的交点.【分析】(1)根据二次函数的交点与图象的关系,证明其方程有两个不同的根即△>0即可;(2)根据题意,令x=0,整理方程可得关于m的方程,解可得m的值.【解答】(1)证明:令y=0得:x2﹣(2m﹣1)x+m2﹣m=0,∵△=(2m﹣1)2﹣4(m2﹣m)×1>0,∴方程有两个不等的实数根,∴原抛物线与x轴有两个不同的交点;(2)解:令x=0,根据题意有:m2﹣m=﹣3m+3,解得m=﹣3或1.【点评】本题是二次函数的综合题,考查二次函数和一元二次方程的关系,二次函数的图象与解析式的关系,抛物线与x轴的交点等.25.某工厂设计了一款产品,成本为每件20元.投放市场进行试销,经调查发现,该种产品每天的销售量y(件)与销售单价x(元)之间满足y=﹣2x+80 (20≤x≤40),设销售这种产品每天的利润为W(元).(1)求销售这种产品每天的利润W(元)与销售单价x(元)之间的函数表达式;(2)当销售单价定为多少元时,每天的利润最大?最大利润是多少元?【考点】二次函数的应用.【分析】(1)根据“总利润=单件的利润×销售量”列出二次函数关系式即可;(2)将得到的二次函数配方后即可确定最大利润.【解答】解:(1)w=y(x﹣20)=(x﹣20)(﹣2x+80)=﹣2x2+120x﹣1600(2)w=2x2+120x﹣1600=﹣2(x﹣30)2+200,则当销售单价定为30元时,工厂每天获得的利润最大,最大利润是200元.【点评】此题主要考查了二次函数的性质在实际生活中的应用,最大销售利润的问题常利函数的增减性来解答,要注意应该在自变量的取值范围内求最大值(或最小值).26.有这样一个问题:探究函数y=x2+的图象与性质.小东根据学习函数的经验,对函数y=x2+的图象与性质进行了探究.下面是小东的探究过程,请补充完整:(1)函数y=x2+的自变量x的取值范围是x≠0;1﹣(3)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(4)进一步探究发现,该函数图象在第一象限内的最低点的坐标是(1,),结合函数的图象,写出该函数的其它性质(一条即可)该函数没有最大值.【考点】二次函数的图象;反比例函数的图象;反比例函数的性质;二次函数的性质.【分析】(1)由图表可知x≠0;(2)根据图表可知当x=3时的函数值为m,把x=3代入解析式即可求得;(3)根据坐标系中的点,用平滑的直线连接即可;(4)观察图象即可得出该函数的其他性质.【解答】解:(1)x≠0,(2)令x=3,∴y=×32+=+=;∴m=;(3)如图(4)该函数的其它性质:①该函数没有最大值;②该函数在x=0处断开;③该函数没有最小值;④该函数图象没有经过第四象限.故答案为该函数没有最大值.【点评】本题考查了二次函数的图象和性质,反比例函数的图象和性质,根据图表画出函数的图象是解题的关键.五、解答题(本题共22分,第27题7分,第28题7分,第29题8分)27.在平面直角坐标系xOy中,过点(0,2)且平行于x轴的直线,与直线y=x﹣1交于点A,点A 关于直线x=1的对称点为B,抛物线C1:y=x2+bx+c经过点A,B.(1)求点A,B的坐标;(2)求抛物线C1的表达式及顶点坐标;(3)若抛物线C2:y=ax2(a≠0)与线段AB恰有一个公共点,结合函数的图象,求a的取值范围.【考点】二次函数的性质;待定系数法求二次函数解析式.【分析】(1)当y=2时,则2=x﹣1,解得x=3,确定A(3,2),根据AB关于x=1对称,所以B(﹣1,2).(2)把(3,2),(﹣2,2)代入抛物线C1:y=x2+bx+c得,求出b,c的值,即可解答;(3)画出函数图象,把A,B代入y=ax2,求出a的值,即可解答.【解答】解:(1)当y=2时,则2=x﹣1,解得:x=3,∴A(3,2),∵点A关于直线x=1的对称点为B,∴B(﹣1,2).(2)把(3,2),(﹣2,2)代入抛物线C1:y=x2+bx+c得:解得:∴y=x2﹣2x﹣1.顶点坐标为(1,﹣2).(3)如图,当C2过A点,B点时为临界,代入A(3,2)则9a=2,解得:a=,代入B(﹣1,2),则a(﹣1)2=2,解得:a=2,∴.【点评】本题考查了二次函数的性质,解集本题的关键是求出二次函数的解析式,并结合图形解决问题.28.对于二次函数y=x2﹣3x+2和一次函数y=﹣2x+4,把y=t(x2﹣3x+2)+(1﹣t)(﹣2x+4)称为这两个函数的“再生二次函数”,其中t是不为零的实数,其图象记作抛物线L.现有点A(2,0)和抛物线L上的点B(﹣1,n),请完成下列任务:【尝试】(1)当t=2时,抛物线y=t(x2﹣3x+2)+(1﹣t)(﹣2x+4)的顶点坐标为(1,﹣2);(2)判断点A是否在抛物线L上;(3)求n的值;【发现】通过(2)和(3)的演算可知,对于t取任何不为零的实数,抛物线L总过定点,坐标为(2,0)、(﹣1,6)..【应用】二次函数y=﹣3x2+5x+2是二次函数y=x2﹣3x+2和一次函数y=﹣2x+4的一个“再生二次函数”吗?如果是,求出t的值;如果不是,说明理由.【考点】二次函数综合题.【分析】【尝试】(1)将t的值代入“再生二次函数”中,通过配方可得到顶点的坐标;(2)将点A的坐标代入抛物线E上直接进行验证即可;(3)已知点B在抛物线E上,将该点坐标代入抛物线E的解析式中直接求解,即可得到n的值.【发现】将抛物线l展开,然后将含t值的式子整合到一起,令该式子为0(此时无论t取何值都不会对函数值产生影响),即可求出这个定点的坐标.【应用1】将【发现】中得到的两个定点坐标代入二次函数y=﹣3x2+5x+2中进行验证即可.【解答】解:【尝试】(1)∵将t=2代入抛物线l中,得:y=t(x2﹣3x+2)+(1﹣t)(﹣2x+4)=2x2﹣4x=2(x﹣1)2﹣2,∴此时抛物线的顶点坐标为:(1,﹣2).(2)∵将x=2代入y=t(x2﹣3x+2)+(1﹣t)(﹣2x+4),得 y=0,∴点A(2,0)在抛物线l上.(3)将x=﹣1代入抛物线l的解析式中,得:n=t(x2﹣3x+2)+(1﹣t)(﹣2x+4)=6.【发现】∵将抛物线E的解析式展开,得:y=t(x2﹣3x+2)+(1﹣t)(﹣2x+4)=t(x﹣2)(x+1)﹣2x+4∴抛物线l必过定点(2,0)、(﹣1,6).【应用1】将x=2代入y=﹣3x2+5x+2,y=0,即点A在抛物线上.将x=﹣1代入y=﹣3x2+5x+2,计算得:y=﹣6≠6,即可得抛物线y=﹣3x2+5x+2不经过点B,二次函数y=﹣3x2+5x+2不是二次函数y=x2﹣3x+2和一次函数y=﹣2x+4的一个“再生二次函数”.【点评】考查了二次函数的综合知识,该题通过新定义的形式考查了二次函数等综合知识,理解新名词的含义尤为关键.最后一题的综合性较强,通过几何知识找出C、D点的坐标是此题的难点所在.29.矩形ABCD一条边AD=8,将矩形ABCD折叠,使得点B落在CD边上的点P处.(1)如图1,已知折痕与边BC交于点O,连接AP、OP、OA.①求证:△OCP∽△PDA;②若△OCP与△PDA的面积比为1:4,求边AB的长.(2)如图2,在(1)的条件下,擦去AO和OP,连接BP.动点M在线段AP上(不与点P、A重合),动点N在线段AB的延长线上,且BN=PM,连接MN交PB于点F,作ME⊥BP于点E.试问动点M、N 在移动的过程中,线段EF的长度是否发生变化?若不变,求出线段EF的长度;若变化,说明理由.【考点】相似形综合题.【分析】(1)①先证出∠C=∠D=90°,再根据∠1+∠3=90°,∠1+∠2=90°,得出∠2=∠3,即可证出△OCP∽△PDA;②根据△OCP与△PDA的面积比为1:4,得出CP=AD=4,设OP=x,则CO=8﹣x,由勾股定理得 x2=(8﹣x)2+42,求出x,最后根据AB=2OP即可求出边AB的长;(2)作MQ∥AN,交PB于点Q,求出MP=MQ,BN=QM,得出MP=MQ,根据ME⊥PQ,得出EQ=PQ,根据∠QMF=∠BNF,证出△MFQ≌△NFB,得出QF=QB,再求出EF=PB,由(1)中的结论求出PB==4,最后代入EF=PB即可得出线段EF的长度不变.【解答】解:(1)①如图1,∵四边形ABCD是矩形,∴∠C=∠D=90°,∴∠1+∠3=90°,∵由折叠可得∠APO=∠B=90°,∴∠1+∠2=90°,∴∠2=∠3,又∵∠D=∠C,∴△OCP∽△PDA;②如图1,∵△OCP与△PDA的面积比为1:4,∴===,∴CP=AD=4,设OP=x,则CO=8﹣x,在Rt△PCO中,∠C=90°,由勾股定理得 x2=(8﹣x)2+42,。

【人教版】2016届九年级上期中数学试卷及答案解析

【人教版】2016届九年级上期中数学试卷及答案解析

九年级上学期期中数学试卷一、选择题(本大题共8个小题,每小题3分,共24分。

在每小题给出的四个选项A、B、C、D中,只有一个选项是正确的,请把正确的选项选出来并填在该题相应的括号内)1.如果两个相似三角形的相似比是1:2,那么它们的面积比是()A.1:2 B.1:4 C.1: D.2:12.在△ABC中,∠C=90°,sinA=,则sinB的值是()A.B.C.D.3.如图,AB是⊙O的直径,∠ACD=15°,则∠BAD的度数为()A.15°B.30°C.60°D.75°4.如图所示,给出下列条件:①∠B=∠ACD;②∠ADC=∠ACB;③;④AC2=AD •AB.其中单独能够判定△ABC∽△ACD的个数为()A.1 B.2 C.3 D.45.在△ABC中,若cosA=,tanB=,则这个三角形一定是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形6.如图,每个小正方形边长均为1,则下列图中的三角形与左图中△ABC相似的是()A.B.C.D.7.如图,BC是⊙O的直径,P是CB延长线上一点,PA切⊙O于点A,如果PA=4,PB=2,那么线段BC的长等于()A.3 B.4 C.5 D.68.如图,在半径为6cm的⊙O中,点A是劣弧的中点,点D是优弧上一点,且∠D=30°,下列四个结论:①OA⊥BC;②BC=6;③sin∠AOB=;④四边形ABOC是菱形.其中正确结论的序号是()A.①③B.①②③④ C.②③④D.①③④二、填空题(本大题共6个小题,每小题3分,共18分,只要求填写最后结果,每小题填对得3分)9.等腰三角形底边长10cm,周长为36cm,则一底角的正切值为.10.弧长为6π的弧所对的圆心角为60°,则该弧所在圆的半径是.11.将一副三角尺如图所示叠放在一起,则的值是.12.如图,平行四边形ABCD中,E是边BC上的点,AE交BD于点F,如果,则= .13.如图,AB、AC是⊙O的两条切线,切点分别为B、C,D是优弧BC上的一点,已知∠BAC=80°,那么∠BDC= 度.14.如图,在平面直角坐标系中,四边形OABC是边长为2的正方形,顶点A、C分别在x,y轴的正半轴上.点Q在对角线OB上,且QO=OC,连接CQ并延长CQ交边AB于点P.则点P的坐标为.三、解答题(本大题共7个小题,共78分)解答应写出必要的证明过程或演算步骤15.计算:tan30°•sin60°+cos230°﹣sin245°•tan45°.16.如图,△ABC中,DE∥BC,DE=1,AD=2,DB=3,求BC的长.17.如图是以△ABC的边AB为直径的半圆O,点C恰好在半圆上,过C作CD ⊥AB交AB于D.已知cos∠ACD=,BC=4,求AC的长.18.如图,△ABC的三顶点分别为A(4,4),B(﹣2,2),C(3,0).请画出一个以原点O为位似中心,且与△ABC相似比为的位似图形△A1B1C1,并写出△A1B1C1各顶点的坐标.(只需画出一种情况,A1B1:AB=)19.如图1表示一个时钟的钟面垂直固定与水平桌面上,其中分针上有一点A,且当钟面显示3点30分时,分针垂直与桌面,A点距桌面的高度为10公分.如图2,若此钟面显示3点45分时,A点距离桌面的高度为16公分,则钟面显示3点50分时,A点距桌面的高度为多少公分?20.如图,小明为测量某铁塔AB的高度,他在离塔底B的10米C处测得塔顶的仰角α=43°,已知小明的测角仪高CD=1.5米,求铁塔AB的高.(精确到0.1米)(参考数据:sin43°=0.6820,cos43°=0.7314,tan43°=0.9325)21.如图,以线段AB为直径的⊙O交线段AC于点E,点M是的中点,OM交AC于点D,∠BOE=60°,cosC=,BC=2.(1)求∠A的度数;(2)求证:BC是⊙O的切线;(3)求MD的长度.22.钓鱼岛自古以来就是我国的神圣领土,为维护国家主权和海洋权利,我国海监和渔政部门对钓鱼岛海域实现了常态化巡航管理.如图,某日在我国钓鱼岛附近海域有两艘自西向东航行的海监船A、B,B船在A船的正东方向,且两船保持20海里的距离,某一时刻两海监船同时测得在A的东北方向,B的北偏东15°方向有一我国渔政执法船C,求此时船C与船B的距离是多少.(结果保留根号)23.在矩形ABCD中,DC=2,CF⊥BD分别交BD、AD于点E、F,连接BF.(1)求证:△DEC∽△FDC;(2)当F为AD的中点时,求sin∠FBD的值及BC的长度.24.如图,在Rt△ABC中,斜边BC=12,∠C=30°,D为BC的中点,△ABD的外接圆⊙O与AC交于F点,过A作⊙O的切线AE交DF的延长线于E点.(1)求证:AE⊥DE;(2)计算:AC•AF的值.九年级上学期期中数学试卷参考答案与试题解析一、选择题(本大题共8个小题,每小题3分,共24分。

北京一五九中2015-2016学年九年级上数学期中考试试题及答案

北京一五九中2015-2016学年九年级上数学期中考试试题及答案

A.2:1 B.1:2C.1:4 D.4:1
C
D
2E
3.如图,∠1=∠2=∠3,则图中相似三角形共有() A.4 对 B.3 对
1
A
3B
C.2 对 D.1 对 4.如图,点 A、B、C 都在⊙O 上,若 AOB 72 ,则 ACB 的度数是
O
C
()
A.18° C.36°
B.30° D.72°
相交于点
F,若
AB CD

a,
BC BE

b(a

0,b

0)
,则
AF EF
的值
是(用含 a,b 的代数式表示).
一五九中九年级数学第 5 页共 6 页
A
B
5.如图,点 D 在△ABC 的边 AC 上,要判断△ADB 与△ABC 相似,添加一
个条件,不正确的是( ).
A.∠ABD=∠CB.∠ADB=∠ABC C.
D.
C
6.
如图,⊙O 的半径为 5, AB 为弦,OC AB ,垂足为 E ,如果 A
B E
CE 2 ,那么 AB 的长是( )
O
一五九中九年级数学第 4 页共 6 页
25. 类比、转化、从特殊到一般等思想方法,在数学学习和研究中经常用到,如下是一个案
例,请补充完整.
原题:如图 1,在□ABCD 中,点 E 是 BC 边上的中点,点 F 是线段
AE 上一点,BF 的延长线交射线 CD 于点 G,若
AF EF
3 ,求 CD 的值. CG
塔 CD 地势高低相同,求塔 CD共 13分) 24.如图,在△ABC 中,∠B=∠C=30°.请你设计两种不同的分法,将△ABC 分割成四个小三角

北京十五中九年级上册期中数学试卷 含解析

北京十五中九年级上册期中数学试卷  含解析

九年级(上)期中数学试卷一.选择题(共8小题)1.如图,以点P为圆心作圆,所得的圆与直线l相切的是( )A.以PA为半径的圆B.以PB为半径的圆C.以PC为半径的圆D.以PD为半径的圆2.抛物线y=(x﹣2)2+1的对称轴是( )A.x=2B.x=﹣2C.x=1D.x=﹣13.点A(4,3)经过某种图形变化后得到点B(﹣3,4),这种图形变化可以是( )A.关于x轴对称B.关于y轴对称C.绕原点逆时针旋转90°D.绕原点顺时针旋转90°4.利用圆内接正多边形,可以设计出非常有趣的图案,下列图案中,是中心对称图形,但不是轴对称图形的是( )A.B.C.D.5.在学习了《圆》这一章节之后,甲、乙两位同学分别整理了一个命题:甲:相等的弦所对的圆心角相等;乙:平分弦的直径垂直于这条弦.下面对这两个命题的判断,正确的是( )A.甲对乙错B.甲错乙对C.甲乙都对D.甲乙都错6.如图,A、B、C在⊙O上,∠ACB=40°,点D在上,M为半径OD上一点,则∠AMB 的度数不可能为( )A.45°B.60°C.75°D.85°7.如图,△ABC的内切圆⊙O与AB,BC,CA分别相切于点D,E,F,且AD=2,BC=5,则△ABC的周长为( )A.16B.14C.12D.108.下表时二次函数y=ax2+bx+c的x,y的部分对应值:x…012…y…﹣1m﹣1n…则对于该函数的性质的判断:①该二次函数有最大值;②不等式y>﹣1的解集是x<0或x>2;③方程ax2+bx+c=0的两个实数根分别位于﹣<x<0和2<x<之间;④当x>0时,函数值y随x的增大而增大;其中正确的是( )A.②③B.②④C.①③D.③④二.填空题(共8小题)9.⊙O的半径为4,点P到圆心O的距离为d,如果点P在圆内,则d 4.10.如图,AB为⊙O的直径,弦CD⊥AB于点E,已知CD=8,OE=3,则⊙O的半径为 .11.请写出一个开口向上,且与y轴交于(0,﹣1)的二次函数的解析式 .12.若x=1是方程2ax2+bx=3的根,当x=2时,函数y=ax2+bx的函数值为 .13.点A(﹣3,y1),B(2,y2)在抛物线y=x2﹣5x上,则y1 y2.(填“>”,“<”或“=”)14.为了测量一个光盘的半径,小周同学把直尺、光盘和三角板按图所示放置于桌面上,并测量出AB=3cm,这张光盘的半径是 .15.如图,网络格上正方形小格的边长为1,图中线段AB和点P绕着同一个点做相同的旋转,分别得到线段A′B′和点P′,则在1区~4区中,点P′所在的单位正方形区域是 (选填区域名称)16.如图1所示,E为矩形ABCD的边AD上一点,动点P、Q同时从点B出发,点P沿折线BE ﹣ED﹣DC运动到点C时停止,点Q沿BC运动到点C时停止,它们运动的速度都是1cm/秒.设P、Q同时出发t秒时,△BPQ的面积为ycm2.已知y与t的函数关系图象如图2所示.请回答:(1)线段BC的长为 cm;(2)当运动时间t=2.5秒时,P、Q之间的距离是 cm.三.解答题(共12小题)17.在平面直角坐标系中,已知抛物线y=x2+bx+c的对称轴为x=1,且其顶点在直线y=﹣2x﹣2上.(1)求抛物线的顶点坐标;(2)求抛物线的解析式;(3)在给定的平面直角坐标系中画出这个二次函数的图象;(4)当﹣1<x<4时,直接写出y的取值范围.18.如图,AB是⊙O的直径,点C在⊙O上,D是中点,若∠BAC=70°,求∠C.下面是小雯的解法,请帮他补充完整.解:在⊙O中,∵D是的中点∴=,∴∠l=∠2( )(填推理的依据)∵∠BAC=70°∴∠2=35°∵AB是⊙O的直径,∴∠ADB=90°( )(填推理的依据)∴∠B=90°﹣∠2=55°∵A、B、C、D四个点都在⊙O上,∴∠C+∠B=180°( )(填推理的依据)∴∠C=l80°﹣∠B= (填计算结果)19.在附中中心花园的草坪上,有一些自动旋转喷泉水装置,它的喷灌区域是一个扇形,小孙同学想了解这种装置能够喷灌的草坪面积,他测量出了相关数据,并画出了示意图,如图,这种旋转喷水装置的旋转角度为240°,喷灌起终点A,B两点的距离为12米,求这种装置能够喷的草坪面积.20.如图,在等边△ABC中,AB=6,点D是线段BC上的一点,CD=4,将△ABD绕点A旋转后得到△ACE,连接CE.求CE的长.21.如图,园林小组的同学用一段长16米的篱笆围成一个一边基墙的矩形菜园ABCD,墙的长度为9米,设AB的长为x米,BC的长为y米.(1)①写出y与x的函数关系是: ;②自变量x的取值范围是 ;(2)园林小组的同学计划使矩形菜园的面积为30平方米,试求此时边AB的长.22.如图,AB是⊙O的直径,点C、E在⊙O上,AC平分∠BAE,CM⊥AE于点D.求证:CM是⊙O的切线.23.如图,在平面直角坐标系中,抛物线y=x2+mx+n与x轴正半轴交于A,B两点(点A 在点B左侧),与y轴交于点C.(1)若△OBC是等腰直角三角形,且其腰长为3,求抛物线的解析式;(2)在(1)的条件下,点P为抛物线对称轴上的一点,则PA+PC的最小值为 .24.如图,在Rt△ABC中,∠ACB=90°,D为AB的中点,连接CD,点O是CD的中点,到点O的距离等于OC的所有点组成图形M,图形M分别交AC,BC于点E,F两点,过点F 作FG⊥AB于点G.(1)试判断FG与图形M的位置关系,并说明理由;(2)若AC=3,∠B=30°,求FG的长.25.在生活中,有很多函数并不一定存在解析式,对于这样的函数,我们可以通过列表和图象来对它可能存在的性质进行探索,例如下面这样一个问题:已知y是x的函数,下表是y与x的几组对应值.x…﹣5﹣4﹣3﹣2012345…y… 1.969 1.938 1.875 1.7510﹣2﹣1.50 2.5…小孙同学根据学习函数的经验,利用上述表格反映出的y与x之间的变化规律,对该函数的图象与性质进行了探究.下面是小孙同学的探究过程,请补充完整;(1)如图,在平面之间坐标系xOy中,描出了以上表中各对应值为坐标的点,根据描出的点,画出函数的图象:(2)根据画出的函数图象回答:①x=﹣1时,对应的函数值y的为 ;②若函数值y>0,则x的取值范围是 ;③写出该函数的一条性质(不能与前面已有的重复): .26.已知关于x的二次函数y=ax2﹣(2a+2)x+b(a≠0)在x=0和x=6时函数值相等.(1)求a的值;(2)若该二次函数的图象与直线y=﹣2x的一个交点为(2,m),求它的解析式:(3)在(2)的条件下,直线y=﹣2x﹣4与x轴,y轴分别交于A,B,将线段AB向右平移n(n>0)个单位,同时将该二次函数在2≤x≤7的部分向左平移n个单位后得到的图象记为G,请结合图象直接回答,当图象G与平移后的线段有公共点时,n的取值范围.27.如图,在△ABC中,AC=BC,∠ACB=90°,D为AC延长线上一点,连接BD,AE⊥BD 于点E.(1)记△ABC得外接圆为⊙O.①请用文字描述圆心O的位置;②求证:点E一定在⊙O上.(2)将射线AE绕点A顺时针旋转45°后,所得到的射线与BD延长线交于点F,连接CF,CE.①依题意补全图形;②用等式表示线段AF,CE,BE的数量关系,并证明.28.在平面直角坐标系xOy中,对于图形G,若存在一个正方形γ,这个正方形的某条边与x轴垂直,且图形G上的所有的点都在该正方形的内部或者边上,则称该正方形γ为图形G的一个正覆盖.很显然,如果图形G存在一个正覆盖,则它的正覆盖有无数个,我们将图形G的所有正覆盖中边长最小的一个,称为它的紧覆盖,如图所示,图形G为三条线段和一个圆弧组成的封闭图形,图中的三个正方形均为图形G的正覆盖,其中正方形ABCD就是图形G的紧覆盖.(1)对于半径为2的⊙O,它的紧覆盖的边长为 .(2)如图1,点P为直线y=﹣2x+3上一动点,若线段OP的紧覆盖的边长为2,求点P 的坐标.(3)如图2,直线y=3x+3与x轴,y轴分别交于A,B,①以O为圆心,r为半径的⊙O与线段AB有公共点,且由⊙O与线段AB组成的图形G的紧覆益的边长小于4,直接写出r的取值范围;②若在抛物线y=ax2+2ax﹣2(a≠0)上存在点C,使得△ABC的紧覆益的边长为3,直接写出a的取值范围.参考答案与试题解析一.选择题(共8小题)1.如图,以点P为圆心作圆,所得的圆与直线l相切的是( )A.以PA为半径的圆B.以PB为半径的圆C.以PC为半径的圆D.以PD为半径的圆【分析】根据直线与圆的位置关系的判定方法进行判断.【解答】解:∵PB⊥l于B,∴以点P为圆心,PB为半径的圆与直线l相切.故选:B.2.抛物线y=(x﹣2)2+1的对称轴是( )A.x=2B.x=﹣2C.x=1D.x=﹣1【分析】抛物线y=a(x﹣h)2+k是抛物线的顶点式,抛物线的顶点是(h,k),对称轴是x=h.【解答】解:y=(x﹣2)2+1,对称轴是x=2.故选:A.3.点A(4,3)经过某种图形变化后得到点B(﹣3,4),这种图形变化可以是( )A.关于x轴对称B.关于y轴对称C.绕原点逆时针旋转90°D.绕原点顺时针旋转90°【分析】根据旋转的定义得到即可.【解答】解:因为点A(4,3)经过某种图形变化后得到点B(﹣3,4),所以点A绕原点逆时针旋转90°得到点B,故选:C.4.利用圆内接正多边形,可以设计出非常有趣的图案,下列图案中,是中心对称图形,但不是轴对称图形的是( )A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是中心对称图形,是轴对称图形,故此选项错误;B、是中心对称图形,不是轴对称图形,故此选项正确;C、不是中心对称图形,也不是轴对称图形,故此选项错误;D、是轴对称图形,也是中心对称图形,故此选项错误,故选:B.5.在学习了《圆》这一章节之后,甲、乙两位同学分别整理了一个命题:甲:相等的弦所对的圆心角相等;乙:平分弦的直径垂直于这条弦.下面对这两个命题的判断,正确的是( )A.甲对乙错B.甲错乙对C.甲乙都对D.甲乙都错【分析】根据圆心角、弦、弧的关系和垂径定理判断.【解答】解:在同圆或等圆中,相等的弦所对的圆心角相等,甲错,平分弦(不是直径)的直径垂直于这条弦,乙错,故选:D.6.如图,A、B、C在⊙O上,∠ACB=40°,点D在上,M为半径OD上一点,则∠AMB 的度数不可能为( )A.45°B.60°C.75°D.85°【分析】连接OA,OB,AD,BD.根据∠ADB<∠AMB<∠AOB,可得40°<∠AMB<80°,由此即可判断;【解答】解:连接OA,OB,AD,BD.∵∠AOB=2∠ACB=80°,∠ADB=∠ACB=40°,又∵∠ADB<∠AMB<∠AOB,∴40°<∠AMB<80°,故选:D.7.如图,△ABC的内切圆⊙O与AB,BC,CA分别相切于点D,E,F,且AD=2,BC=5,则△ABC的周长为( )A.16B.14C.12D.10【分析】根据切线长定理得到AF=AD=2,BD=BE,CE=CF,根据BC=5,于是得到△ABC 的周长=2+2+5+5=14,【解答】解:∵△ABC的内切圆⊙O与AB,BC,CA分别相切于点D,E,F,∴AF=AD=2,BD=BE,CE=CF,∵BE+CE=BC=5,∴BD+CF=BC=5,∴△ABC的周长=2+2+5+5=14,故选:B.8.下表时二次函数y=ax2+bx+c的x,y的部分对应值:x…012…y…﹣1m﹣1n…则对于该函数的性质的判断:①该二次函数有最大值;②不等式y>﹣1的解集是x<0或x>2;③方程ax2+bx+c=0的两个实数根分别位于﹣<x<0和2<x<之间;④当x>0时,函数值y随x的增大而增大;其中正确的是( )A.②③B.②④C.①③D.③④【分析】由图表可得二次函数y=ax2+bx+c的对称轴为直线x=1,a>0,即可判断①④不正确,由图表可直接判断②③正确.【解答】解:∵当x=0时,y=﹣1;当x=2时,y=﹣1;当x=,y=﹣;当x=,y=﹣;∴二次函数y=ax2+bx+c的对称轴为直线x=1,x>1时,y随x的增大而增大,x<1时,y随x的增大而减小.∴a>0即二次函数有最小值则①④错误由图表可得:不等式y>﹣1的解集是x<0或x>2;由图表可得:方程ax2+bx+c=0的两个实数根分别位于﹣<x<0和2<x<之间;故选:A.二.填空题(共8小题)9.⊙O的半径为4,点P到圆心O的距离为d,如果点P在圆内,则d < 4.【分析】根据点与圆的位置关系判断得出即可.【解答】解:∵点P在圆内,且⊙O的半径为4,∴d<4,故答案为<.10.如图,AB为⊙O的直径,弦CD⊥AB于点E,已知CD=8,OE=3,则⊙O的半径为 5 .【分析】连接OD,根据垂径定理求出DE,根据勾股定理求出OD即可.【解答】解:连接OD,∵CD⊥AB于点E,直径AB过O,∴DE=CE=CD=×8=4,∠OED=90°,由勾股定理得:OD===5,即⊙O的半径为5.故答案为:5.11.请写出一个开口向上,且与y轴交于(0,﹣1)的二次函数的解析式 y=x2+2x﹣1 .【分析】根据题意写出满足题意二次函数解析式即可.【解答】解:根据题意得:y=x2+2x﹣1,故答案为:y=x2+2x﹣112.若x=1是方程2ax2+bx=3的根,当x=2时,函数y=ax2+bx的函数值为 6 .【分析】由x=1是方程2ax2+bx=3的根,得到2a+b=3,由x=2时,得到函数y=ax2+bx =4a+2b=2(2a+b),代入即可.【解答】解:∵x=1是方程2ax2+bx=3的根,∴2a+b=3,∴当x=2时,函数y=ax2+bx=4a+2b=2(2a+b)=6,故答案为6.13.点A(﹣3,y1),B(2,y2)在抛物线y=x2﹣5x上,则y1 > y2.(填“>”,“<”或“=”)【分析】分别计算自变量为﹣3、2时的函数值,然后比较函数值的大小即可.【解答】解:当x=﹣3时,y1=x2﹣5x=24;当x=2时,y2=x2﹣5x=﹣6;∵24>﹣6,∴y1>y2.故答案为:>.14.为了测量一个光盘的半径,小周同学把直尺、光盘和三角板按图所示放置于桌面上,并测量出AB=3cm,这张光盘的半径是 3cm .【分析】连接OA,根据题意求出∠OAB=60°,再根据直角三角形的性质和勾股定理求得OB,从而得出光盘的直径.【解答】解:作OB⊥AB,连接OA,∵∠CAD=60°,∴∠CAB=120°,∵AB和AC与⊙O相切,∴∠OAB=∠OAC,∴∠OAB=∠CAB=60°∵AB=3cm,∴OA=6cm,∴由勾股定理得OB=3cm,∴光盘的半径是3cm.故答案为:3cm.15.如图,网络格上正方形小格的边长为1,图中线段AB和点P绕着同一个点做相同的旋转,分别得到线段A′B′和点P′,则在1区~4区中,点P′所在的单位正方形区域是 4区 (选填区域名称)【分析】根据旋转的性质连接AA′、BB′,分别作AA′、BB′的中垂线,两直线的交点即为旋转中心,从而得出线段AB和点P是绕着同一个该点逆时针旋转90°,据此可得答案.【解答】解:如图,连接AA′、BB′,分别作AA′、BB′的中垂线,两直线的交点即为旋转中心,由图可知,线段AB和点P绕着同一个该点逆时针旋转90°,∴点P逆时针旋转90°后所得对应点P′落在4区,故答案为:4区.16.如图1所示,E为矩形ABCD的边AD上一点,动点P、Q同时从点B出发,点P沿折线BE ﹣ED﹣DC运动到点C时停止,点Q沿BC运动到点C时停止,它们运动的速度都是1cm/秒.设P、Q同时出发t秒时,△BPQ的面积为ycm2.已知y与t的函数关系图象如图2所示.请回答:(1)线段BC的长为 5 cm;(2)当运动时间t=2.5秒时,P、Q之间的距离是 cm.【分析】(1)根据图2可以判断三角形的面积变化分为三段,可以判断出当点P到达点E 时点Q到达点C,从而得到BC的长度;(2)如图1,过点P作PF⊥BC于点F,根据面积不变时△BPQ的面积为10,可得AB=4,由矩形的性质和锐角三角函数的定义求得PF的长度,然后在直角△PBF中,由勾股定理求得BF=1.5,再在直角△PFQ中,由勾股定理求得PQ的长度.【解答】解:(1)根据图2可得,当点P到达点E时,点Q到达点C,∵点P、Q的运动的速度都是1cm/s,∴BC=BE=5cm.故答案是:5;(2)如图1,过点P作PF⊥BC于点F,根据面积不变时△BPQ的面积为10,可得AB=4,∵AD∥BC,∴∠AEB=∠PBF,∴sin∠PBF=sin∠AEB=,∴PF=PB•sin∠PBF=2.5×=2,∴在直角△PBF中,由勾股定理得到:BF===1.5,∴FQ=2.5﹣1.5=1.∴在直角△PFQ中,由勾股定理得到:PQ==.故答案是:.三.解答题(共12小题)17.在平面直角坐标系中,已知抛物线y=x2+bx+c的对称轴为x=1,且其顶点在直线y=﹣2x﹣2上.(1)求抛物线的顶点坐标;(2)求抛物线的解析式;(3)在给定的平面直角坐标系中画出这个二次函数的图象;(4)当﹣1<x<4时,直接写出y的取值范围.【分析】(1)把x=1代入y=﹣2x﹣2即可得到结论;(2)把抛物线的顶点坐标为(1,﹣4)代入抛物线的解析式即可得到结论.(3)利用五点法画出图象即可;(4)根据图象求得即可.【解答】解:(1)把x=1代入y=﹣2x﹣2得,y=﹣4,∴抛物线的顶点坐标为(1,﹣4);(2)∵抛物线的顶点坐标为(1,﹣4);∴抛物线的解析式为:y=(x﹣1)2﹣4,即抛物线的解析式为:y=x2﹣2x﹣3.(3)画出图象如图:(4)当﹣1<x<4时,y的取值范围是﹣4≤y<5.18.如图,AB是⊙O的直径,点C在⊙O上,D是中点,若∠BAC=70°,求∠C.下面是小雯的解法,请帮他补充完整.解:在⊙O中,∵D是的中点∴=,∴∠l=∠2( 等弧所对的圆周角相等 )(填推理的依据)∵∠BAC=70°∴∠2=35°∵AB是⊙O的直径,∴∠ADB=90°( 直径所对的圆周角是直角 )(填推理的依据)∴∠B=90°﹣∠2=55°∵A、B、C、D四个点都在⊙O上,∴∠C+∠B=180°( 圆内接四边形的对角互补 )(填推理的依据)∴∠C=l80°﹣∠B= 125° (填计算结果)【分析】根据圆周角定理,圆内接四边形的性质,求出∠B即可解决问题;【解答】解:在⊙O中,∵D是的中点∴=,∴∠l=∠2(等弧所对的圆周角相等)∵∠BAC=70°∴∠2=35°∵AB是⊙O的直径,∴∠ADB=90°(直径所对的圆周角是直角)∴∠B=90°﹣∠2=55°∵A、B、C、D四个点都在⊙O上,∴∠C+∠B=180°(圆内接四边形的对角互补)∴∠C=l80°﹣∠B=125°故答案为:等弧所对的圆周角相等,直径所对的圆周角是直角,圆内接四边形的对角互补,125°.19.在附中中心花园的草坪上,有一些自动旋转喷泉水装置,它的喷灌区域是一个扇形,小孙同学想了解这种装置能够喷灌的草坪面积,他测量出了相关数据,并画出了示意图,如图,这种旋转喷水装置的旋转角度为240°,喷灌起终点A,B两点的距离为12米,求这种装置能够喷的草坪面积.【分析】过O作OC⊥AB于C,求出∠AOB度数,求出∠OAB,解直角三角形求出OA,根据扇形的面积公式求出即可.【解答】解:过O作OC⊥AB于C,则∠ACO=90°,∵OC过O,OC⊥AB,AB=12米,∴AC=BC=6米,∵旋转喷水装置的旋转角度为240°,∴∠AOB=120°,∵OA=OB,∴∠OAC=∠OBC=(180°﹣120°)=30°,∴OA===4(米),∴这种装置能够喷的草坪面积是=32π(平方米).20.如图,在等边△ABC中,AB=6,点D是线段BC上的一点,CD=4,将△ABD绕点A旋转后得到△ACE,连接CE.求CE的长.【分析】根据等边三角形的性质就可以得出∠BAC=∠DAE=60°,AB=BC=AC,AD=DE=AE,进而就可以得出△ABD≌△ACE,据此可得CE=BD=BC﹣CD=2.【解答】解:∵△ABC和△ADE是等边三角形,∴∠BAC=∠DAE=60°,AB=BC=AC,AD=DE=AE.∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,∴∠BAD=∠EAC.在△ABD和△ACE中,∴△ABD≌△ACE(SAS).∴CE=BD,∵BC=6,CD=4,∴CE=BD=BC﹣CD=2.21.如图,园林小组的同学用一段长16米的篱笆围成一个一边基墙的矩形菜园ABCD,墙的长度为9米,设AB的长为x米,BC的长为y米.(1)①写出y与x的函数关系是: y=16﹣2x ;②自变量x的取值范围是 3.5≤x<8 ;(2)园林小组的同学计划使矩形菜园的面积为30平方米,试求此时边AB的长.【分析】(1)①根据篱笆的长度是16米列出函数关系式;②根据x、y都是正数写出自变量的取值范围;(2)由矩形的面积公式列出方程并解答.【解答】解:(1)①写出y与x的函数关系是:y=16﹣2x.故答案是:y=16﹣2x.②因为x>0,9≥y>0,∴3.5≤x<8.故答案是:3.5≤x<8;(2)依题意得:x(16﹣2x)=30,解得x1=5,x2=3,答:园林小组的同学计划使矩形菜园的面积为30平方米,此时边AB的长为5米或3米.22.如图,AB是⊙O的直径,点C、E在⊙O上,AC平分∠BAE,CM⊥AE于点D.求证:CM是⊙O的切线.【分析】通过角平分线和有两半径为边的三角形是等腰三角形可得到OC∥AD,再证明OC ⊥CD.【解答】证明:连OC,BC,如图1,∵AC平分∠BAE,∴∠1=∠2,∵OA=OC,∴∠2=3,∴∠1=∠3,∴AD∥OC.又∵CD⊥AE,∴OC⊥CD.又∵OC是圆O的半径,∴CM是⊙O的切线.23.如图,在平面直角坐标系中,抛物线y=x2+mx+n与x轴正半轴交于A,B两点(点A 在点B左侧),与y轴交于点C.(1)若△OBC是等腰直角三角形,且其腰长为3,求抛物线的解析式;(2)在(1)的条件下,点P为抛物线对称轴上的一点,则PA+PC的最小值为 3 .【分析】(1)先根据等腰直角三角形的腰长求出OB=OC=3,进而求出点B,C坐标,最后用待定系数法即可得出结论;(2)先确定出抛物线的对称轴,进而求出点C'的坐标,找出PA+PC的最小值为AC',再求出点A坐标,即可得出结论.【解答】解:(1)如图1,连接BC,∵△OBC是等腰直角三角形,∠BOC=90°,∴OB=OC,∵腰长为3,∴OB=OC=3,∴B(3,0),C(0,3),将点B(3,0),C(0,3)代入抛物线解析式y=x2+mx+n中,得,,∴,∴抛物线的解析式为y=x2﹣4x+3;(2)如图2,由(1)知,抛物线的解析式为y=x2﹣4x+3=(x﹣2)2﹣1,∴抛物线的对称轴直线为x=2,∵点C(0,3),∴点C关于抛物线的对称轴x=2的对称点C'(4,3),连接AC'交抛物线的对称轴于P,此时,PA+PC的值最小,最小值为AC',针对于抛物线的解析式为y=x2﹣4x+3,令y=0,则x2﹣4x+3=0,解得,x=1或x=3,∴A(1,0),∵C'(4,3),∴AC'==3,即:PA+PC的最小值为3,故答案为:3.24.如图,在Rt△ABC中,∠ACB=90°,D为AB的中点,连接CD,点O是CD的中点,到点O的距离等于OC的所有点组成图形M,图形M分别交AC,BC于点E,F两点,过点F 作FG⊥AB于点G.(1)试判断FG与图形M的位置关系,并说明理由;(2)若AC=3,∠B=30°,求FG的长.【分析】(1)如图,连接OF,根据直角三角形的性质得到CD=BD,得到∠DBC=∠DCB,根据等腰三角形的性质得到∠OFC=∠OCF,得到∠OFC=∠DBC,推出∠OFG=90°,于是得到结论;(2)连接DF,解直角三角形即可得到结论.【解答】解:(1)FG与⊙O相切,理由:如图,连接OF,∵∠ACB=90°,D为AB的中点,∴CD=BD,∴∠DBC=∠DCB,∵OF=OC,∴∠OFC=∠OCF,∴∠OFC=∠DBC,∴OF∥DB,∴∠OFG+∠DGF=180°,∵FG⊥AB,∴∠DGF=90°,∴∠OFG=90°,∴FG与⊙O相切;(2)连接DF,∵∠ACB=90°,AC=3,∠B=30°,∴AB=2AC=6,∴BC=AB=3,∵CD为⊙O的直径,∴∠DFC=90°,∴FD⊥BC,∵DB=DC,∴BF=BC=,∵sin∠ABC==,即=,∴FG=.25.在生活中,有很多函数并不一定存在解析式,对于这样的函数,我们可以通过列表和图象来对它可能存在的性质进行探索,例如下面这样一个问题:已知y是x的函数,下表是y与x的几组对应值.x…﹣5﹣4﹣3﹣2012345…y… 1.969 1.938 1.875 1.7510﹣2﹣1.50 2.5…小孙同学根据学习函数的经验,利用上述表格反映出的y与x之间的变化规律,对该函数的图象与性质进行了探究.下面是小孙同学的探究过程,请补充完整;(1)如图,在平面之间坐标系xOy中,描出了以上表中各对应值为坐标的点,根据描出的点,画出函数的图象:(2)根据画出的函数图象回答:①x=﹣1时,对应的函数值y的为 1.35(答案不唯一) ;②若函数值y>0,则x的取值范围是 x<0.96或x>4 ;③写出该函数的一条性质(不能与前面已有的重复): 当x≥﹣2时,函数值y随x的增大而增大(答案不唯一) .【分析】(1)通过描点借口画出函数图象;(2)直接从图象读取相关数值即可.【解答】解:(1)通过描点画出如下函数图象:(2)答案为近似值,不唯一,①当x=﹣1时,从图象可以看出:y=1.35;②函数值y>0,则x<0.96或x>4;③当x≥﹣2时,函数值y随x的增大而增大;26.已知关于x的二次函数y=ax2﹣(2a+2)x+b(a≠0)在x=0和x=6时函数值相等.(1)求a的值;(2)若该二次函数的图象与直线y=﹣2x的一个交点为(2,m),求它的解析式:(3)在(2)的条件下,直线y=﹣2x﹣4与x轴,y轴分别交于A,B,将线段AB向右平移n(n>0)个单位,同时将该二次函数在2≤x≤7的部分向左平移n个单位后得到的图象记为G,请结合图象直接回答,当图象G与平移后的线段有公共点时,n的取值范围.【分析】(1)把x=0和x=6代入二次函数的解析式得出关于a的方程,求出a即可;(2)先求交点坐标为(2,﹣4),代入二次函数的解析式中可得b的值,从而得结论;(3)根据图象和解析式分别计算B、C、A、F四个点的坐标,再计算上下两个端点相交时,点n的值即可.【解答】解:(1)∵y=ax2﹣(2a+2)x+b(a≠0)在x=0和x=6时函数值相等,∴代入得:b=36a﹣6(2a+2)+b,解得:a=;(2)当x=2时,m=﹣4,∴二次函数的图象与直线y=﹣2x的一个交点为(2,﹣4),把(2,﹣4)代入y=ax2﹣(2a+2)x+b得:﹣3×2+b=﹣4,b=0,∴二次函数的解析式是:y=x2﹣3x;(3)当x=2时,y=﹣3×2=﹣4,当y=0时,=0,解得:x=0或6,当y=﹣4时,=﹣4,解得:x=2或4,﹣2x﹣4=0,x=﹣2,∴F(6,0),A(﹣2,0),C(2,﹣4),B(0,﹣4),B'(4,﹣4),∴BC=2,AF=6﹣(﹣2)=8,BB'=4,∵图象G为二次函数在2≤x≤7的部分,∴从下端看最早相交的点为B与C相交,即n==1时,从上端看,A与F相交,即n ==4时;∴由图象得:当图象G与平移后的线段有公共点时,n的取值范围是2≤n≤4或n=1.27.如图,在△ABC中,AC=BC,∠ACB=90°,D为AC延长线上一点,连接BD,AE⊥BD 于点E.(1)记△ABC得外接圆为⊙O.①请用文字描述圆心O的位置;②求证:点E一定在⊙O上.(2)将射线AE绕点A顺时针旋转45°后,所得到的射线与BD延长线交于点F,连接CF,CE.①依题意补全图形;②用等式表示线段AF,CE,BE的数量关系,并证明.【分析】(1)①根据圆周角为90°所对的弦为直径,可得圆心的位置;②根据直角三角形斜边上的中线等于斜边的一半,可证点E一定在⊙O上;(2)①根据题意画图;②在AE上截取AM=BE,由题意可证△ACM≌△BCE,可得CM=CE,即ME=CE,可得AE=BE+CE,由旋转可得∠AFE=∠EAF=45°,可求EF=AE,即可得AF=AE═(BE+CE)=BE+2CE.【解答】解:(1)①∵在△ABC中,AC=BC,∠ACB=90°,∴△ABC的外接圆⊙O的圆心O的位置在是斜边AB的中点;②如图:设斜边AB的中点为O,连接OE,OC,则OA=OC=OB,∵AE⊥BD于点E,∴∠AEB=90°,∴OE=AB=OA,∴点E一定在⊙O上;(2)AF=BE+2CE在AE上截取AM=BE∵∠ACB=∠AEB=90°∴点A,点C,点E,点B四点共圆∴∠CAE=∠CBE,且AC=BC,AM=BE∴△ACM≌△BCE(SAS)∴CM=CE,∠ACM=∠BCE∵∠ACM+∠MCB=90°∴∠BCE+∠MCB=90°∴∠MCE=90°,∴ME==CE∴AE=AM+ME=BE+CE∵旋转∴∠EAF=45°,且∠AEF=90°∴∠AFE=∠EAF=45°∴EF=AE∴AF==AE=(BE+CE)=BE+2CE28.在平面直角坐标系xOy中,对于图形G,若存在一个正方形γ,这个正方形的某条边与x轴垂直,且图形G上的所有的点都在该正方形的内部或者边上,则称该正方形γ为图形G的一个正覆盖.很显然,如果图形G存在一个正覆盖,则它的正覆盖有无数个,我们将图形G的所有正覆盖中边长最小的一个,称为它的紧覆盖,如图所示,图形G为三条线段和一个圆弧组成的封闭图形,图中的三个正方形均为图形G的正覆盖,其中正方形ABCD就是图形G的紧覆盖.(1)对于半径为2的⊙O,它的紧覆盖的边长为 4 .(2)如图1,点P为直线y=﹣2x+3上一动点,若线段OP的紧覆盖的边长为2,求点P 的坐标.(3)如图2,直线y=3x+3与x轴,y轴分别交于A,B,①以O为圆心,r为半径的⊙O与线段AB有公共点,且由⊙O与线段AB组成的图形G的紧覆益的边长小于4,直接写出r的取值范围;②若在抛物线y=ax2+2ax﹣2(a≠0)上存在点C,使得△ABC的紧覆益的边长为3,直接写出a的取值范围.【分析】(1)由题意半径为2的⊙O的外切正方形是半径为2的⊙O紧覆盖,由此即可解决问题;(2)由题意当点P到坐标轴的距离等于2时,线段OP的紧覆盖的正方形的边长为2.分两种情形分别求解即可;(3)①如图2中,作OH⊥AB于H.利用两种特殊位置解决问题即可;②如图2﹣1中,由题意当抛物线与图中矩形EFGH区域有交点时,在抛物线y=ax2+2ax ﹣2(a≠0)上存在点C,使得△ABC的紧覆益的边长为3;【解答】解:(1)由题意半径为2的⊙O的外切正方形是半径为2的⊙O紧覆盖,∴紧覆盖的边长为4,故答案为4.(2)由题意当点P到坐标轴的距离等于2时,线段OP的紧覆盖的边长为2.①当点P在第一象限时,作PH⊥x轴于H则PH=2,y=2时,2=﹣2x+3,x=,∴P(,2).②当点P′在第三象限时,作P′H′⊥y轴,则P′H′=2,当x=2时,y=﹣1,∴P′(2,﹣1).综上所述,满足条件的点P坐标为(,2)或(2,﹣1).(3)①如图2中,作OH⊥AB于H.由题意A(﹣1,0),B(0,3),∴OA=1,OB=3,AB=,∵•OA•OB=•AB•OH,∴OH=,当⊙O经过点A时,r=1,此时由⊙O与线段AB组成的图形G的紧覆益的边长为4,观察图象可知满足条件的r的范围为:≤r<1.②如图2﹣1中,如图由题意当抛物线与图中矩形EFGH区域有交点时,在抛物线y=ax2+2ax﹣2(a≠0)上存在点C,使得△ABC的紧覆益的边长为3.由题意E(﹣3,3),F(﹣3,0),G(2,0),H(2,3).当抛物线经过点G时,4a+4a﹣2=0,∴a=,∵抛物线的对称轴x=﹣1,经过(0,﹣2),观察图象可知,当a≥时,在抛物线y=ax2+2ax﹣2(a≠0)上存在点C,使得△ABC 的紧覆益的边长为3.当a<0时,抛物线经过点A时,解析式为y=﹣2(x+1)2,观察图象可知,当a≤﹣2时,在抛物线y=ax2+2ax﹣2(a≠0)上存在点C,使得△ABC 的紧覆益的边长为3.综上所述,满足条件的a的值为a≥或a≤﹣2.。

北京一五九中-九年级上数学期中考试试题及答案.doc

北京一五九中-九年级上数学期中考试试题及答案.doc

北京市一五九中学2015-2016学年度第一学期九年级期中数学试题班姓名 学号得分一、选择题(每小题4分,共40分)1.已知1sin 2A =,则锐角A 的度数是()A .30︒B .45︒C .60︒D .75︒2.已知△ABC ∽△DEF ,且AB :DE =1:2,则△ABC 的周长与△DEF 的周长之比为( ) A .2:1 B .1:2C .1:4 D .4:13.如图,∠1=∠2=∠3,则图中相似三角形共有()A .4对B .3对C .2对D .1对4.如图,点A 、B 、C 都在⊙O 上,若72AOB ∠=︒,则ACB ∠的度数是( ) A .18° B .30° C .36° D .72°5.如图,点D 在△ABC 的边AC 上,要判断△ADB 与△ABC 相似,添加一 个条件,不正确...的是( ). A .∠ABD=∠CB.∠ADB=∠ABC C.AD AB AB AC = D .AB CBBD CD=6. 如图,⊙O 的半径为5,AB 为弦,AB OC ⊥,垂足为E ,如果2=CE ,那么AB 的长是( ) A .4B. 6 C. 8 D. 107.如图,AB 是⊙O 的直径,C 是⊙O 上一点,OD BC ⊥于D , 如果:4:3AC BC =,AB=10cm,那么BD 的长为( ) A .3cmB .32cm C .6cm D.12cm8. △ABC 中,若AB =6,BC =8,∠B =120°,则△ABC 的面积为( ) A .12B .312C .324D .348321EDCBA9.下列说法错误的是( )A .直径是圆中最长的弦B .圆内接平行四边形是矩形C .90°的圆周角所对的弦是直径D .相等的圆周角所对的弧相等10.如图,在边长为1的小正方形组成的网格中,点A 、B 、C 、D 、E 都在小正方形的顶点上. 则tan ∠ADC 的值等于().A .33B .21C .31 D .1010二、填空题(每小题4分,共24分) 11. 若3x =4y ,则y-x yx 的值为 . 12.在□ABCD 中,E 为BC 延长线上一点,AE 交CD 于点F ,若AB =7,CF =3,则CEAD= . 13.△ABC 是半径为2的圆的内接三角形,若BC =,则∠A 的度数为 .14.圆内接四边形ABCD 中,∠A:∠B:∠C=2:3:4,则∠A=,∠B=,∠C=,∠D=。

北京一五六中-九年级上数学期中考试试题及答案.doc

北京一五六中-九年级上数学期中考试试题及答案.doc

北京156中学2015—2016学年度第一学期九年级数学期中测试 班级____ 姓名________ 学号___ 成绩______第Ⅰ卷(选择题 共40分)一、选择题:(共10小题,每小题4分,共40分)1. 已知3x = 5y (y ≠ 0), 那么下列比例式中正确的是 ( ). A.53x y = B. 35x y = C. 35x y = D. 35x y =2.将抛物线22y x =平移得到抛物线22(2)3y x =-+,下列平移正确的是( ). A. 先向左平移2个单位,再向上平移3个单位 B. 先向左平移2个单位,再向下平移3个单位 C. 先向右平移2个单位,再向下平移3个单位 D. 先向右平移2个单位,再向上平移3个单位3. 在同一时刻,身高1.6米的小强在阳光下的影长为0.8米,一棵大树的影长为4.8米, 则树的高度为( ). A. 10米 B .9.6米 C .6.4米 D .4.8米 4. 如右图,在4×4的正方形网格中,tan α 的值等于( ). AB.13.32 D .235. 在Rt △ABC 中,已知cos B=725,则tan B 的值为( ). A. 724 B. 2425 C. 2524 D. 2476. 抛物线)3)(1(-+=x x y 的对称轴是直线( ). A . 1x =- B .1x = C .3x =- D .3x =7.如图,⊙O 过点B 、C ,圆心O 在等腰Rt △ABC 的内部,∠BAC =90°,OA =1,BC =6.则⊙O 的半径为( )A .6B .13 CD.8.在同一直角坐标系中,函数y mx m =+和函数2322y mx x =-++(m 是常数,且0m ≠)的 图象可能..是( ).A BCO9.如图,在Rt △ABC 中,∠ACB =90︒,AC =12,BC =5, CD ⊥AB 于点D ,那么sin BCD ∠的值是( ) A .512B .513C .1312 D .512 10. 如图,正△ABC 的边长为3cm ,动点P 从点A 出发,以每秒1cm 的速度,沿A →B →C 的方向运动,到达点C 时停止,设运动时间为x (秒),y =PC 2,则y 关于x 的函数的图象大致为( ).第Ⅱ卷(非选择题 共80分)二、填空题:(共6小题,每小题4分,共24分)11.函数223(22)y x x x =+--≤≤的最小值为_________,最大值为__________. 12.如图,正方形ABCD 内接于⊙O,点E 在︵AD 上,则∠BEC= .12题 13题 15题x yxD.C.B.O..13. 如图,在第一象限内作射线OC ,与x 轴的夹角为30o,在射线OC 上取一点A ,过点A作AH ⊥x 轴于点H .在抛物线2x y =(x >0)上取点P ,在y 轴上取点Q ,使得以P ,O ,Q 为顶点的三角形与△AOH 全等,则符合条件的点A 的坐标是_____________ .14. 将抛物线y =x 2+1绕原点旋转180°,则旋转后抛物线的解析式为 . 15.已知抛物线c bx ax y ++=2的图象如图所示,则下列结论:①abc >0;② 2=++c b a ; ③a <21; ④b >1.其中正确的结论是 . 16.对于正整数n ,定义210()=()10,,≥n n F n f n n ⎧<⎨⎩,其中()f n 表示n 的首位数字、末位数字的平方和.例如:2(6)636F ==,()22(123)1231310F f ==+=.规定1()()F n F n =,1()(())k k F n F F n +=(k 为正整数).例如:()()112312310F F ==,21(123)((123))(10)1F F F F ===.(1)求:2(4)F =____________,2015(4)F =______________; (2)若3(4)89m F =,则正整数m 的最小值是_____________.三、解答题:(第17-20题各5分,21--24题7分,25题8分共56分)17.计算:2cos60tan 45sin 45sin30︒-︒+︒︒18. 如图,△ABC 顶点的坐标分别为A (1,-1), B (4,-1),C (3,-4).(1) 将△ABC 绕点A 逆时针旋转90°后,得到△AB 1C 1.在所给的直角坐标系中画出旋转后的△AB 1C 1,并直接写出点B 1的坐标:B1(______,______ );(2) 以坐标原点O为位似中心,在第二象限内再画一个放大的△A2B2C2,使得它与△ABC的位似比等于2:1.19. 已知:如图,在ABC△中,D是AC上一点,E是AB上一点,且∠AED =∠C.(1)求证:△AED∽△ACB;(2)若AB=6,AD= 4,AC=5,求AE的长.20.已知二次函数y= x2 -2x-3.(1)用配方法将y= x2 -2x-3化成y=a (x-h) 2 +k的形式;(2)在所给的平面直角坐标系中,画出这个二次函数的图象;(3)当x取何值时,y随x的增大而减少?(4)当-2﹤x﹤3时,观察图象直接写出函数y的取值范围.AC BDE21.如果关于x 的函数2(2)1y ax a x a =++++的图象与x 轴只有一个公共点,求实数a 的值.22. 如图,四边形ABCD 、DEFG 都是正方形,连接AE 、CG ,AE 与CG 相交于点M ,CG 与AD 相交于点N . 求证: MN CN DN AN ⋅=⋅23.如图,矩形ABCD 中,AP 平分∠DAB ,且AP ⊥DP 于点P ,联结CP ,如果AB ﹦8,AD ﹦4,求sin ∠DCP 的值.24. 如图, 在电线杆CD 上的C 处引拉线CE 、CF 固定电线杆, 拉线CE 和地面所成的角∠CED =60°, 在离电线杆6米的B 处安置高为1.5米的测角仪AB , 在A 处测得 电线杆上C 处的仰角为30°, 求拉线CE 的长(结果保留根号).ABCDP25.如图1,平面直角坐标系xOy 中,抛物线212y x bx c =++与x 轴交于A 、B 两点,点C 是AB 的中点,CD ⊥AB 且CD =AB .直线BE 与y 轴平行,点F 是射线BE 上的一个动点,连接AD 、AF 、DF .(1)若点F 的坐标为(92,1),AF . ①求此抛物线的解析式;②点P 是此抛物线上一个动点,点Q 在此抛物线的对称轴上,以点A 、F 、P 、Q为顶点构成的四边形是平行四边形,请直接写出点Q 的坐标;(2)若22b c +=-,2b t =--,且AB 的长为kt ,其中0t >.如图2,当∠DAF =45°时,求k 的值和∠DFA 的正切值.草稿纸:北京156中学2015—2016学年度第一学期九年级数学期中测试答案一选择题:(共10题每小题4分,共40分)1 .A 2. D 3. B 4. C 5. D 6. B 7. C 8. A 9. B 10. D 二填空题:(每小题4分,共24分)11. -4, 5 12. ︒45 13.(3,3) ,(133,13) , (23,2) , (233,23)14.12--=x y 15. ②④ 16。

2015-2016学年北京市海淀区九年级(上)期中数学试卷-含详细解析

2015-2016学年北京市海淀区九年级(上)期中数学试卷-含详细解析

2015-2016学年北京市海淀区九年级(上)期中数学试卷副标题一、选择题(本大题共10小题,共30.0分)1.一元二次方程2x2-x-3=0的二次项系数、一次项系数、常数项分别是()A. 2,1,3B. 2,1,C. 2,,3D. 2,,2.下列图形是中心对称图形的是()A. B. C. D.3.二次函数y=-(x+1)2-2的最大值是()A. B. C. 1 D. 24.已知⊙O的半径是4,OP=3,则点P与⊙O的位置关系是()A. 点P在圆内B. 点P在圆上C. 点P在圆外D. 不能确定5.将抛物线y=x2沿y轴向下平移2个单位,得到的抛物线的解析式为()A. B. C. D.6.已知扇形的半径为6,圆心角为60°,则这个扇形的面积为()A. B. C. D.7.用配方法解方程x2+4x=3,下列配方正确的是()A. B. C. D.8.已知二次函数y=ax2+bx+c的图象如图所示,则下列选项中不正确的是()A.B.C.D.9.如图,△ABC内接于⊙O,BD是⊙O的直径.若∠DBC=33°,则∠A等于()A.B.C.D.10.小明乘坐摩天轮转一圈,他距离地面的高度y(米)与旋转时间x(分)之间的关系可以近似地用二次函数来刻画.经侧试得部分数据如下表:下列选项中,最接近摩天轮转一圈的时间的是()A. 7分B. 分C. 6分D. 分二、填空题(本大题共6小题,共18.0分)11.方程x2-4=0的解是______.12.请写出一个开口向上且经过(0,1)的抛物线的解析式______.13.若二次函数y=2x2-5的图象上有两个点A(2,a)、B(3,b),则a______b(填“<”或“=”或“>”).14.如图,A、B、C三点在⊙O上,∠AOC=100°,则∠ABC=________°.15.用一块直径为4米的圆桌布平铺在对角线长为4米的正方形桌面上(如示意图),若四周下垂的最大长度相等,则这个最大长度x为______米(取1.4).16.如图,O是边长为1的等边△ABC的中心,将AB、BC、CA分别绕点A、点B、点C顺时针旋转α(0°<α<180°),得到AB′、BC′、CA′,连接A′B′、B′C′、A′C′、OA′、OB′.(1)∠A′OB′=______°;(2)当α=______°时,△A′B′C′的周长最大.三、计算题(本大题共1小题,共5.0分)17.如图,AC是⊙O的直径,PA,PB是⊙O的切线,A,B为切点,∠BAC=25°.求∠P的度数.四、解答题(本大题共12小题,共67.0分)18.解方程:x2=3x-2.19.若抛物线y=x2+3x+a与x轴只有一个交点,求实数a的值.20.已知点(3,0)在抛物线y=-3x2+(k+3)x-k上,求此抛物线的对称轴.21.已知x=1是方程x2-5ax+a2=0的一个根,求代数式3a2-15a-7的值.22.一圆柱形排水管的截面如图所示,已知排水管的半径为1m,水面宽AB为1.6m.由于天气干燥,水管水面下降,此时排水管水面宽变为1.2m,求水面下降的高度.23.已知关于x的方程3x2-(a-3)x-a=0(a>0).(1)求证:方程总有两个不相等的实数根;(2)若方程有一个根大于2,求a的取值范围.24.在设计人体雕像时,若使雕像的上部(腰以上)与下部(腰以下)的高度的比等于下部与全部(全身)的高度比,则可以增加视觉美感.按此比例,如果雕像的高为2m,那么它的下部应设计为多高?(取2.2)25.已知AB为⊙O的直径,AC和AD为弦,AB=2,AC=,AD=1,求∠CAD的度数.26.抛物线y1=x2+bx+c与直线y2=-2x+m相交于A(-2,n)、B(2,-3)两点.(1)求这条抛物线的解析式;(2)若-4≤x≤1,则y2-y1的最小值为______.27.如图,AB为⊙O的直径,C为⊙O上一点,CD⊥AB于点D.P为AB延长线上一点,∠PCD=2∠BAC.(1)求证:CP为⊙O的切线;(2)BP=1,CP=.①求⊙O的半径;②若M为AC上一动点,则OM+DM的最小值为______.28.探究活动:利用函数y=(x-1)(x-2)的图象(如图1)和性质,探究函数y=的图象与性质.下面是小东的探究过程,请补充完整:(1)函数y=的自变量x的取值范围是______;(2)如图2,他列表描点画出了函数y=图象的一部分,请补全函数图象;解决问题:设方程-x-b=0的两根为x1、x2,且x1<x2,方程x2-3x+2=x+B的两根为x3、x4,且x3<x4.若1<b<,则x1、x2、x3、x4的大小关系为______(用“<”连接).29.在平面直角坐标系xOy中,半径为1的⊙O与x轴负半轴交于点A,点M在⊙O上,将点M绕点A顺时针旋转60°得到点Q.点N为x轴上一动点(N不与A重合),将点M绕点N顺时针旋转60°得到点P.PQ与x轴所夹锐角为α.(1)如图1,若点M的横坐标为,点N与点O重合,则α=______°;(2)若点M、点Q的位置如图2所示,请在x轴上任取一点N,画出直线PQ,并求α的度数;(3)当直线PQ与⊙O相切时,点M的坐标为______.答案和解析1.【答案】D【解析】解:一元二次方程2x2-x-3=0的二次项系数、一次项系数、常数项分别是2,-1,-3,故选:D.找出方程的二次项系数,一次项系数,常数项即可.此题考查了一元二次方程的一般形式,一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.2.【答案】A【解析】解:由中心对称的定义知,绕一个点旋转180°后能与原图重合,则只有选项A 是中心对称图形.故选:A.根据中心对称图形的定义和图形的特点即可求解.本题考查了中心对称图形的概念:如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.3.【答案】A【解析】【解答】∵y=-(x+1)2-2,∴此函数的顶点坐标是(-1,-2),即当x=-1函数有最大值-2故选:A.【分析】所给形式是二次函数的顶点式,易知其顶点坐标是(-1,-2),也就是当x=-1,函数有最大值-2.本题考查了二次函数的最值,解题关键是掌握二次函数顶点式,并会根据顶点式求最值.4.【答案】A【解析】解:∵OP=3<4,故点P与⊙O的位置关系是点在圆内.故选:A.点在圆上,则d=r;点在圆外,d>r;点在圆内,d<r(d即点到圆心的距离,r即圆的半径).本题考查了点与圆的位置关系,注意掌握点和圆的位置关系与数量之间的等价关系是解决问题的关键.5.【答案】B【解析】解:抛物线y=x2沿y轴向下平移2个单位长度,得到的抛物线解析式为y=x2-2.故选:B.根据抛物线平移的规律(左加右减,上加下减)求解.本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.6.【答案】B【解析】解:∵扇形的半径为6cm,圆心角为60°,∴S==6π.故选:B.已知了扇形的圆心角和半径长,可直接根据扇形的面积公式求解.本题考查了扇形面积的计算.此题属于基础题,只要熟记扇形面积公式即可解题.7.【答案】C【解析】解:x2+4x+4=7,(x+2)2=7.故选:C.把方程两边都加上4,方程左边可写成完全平方式.本题考查了解一元二次方程-配方法:将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.8.【答案】D【解析】解:A、抛物线的开口向下,∴a<0,故正确;B、抛物线与y轴交于正半轴,∴c>0,故正确;C、抛物线的对称轴在y轴的右边,在直线x=1的左边,∴,故正确;D、从图象可以看出,当x=1时,对应的函数值在x轴的上方,∴a+b+c>0,故错误.故选D.由抛物线的开口方向判定a的取值范围,由抛物线于y轴的交点判定c的取值范围,根据对称轴的位置即可判定的取值范围,由抛物线中,x=1时的函数值即可判定a+b+c的取值范围.本题主要考查二次函数的图象与系数之间的关系,熟记抛物线开口方向、对称轴、抛物线与y轴的交点等与二次函数的系数之间的关系是解决此类问题的关键.9.【答案】B【解析】解:连结CD,如图,∵BD是⊙O的直径,∴∠BCD=90°,而∠DBC=33°,∴∠D=90°-33°=57°,∴∠A=∠D=57°.故选B.连结CD,如图,根据半圆(或直径)所对的圆周角是直角得到∠BCD=90°,则利用互余可计算出∠D=57°,然后根据圆周角定理即可得到∠A的度数.本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.10.【答案】C【解析】解:最值在自变量大于2.945小于3.06之间,所以最接近摩天轮转一圈的时间的是6分钟.故选C.由题意,最值在自变量大于2.945小于3.06之间,由此不难找到答案.此题考查二次函数的实际运用,利用表格得出函数的性质,找出最大值解决问题.11.【答案】±2【解析】解:x2-4=0,移项得:x2=4,两边直接开平方得:x=±2,故答案为:±2.首先把4移项,再利用直接开平方法解方程即可.此题主要考查了直接开平方法解一元二次方程,解这类问题要移项,把所含未知数的项移到等号的左边,把常数项移项等号的右边,化成x2=a(a≥0)的形式,利用数的开方直接求解.(1)用直接开方法求一元二次方程的解的类型有:x2=a(a≥0);ax2=b(a,b同号且a≠0);(x+a)2=b(b≥0);a(x+b)2=c(a,c同号且a≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”.(2)用直接开方法求一元二次方程的解,要仔细观察方程的特点.12.【答案】y=x2+x+1(答案不唯一)【解析】解:依题意,满足题意的抛物线解析式为y=x2+x+1等,答案不唯一.故本题答案为:y=x2+x+1等.开口向上,只要二次项系数为正数即可,经过点(0,1),说明常数项c=1.13.【答案】<【解析】解:y=2x2-5的对称轴为x=0,开口方向向上,顶点为(0,-5).对于开口向上的函数,x距离对称轴越近,y值越小,2比3距离近,所以a<b.故答案为<.根据二次函数图象的增减性即可解答.本题主要考查二次函数的性质.对于开口向上的函数,x距离对称轴越近,y 值越小.14.【答案】130【解析】【分析】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了圆内接四边形的性质.先作出弧AC所对的圆周角∠D,如图,根据圆周角定理得到∠D=∠AOC=50°,然后根据圆内接四边形的性质求∠ABC的度数.【解答】解:如图,∠D为弧AC所对的圆周角,∵∠D=∠AOC,而∠AOC=100°,∴∠D=50°,∴∠ABC=180°-50°=130°.故答案为130°.先作出弧AC所对的圆周角∠D,如图,根据圆周角定理得到∠D=∠AOC=50°,然后根据圆内接四边形的性质求∠ABC的度数.15.【答案】0.6【解析】解:平面图如图所示:连接OA,作OM⊥AB,垂足为N,交⊙O于M,则MN=x,OM=AM=OA=×2=,∴x=OM-ON=2-≈0.6(米).故答案为:0.6米.画出平面图,连接OA,作OM⊥AB,垂足为N,交⊙O于M,由正方形的性质得出MN=x,ON=AN=OA=,得出x=OM-ON,即可得出结果.本题考查了正多边形和圆的位置关系、正方形的性质;熟练掌握正方形的性质,画出图形,由正方形的性质求出ON是解决问题的关键.16.【答案】120;150【解析】解:(1)∠A′OB′==120°,故答案是:120;(2)△A'B'C'是等边三角形,△A′B′C′的周长最大,则边长最大,则OB'最大,当O,A,B'三点在一条直线上时,B'在OA的延长线上,OB'最大.∠BAO=∠BAC=30°,则a=180°-30°=150°.故答案是:150.(1)△A'B'C'是等边三角形,根据中心角的定义求解;(2)当O,A,B'三点在一条直线上时,B'在OA的延长线上时,OB'最大,A′B′C′边长最大,则△A′B′C′的周长最大.本题考查了三角形的旋转,正确理解△A′B′C′的周长最大的条件是关键.17.【答案】解:∵PA,PB是⊙O的切线,∴PA=PB,∴∠PAB=∠PBA,∵PA为切线,∴CA⊥PA.∴∠CAP=90°,∵∠BAC=25°,∴∠PAB=90°-∠BAC=65°,∴∠P=180°-2∠PAB=50°.【解析】先根据切线长定理得到PA=PB,则利用等腰三角形的性质得∠PAB=∠PBA,再根据切线的性质得∠CAP=90°,于是利用互余计算出∠PAB=65°,然后根据三角形内角和定理计算∠P的度数.本题考查了切线的性质:圆的切线垂直于经过切点的半径.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.也考查了切线长定理.18.【答案】解:x2-3x+2=0,(x-2)(x-1)=0,x-2=0或x-1=0,所以x1=2,x2=1.【解析】先把方程化为一般式,然后利用因式分解法解方程.本题考查了解一元二次方程-因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).19.【答案】解:∵抛物线y=x2+3x+a与x轴只有一个交点,∴△=0,即9-4a=0.解得:a=.抛物线y=x2+3x+a与x轴只有一个交点,则△=0.本题主要考查的是抛物线与x轴交点,根据题意得到△=0是解题的关键.20.【答案】解:把(3,0)代入y=-3x2+(k+3)x-k得,0=-27+(k+3)×3-k,解得,k=9,∴抛物线为y=-3x2+12x-9,∴对称轴为直线x=-=-=2,即直线x=2.【解析】把(3,0)代入y=-3x2+(k+3)x-k,求得k的值,然后根据二次函数的对称轴公式列式计算即可得解.本题考查了二次函数的性质以及二次函数图象上点的坐标特征,熟记对称轴公式是解题的关键.21.【答案】解:∵x=1是方程x2-5ax+a2=0的一个根,∴1-5a+a2=0.∴a2-5a=-1,∴3a2-15a-7=3(a2-5a)-7=3×(-1)-7=-10,即3a2-15a-7=-10.【解析】把x=1代入已知方程求得a2-5a=-1,然后整体代入所求的代数式中进行求解.此题主要考查的是一元二次方程解的定义,注意整体代入思想在代数求值中的应用.22.【答案】解:如图,下降后的水面宽CD为1.2m,连接OA,OC,过点O作ON⊥CD于N,交AB于M.∴∠ONC=90°.∵AB∥CD,∴∠OMA=∠ONC=90°.∵AB=1.6,CD=1.2,∴AM=AB=0.8,CN=CD=0.6,在Rt△OAM中,∵OA=1,∴OM==0.6.同理可得ON=0.8,∴MN=ON-OM=0.2(米).答:水面下降了0.2米.连接OA,OC,过点O作ON⊥CD于N,交AB于M.先根据垂径定理求得AM、CN,然后根据勾股定理求出OM、ON的长,即可得出结论.本题考查的是垂径定理的应用以及勾股定理的应用,熟知平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧是解答此题的关键.23.【答案】(1)证明:△=(a-3)2-4×3×(-a)=(a+3)2.∵a>0,∴(a+3)2>0.即△>0.∴方程总有两个不相等的实数根.(2)解:3x2-(a-3)x-a=0,(3x-a)(x+1)=0,解得x1=-1,x2=.∵方程有一个根大于2,∴>2.∴a>6.【解析】(1)先求出△的值,再根据根的情况与判别式△的关系即可得出答案;(2)利用因式分解法求得方程的两个根,根据有一个根大于2,得出不等式解答即可.本题考查了一元二次方程ax2+bx+c=0(a≠0)根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了解一元二次方程的方法.24.【答案】解:设下部应设计为x米,则上部的长度为(2-x)米,根据题意得,=,整理得,x2+2x-4=0,解得,x1=-1+,x2=-1-(舍去),所以,雕像的下部应设计为(-1+)≈1.2米.【解析】设下部应设计为x米,表示出上部长为(2-x)米,然后根据“上部(腰以上)与下部(腰以下)的高度的比等于下部与全部(全身)的高度比”列出方程求解即可.本题考查了黄金分割,解题的关键在于读懂题目信息并列出比例式,难度不大.25.【答案】解:分两种情况考虑:①如图(1),连接OC、OD,在⊙O中,AB=2,∴OA=OC=OD=AB=1,∵12+12=()2,即OA2+OC2=AC2,∴∠AOC=90°,∠CAO=45°,又∵AD=1,∴OA=OD=AD,∴△AOD是等边三角形,∴∠OAD=60°,∴∠CAD=∠OAD-∠OAC=15°;②如图(2),连接OC,OD,在⊙O中,AB=2,∴OA=OC=OD=AB=1,∵12+12=()2,即OA2+OC2=AC2,∴∠AOC=90°,∠CAO=45°,∵AD=1,∴OA=OD=AD,∴△AOD是等边三角形,∴∠OAD=60°,∴∠CAD=∠OAD+∠CAO=105°,综上,∠CAD等于105°或15°.【解析】分两种情况考虑:①如图(1),连接OC、OD,在⊙O中,AB=2,得到半径为1,再利用勾股定理的逆定理得到三角形AOC为等腰直角三角形,再由AD=OA=OC得到三角形AOD为等边三角形,由∠OAD-∠OAC即可求出∠CAD的度数;②如图(2),连接OC,OD,同理由∠OAD+∠OAC即可求出∠CAD的度数.此题考查了垂径定理,勾股定理,以及解直角三角形,熟练掌握垂径定理是解本题的关键.26.【答案】-12【解析】解:(1)∵直线y2=-2x+m经过点B(2,-3),∴-3=-2×2+m.∴m=1.∵直线y2=-2x+m经过点A(-2,n),∴n=4+1=5;2∴∴.∴y1=x2-2x-3.(2)y2-y1=-2x+1-(x2-2x-3)=-x2+4,∴y2-y1的最大值是4,代入x=-4得y2-y1=-12,代入x=1得y2-y1=3,∴若-4≤x≤1,y2-y1的最小值为-12.故答案为-12.(1)把B的坐标代入直线y2=-2x+m求得m的值,然后代入A(-2,n)求得n的值,最后根据待定系数法即可求得抛物线的解析式;(2)求得y2-y1=-x2+4,然后代入x=-4和x=1,求得函数值,即可求得最小值.本题考查了二次函数的性质,待定系数法求二次函数的解析式,一次函数图象上点的坐标特征,熟练掌握待定系数法是解本题的关键.27.【答案】【解析】(1)证明:连接OC,如图1,∵∠PCD=2∠BAC,∠POC=2∠BAC,∴∠POC=∠PCD,∵CD⊥AB于点D,∴∠ODC=90°.∴∠POC+∠OCD=90°.∴∠PCD+∠OCD=90°.∴∠OCP=90°.∴半径OC⊥CP.∴CP为⊙O的切线.(2)解:①设⊙O的半径为r.在Rt△OCP中,OC2+CP2=OP2,∵BP=1,CP=.222解得r=2.∴⊙O的半径为2.②∵∠OCP=∠ODC=90°,∠COD=∠POC,∴△COP∽△DOC,∴=,即=,∴CD=,如图2,作点O点关于AC的对称点E,连接AE,EC,此时OM+DM=ED,∵AC垂直平分OE,∴AE=AO,∴∠OAC=∠EAC,∵OA=OC,∴∠OAC=∠OCA,∴∠EAC=∠OCA,∴AE∥OC,∵OA=AE=OC=2,∴四边形AOCE是菱形,∴EC=2,∠ECD=90°,在RT△ECD中,EC=2,CD=,∴ED==.∵OM+DM的最小值为.故答案为.(1)连接OC,根据已知证得∠POC=∠PCD,由∠POC+∠OCD=90°.证得∠PCD+∠OCD=90°,即∠OCP=90°,即可证得CP为⊙O的切线;(2)①设⊙O的半径为r.在Rt△OCP中,利用勾股定理即可求得;②先证得△COP∽△DOC,根据相似三角形对应边成比例求得CD的长,作点O点关于AC的对称点E,连接ED,交AC于M,此时OM+DM=ED的最小,连接AE,EC,证得四边形AOCE是菱形,进而证得EC=2,∠ECD=90°,然后根据勾股定理即可求得ED,即OM+DM的最小值.本题考查了切线的判定定理,轴对称的性质,菱形的判定和性质,勾股定理28.【答案】x≤1或x≥2;x1<x3<x4<x2【解析】解:(1)∵(x-1)(x-2)≥0,∴x≤1或x≥2;(2)根据自变量x的取值范围可知,当x≥2时也有对应的函数图象,补全后的函数图象如下图所示:(3)方程-x-b=0等价于方程=x+b,方程的两根x1、x2相当于函数y=与函数y=x+b图象的两个交点的横坐标,方程x2-3x+2=x+b的两根为x3、x4,相当于函数y=x2-3x+2=(x-1)(x-2)与函数y=x+b图象的两个交点的横坐标,又∵1<b<,所以,在同一平面直角从标系中,画出函数图象,如图所示:(1)根据二次根式的性质,列出不等式,解之即可;(2)由于x≤1或x≥2,所以函数图象应该是两条分支,根据对称性,补全另一分支即可;(3)将方程的根转化为两函数图象交点的横坐标,作出函数图象,一目了然.本题主要考查了函数自变量的取值范围、函数图象的画法、函数图象的交点问题,题目新颖,但难度不大.第(3)问体现了化归与转化的数学思想,将方程与函数巧妙地结合在一起,方程的根转化为函数图象交点的横坐标,利用数形结合,将看似抽像的问题变得形像化了,从而使问题解决起来变得容易.29.【答案】60;(,)或(-,-)【解析】解:(1)如图1,∵∠MOP=60°,∴∠MAP=30°.∵∠MAQ=60°,∴∠QAP=30°.∵AP是⊙O的直径,∴∠AQP=90°,∴∠APQ=60°,即α=60°.故答案为60;(2)连接MQ,交x轴于E,连接PQ,交x轴于F,连接PM,如图2.由题可得:△MAQ和△MNP均为等边三角形,∴MA=MQ,MN=MP,∠AMQ=∠NMP=60°,∴∠AMN=∠QMP.在△AMN和△QMP中,,∴△AMN≌△QMP,∴∠MAN=∠MQP.∵∠AEQ=∠MAN+∠AMQ,∠AEQ=∠MQP+∠AFQ,∴∠AFQ=∠AMQ=60°,∴α的度数为60°;(3)连接MQ,交x轴于E,连接PQ,交x轴于F,连接PM,MF,OM,过点M作MH⊥x轴于H,设PQ与⊙O相切于点G,连接OG,如图3①、图3②.则有∠OGF=90°.由(2)可得∠AFQ=∠AMQ=60°,∴A、M、F、Q四点共圆,∴∠AFM=∠AQM=60°.∴在Rt△MHF中,tan∠HFM==.在Rt△OGF中,sin∠OFG==,∵OG=1,∴OF=.设HF=x,则MH=x,OH=-x.在Rt△OHM中,由勾股定理可得:(-x)2+(x)2=12,解得x1=x2=,∴OH=-=,MH=,∴点M的坐标为(,)或(-,-).故答案为(,)或(-,-).(1)如图1,根据圆周角定理可求出∠MAP、∠AQP,再根据∠MAQ可依次求出∠PAQ,∠APQ;(2)连接MQ,交x轴于E,连接PQ,交x轴于F,连接PM,如图2,由题可得:△MAQ和△MNP均为等边三角形,由此可证到△AMN≌△QMP,则有∠MAN=∠MQP.根据三角形外角的性质可得到∠MAN+∠AMQ=∠AEQ=∠MQP+∠AFQ,从而可得到∠AFQ=∠AMQ=60°(即α=60°);(3)连接MQ,交x轴于E,连接PQ,交x轴于F,连接PM,MF,OM,过点M 作MH⊥x轴于H,设PQ与⊙O相切于点G,连接OG,如图3①、图3②.则有∠OGF=90°.由(2)可得∠AFQ=∠AMQ=60°,由此可得A、M、F、Q四点共圆,根据圆周角定理可得∠AFM=∠AQM=60°.在Rt△OGF中运用三角函数可求得OF=,在Rt△MHF中运用三角函数可得=.设HF=x,则MH=x,OH=-x.在Rt△OHM中运用勾股定理可求出x,从而可得OH,MH,就可得到点M的坐标.本题主要考查了圆周角定理、切线的性质、四点共圆的判定、等边三角形的判定与性质、特殊角的三角函数值、勾股定理等知识,在△OMF中求出OF及∠OFM是解决第(3)小题的关键.。

2015-2016学年北京市海淀区2016届九年级上学期期中考试数学试题(WORD版含答案)(2)解

2015-2016学年北京市海淀区2016届九年级上学期期中考试数学试题(WORD版含答案)(2)解

海淀区九年级第一学期期末数学练习2016.1姓名:、选择题(本题共 30分,每小题3 分)若点A (a , b )在双曲线y = 3上,则代数式ab-4的值为(x&如图,AB 是O O 的直径,C 、D 是圆上的两点•若BC=8, COSD = 23则AB 的长为()( )2A . y =2(x +1 )+32B . y =2(x +1 )-32C . y =2(x_1 )-3 2D . y =2(x_1 )+3已知点(X 1,y 1 )、( X 2, y 2 )、1(x 3,y 3)在双曲线y 上,当 捲:::0 ::: x^冷时,、y 3的大小关系是()A . y1 :: y ■■■ yaB y^::y y C . y3 :: y^::y D . y^::抛物线y 二2x 2向左平移 为 7.y 1、y 21个单位,再向下平移 3个单位,则平移后的抛物线的解析式1.在厶 ABC 中,Z C= 90° BC=3, AB= 5,贝U si nA 的值是( 如图,△ ABC 内接于O O ,若/AOB =100°,则Z ACB 的度数是 3.A . 40 °B . 50 °C. 60 °D. 802抛物线y =(x -2) 1的顶点坐标是(A . (一2, -1)B . (-2, 1)C . (2, -1)D . (2, 1)4. A .—1B . —C . -1如图,在’Q ABCD 中,E 是AB 的中点, EC 交BD 于点F ,则△ BEF 与△ DCF 的面积比为 ( 4 A .91 B.91 C .—4D .A . 8j3B .16 C .24、、5 D . 123359 .在平面直角坐标系xOy 中,A 为双曲线6y =-6上一点,点B 的坐标为(4, 0) •若△ AOBx的面积为6,则点A 的坐标为 ( )3、A . ( -4 ,-)B (4, 一上)22C . ( -2 , 3)或 (2,-3 )D .(-3 , 2)或(3, -2 )210.如图,在平面直角坐标系 xOy 中,抛物线y = x bx c 与x 轴只有一个交点 M ,与平行于x 轴的直线I 交于A 、 11•请写出一个图象在第二、四象限的反比例函数解析式 12.已知关于x 的方程x 2 -6x m =0有两个不相等的实数根,则m的取值范围是 ________13. 如图,在平面直角坐标系 xOy 中,△ ABC 与厶A'B'C'顶点的横、 纵坐标都是整数.若厶ABC 与厶A'B'C'是位似图形,则位似中心的坐标是•14. 正比例函数y 二k j x 与反比例函数y =电的图象交于A 、B 两点,若 点A 的坐标是(1,x2),则点B 的坐标是 _____________ .B 两点.若AB=3 , 则点M 到直线 I 的距离为( )5 9C . 27A . -D.—244、填空题(本题共 18分,每小题3分)If第13题15.古算趣题:笨人执竿要进屋,无奈门框拦住竹,横多四尺竖多二,没法急得放声哭.有个邻居聪明者,教他斜竿对两角,笨伯依言试一试,不多不少刚抵足•借问竿长多少数,谁人算出我佩服.”若设竿长为x尺,则可列方程为________________________ .16.正方形CEDF的顶点D、E、F分别在△ABC的边AB、BC、AC上.BE(1)如图,若tan B = 2,则竺的值为;BC(2 )将厶ABC绕点D旋转得到厶A'B'C ',连接BB'、CC'.若CC =- 2,BB' 5则tanB的值为______________ .三、解答题(本题共72分,第17〜26题,每小题5分,第27题6分,第28题8分,第29题8分)17•计算:2sin 30 3tan 60"「cos 45 .18.解方程:x2• 2x -5 =0.19.如图,D 是AC 上一点,DE // AB,/ B=Z DAE .求证:△ ABC s^ DAE .2 220•已知m是方程x x -^0的一个根,求代数式(m • 1)2• (m • 1)(m-1)的值.21.已知二次函数y = X2• bx • 8的图象与x轴交于A、B两点,点A的坐标为(-2,0),求点B的坐标.22•如图,矩形ABCD为某中学课外活动小组围建的一个生物苗圃园,其中两边靠墙(墙足够长),另外两边用长度为16米的篱笆(虚线部分)围成•设AB边的长度为x米,矩形ABCD的面积为y平方米•(1)y与x之间的函数关系式为___________________ (不要求写自变量的取值范围);(2)求矩形ABCD的最大面积.23.如图,在△ ABC 中,/ ACB=90 , D 为AC 上一点,DE 丄AB 于点E, AC=12 , BC=5 .(1 )求cos/ADE 的值;(2 )当DE =DC时,求AD的长.CE24 •如图,在平面直角坐标系mxOy中,双曲线y 与直线y = kx - 2交于点A ( 3,1 )•x(1)求直线和双曲线的解析式;(2) 直线y =kx _2与x轴交于点B,点P是双曲线y = m上一点,过点P作直线PC// x轴,交y轴于点C,x交直线y =kx _2于点D .若DC=2OB,直接写出点P的坐标为25•如图,小嘉利用测角仪测量塔高,他分别站在A、B两点测得塔顶的仰角:-=45 J =50 . AB为10米•已知小嘉的眼睛距地面的高度AC为1.5米,计算塔的高度.(参考数据:sin50 取0.8, cos50 取0.6, tan50 取 1.2)26•如图,△ ABC内接于。

2015-2016学年北京市海淀区九年级上学期期中数学试卷与解析

2015-2016学年北京市海淀区九年级上学期期中数学试卷与解析

2015-2016学年北京市海淀区九年级(上)期中数学试卷一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.请将正确选项前的字母填在表格中相应的位置.1.(3分)一元二次方程2x2﹣x﹣3=0的二次项系数、一次项系数、常数项分别是()A.2,1,3 B.2,1,﹣3 C.2,﹣1,3 D.2,﹣1,﹣32.(3分)下列图形是中心对称图形的是()A.B.C.D.3.(3分)二次函数y=﹣(x+1)2﹣2的最大值是()A.﹣2 B.﹣1 C.1 D.24.(3分)已知⊙O的半径是4,OP=3,则点P与⊙O的位置关系是()A.点P在圆内B.点P在圆上C.点P在圆外D.不能确定5.(3分)将抛物线y=x2沿y轴向下平移2个单位,得到的抛物线的解析式为()A.y=x2+2 B.y=x2﹣2 C.y=(x+2)2D.y=(x﹣2)26.(3分)已知扇形的半径为6,圆心角为60°,则这个扇形的面积为()A.9πB.6πC.3πD.π7.(3分)用配方法解方程x2+4x=3,下列配方正确的是()A.(x﹣2)2=1 B.(x﹣2)2=7 C.(x+2)2=7 D.(x+2)2=18.(3分)已知二次函数y=ax2+bx+c的图象如图所示,则下列选项中不正确的是()A.a<0 B.c>0 C.0<﹣<1 D.a+b+c<09.(3分)如图,△ABC内接于⊙O,BD是⊙O的直径.若∠DBC=33°,则∠A 等于()A.33°B.57°C.67°D.66°10.(3分)小明乘坐摩天轮转一圈,他距离地面的高度y(米)与旋转时间x(分)之间的关系可以近似地用二次函数来刻画.经侧试得部分数据如下表:下列选项中,最接近摩天轮转一圈的时间的是()A.7分 B.6.5分C.6分 D.5.5分二、填空题(本题共18分,每小题3分)11.(3分)方程x2﹣4=0的解是.12.(3分)请写出一个开口向上且经过(0,1)的抛物线的解析式.13.(3分)若二次函数y=2x2﹣5的图象上有两个点A(2,a)、B(3,b),则a b(填“<”或“=”或“>”).14.(3分)如图,A、B、C三点在⊙O上,∠AOC=100°,则∠ABC=°.15.(3分)用一块直径为4米的圆桌布平铺在对角线长为4米的正方形桌面上(如示意图),若四周下垂的最大长度相等,则这个最大长度x为米(取1.4).16.(3分)如图,O是边长为1的等边△ABC的中心,将AB、BC、CA分别绕点A、点B、点C顺时针旋转α(0°<α<180°),得到AB′、BC′、CA′,连接A′B′、B′C′、A′C′、OA′、OB′.(1)∠A′OB′=°;(2)当α=°时,△A′B′C′的周长最大.三、解答题(本题共72分,第17~26题,每小题5分,第27题7分,第28题7分,第29题8分)17.(5分)解方程:x2=3x﹣2.18.(5分)若抛物线y=x2+3x+a与x轴只有一个交点,求实数a的值.19.(5分)已知点(3,0)在抛物线y=﹣3x2+(k+3)x﹣k上,求此抛物线的对称轴.20.(5分)如图,AC是⊙O的直径,PA,PB是⊙O的切线,A,B为切点,∠BAC=25°.求∠P的度数.21.(5分)已知x=1是方程x2﹣5ax+a2=0的一个根,求代数式3a2﹣15a﹣7的值.22.(5分)一圆柱形排水管的截面如图所示,已知排水管的半径为1m,水面宽AB为1.6m.由于天气干燥,水管水面下降,此时排水管水面宽变为1.2m,求水面下降的高度.23.(5分)已知关于x的方程3x2﹣(a﹣3)x﹣a=0(a>0).(1)求证:方程总有两个不相等的实数根;(2)若方程有一个根大于2,求a的取值范围.24.(5分)在设计人体雕像时,若使雕像的上部(腰以上)与下部(腰以下)的高度的比等于下部与全部(全身)的高度比,则可以增加视觉美感.按此比例,如果雕像的高为2m,那么它的下部应设计为多高?(取2.2)25.(5分)已知AB为⊙O的直径,AC和AD为弦,AB=2,AC=,AD=1,求∠CAD的度数.26.(5分)抛物线y1=x2+bx+c与直线y2=﹣2x+m相交于A(﹣2,n)、B(2,﹣3)两点.(1)求这条抛物线的解析式;(2)若﹣4≤x≤1,则y2﹣y1的最小值为.27.(7分)如图,AB为⊙O的直径,C为⊙O上一点,CD⊥AB于点D.P为AB 延长线上一点,∠PCD=2∠BAC.(1)求证:CP为⊙O的切线;(2)BP=1,CP=.①求⊙O的半径;②若M为AC上一动点,则OM+DM的最小值为.28.(7分)探究活动:利用函数y=(x﹣1)(x﹣2)的图象(如图1)和性质,探究函数y=的图象与性质.下面是小东的探究过程,请补充完整:(1)函数y=的自变量x的取值范围是;(2)如图2,他列表描点画出了函数y=图象的一部分,请补全函数图象;解决问题:设方程﹣x﹣b=0的两根为x1、x2,且x1<x2,方程x2﹣3x+2=x+B 的两根为x3、x4,且x3<x4.若1<b<,则x1、x2、x3、x4的大小关系为(用“<”连接).29.(8分)在平面直角坐标系xOy中,半径为1的⊙O与x轴负半轴交于点A,点M在⊙O上,将点M绕点A顺时针旋转60°得到点Q.点N为x轴上一动点(N不与A重合),将点M绕点N顺时针旋转60°得到点P.PQ与x轴所夹锐角为α.(1)如图1,若点M的横坐标为,点N与点O重合,则α=°;(2)若点M、点Q的位置如图2所示,请在x轴上任取一点N,画出直线PQ,并求α的度数;(3)当直线PQ与⊙O相切时,点M的坐标为.2015-2016学年北京市海淀区九年级(上)期中数学试卷参考答案与试题解析一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.请将正确选项前的字母填在表格中相应的位置.1.(3分)一元二次方程2x2﹣x﹣3=0的二次项系数、一次项系数、常数项分别是()A.2,1,3 B.2,1,﹣3 C.2,﹣1,3 D.2,﹣1,﹣3【解答】解:一元二次方程2x2﹣x﹣3=0的二次项系数、一次项系数、常数项分别是2,﹣1,﹣3,故选:D.2.(3分)下列图形是中心对称图形的是()A.B.C.D.【解答】解:由中心对称的定义知,绕一个点旋转180°后能与原图重合,则只有选项A是中心对称图形.故选:A.3.(3分)二次函数y=﹣(x+1)2﹣2的最大值是()A.﹣2 B.﹣1 C.1 D.2【解答】解:∵y=﹣(x+1)2﹣2,∴此函数的顶点坐标是(﹣1,﹣2),即当x=﹣1函数有最大值﹣2故选:A.4.(3分)已知⊙O的半径是4,OP=3,则点P与⊙O的位置关系是()A.点P在圆内B.点P在圆上C.点P在圆外D.不能确定【解答】解:∵OP=3<4,故点P与⊙O的位置关系是点在圆内.故选:A.5.(3分)将抛物线y=x2沿y轴向下平移2个单位,得到的抛物线的解析式为()A.y=x2+2 B.y=x2﹣2 C.y=(x+2)2D.y=(x﹣2)2【解答】解:抛物线y=x2沿y轴向下平移2个单位长度,得到的抛物线解析式为y=x2﹣2.故选:B.6.(3分)已知扇形的半径为6,圆心角为60°,则这个扇形的面积为()A.9πB.6πC.3πD.π【解答】解:∵扇形的半径为6cm,圆心角为60°,∴S==6π.故选:B.7.(3分)用配方法解方程x2+4x=3,下列配方正确的是()A.(x﹣2)2=1 B.(x﹣2)2=7 C.(x+2)2=7 D.(x+2)2=1【解答】解:x2+4x+4=7,(x+2)2=7.故选:C.8.(3分)已知二次函数y=ax2+bx+c的图象如图所示,则下列选项中不正确的是()A.a<0 B.c>0 C.0<﹣<1 D.a+b+c<0【解答】解:A、抛物线的开口向下,∴a<0,故正确;B、抛物线与y轴交于正半轴,∴c>0,故正确;C、抛物线的对称轴在y轴的右边,在直线x=1的左边,∴,故正确;D、从图象可以看出,当x=1时,对应的函数值在x轴的上方,∴a+b+c>0,故错误.故选:D.9.(3分)如图,△ABC内接于⊙O,BD是⊙O的直径.若∠DBC=33°,则∠A 等于()A.33°B.57°C.67°D.66°【解答】解:连结CD,如图,∵BD是⊙O的直径,∴∠BCD=90°,而∠DBC=33°,∴∠D=90°﹣33°=57°,∴∠A=∠D=57°.故选:B.10.(3分)小明乘坐摩天轮转一圈,他距离地面的高度y(米)与旋转时间x(分)之间的关系可以近似地用二次函数来刻画.经侧试得部分数据如下表:下列选项中,最接近摩天轮转一圈的时间的是()A.7分 B.6.5分C.6分 D.5.5分【解答】解:最值在自变量大于2.66小于3.23之间,所以最接近摩天轮转一圈的时间的是6分钟.故选:C.二、填空题(本题共18分,每小题3分)11.(3分)方程x2﹣4=0的解是±2.【解答】解:x2﹣4=0,移项得:x2=4,两边直接开平方得:x=±2,故答案为:±2.12.(3分)请写出一个开口向上且经过(0,1)的抛物线的解析式y=x2+x+1(答案不唯一).【解答】解:依题意,满足题意的抛物线解析式为y=x2+x+1等,答案不唯一.故本题答案为:y=x2+x+1等.13.(3分)若二次函数y=2x2﹣5的图象上有两个点A(2,a)、B(3,b),则a <b(填“<”或“=”或“>”).【解答】解:y=2x2﹣5的对称轴为x=0,开口方向向上,顶点为(0,﹣5).对于开口向上的函数,x距离对称轴越近,y值越小,2比3距离近,所以a<b.故答案为<.14.(3分)如图,A、B、C三点在⊙O上,∠AOC=100°,则∠ABC=130°.【解答】解:如图,∠D为弧AC所对的圆周角,∵∠D=∠AOC,而∠AOC=100°,∴∠D=50°,∵∠D+∠ABC=180°,∴∠ABC=180°﹣50°=130°.故答案为130°.15.(3分)用一块直径为4米的圆桌布平铺在对角线长为4米的正方形桌面上(如示意图),若四周下垂的最大长度相等,则这个最大长度x为0.6米(取1.4).【解答】解:平面图如图所示:连接OA,作OM⊥AB,垂足为N,交⊙O于M,则MN=x,OM=AM=OA=×2=,∴x=OM﹣ON=2﹣≈0.6(米).故答案为:0.6米.16.(3分)如图,O是边长为1的等边△ABC的中心,将AB、BC、CA分别绕点A、点B、点C顺时针旋转α(0°<α<180°),得到AB′、BC′、CA′,连接A′B′、B′C′、A′C′、OA′、OB′.(1)∠A′OB′=120°;(2)当α=150°时,△A′B′C′的周长最大.【解答】解:(1)∠A′OB′==120°,故答案是:120;(2)△A'B'C'是等边三角形,△A′B′C′的周长最大,则边长最大,则OB'最大,当O,A,B'三点在一条直线上时,B'在OA的延长线上,OB'最大.∠BAO=∠BAC=30°,则a=180°﹣30°=150°.故答案是:150.三、解答题(本题共72分,第17~26题,每小题5分,第27题7分,第28题7分,第29题8分)17.(5分)解方程:x2=3x﹣2.【解答】解:x2﹣3x+2=0,(x﹣2)(x﹣1)=0,x﹣2=0或x﹣1=0,所以x1=2,x2=1.18.(5分)若抛物线y=x2+3x+a与x轴只有一个交点,求实数a的值.【解答】解:∵抛物线y=x2+3x+a与x轴只有一个交点,∴△=0,即9﹣4a=0.解得:a=.19.(5分)已知点(3,0)在抛物线y=﹣3x2+(k+3)x﹣k上,求此抛物线的对称轴.【解答】解:把(3,0)代入y=﹣3x2+(k+3)x﹣k得,0=﹣27+(k+3)×3﹣k,解得,k=9,∴抛物线为y=﹣3x2+12x﹣9,∴对称轴为直线x=﹣=﹣=2,即直线x=2.20.(5分)如图,AC是⊙O的直径,PA,PB是⊙O的切线,A,B为切点,∠BAC=25°.求∠P的度数.【解答】解:∵PA,PB是⊙O的切线,∴PA=PB,∴∠PAB=∠PBA,∵PA为切线,∴CA⊥PA.∴∠CAP=90°,∵∠BAC=25°,∴∠PAB=90°﹣∠BAC=65°,∴∠P=180°﹣2∠PAB=50°.21.(5分)已知x=1是方程x2﹣5ax+a2=0的一个根,求代数式3a2﹣15a﹣7的值.【解答】解:∵x=1是方程x2﹣5ax+a2=0的一个根,∴1﹣5a+a2=0.∴a2﹣5a=﹣1,∴3a2﹣15a﹣7=3(a2﹣5a)﹣7=3×(﹣1)﹣7=﹣10,即3a2﹣15a﹣7=﹣10.22.(5分)一圆柱形排水管的截面如图所示,已知排水管的半径为1m,水面宽AB为1.6m.由于天气干燥,水管水面下降,此时排水管水面宽变为1.2m,求水面下降的高度.【解答】解:如图,下降后的水面宽CD为1.2m,连接OA,OC,过点O作ON ⊥CD于N,交AB于M.∴∠ONC=90°.∵AB∥CD,∴∠OMA=∠ONC=90°.∵AB=1.6,CD=1.2,∴AM=AB=0.8,CN=CD=0.6,在Rt△OAM中,∵OA=1,∴OM==0.6.同理可得ON=0.8,∴MN=ON﹣OM=0.2(米).答:水面下降了0.2米.23.(5分)已知关于x的方程3x2﹣(a﹣3)x﹣a=0(a>0).(1)求证:方程总有两个不相等的实数根;(2)若方程有一个根大于2,求a的取值范围.【解答】(1)证明:△=(a﹣3)2﹣4×3×(﹣a)=(a+3)2.∵a>0,∴(a+3)2>0.即△>0.∴方程总有两个不相等的实数根.(2)解:3x2﹣(a﹣3)x﹣a=0,(3x﹣a)(x+1)=0,解得x1=﹣1,x2=.∵方程有一个根大于2,∴>2.∴a>6.24.(5分)在设计人体雕像时,若使雕像的上部(腰以上)与下部(腰以下)的高度的比等于下部与全部(全身)的高度比,则可以增加视觉美感.按此比例,如果雕像的高为2m,那么它的下部应设计为多高?(取2.2)【解答】解:设下部应设计为x米,则上部的长度为(2﹣x)米,根据题意得,=,整理得,x2+2x﹣4=0,解得,x1=﹣1+,x2=﹣1﹣(舍去),所以,雕像的下部应设计为(﹣1+)≈1.2米.25.(5分)已知AB为⊙O的直径,AC和AD为弦,AB=2,AC=,AD=1,求∠CAD的度数.【解答】解:分两种情况考虑:①如图(1),连接OC、OD,在⊙O中,AB=2,∴OA=OC=OD=AB=1,∵12+12=()2,即OA2+OC2=AC2,∴∠AOC=90°,∠CAO=45°,又∵AD=1,∴OA=OD=AD,∴△AOD是等边三角形,∴∠OAD=60°,∴∠CAD=∠OAD﹣∠OAC=15°;②如图(2),连接OC,OD,在⊙O中,AB=2,∴OA=OC=OD=AB=1,∵12+12=()2,即OA2+OC2=AC2,∴∠AOC=90°,∠CAO=45°,∵AD=1,∴OA=OD=AD,∴△AOD是等边三角形,∴∠OAD=60°,∴∠CAD=∠OAD+∠CAO=105°,综上,∠CAD等于105°或15°.26.(5分)抛物线y1=x2+bx+c与直线y2=﹣2x+m相交于A(﹣2,n)、B(2,﹣3)两点.(1)求这条抛物线的解析式;(2)若﹣4≤x≤1,则y2﹣y1的最小值为﹣12.【解答】解:(1)∵直线y2=﹣2x+m经过点B(2,﹣3),∴﹣3=﹣2×2+m.∴m=1.∵直线y2=﹣2x+m经过点A(﹣2,n),∴n=4+1=5;∵抛物线y1=x2+bx+c过点A和点B,∴∴.∴y1=x2﹣2x﹣3.(2)y2﹣y1=﹣2x+1﹣(x2﹣2x﹣3)=﹣x2+4,∴y2﹣y1的最大值是4,代入x=﹣4得y2﹣y1=﹣12,代入x=1得y2﹣y1=3,∴若﹣4≤x≤1,y2﹣y1的最小值为﹣12.故答案为﹣12.27.(7分)如图,AB为⊙O的直径,C为⊙O上一点,CD⊥AB于点D.P为AB 延长线上一点,∠PCD=2∠BAC.(1)求证:CP为⊙O的切线;(2)BP=1,CP=.①求⊙O的半径;②若M为AC上一动点,则OM+DM的最小值为.【解答】(1)证明:连接OC,如图1,∵∠PCD=2∠BAC,∠POC=2∠BAC,∴∠POC=∠PCD,∵CD⊥AB于点D,∴∠ODC=90°.∴∠POC+∠OCD=90°.∴∠PCD+∠OCD=90°.∴∠OCP=90°.∴半径OC⊥CP.∴CP为⊙O的切线.(2)解:①设⊙O的半径为r.在Rt△OCP中,OC2+CP2=OP2,∵BP=1,CP=.∴r2+()2=(r+1)2,解得r=2.∴⊙O的半径为2.②∵∠OCP=∠ODC=90°,∠COD=∠POC,∴△COP∽△DOC,∴=,即=,∴CD=,如图2,作点O点关于AC的对称点E,连接AE,EC,此时OM+DM=ED,∵AC垂直平分OE,∴AE=AO,∴∠OAC=∠EAC,∵OA=OC,∴∠OAC=∠OCA,∴∠EAC=∠OCA,∴AE∥OC,∵OA=AE=OC=2,∴四边形AOCE是菱形,∴EC=2,∠ECD=90°,在RT△ECD中,EC=2,CD=,∴ED==.∵OM+DM的最小值为.故答案为.28.(7分)探究活动:利用函数y=(x﹣1)(x﹣2)的图象(如图1)和性质,探究函数y=的图象与性质.下面是小东的探究过程,请补充完整:(1)函数y=的自变量x的取值范围是x≤1或x≥2;(2)如图2,他列表描点画出了函数y=图象的一部分,请补全函数图象;解决问题:设方程﹣x﹣b=0的两根为x1、x2,且x1<x2,方程x2﹣3x+2=x+B 的两根为x3、x4,且x3<x4.若1<b<,则x1、x2、x3、x4的大小关系为x1<x3<x4<x2(用“<”连接).【解答】解:(1)∵(x﹣1)(x﹣2)≥0,∴x≤1或x≥2;(2)根据自变量x的取值范围可知,当x≥2时也有对应的函数图象,补全后的函数图象如下图所示:(3)方程﹣x﹣b=0等价于方程=x+b,方程的两根x1、x2相当于函数y=与函数y=x+b图象的两个交点的横坐标,方程x2﹣3x+2=x+b的两根为x3、x4,相当于函数y=x2﹣3x+2=(x﹣1)(x﹣2)与函数y=x+b图象的两个交点的横坐标,又∵1<b<,所以,在同一平面直角从标系中,画出函数图象,如图所示:故x1<x3<x4<x2.29.(8分)在平面直角坐标系xOy中,半径为1的⊙O与x轴负半轴交于点A,点M在⊙O上,将点M绕点A顺时针旋转60°得到点Q.点N为x轴上一动点(N不与A重合),将点M绕点N顺时针旋转60°得到点P.PQ与x轴所夹锐角为α.(1)如图1,若点M的横坐标为,点N与点O重合,则α=60°;(2)若点M、点Q的位置如图2所示,请在x轴上任取一点N,画出直线PQ,并求α的度数;(3)当直线PQ与⊙O相切时,点M的坐标为(,)或(﹣,﹣).【解答】解:(1)如图1,∵∠MOP=60°,∴∠MAP=30°.∵∠MAQ=60°,∴∠QAP=30°.∵AP是⊙O的直径,∴∠AQP=90°,∴∠APQ=60°,即α=60°.故答案为60;(2)连接MQ,交x轴于E,连接PQ,交x轴于F,连接PM,如图2.由题可得:△MAQ和△MNP均为等边三角形,∴MA=MQ,MN=MP,∠AMQ=∠NMP=60°,∴∠AMN=∠QMP.在△AMN和△QMP中,,∴△AMN≌△QMP,∴∠MAN=∠MQP.∵∠AEQ=∠MAN+∠AMQ,∠AEQ=∠MQP+∠AFQ,∴∠AFQ=∠AMQ=60°,∴α的度数为60°;(3)连接MQ,交x轴于E,连接PQ,交x轴于F,连接PM,MF,OM,过点M作MH⊥x轴于H,设PQ与⊙O相切于点G,连接OG,如图3①、图3②.则有∠OGF=90°.由(2)可得∠AFQ=∠AMQ=60°,∴A、M、F、Q四点共圆,∴∠AFM=∠AQM=60°.∴在Rt△MHF中,tan∠HFM==.在Rt△OGF中,sin∠OFG==,∵OG=1,∴OF=.设HF=x,则MH=x,OH=﹣x.在Rt△OHM中,由勾股定理可得:(﹣x)2+(x)2=12,解得x1=x2=,∴OH=﹣=,MH=,∴点M的坐标为(,)或(﹣,﹣).故答案为(,)或(﹣,﹣).。

2015-2016上学期九年级期中考试数学试题

2015-2016上学期九年级期中考试数学试题

2015-2016学年度第一学期中考试数 学 试 卷(满分120分,时间120 分钟)命题人:李岩温馨提示: 亲爱的同学,请你沉着冷静,充满自信,认真审题,仔细答卷,祝你考出好成绩!一、精心选一选(每小题3分,共30分.) 1,请判别下列哪个方程是一元二次方程( B )A 、12=+y xB 、052=+x C 、832=+xx D 、2683+=+x x2、一元二次方程25x x =的根是( D )A .5x =B .0x =C .120,5x x ==-D .120,5x x ==3、下列各组线段,能成比例的是 ( A )A 、3,6,9,18B 、2,5,6,8,C 、1,2,3,4D 、3,6,7,9 4、一个家庭有两个孩子,两个都是女孩的概率是( C )A .21B .31C .41D . 无法确定。

5、若方程x 2-3x-1=0的两个根为1x ,2x 则11x +21x 的值是( B ) A .3B . -3C . 31D .-316、如图,在ABC ∆中,点,D E 分别在,AB AC 边上,且12AE AD AB AC ==, 则的值为( D ) A .1:3B .1:2C .1:4D .1:37.已知一元二次方程()002≠=+m n mx ,若方程有解,则必须( D ) A 、0=n B 、同号mn C 、的整数倍是m n D 、异号mn 8、小丽在测楼高时,先测出楼房落在地面上的影长BA 为15米,然后在A 处树立一根高2米的标杆,测得标杆的影长AC 为3米,则楼高为( A ) A .10米 12米C .15米D .22.5米9、将方程()n m x x x =-=--22032化为的形式,指出n m ,分别是( B ) A 、31和B 、41和C 、31和-D 、41和-10、等腰三角形一条边的长为3,它的另两条边的边长是关于x 的一元二次方程2120x x k -+= 的两个根,则k 的值是( B ) A .27B .36C .27或36D .18二.认真填一填:(每题3分,共30分)11、把方程2(x -2) 2=x(x -1)化为一元二次方程的一般形式为 x 2-7x+8=0 . 12、为了估计不透明的袋子里装有多少个球,先从袋中摸出10个球都做上标记,然后放回袋中去,充分摇匀后再摸出10个球,发现其中有一个球有标记, 那么你估计袋中大约有 100 个球。

最新整理北京市第15中学初三上学期期中数学试卷(含答案).doc

最新整理北京市第15中学初三上学期期中数学试卷(含答案).doc

北京十五中 — 学年度第一学期九年级期中试卷 - 数 学 . 11一、选择. 下面各题均有四个选项,其中只有一个..符合题意.(共32分,每小题4分.) 1.抛物线21y x =-的顶点坐标是 ( ). A .(01),B .(01)-,C .(10),D .(10)-,2. 如图, 点A 、B 、C 在⊙O 上, 若∠C =40︒, 则∠AOB 的度数为( ). A .20︒ B .40︒ C .80︒ D .100︒3. 如图,在平面直角坐标系中,点A 的坐标为(4,3),那么sin α的值是( ). A .35B .45C .34D .432题图 3题图 4题图4.如图,AB 为⊙O 的弦,半径OC ⊥AB 于点D ,若OB 长为10,3cos 5BOD ∠=,则AB 的长是( ).A . 20 B. 8C. 12D. 16 5 .以下4个命题中,正确的个数有( ).①不在同一直线上的三点确定一个圆; ②平分弦的直径垂直于弦; ③相等的圆周角所对的弧相等; ④等弧对等弦. A .1 B .2 C .3 D .46.抛物线c bx x y ++-=2的部分图象如图所示,若0>y ,则x 的取值范围是( ). A.14<<-x B. 3-<x 或1>x C. 4-<x 或1>x D. 13<<-x6题图 7题图7.如图,在矩形ABCD 中,3=AB ,BC=1. 现将矩形ABCD 绕点C 顺时针旋转90°得到矩形A B CD ''',则AD 边扫过的面积(阴影部分)为( ). A .41π B. 31π C. 21π D. 51π 8.如图(甲),扇形OAB 的半径OA =6,圆心角∠AOB =90°,C 是»AB 上不同于A 、B 的动点,过点C 作CD ⊥OA 于点D ,作CE ⊥OB 于点E ,连结DE ,点H 在线段DE 上,且EH =32DE .设EC 的长为x ,△CEH 的面积为y ,图(乙)中表示y 与x 的函数关系式的图象可能是( )A .B .C . D.二、填空.(共32分.每小题4分)9.用配方法将2611y x x =-+化成2()y a x h k =-+的形式为___________________. 10. 一个扇形的圆心角为120°,半径为1,则这个扇形的弧长为 .图(乙)图(甲)A11.在△ABC 中,∠C =90°,cos A =23,那么tan B 的值等于_________. 12.将抛物线25y x =先向下平移1个单位长度后,再向左平移2个单位长度,所得抛物线的解析式是___________________.13. 已知,如图,AB 是⊙O 的直径,点D ,C 在⊙O 上,联结AD 、BD 、DC 、AC ,如果 ∠BA D =25°,那么∠C 的度数是____________.13题图 15题图14.在⊙O 中半径为2,弦AB =,点C 是圆上不同于A 、B 的点,那么∠ACB 度数为__________.15.如图,⊙O 的半径为1,点A 是半圆上的一个三等分点,点B 是AN 的中点,P 是直径MN 上的一个动点,则P A +PB 的最小值为__________.16. 若关于x 的一元二次方程(2)(3)x x m --=有实数根12x x ,,且12x x ≠,有下列结论:①12=2=3x x ,; ② 14m >-; ③二次函数12=()()y x x x x m --+的图像与x 轴的交点坐标为(20)(30),,. 其中,正确结论的个数是__________. 三、解答题(共36分.其中17-22题每题5分;23题6分.) 17.计算:2cos30602sin 45︒+︒-︒.18.如图,⊙O 是△ABC 的外接圆,45A ∠=,BD 为⊙O 的直径,BD =2,连结CD ,求BC 的长.19. 已知二次函数图像的顶点是A (1,-4),且经过点B (3,0). (1)求该二次函数的解析式;(2)将该二次函数图像向右平移几个单位,可使平移后的图像经过坐标原点?直接写出平移后所得图像与x 轴的另一个交点的坐标.20. 如图,在四边形ABCD 中,∠ADB =∠CBD =90︒,BE//CD 交AD 于E , 且EA=EB .若AB=54,DB =4, 求四边形ABCD 的面积.21.如图,热气球的探测器显示,从热气球看一栋高楼的顶部B 的仰角为45°,看这栋高楼底部C 的俯角为60°, 热气球与高楼的水平距离AD 为50m ,求这栋楼的高度. (结果精确到0.1m≈1.411.73)22.已知,二次函数的解析式为223y x x =-++.(1)它与x 轴的交点的坐标为 ,顶点坐标为____________; (2)在给定的坐标系中画出这个二次函数的图象,并求出抛物线与坐标轴的交点所组成的三角形的面积;(3)根据图像直接写出抛物线在12x -<<_________________.EDCAa23.阅读下列材料,并解决后面的问题.在锐角ABC ∆中,,,A B C ∠∠∠的对边分别是a,b,c .过A 作AD BC ⊥于D .(图1)则sin ,sin AD ADB C c b==,即AD =c ·sin B ,AD =b ·sin C , 于是c ·sin B= b ·sin C ,即.sin sin b cB C=同理有,sin sin a c A C =.sin sin b aB A =所以.sin sin sin a b cA B C==①即在一个三角形中,各边和它所对角的正弦的比相等. 图1 (1)在锐角三角形中,若已知三个元素,,a b A ∠,运用上述结论①和有关定理就可以求出其余三个未知元素,,c B C ∠∠,第一步:由条件,,a b A ∠−−−−→用关系式___________−−−→求出B ∠; 第二步:由条件,A B ∠∠−−−−→用关系式___________−−−→求出C ∠; 第三步:由条件__________−−−−→用关系式__________−−−→求出c . 图2 (2)如图2,已知=60=756A C a ∠︒∠︒=,,,运用上述结论①试求b.四、解答题(共20分,其中24题6分,25-26题每题7分)24.如图,AC 为⊙O 的直径,AC=4,B 、D 分别在AC 两侧的圆上,∠BAD=60°,BD与AC 的交点为E .(1) 求点O 到BD 的距离及∠OBD 的度数; (2) 若DE=2BE ,求cos OED ∠的值和CD 的长.25.已知抛物线2:(1)1C y x m x =-++的顶点在坐标轴...上. (1)求m 的值;(2)0>m 时,抛物线C 向下平移n (n > 0)个单位后与抛物线C 1:c bx ax y ++=2关于y 轴对称,且1C 过点(n ,3),求C 1的函数关系式; (3)03<<-m 时,抛物线C 的顶点为M ,且过点P (1,y 0)问在直线1-=x 上是否存在一点Q 使得△QPM 的周长最小,如果存在,求出点Q 的坐标, 如果不存在,请说明理由.26.已知平面直角坐标系xOy 中, 抛物线2(1)y ax a x =-+与直线y kx =的一个公共点为(4,8)A .(1)求此抛物线和直线的解析式;(2)若点P 在线段OA 上,过点P 作y 轴的平行线交(1)中抛物线于点Q ,求线段PQ 长度的最大值;(3)记(1)中抛物线的顶点为M ,点N 在此抛物线上,若四边形AOMN 恰好是梯形,求点N 的坐标及梯形AOMN 的面积.(备图1)(备图2)北京十五中 — 学年度第一学期九年级期中考试数学答题纸. 11一、选择. 下面各题均有四个选项,其中只有一个..符合题意.(共32分,每小题4分)二、填空.(共32分.每小题4分)三、解答题. 请在各题的答题区域内作答,超出黑色边框区域的答案无效.(共36分.其中17-22题每题5分;23题6分.)四、解答题(共20分,其中24题6分,25-26题每题7分)。

2015-2016学年度第一学期期中质量检测九年级《数学》试题及答案

2015-2016学年度第一学期期中质量检测九年级《数学》试题及答案

2015—2016学年度第一学期期中质量检测九年级数学试题(时间:120分钟,总分120分)一、选择题(本大题共15个小题,每小题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.).2.如图,反比例函数y =x(x <0)的图象经过点P , 若矩形的面积是6,则k的值为( )A . -6 B . -5C . 6D . 53.如图所示的几何体是由一个圆柱体和一个长方体组成的,则这个几何体的俯视图是( )A .B .C .D .4.若线段AB=1,点C 是AB 的黄金分割点,且AC>BC,则AC=( )A .012=+)(x B .012=-)(x C .212=+)(x D .212=-)(x 6.从2,3,4,中任意选两个数,记作a 和b ,那么点(a ,b )在函数12y x =图象上的概率是( ) A .12B .13C .14D .167.顺次连接矩形ABCD 各边中点,所得四边形必定是( ) A .邻边不等的平行四边形B . 矩形C .菱形D .正方形8.某种品牌运动服经过两次降价,每件零售价由560元降为315元,已知两次降价的百分率相同,求每次降价的百分率.设每次降价的百分率为x ,下面所列的方程中正确的是( ) A .560(1+x )2=315 B .560(1﹣x )2=315C .560(1﹣2x )2=315D .560(1﹣x 2)=3159.某一时刻甲、乙两木杆的影子长分别是2米和3米,已知乙杆的高度是1.5米,则甲杆的高度是( )第2题图BCAE 1 E 2 E 3D 4D 1D 2 D 315题图DCBAM第12题图第14题图A .1B . 2C .3D .410.若点()()(),,,,,112233x y x y x y 都是反比例函数1y x=-图象上的点,并且123y 0y y <<<,则下列各式正确的是 ( )A .123x x x <<B .132x x x <<C .213x x x <<D .231x x x <<11.如图边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S 1和S 2,比较S 1与S 2的大小( ). A .S 1> S 2 B .S 1< S 2 C .S 1= S 2 D .不能确定12.如图,平行四边形ABCD 中,M 是BC 的中点,且AM =9,BD =12,AD =10,则□ABCD 的面积是( )A .30B .36C .54D .7213. 如图,在△ABC 中,AB=6,AC=8,BC=10,P 为边BC 上一动点(且点P 不与点B 、C 重合),PE⊥AB于E ,PF⊥AC 于F .则EF 的最小值为( ) A. 4B. 4.8C. 5.2D. 614.如图,已知A 、B 是反比例函数y = kx(k >0,x >0)图象上的两点,BC∥x 轴,交y 轴于点C .动点P 从坐标原点O 出发,沿O→A→B→C 匀速运动,终点为C .过点P 作PM⊥x 轴,PN⊥y 轴,垂足分别为M 、N .设四边形OMPN 的面积为S ,点P 运动的时间为t ,则S 关于t 的函数图象大致为( )15.已知:如图,在Rt△ABC 中,点D1是斜边AB的中点,过1D 作11D E AC ⊥于E 1,连结1BE 交1CD 于2D ;过2D 作第11题图22D E AC ⊥于2E ,连结2BE 交1CD 于3D ;过3D 作33D E AC ⊥于3E ,…,如此继续,可以依次得到点45D D ,,…,n D ,分别记112233BD E BD E BD E ,,,△△△…,n n BD E △的面积为123S S S ,,,…n S .设△ABC 的面积为1,则n S 为( ).A .14n B .141n +C .21(2)n +D .21(1)n +二、填空题(本大题共6个小题,每小题3分,共的横线上.)16.在平面直角坐标系中,反比例函数 y =3x- 图象的两支分别在 象限17.一个不透明的盒子里装有除颜色外无其他差别的白珠子6颗和黑珠子若干颗,每次随机摸出一颗珠子,放回摇匀后再摸,通过多次试验发现摸到白珠子的频率稳定在0.3左右,则盒子中黑珠子可能有 颗.18.菱形的两条对角线的长是方程x 2-14x+48=0的两根,则菱形的面积是 .19.如图是一位同学设计的用手电筒来测量某古城墙高度的示意图.点P 处放一水平的平面镜,光线从点A 出发经平面镜反射后刚好到古城墙CD 的顶端C 处,已知AB⊥BD,CD⊥BD,测得AB=1米,BP=2米,PD=10米,那么该古城墙的高度CD 是 米.20. 如图,△ABC 中,CD⊥AB 于D ,E 是AC 的中点.若AD=6,DE=5,则CD 的长等于 . 21.如图,在菱形ABCD 和菱形BEFG 中,点A 、B 、E 在同一直线上,P 是线段DF 的中点,连接PG ,P C .若∠ABC =60°,AB=3,BE=1,则PG 的长度= .三、解答题第19题图第20题图第21题图22.解下列一元二次方程(7分):(1) 3x 2x 2=- (3)x 2=2x+1 23.(7分)如图,四边形ABCD 是矩形,把矩形沿对角线AC 折叠,点B 落在点E 处,CE 与AD 相交于点O,(1) 求证:EO=DO ; (2)若∠OCD=30°,求△ACO 的面积;AEOCD第23题24.(8分)如图,一农户要建一个矩形猪舍,猪舍的一边利用长为12m 的住房墙,另外三边用25m 长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m 宽的门,所围矩形猪舍的长、宽分别为多少时,猪舍面积为80m 2?25.(8分)用4张相同的小纸条做成甲、乙、丙、丁4支签,放在一个盒子中,搅匀后先从盒子中任意抽出1支签(不放回),再从剩下的3支签中任意抽出1支签。

北京十五中—学年度第一学期九年级期中试卷

北京十五中—学年度第一学期九年级期中试卷

北京十五中—学年度第一学期九年级期中试卷数 学 .一、选择。

下面各题均有四个选项,其中只有一个..符合题意。

(共分,每小题分) .二次函数2(1)2y x =-+的最小值是( ) .2-.2 .1. 1-.在△中,∠=°,=31,则=( ).23.34.如图,是⊙的直径,弦⊥,垂足为,如果,, 那么线段的长为( ). . . . .下列命题中,正确命题的个数为( )()三点确定一个圆 ()平分弦的直径垂直于这条弦 ()等弧对等弦 ()直径是圆的对称轴 . . . ..已知圆上一段弧长5cm π,它所对的圆心角为o100,则该圆的半径为( ) . . . ..如图,在⊙中,AOB ∠的度数为m C ,是上一点, 、是上不同的两点(不与、两点重合),则 D E ∠+∠的度数为( ) .m.1802m -.902m +.2m第题图 第题图ACBD . 如图,已知EF 是⊙的直径,把A ∠为60的直角三角板ABC 的一条直角边BC 放在直线EF 上,斜边AB 与⊙交于点P ,点B 与点O 重合.将三角板ABC 沿OE 方向平移,使得点B 与点E 重合为止.设POF x ∠=,则x 的取值范围是( ).60120x ≤≤ .3090x ≤≤ .30120x ≤≤ .3060x ≤≤ 二、填空(共分,每小题分).如下图,在正方形网格中,△的位置如图所示,则的值为 . .抛物线14x 2+--=x y 的顶点坐标是 ..已知Δ,,∠°,则Δ的外接圆面积为. . 已知为⊙的直径,弦交于, 则⊙的半径长为 ..抛物线228y x x m =++与x 轴只有一个公共点,则m 的值为 ..如下图,AB 是⊙的直径,CD 是⊙的弦,连接AC AD ,,若35CAB ∠=,则A D C∠的度数为 . .如下图,四边形为菱形,点、在以点为圆心的弧上,,∠∠, 则扇形的面积为 ..如图,设半径为的半圆⊙,直径为,、为半圆上的两点,点是上一动点,若 的度数为 , +的最小值是 .第题图C三、计算题与解答题(共分) .(分)o o o 70sin 20sin 45cos 2)31()2011(222--⋅-+--.(分)如图,在△ABC 中,∠C °,A 54,AB ,求△ABC 的周长和的值..(分)抛物线c bx ax y ++=2的顶点坐标为(),图象又经过点(). 求()抛物线c bx ax y ++=2的解析式.()求抛物线c bx ax y ++=2与一次函数的交点坐标. ()求不等式c bx ax++2>的解集(直接写出答案)..(分)王强在一次高尔夫球的练习中,在某处击球,其飞行路线满足抛物线21855y x x =-+,其中y ()是球的飞行高度,x ()是球飞出的水平距离,结果球离球洞的水平距离还有2m .()请求出球飞行的最大水平距离.()若王强再一次从此处击球,要想让球飞行的最大高度不变且球刚好进洞,则球飞行路线应满足怎样的抛物线,求出其解析式. .(分).的外接圆半径ABC 求,12,10,∆===∆BC AC AB ABC班级 姓名 学号 成绩 . (分)如图,已知⊙直径为,点为弧的中点,弦、交于点, ∠°,求弦的长. .(分)如图,已知、、、均在已知圆上,‖,平分∠,∠=120︒,四边形周长为. ()求此圆的半径;()求圆中阴影部分的面积.. (分)阅读材料,解答问题:命题:如图,在锐角△中,,Δ的外接圆半径为, 第题图 第题图BA则===CcB b A a sin sin sin . 证明:连结并延长交⊙于点,连结,则∠=∠,因为是⊙的直径,所以∠=,在△中,R a DC BC 2=,所以R a 2,即R A a 2sin =,同理:R C cR B b 2sin ,2sin ==, ∴===CcB b A a sin sin sin . 请阅读前面所给的命题和证明后,完成下面()()两题: ()前面阅读材料中省略了“RC c R B b 2sin ,2sin ==”的证明过程,请你把“R Bb2sin =”的证明过程补写出来.()直接运用阅读材料中命题的结论解题:已知锐角△中, =3,=2,∠=,求△的外接圆半径 及∠.(11)C ,为圆心,以为半径作圆,交x 轴于A B ,A B ,,且其顶点P 在⊙上.()试确定此抛物线的解析式;()在该抛物线上是否存在一点D ,使线段OP 与CD 互相平分?若存在,求出点D 的坐标;若不存在,请说明理由..(分)如图,在半径为的半圆⊙中,半径⊥直径,点、分别在弦、上滑动并保持=,但点不与、重合,点不与、重合.()求证 四边形=221r ;()设=,△=,写出与之间的函数关系式及自变量的范围;()当△ 185△时,求点、分别在、上的位置及的长。

北京市十五中九年级数学上学期期中试卷(含解析) 新人教版-新人教版初中九年级全册数学试题

北京市十五中九年级数学上学期期中试卷(含解析) 新人教版-新人教版初中九年级全册数学试题

2015-2016学年十五中九年级(上)期中数学试卷一、选择题1.二次函数y=﹣(x+1)2﹣2的最大值是()A.﹣2 B.﹣1 C.1 D.22.把抛物线y=2x2先向左平移3个单位,再向上平移4个单位,所得抛物线的函数表达式为()A.y=2(x+3)2+4 B.y=2(x+3)2﹣4 C.y=2(x﹣3)2﹣4 D.y=2(x﹣3)2+43.在Rt△ABC中,∠C=90°,若BC=1,AB=,则tanA的值为()A.B.C.D.24.如图,四边形ABCD内接于⊙O,E为CD延长线上一点,如果∠ADE=120°,那么∠B等于()A.130°B.120°C.80° D.60°5.如图,在Rt△ABC中,∠ACB=90°,AC=12,BC=5,CD⊥AB于点D,那么sin∠BCD的值是()A.B.C.D.6.已知二次函数y=2(x+1)(x﹣a),其中a>0,且对称轴为直线x=2,则a的值是()A.3 B.5 C.7 D.不确定7.如图,⊙O的直径AB垂直于弦CD,垂足为E,∠A=22.5°,OC=4,CD的长为()A.2 B.4 C.4 D.88.二次函数y=ax2+bx+c的部分图象如图所示,则下列结论中正确的是()A.a>0B.不等式ax2+bx+c>0的解集是﹣1<x<5C.a﹣b+c>0D.当x>2时,y随x的增大而增大9.设二次函数y1=a(x﹣x1)(x﹣x2)(a≠0,x1≠x2)的图象与一次函数y2=dx+e(d≠0)的图象交于点(x1,0),若函数y=y1+y2的图象与x轴仅有一个交点,则()A.a(x1﹣x2)=d B.a(x2﹣x1)=d C.a(x1﹣x2)2=d D.a(x1+x2)2=d10.如图,点P是以O为圆心,AB为直径的半圆上的动点,AB=2.设弦AP的长为x,△APO的面积为y,则下列图象中,能表示y与x的函数关系的图象大致是()A.B.C.D.二、填空题11.比较大小:cos27°cos63°.12.关于x的二次函数y=x2﹣kx+k﹣2的图象与y轴的交点在x轴的上方,请写出一个满足条件的二次函数的表达式:.13.如图,边长为1的小正方形网格中,⊙O的圆心在格点上,则∠AED的余弦值是.14.如图,经过原点O的⊙P与x、y轴分别交于A、B两点,点C是劣弧上一点,则∠ACB=.15.课本上将绳的一端固定住,另一端系一支笔,将绳子绷直,用笔绕着另一端画一圈就是一个圆,于是我们定义:圆是由到一定点距离都等于定长的所有的点组成的图形.下面是一种画椭圆的方法:(1)在地平面上选两个点,钉上两个钉子;(2)测量两个钉子间距离;(3)选用大于两钉子间距离长度的绳子;(4)将绳子两端分别系在钉子上;(5)将绳子绷直,用笔在绷直的拐角地方划线;(6)将绳子绕一圈,椭圆就得到啦!(如图所示)根据这个过程请你给椭圆下一个定义:.16.如图,在平面直角坐标系xOy中,四边形ABOC是正方形,点A的坐标为(1,1).B是以点B 为圆心,BA为半径的圆弧;O是以点O为圆心,OA1为半径的圆弧,C是以点C为圆心,CA2为半径的圆弧,A是以点A为圆心,AA3为半径的圆弧,继续以点B、O、C、A为圆心按上述作法得到的曲线AA1A2A3A4A5…称为“正方形的渐开线”,那么点A5的坐标是,点A2015的坐标是.三、解答题(第17~26题,每题5分,第27题7分,第28题7分,第29题8分.本题共72分)17.计算:sin60°﹣4cos230°+sin45°•tan60°.18.在△ABC中,∠A=120°,AB=12,AC=6.求tanB的值.19.已知二次函数y=x2﹣4x+3.(1)该函数的顶点坐标是,与x轴的交点坐标是;(2)在平面直角坐标系中,用描点法画出该二次函数的图象;(3)根据图象回答:当0≤x<3时,y的取值X围是.20.某工厂生产的某种产品按质量分为10个档次,据调查显示,每个档次的日产量及相应的单件利润如表所示(其中x为正整数,且1≤x≤10);质量档次 1 2 ... x (10)日产量(件) 95 90 ... 100﹣5x (50)单件利润(万元) 6 8 ... 2x+4 (24)为了便于调控,此工厂每天只生产一个档次的产品,当生产质量档次为x的产品时,当天的利润为y万元.(1)求y关于x的函数关系式;(2)工厂为获得最大利润,应选择生产哪个档次的产品?并求出当天利润的最大值.21.如图,在Rt△ABC中,∠C=90°,点D在AC边上.若DB=6,AD=CD,sin∠CBD=,求AD的长和tanA的值.22.国家海洋局将中国钓鱼岛最高峰命名为“高华峰”,并对钓鱼岛进行常态化立体巡航.如图1,在一次巡航过程中,巡航飞机飞行高度为2001米,在点A测得高华峰顶F点的俯角为30°,保持方向不变前进1200米到达B点后测得F点俯角为45°,如图2.请据此计算钓鱼岛的最高海拔高度多少米.(结果保留整数,参考数值: =1.732, =1.414)23.我们知道,已知圆心和半径,可以作一个圆.不难理解,经过一个已知点A作圆,能作出无数个.回答下列问题:(1)经过两个已知点A,B作圆,能作出圆个,圆心分布在;(2)如图,已知不共线的三点A,B,C,能作出圆个,请你利用尺规作图,确定圆心O的可能的位置.(要求保留作图痕迹,不写作法)24.如图,AB是⊙O的直径,过点B作BM⊥AB,弦CD∥BM,交AB于点F,且DA=DC,连接AC,AD,延长AD交BM于点E.(1)求证:△ACD是等边三角形;(2)若DE=1,求圆O的半径.25.设函数y=(x﹣1)[(k﹣1)x+(k﹣3)](k是常数).(1)当k取1和2时的函数y1和y2的图象如图所示,请你在同一直角坐标系中画出当k取0时函数的图象;(2)根据图象,写出你发现的一条结论.26.阅读下面材料:小乔遇到了这样一个问题:如图1,在Rt△ABC中,∠C=90°,D,E分别为CB,CA边上的点,且AE=BC,BD=CE,BE与AD的交点为P,求∠APE的度数;小乔发现题目中的条件分散,想通过平移变换将分散条件集中,如图2,过点B作BF∥AD且BF=AD,连接EF,AF,从而构造出△AEF与△CBE全等,经过推理和计算能够使问题得到解决(如图2).请回答:∠APE的度数为.参考小乔同学思考问题的方法,解决问题:如图3,AB为⊙O的直径,点C在⊙O上,D、E分别为CB,CA上的点,且AE=BC,BD=,BE 与AD交于点P,在图3中画出符合题意的图形,并求出sin∠APE的值.27.已知在平面直角坐标系xOy中(如图),抛物线y=ax2﹣4与x轴的负半轴相交于点A,与y轴相交于点B,AB=.点P在抛物线上,线段AP与y轴的正半轴交于点C,线段BP与x轴相交于点D.设点P的横坐标为m.(1)求这条抛物线的解析式;(2)用含m的代数式表示线段CO的长;(3)如果把A、B之间的抛物线(包含A、B两点)图象记为G,直线l:y=﹣x+b与图象G只有一个公共点,求b的值.28.设点Q到图形W上每一个点的距离的最小值称为点Q到图形W的距离.例如正方形ABCD满足A (1,0),B(2,0),C(2,1),D(1,1),那么点O(0,0)到正方形ABCD的距离为1.(1)如果⊙P是以(3,4)为圆心,1为半径的圆,那么点O(0,0)到⊙P的距离为;(2)①求点M(3,0)到直线y=2x+1的距离;②如果点N(0,a)到直线y=2x+1的距离为3,那么a的值是;(3)如果点G(0,b)到抛物线y=x2的距离为3,请直接写出b的值.29.在平面直角坐标系xOy中,直线y=2x+2与x轴,y轴分别交于点A,B,抛物线y=ax2+bx﹣经过点A和点C(4,0).(1)求该抛物线的表达式.(2)连接CB,并延长CB至点D,使DB=CB,请判断点D是否在该抛物线上,并说明理由.(3)在(2)的条件下,过点C作x轴的垂线EC与直线y=2x+2交于点E,以DE为直径画⊙M,①求圆心M的坐标;②若直线AP与⊙M相切,P为切点,直接写出点P的坐标.2015-2016学年十五中九年级(上)期中数学试卷参考答案与试题解析一、选择题1.二次函数y=﹣(x+1)2﹣2的最大值是()A.﹣2 B.﹣1 C.1 D.2【考点】二次函数的最值.【分析】所给形式是二次函数的顶点式,易知其顶点坐标是(﹣1,﹣2),也就是当x=﹣1,函数有最大值﹣2.【解答】解:∵y=﹣(x+1)2﹣2,∴此函数的顶点坐标是(﹣1,﹣2),即当x=﹣1函数有最大值﹣2故选:A.【点评】本题考查了二次函数的最值,解题关键是掌握二次函数顶点式,并会根据顶点式求最值.2.把抛物线y=2x2先向左平移3个单位,再向上平移4个单位,所得抛物线的函数表达式为()A.y=2(x+3)2+4 B.y=2(x+3)2﹣4 C.y=2(x﹣3)2﹣4 D.y=2(x﹣3)2+4【考点】二次函数图象与几何变换.【专题】计算题.【分析】抛物线y=2x2的顶点坐标为(0,0),则把它向左平移3个单位,再向上平移4个单位,所得抛物线的顶点坐标为(﹣3,4),然后根据顶点式写出解析式.【解答】解:把抛物线y=2x2先向左平移3个单位,再向上平移4个单位,所得抛物线的函数解析式为y=2(x+3)2+4.故选A.【点评】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.3.在Rt△ABC中,∠C=90°,若BC=1,AB=,则tanA的值为()A.B.C.D.2【考点】解直角三角形;勾股定理;锐角三角函数的定义.【分析】首先根据勾股定理求得直角边AC的长度;然后由锐角三角函数的定义求得tanA的值.【解答】解:∵Rt△ABC中,∠C=90°,若BC=1,AB=,∴AC==2;∴tanA==;故选C.【点评】本题综合考查了解直角三角形、锐角三角函数的定义、勾股定理.掌握相应的锐角三角函数值的求法是解决本题的关键.4.如图,四边形ABCD内接于⊙O,E为CD延长线上一点,如果∠ADE=120°,那么∠B等于()A.130°B.120°C.80° D.60°【考点】圆内接四边形的性质.【分析】由四边形ABCD内接于⊙O,可得∠B+∠ADC=180°,又由∠ADC+∠ADE=180°,即可求得∠B=∠ADE=120°.【解答】解:∵∠ADC+∠ADE=180°,∠B+∠ADC=180°,∴∠B=∠ADE=120°.故选B.【点评】此题考查了圆的内接多边形的性质.此题比较简单,注意掌握数形结合思想的应用.5.如图,在Rt△ABC中,∠ACB=90°,AC=12,BC=5,CD⊥AB于点D,那么sin∠BCD的值是()A.B.C.D.【考点】锐角三角函数的定义;勾股定理.【分析】首先在Rt△ABC中利用勾股定理求出AB,再根据同角的余角相等得出∠A=∠BCD,进而利用锐角三角函数关系即可求出sin∠BCD的值.【解答】解:在Rt△ABC中,∵∠ACB=90°,AC=12,BC=5,∴AB==13,.∵∠ACB=90°,CD⊥AB,∴∠BCD+∠B=90°,∠A+∠B=90°,∴∠A=∠BCD,∴sin∠BCD=sinA==.故选B.【点评】此题主要考查了锐角三角函数关系的定义,得出sin∠BCD=sinA是解题关键.6.已知二次函数y=2(x+1)(x﹣a),其中a>0,且对称轴为直线x=2,则a的值是()A.3 B.5 C.7 D.不确定【考点】二次函数的性质.【分析】根据二次函数y=2(x+1)(x﹣a),得出二次函数图象与x轴的交点坐标为(﹣1,0),(a,0),则对称轴为x==2,进一步求得a的数值即可.【解答】解:∵二次函数y=2(x+1)(x﹣a)与x轴的交点坐标为(﹣1,0),(a,0),∴对称轴x==2,解得:x=5.故选:B.【点评】此题考查二次函数的性质,掌握二次函数的对称性、求对称轴的方法以及求与x轴交点的坐标是解决问题的关键.7.如图,⊙O的直径AB垂直于弦CD,垂足为E,∠A=22.5°,OC=4,CD的长为()A.2 B.4 C.4 D.8【考点】垂径定理;等腰直角三角形;圆周角定理.【分析】根据圆周角定理得∠BOC=2∠A=45°,由于⊙O的直径AB垂直于弦CD,根据垂径定理得CE=DE,且可判断△OCE为等腰直角三角形,所以CE=OC=2,然后利用CD=2CE进行计算.【解答】解:∵∠A=22.5°,∴∠BOC=2∠A=45°,∵⊙O的直径AB垂直于弦CD,∴CE=DE,△OCE为等腰直角三角形,∴CE=OC=2,∴CD=2CE=4.故选:C.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了等腰直角三角形的性质和垂径定理.8.二次函数y=ax2+bx+c的部分图象如图所示,则下列结论中正确的是()A.a>0B.不等式ax2+bx+c>0的解集是﹣1<x<5C.a﹣b+c>0D.当x>2时,y随x的增大而增大【考点】二次函数图象与系数的关系;二次函数与不等式(组).【分析】根据图象开口方向向下得出a的符号,进而利用图象的对称轴得出图象与x轴的交点坐标,再利用图象得出不等式ax2+bx+c>0的解集.【解答】解:A、图象开口方向向下,则a<0,故此选项错误;B、∵图象对称轴为直线x=2,则图象与x轴另一交点坐标为:(﹣1,0),∴不等式ax2+bx+c>0的解集是﹣1<x<5,故此选项正确;C、当x=﹣1,a﹣b+c=0,故此选项错误;D、当x>2时,y随x的增大而减小,故此选项错误.故选:B.【点评】此题主要考查了二次函数图象与系数的关系以及二次函数与不等式的解集,利用数形结合得出是解题关键.9.设二次函数y1=a(x﹣x1)(x﹣x2)(a≠0,x1≠x2)的图象与一次函数y2=dx+e(d≠0)的图象交于点(x1,0),若函数y=y1+y2的图象与x轴仅有一个交点,则()A.a(x1﹣x2)=d B.a(x2﹣x1)=d C.a(x1﹣x2)2=d D.a(x1+x2)2=d【考点】抛物线与x轴的交点.【专题】压轴题.【分析】首先根据一次函数y2=dx+e(d≠0)的图象经过点(x1,0),可得y2=d(x﹣x1),y=y1+y2=ax2+(d﹣ax2﹣ax1)x+ax1x2﹣dx1;然后根据函数y=y1+y2的图象与x轴仅有一个交点,可得函数y=y1+y2与x轴的交点为(x1,0),再结合对称轴公式求解.【解答】解:∵一次函数y2=dx+e(d≠0)的图象经过点(x1,0),∴dx1+e=0,∴y2=d(x﹣x1),∴y=y1+y2=a(x﹣x1)(x﹣x2)+d(x﹣x1)=ax2﹣axx2﹣ax1x+ax1x2+dx﹣dx1=ax2+(d﹣ax2﹣ax1)x+ax1x2﹣dx1∵当x=x1时,y1=0,y2=0,∴当x=x1时,y=y1+y2=0,∵y=ax2+(d﹣ax2﹣ax1)x+ax1x2﹣dx1与x轴仅有一个交点,∴y=y1+y2的图象与x轴的交点为(x1,0)∴=x1,化简得:a(x2﹣x1)=d故选:B.【点评】此题主要考查了抛物线与x轴的交点问题,以及曲线上点的坐标与方程的关系,要熟练掌握,解答此题的关键是判断出:函数y=y1+y2与x轴的交点为(x1,0).10.如图,点P是以O为圆心,AB为直径的半圆上的动点,AB=2.设弦AP的长为x,△APO的面积为y,则下列图象中,能表示y与x的函数关系的图象大致是()A.B.C.D.【考点】动点问题的函数图象.【专题】压轴题.【分析】作OC⊥AP,根据垂径定理得AC=AP=x,再根据勾股定理可计算出OC=,然后根据三角形面积公式得到y=x•(0≤x≤2),再根据解析式对四个图形进行判断.【解答】解:作OC⊥AP,如图,则AC=AP=x,在Rt△AOC中,OA=1,OC===,所以y=OC•AP=x•(0≤x≤2),所以y与x的函数关系的图象为A选项.故选:A.排除法:很显然,并非二次函数,排除B选项;采用特殊位置法;当P点与A点重合时,此时AP=x=0,S△PAO=0;当P点与B点重合时,此时AP=x=2,S△PAO=0;当AP=x=1时,此时△APO为等边三角形,S△PAO=;排除B、C、D选项,故选:A.【点评】本题考查了动点问题的函数图象:先根据几何性质得到与动点有关的两变量之间的函数关系,然后利用函数解析式和函数性质画出其函数图象,注意自变量的取值X围.二、填空题11.比较大小:cos27°>cos63°.【考点】锐角三角函数的增减性.【分析】根据余弦函数随锐角的增大而减小,可得答案.【解答】解:由余弦函数随锐角的增大而减小,得cos27°>cos63°,故答案为>.【点评】本题考查了锐角三角函数的增加性,利用余弦函数随锐角的增大而减小是解题关键.12.关于x的二次函数y=x2﹣kx+k﹣2的图象与y轴的交点在x轴的上方,请写出一个满足条件的二次函数的表达式:y=x2﹣3x+1答案不唯一.【考点】二次函数的性质.【专题】开放型.【分析】与y轴的交点在x轴的上方即常数项大于0,据此求解.【解答】解:∵关于x的二次函数y=x2﹣kx+k﹣2的图象与y轴的交点在x轴的上方,∴k﹣2>0,解得:k>2,∴答案为:y=x2﹣3x+1答案不唯一.【点评】本题考查了二次函数的性质,解题的关键是了解与y轴的交点在x轴的上方即常数项大于0.13.如图,边长为1的小正方形网格中,⊙O的圆心在格点上,则∠AED的余弦值是.【考点】圆周角定理;勾股定理;锐角三角函数的定义.【专题】网格型.【分析】根据同弧所对的圆周角相等得到∠ABC=∠AED,在直角三角形ABC中,利用锐角三角函数定义求出cos∠ABC的值,即为cos∠AED的值.【解答】解:∵∠AED与∠ABC都对,∴∠AED=∠ABC,在Rt△ABC中,AB=2,AC=1,根据勾股定理得:BC=,则cos∠AED=cos∠ABC==.故答案为:【点评】此题考查了圆周角定理,锐角三角函数定义,以及勾股定理,熟练掌握圆周角定理是解本题的关键.14.如图,经过原点O的⊙P与x、y轴分别交于A、B两点,点C是劣弧上一点,则∠ACB= 90°.【考点】圆周角定理;坐标与图形性质.【分析】由经过原点O的⊙P与x、y轴分别交于A、B两点,点C是劣弧上一点,根据在同圆或等圆中,同弧或等弧所对的圆周角相等,即可求得答案.【解答】解:∵∠AOB=90°,∴∠ACB=∠AOB=90°.故答案为:90°.【点评】此题考查了圆周角的性质.注意在同圆或等圆中,同弧或等弧所对的圆周角相等.15.课本上将绳的一端固定住,另一端系一支笔,将绳子绷直,用笔绕着另一端画一圈就是一个圆,于是我们定义:圆是由到一定点距离都等于定长的所有的点组成的图形.下面是一种画椭圆的方法:(1)在地平面上选两个点,钉上两个钉子;(2)测量两个钉子间距离;(3)选用大于两钉子间距离长度的绳子;(4)将绳子两端分别系在钉子上;(5)将绳子绷直,用笔在绷直的拐角地方划线;(6)将绳子绕一圈,椭圆就得到啦!(如图所示)根据这个过程请你给椭圆下一个定义:平面内与两个定点的距离的和等于常数(大于两定点的距离)的点的轨迹.【考点】圆的认识.【分析】根据椭圆的定义,可得答案.【解答】解:椭圆下一个定义:平面内与两个定点的距离的和等于常数(大于两定点的距离)的点的轨迹,故答案为:平面内与两个定点的距离的和等于常数(大于两定点的距离)的点的轨迹.【点评】本题考查了圆的认识,利用椭圆的画法获得有效信息是解题关键.16.如图,在平面直角坐标系xOy中,四边形ABOC是正方形,点A的坐标为(1,1).B是以点B 为圆心,BA为半径的圆弧;O是以点O为圆心,OA1为半径的圆弧,C是以点C为圆心,CA2为半径的圆弧,A是以点A为圆心,AA3为半径的圆弧,继续以点B、O、C、A为圆心按上述作法得到的曲线AA1A2A3A4A5…称为“正方形的渐开线”,那么点A5的坐标是(6,0),点A2015的坐标是(﹣2015,1).【考点】规律型:点的坐标.【分析】点A的坐标为(1,1),则BA1=1,A1坐标为(2,0),依此类推,A2(0,﹣2),A3(﹣3,1),A4(1,5),A5是以B为圆心,BA4为半径的圆弧与x轴的交点,则A5(6,0),2015÷4=503…3,A2015应与A3(﹣3,1)的坐标规律一样,故A2015(﹣2015,1).【解答】解:∵点A的坐标为(1,1),四边形ABOC是正方形,BA1=1,∴A1坐标为(2,0),∵O是以点O为圆心,OA1为半径的圆弧,∴A2(0,﹣2),∵C是以点C为圆心,CA2为半径的圆弧,∴A3(﹣3,1),∵A是以点A为圆心,AA3为半径的圆弧,∴A4(1,5),依此类推,A5是以B为圆心,BA4为半径的圆弧与x轴的交点,则A5(6,0),A5(6,0)与A1(2,0)坐标规律相同,∵2015÷4=503…3,∴A2015应与A3(﹣3,1)的坐标规律一样,故A2015(﹣2015,1).故答案为:(6,0),(﹣2015,1).【点评】本题主要考查了点的坐标的变化规律和对“正方形的渐开线”的理解,发现规律,理解“正方形的渐开线”是解答此题的关键.三、解答题(第17~26题,每题5分,第27题7分,第28题7分,第29题8分.本题共72分)17.计算:sin60°﹣4cos230°+sin45°•tan60°.【考点】特殊角的三角函数值.【分析】将特殊角的三角函数值代入,然后合并运算即可.【解答】解:原式=×﹣4×()2+×=﹣3+=.【点评】本题考查了特殊角的三角函数值,属于基础题,一些特殊角的三角函数值是要求同学们熟练记忆的内容.18.在△ABC中,∠A=120°,AB=12,AC=6.求tanB的值.【考点】解直角三角形.【分析】过点C作CD⊥AB,根据∠A=120°,∠DAC=60°,由三角函数得出AD,CD,在Rt△BCD中,∠B的正切即可得出答案.【解答】解:过点C作CD⊥AB,交BA的延长线于点D,∴∠A=120°,∴∠DAC=60°,∴cos60°=,sin60°=,∵AB=12,AC=6,∴AD=AC•cos60°=6×=3,CD=AC•sin60°=6×=3,在Rt△BCD中,tanB===.【点评】本题考查了解直角三角形,解直角三角形的关键是把给出的这些三角形的条件放到直角三角形中,如果不是直角三角形就要通过添加辅助线来完成.19.已知二次函数y=x2﹣4x+3.(1)该函数的顶点坐标是(2,﹣1),与x轴的交点坐标是(1,0),(3,0);(2)在平面直角坐标系中,用描点法画出该二次函数的图象;(3)根据图象回答:当0≤x<3时,y的取值X围是﹣1≤y≤3 .【考点】二次函数与不等式(组);二次函数的图象;二次函数的性质.【分析】(1)把函数解析式整理成顶点式形式,然后写出顶点坐标即可,再令y=0,解关于x的一元二次方程即可得到与x轴的交点坐标;(2)根据二次函数与坐标轴的交点和顶点坐标作出图象即可;(3)根据函数图象写出y的取值X围即可.【解答】解:(1)∵y=x2﹣4x+3=(x﹣2)2﹣1,∴顶点坐标为(2,﹣1),令y=0,则x2﹣4x+3=0,解得x1=1,x2=3,所以,与x轴的交点坐标是(1,0),(3,0);(2)如图所示;(3)0≤x<3时,y的取值X围是﹣1≤y≤3.故答案为:(1)(2,﹣1),(1,0),(3,0);(3)﹣1≤y≤3.【点评】本题考查了二次函数与不等式的关系,抛物线与x轴的交点问题,二次函数的性质,熟练掌握二次函数的性质以及函数图象的作法是解题的关键.20.某工厂生产的某种产品按质量分为10个档次,据调查显示,每个档次的日产量及相应的单件利润如表所示(其中x为正整数,且1≤x≤10);质量档次 1 2 ... x (10)日产量(件) 95 90 ... 100﹣5x (50)单件利润(万元) 6 8 ... 2x+4 (24)为了便于调控,此工厂每天只生产一个档次的产品,当生产质量档次为x的产品时,当天的利润为y万元.(1)求y关于x的函数关系式;(2)工厂为获得最大利润,应选择生产哪个档次的产品?并求出当天利润的最大值.【考点】二次函数的应用.【分析】(1)根据总利润=单件利润×销售量就可以得出y与x之间的函数关系式;(2)由(1)的解析式转化为顶点式,由二次函数的性质就可以求出结论.【解答】解:(1)由题意,得y=(100﹣5x)(2x+4),y=﹣10x2+180x+400(1≤x≤10的整数);答:y关于x的函数关系式为y=﹣10x2+180x+400;(2)∵y=﹣10x2+180x+400,∴y=﹣10(x﹣9)2+1210.∵1≤x≤10的整数,∴x=9时,y最大=1210.答:工厂为获得最大利润,应选择生产9档次的产品,当天利润的最大值为1210万元.【点评】本题考查了总利润=单件利润×销售量的运用,二次函数的解析式的运用,顶点式的运用,解答时求出函数的解析式是关键.21.如图,在Rt△ABC中,∠C=90°,点D在AC边上.若DB=6,AD=CD,sin∠CBD=,求AD的长和tanA的值.【考点】解直角三角形;勾股定理.【分析】在Rt△DBC中利用三角函数即可求得CD的长,然后利用勾股定理即可求得BC的长,则AD 即可求得,进而求得AC的长,然后利用三角函数的定义即可求解.【解答】解:∵∠C=90°,sin∠CBD=,DB=6,∴CD=DB•sin∠CBD=6×=4.∴AD=CD=×4=2.∵CB===2,AC=AD+CD=2+4=6,在Rt△ABC中,∠C=90°,∴tanA===.【点评】本题考查了解直角三角形中三角函数的应用,要熟练掌握好边角之间的关系.22.国家海洋局将中国钓鱼岛最高峰命名为“高华峰”,并对钓鱼岛进行常态化立体巡航.如图1,在一次巡航过程中,巡航飞机飞行高度为2001米,在点A测得高华峰顶F点的俯角为30°,保持方向不变前进1200米到达B点后测得F点俯角为45°,如图2.请据此计算钓鱼岛的最高海拔高度多少米.(结果保留整数,参考数值: =1.732, =1.414)【考点】解直角三角形的应用-仰角俯角问题.【分析】设CF=x,在Rt△ACF和Rt△BCF中,分别用CF表示AC、BC的长度,然后根据AC﹣BC=1200,求得x的值,用h﹣x即可求得最高海拔.【解答】解:设CF=x,在Rt△ACF和Rt△BCF中,∵∠BAF=30°,∠CBF=45°,∴BC=CF=x,=tan30°,即AC=x,∵AC﹣BC=1200米,∴x﹣x=1200,解得:x=600(+1),则DF=h﹣x=2001﹣600(+1)≈362(米).答:钓鱼岛的最高海拔高度约362米.【点评】本题考查了解直角三角形的应用,解答本题的关键是根据俯角构造直角三角形求出AC、BC 的长度,难度一般.23.我们知道,已知圆心和半径,可以作一个圆.不难理解,经过一个已知点A作圆,能作出无数个.回答下列问题:(1)经过两个已知点A,B作圆,能作出圆无数个个,圆心分布在线段AB的垂直平分线上;(2)如图,已知不共线的三点A,B,C,能作出圆 1 个,请你利用尺规作图,确定圆心O的可能的位置.(要求保留作图痕迹,不写作法)【考点】作图—应用与设计作图;圆的认识.【分析】(1)根据圆的定义,垂直平分线的性质即可得到答案.(2)画出线段AB、BC的垂直平分线的交点就是圆心点O.【解答】解:(1)经过两个已知点A,B作圆,能作出无数个圆个,圆心在线段AB的垂直平分线上.故答案分别为无数个、线段AB的垂直平分线上.(2)过不在同一直线上的三点可以确定一个圆.故答案为1.作线段AB的垂直平分线MN,作线段BC的垂直平分线EF,直线MN与直线EF的交点就是圆心点O的位置.(见下图)【点评】本题考查圆的有关性质,确定圆有两个要素①圆心②半径,通过训练此题可以培养动手能力.24.如图,AB是⊙O的直径,过点B作BM⊥AB,弦CD∥BM,交AB于点F,且DA=DC,连接AC,AD,延长AD交BM于点E.(1)求证:△ACD是等边三角形;(2)若DE=1,求圆O的半径.【考点】相似三角形的判定与性质;等边三角形的判定;圆周角定理.【分析】(1)由BM⊥AB,CD∥BM,得到CD⊥AB,而AB是⊙O的直径,根据垂径定理得到=,于是得到AD=AC,然后根据已知DA=DC,得出AD=AC=CD,即可证明△ACD是等边三角形;(2)连接OE,过O作ON⊥AD于N,由(1)知,△ACD是等边三角形,得到∠DAC=60°又直角三角形的性质得到BE=AE,ON=AO,设⊙O的半径为r,则ON=r,AN=DN=r,由于得到EN=1+r,BE=AE=,在Rt△ONE与Rt△BEO中,由勾股定理列方程即可求解.【解答】(1)证明:∵BM⊥AB,CD∥BM,∴AB⊥CD,∵AB是⊙O的直径,∴=,∴AD=AC,∵DA=DC,∴AD=AC=CD,∴△ACD是等边三角形;(2)解:连接OE,过O作ON⊥AD于N,由(1)知,△ACD是等边三角形,∴∠DAC=60°.∵AD=AC,CD⊥AB,∴∠DAB=30°,∴BE=AE,ON=AO,设⊙O的半径为r,∴ON=r,AN=DN=r,∴EN=1+r,BE=AE=.在Rt△ONE与Rt△BEO中,OE2=ON2+NE2=OB2+BE2,即(r)2+(1+r)2=r2+()2,解得r1=,r2=﹣(不合题意舍去).故圆O的半径为.【点评】本题考查了切线的性质,垂径定理,等边三角形的判定,直角三角形的性质,勾股定理,过O作ON⊥AD于N,构造直角三角形是解题的关键.25.设函数y=(x﹣1)[(k﹣1)x+(k﹣3)](k是常数).(1)当k取1和2时的函数y1和y2的图象如图所示,请你在同一直角坐标系中画出当k取0时函数的图象;(2)根据图象,写出你发现的一条结论函数图象都经过点(1,0)和(﹣1,4)(答案不唯一).【考点】二次函数与不等式(组).【分析】(1)把k=0代入函数解析式即可得到所求的函数解析式,根据函数解析式作出图象;(2)根据函数图象回答问题.【解答】解:(1)当k=0时,y=﹣(x﹣1)(x+3),所画函数图象如图所示:(2)根据图象知,函数图象都经过点(1,0)和(﹣1,4)故答案为:函数图象都经过点(1,0)和(﹣1,4)(答案不唯一).故答案为:函数图象都经过点(1,0)和(﹣1,4)(答案不唯一).【点评】本题考查的是二次函数与不等式,能根据题意画出函数图象,利用数形结合求出不等式的解集是解答此题的关键.26.阅读下面材料:小乔遇到了这样一个问题:如图1,在Rt△ABC中,∠C=90°,D,E分别为CB,CA边上的点,且AE=BC,BD=CE,BE与AD的交点为P,求∠APE的度数;小乔发现题目中的条件分散,想通过平移变换将分散条件集中,如图2,过点B作BF∥AD且BF=AD,连接EF,AF,从而构造出△AEF与△CBE全等,经过推理和计算能够使问题得到解决(如图2).请回答:∠APE的度数为45°.参考小乔同学思考问题的方法,解决问题:如图3,AB为⊙O的直径,点C在⊙O上,D、E分别为CB,CA上的点,且AE=BC,BD=,BE 与AD交于点P,在图3中画出符合题意的图形,并求出sin∠APE的值.【考点】圆的综合题.【分析】(1)利用平行四边形的判定与性质得出AF=BD,进而得出△AEF≌△CBE(SAS),即可得出:∠APE的度数;(2)根据题意首先得出△AEF∽△CBE,进而得出tan∠FBE==,即可求出sin∠APE的值.【解答】解:(1)如图2,过点B作BF∥AD且BF=AD,连接EF,AF,∵BF∥AD且BF=AD,∴四边形AFBD是平行四边形,∴AF=BD,在△AEF和△CBE中∵,∴△AEF≌△CBE(SAS),∴EF=BE,∠AEF+∠CEB=90°,∴∠EBF=45°,∵AD∥BF,∴∠APE=45°;。

北京市第十五中学2023--2024学年九年级上学期期中数学试题

北京市第十五中学2023--2024学年九年级上学期期中数学试题

北京市第十五中学2023--2024学年九年级上学期期中数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.剪纸艺术是最古老的中国民间艺术之一,先后入选中国国家级非物质文化遗产名录和人类非物质文化遗产代表作名录.以下剪纸中,为中心对称图形的是()A .B .C .D .2.在平面直角坐标系中,将抛物线2y x =向右平移2个单位长度,向上平移1个单位长度,得到抛物线()A .22()1y x =-+B .2(2)1y x =--C .2(2)1y x =+-D .2(2)1y x =++3.把一元二次方程2410x x --=配方后,下列变形正确的是()A .2(2)5x -=B .2(2)3x -=C .2(4)5x -=D .2(4)3x -=4.在如图4×4的正方形网格中,△MNP 绕某点旋转一定的角度,得到△M 1N 1P 1,则其旋转中心可能是()A .点AB .点BC .点CD .点D5.如图,点A ,B ,C ,D 在O 上,40DAB ∠=︒,则DCB ∠的度数为()A .80︒B .100︒C .140︒D .160︒6.关于x 的一元二次方程22(1)10a x x a -++-=的一个根是0,则a 的值为()A .1B .-1C .1或-1D .07.某厂家2020年1~5月份的口罩产量统计如图所示.设从2月份到4月份,该厂家口罩产量的平均月增长率为x ,根据题意可得方程()A .180(1﹣x )2=461B .180(1+x )2=461C .368(1﹣x )2=442D .368(1+x )2=4428.运动员将足球沿与地面成一定角度的方向踢出,足球飞行的路线可以看作是一条抛物线,不考虑空气阻力,足球距离地面的高度y (单位:m )与足球被踢出后经过的时间x (单位:s )近似满足函数关系()20y ax bx c a =++≠.如图记录了3个时刻的数据,根据函数模型和所给数据,可推断出足球飞行到最高点时,最接近的时刻x 是()A .4B .4.5C .5D .6二、填空题11.如果二次函数y =13.直角三角形的两条直角边分别为14.如图,舞台地面上有一段以点上.于是他想:只要从点中点C ,老师肯定了他的想法.这位同学确定点15.如图,在等腰ABC 中,A ∠到CDE ,当点A 的对应点D 落在三、解答题17.解方程:2450x x --=18.小敏与小霞两位同学解方程小敏:两边同除以()3x -,得33x =-,则6x =.提取公因式,得你认为他们的解法是否正确?若正确请在框内打的解答过程.19.下面是小石设计的“过三角形一个顶点作其对边的平行线已知:如图,ABC .求作:直线BD ,使得BD ∥①分别作线段AC ,BC 的垂直平分线1l ,2l ,两直线交于点O ;②以点O 为圆心,OA 长为半径作圆;③以点A 为圆心,BC 长为半径作弧,交 AB 于点D ;④作直线BD .所以直线BD 就是所求作的直线.根据小石设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:连接AD ,∵点A ,B ,C ,D 在O 上,AD BC =,∴ AD =______.∴DBA CAB ∠=∠(______)(填推理的依据).∴BD AC ∥.20.关于x 的方程x 2+(2k+1)x+k 2﹣1=0有两个不相等的实数根.(1)求实数k 的取值范围;(2)若k 为负整数,求此时方程的根.21.如图,在正方形网格中,ABC 的顶点和O 点都在格点上.(1)在图1中画出ABC 关于点O 中心对称的DEF ;(2)在图2中画出ABC 绕点O 顺时针旋转90︒后的PMN .若以点(1)求证:BAD CAD ∠=∠(2)若BC 长为8,DE =23.已知一个二次函数图象上部分点的横坐标x …﹣3﹣2﹣y…0﹣3﹣(1)求这个二次函数的表达式;(3)当42x -<<-时,直接写出24.如图,为便于各班展示富有特色的班徽和介绍,我校在教室门口墙面上为各班设置了宽20cm,长30cm的宣传栏(如图1矩形ABCD),并提供了班徽介绍的内衬模板(如图2,宣传栏和内衬之间留有的间隙可忽略不计),其中展示区(即矩形EFGH)到四x.边的距离均相等,设为cm(1)当x为何值时,展示区的面积为2375cm.(2)若宣传栏右下角有一个边长为5cm的正方形校徽,则校徽是否会遮挡展示区?如果要不遮挡展示区,求当x为何值时,展示区的面积最大.25.阅读材料并运用已学的知识解决问题:材料1:我国的石拱桥有悠久的历史.《水经注》里提到的“旅人桥”,大约建成于公元282年,可能是有记载的最早的石拱桥,我国的石拱桥几乎到处都有,这些桥大小不一,形式多样,有许多惊人的杰作,河北赵县赵州桥“长虹卧波”,桥拱呈圆弧形,永定河上的卢沟桥由11个半圆形的石拱组成,颐和园玉带桥桥拱则呈蛋尖形(可近似看作抛物线形),还有的拱桥里多边形、椭圆形、马蹄形和尖拱形,可说应有尽有.材料2:图1是陶然亭公园“玉虹桥”.经2023年10月15日中午测量,中间大拱在水面的跨度(即图2线段AB长度)约为14m,当时大拱的最高点距离水面的高度(即图2点C到AB的距离)约为3.5m.解决问题:(1)若玉虹桥的桥拱为圆弧形,则桥拱所在圆的半径为_____m(2)若桥拱为抛物线形,在图2中建立适当的坐标系(画在答题卡上)次函数解析式(不要求写自变量取值范围).(3)正值2023陶然亭菊花节,很多游人前往陶然亭公园划船游玩.为安全考虑,两船同行时安全间隔至少为1m,船帮船篷和桥拱的距离不少于宽为1.6m.船篷顶离水面平均高度为1.9m.参考材料2算,中间大拱最多可供几艘常用四人电动船同时通过?26.在平面直角坐标系xOy中,点(1,m)和(2,n)在抛物线(1)若m=0,求该抛物线的对称轴;(2)若mn<0,设抛物线的对称轴为直线x t=,①直接写出t的取值范围;②已知点(-1,y1),(32,y2),(3,y3)在该抛物线上.比较明理由.27.如图,四边形ABCD是正方形,以点A为中心,将线段得到线段AE,连接DE,BE.(1)求DEB∠的度数;(2)过点B作BF DE⊥于点F,连接CF,依题意补全图形,数量关系,并证明.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北京市第十三中学2016-2017学年度九年级数学期中测试 2016年11月第1-10题均有四个选项,符合题意的选项只有一个。

1.下列图形中,既是轴对称图形,又是中心对称图形的是( ).2.在平面直角坐标系中,将抛物线24y x =-先向右平移2个单位,再向上平移2个单位,得到的抛物线解析式为( ).A .2(2)2y x =++ B .2(2)2y x =-- C .2(2)2y x =-+ D .2(2)2y x =+- 3.如果45a b =(ab ≠0),那么下列比例式变形正确的是( ) A .54a b = B .45a b = C .45a b = D .45ba = 4.如图,在△ABC 中,点D 、E 分别在AB 、AC 边上,且 DE ∥BC ,如果 AD ∶DB=3∶2,那么AE ∶AC 等于( )A .3∶2B .3∶1C .2∶3D .3∶55.在平面直角坐标系xoy 中,如果⊙O 是以原点O (0,0)为圆心,以5为半径的圆,那么点A (-3,-4)与⊙O 的位置关系是( ) A. 在⊙O 内B.在⊙O 上C. 在⊙O 外D. 不能确定 6.如图,将△ABC 绕着点C 按顺时针方向旋转20°, B 点落在B '位置,A 点落在A '位置,若B A AC ''⊥, 则BAC ∠的度数是( ).A. B. C. D.A .50° B.60° C. 70° D.40°7.如右图,线段AB 是⊙O 的直径,弦CD 丄AB ,∠CAB=20°,则∠AOD 等于( )A .120°B . 140°C .150°D . 160°8.二次函数223y x x =--的最小值为( ) A. 5 B. 0 C. -3 D. -49.如图,AB 是⊙O 的切线,B 为切点,AO 的延长线交⊙O 于C 点, 连接BC ,如果30A ∠=,AB =AC 的长等于( ) .A. 6B. 4C.D.10.如图1,AD 、BC 是⊙O 的两条互相垂直的直径,点P 从点O 出发沿图中某一个扇形顺时针...匀速运动,设∠APB=y (单位:度),如果y 与点P 运动的时间x (单位:秒)的函数关系的图象大致如图2所示,那么点P 的运动路线可能为( ).A .O →B →A →O B .O →A →C →O C .O →C →D →O D .O →B →D →O二、填空题(本题共18分,每小题3分)11.写出一个抛物线开口向下,与y 轴交于(0,2)点的函数表达式 .12. 把二次函数的表达式y = x 2-6x+5化为()2y a x h k =-+的形式,那么h k +=_____.13.颐和园是我国现存规模最大,保存最完整的古代皇家园林,它和承德避暑山庄、苏州拙政园、苏州留园并称为中国四大名园.该园有一个六角亭,如果它的地基是半径为2米的正六边形,那么这个地基的面积是 米2. 14.“圆材埋壁”是我国古代著名数学著作《九章算术》中的问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”AB图2图1yx90BA O CO 4515.弦AB 的长等于⊙O 的半径,那么弦AB 所对的圆周角的度数是____________. 16.阅读下面材料:在数学课上,老师提出如下问题: 小涵的主要作法如下:老师说:“小涵的作法正确.”请回答:小涵的作图依据是 .三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28分7分,第9题8分)解答应写出文字说明、演算步骤或证明过程。

17.解方程:2610x x --=.18.如图,以□ABCD 的顶点A 为圆心,AB 为半径作⊙A ,分别交BC ,AD 于E ,F 两点,交BA 的延长线于G ,判断弧EF 和弧FG 是否相等,并说明理由.19.已知抛物线y = (m -2)x 2 + 2mx + m +3与x 轴有两个交点. (1) 求m 的取值范围;(2) 当m 取满足条件的最大整数时,求抛物线与x 轴两个交点的坐标.20.如图,在边长为1的小正方形组成的网格中,△ABC 的三个顶点均在格点上.将△ABC 绕点A 顺时针旋转90°得到△AB 1C 1. (1) 在网格中画出△AB 1C 1;(2) 计算点B 旋转到B 1的过程中所经过的路径长.(结果保留π21.下表是二次函数2(a 0)y ax bx c =++≠图象上部分点的横坐标(x )和纵坐标(y ).(1(2)其中A (1,1)、B (2,2)在函数的图象上,且-1< x 1 <0, 2< x 2 <3,则1y _____2y (用“>”或“<”填空); (3)求这个二次函数的表达式.第20题图22. “母亲节”前夕,我市某校学生积极参与“关爱贫困母亲”的活动,他们购进了一批单价为20元的“孝文化衫”在课余时间进行义卖,并将所得利润捐给贫困母亲.在义卖的过程中发现,这种文化衫每天的销售件数y (件)与销售单价x (元)满足一次函数关系:()31082036y x x =-+<<.如果义卖这种文化衫每天的利润为p (元),那么销售单价定为多少元时,每天获得的利润最大?最大利润是多少?23.如图,⊙O 为△ABC 的外接圆,直线l 与⊙O 相切与点P ,且l ∥BC .(1) 请仅用无刻度的直尺........,在⊙O 中画出一条弦.,使这条弦将△ABC 分成面积相等的两部分(保留作图痕迹,不写作法);(2) 请写出证明△ABC 被所作弦分成的两部分面积相等.24. 密苏里州圣路易斯拱门是座雄伟壮观的抛物线形的建筑物,是美国最高的独自挺立的纪念碑,如图.拱门的地面宽度为200米,两侧距地面高150米处各有一个观光窗,两窗的水平距离为100米,求拱门的最大高度.25. 如图,已知△ABC 是等边三角形,以AB 为直径作⊙O ,交BC 边于点D ,交AC 边于点F ,作DE ⊥AC 于点E . lOBC(1)求证:DE 是⊙O 的切线;(2)若△ABC 的边长为4,求EF 的长度.26.阅读下面解题过程,解答相关问题.求一元二次不等式224x x -->0的解集的过程.① 构造函数,画出图象:根据不等式特征构造二次函数x x y 422--=;并在坐 标系中画出二次函数x x y 422--=的图象(如图1). ② 求得界点,标示所需:当y=0时,求得方程0422=--x x 的解为12x =-,20x =;并用锯齿线标示出函数x x y 422--=图象中y >0的部分(如图2). ③ 助图象,写出解集:由所标示图象,可得不等式224x x -->0的解集为2-<请你利用上面求一元二次不等式解集的过程,求不等式221x x -+≥4的解集.27.在平面直角坐标系xOy 中,抛物线1222+-+-=m mx x y 的对称轴是直线1=x . (1)求抛物线的表达式;(2)点()1,y n D ,()2,3y E 在抛物线上,若21y y <,请直接写出n 的取值范围;(3)设点()q p M ,为抛物线上的一个动点,当12p -<<点M 关于y 轴的对称点都在直线4-=kx y 的上方,求k28. 已知,点O 是等边△ABC 内的任一点,连接OA ,OB ,(1) 如图1,已知∠AOB=150°,∠BOC=120°,将△BOC ADC.①∠DAO 的度数是 ;②用等式表示线段OA ,OB ,OC 之间的数量关系,并证明; (2) 设∠AOB=α,∠BOC=β.①当α,β满足什么关系时,OA+OB+OC 有最小值?请在图2中画出符合条件的图形,并说明理由;②若等边△ABC 的边长为1,直接写出OA+OB+OC 的最小值.ABCDABCO 图1图229.在平面直角坐标系xOy 中,定义点P (x,y )的变换点为P ′(x+y, x-y) . (1) 如图1,如果⊙O 的半径为①请你判断 M (2,0),N (-2,-1)两个点的变换点与⊙O 的位置关系;②若点P 在直线y=x+2上,点P 的变换点P ′在⊙O 的内,求点P 横坐标的取值范围.(2)如图2,如果⊙O的半径为1,且P的变换点P’在直线y=-2x+6上,求点P与⊙O上任意一点距离的最小值.草稿纸北京市第十三中学2016-2017学年度九年级数学期中测试评分标准2016年11月一、选择题(本题共30分,每小题3分)二、填空题(本题共18分,每题3分)6;14.26; 15.30°和150°; 16.直11.不唯一; 12.-1; 13.3径所对的圆周角是直角;经过半径外端并且垂直于这条半径的直线是圆的切线.三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28分7分,第9题8分)解答应写出文字说明、演算步骤或证明过程。

17.解方程:x2-6x-1=0.解:x2-6x=1. …………1分x 2-6x +9=1+9 . …………2分 (x -3)2=10 . …………3分x =3±∴x 1=3x 2=3分18. 如图,以□ABCD 的顶点A 为圆心,AB 为半径作⊙A ,分别交BC ,AD 于E ,F 两点,交BA的延长线于G ,判断»EF和»FG 是否相等,并说明理由. 结论:»»EFFG =. ………………… 1分; 证法一:连接AE . ∴AB AE =,∴B AEB ∠=∠,………………… 2分; ∵四边形ABCD 是平行四边形, ∴AD ∥BC ,∴B GAF ∠=∠,FAE AEB ∠=∠,………………… 3分; ∴GAF FAE ∠=∠, ………………… 4分;在⊙A 中,∴»»EFFG =. ………………… 5分. 结论:»»EFFG =. ………………… 1分; 证法二:连接GE . ∵BG 是⊙A 的直径,∴90BEG ∠=o. ∴GE BE ⊥.∵四边形ABCD 是平行四边形,∴AD ∥BC , ………………… 3分; ∴AD GE ⊥ ………………… 4分;G FE ADBC∴»»EFFG =. ………………… 5分. 证法三:参考上面给分19.(1)解:在 y = (m -2)x 2+ 2mx + m +3 中,令y =0由题意得2(2)4(2)(3)020m m m m ⎧∆=--+>⎨-≠⎩------------------------------------------2分 整理,得 42402m m -+>⎧⎨≠⎩解得 62m m <≠且-----------------------------------3分(2)满足条件的m 的最大整数为5.-------------------------4分∴y =3x 2+10x +8令y =0,3x 2+10x +8=0,解得423x x =-=-或∴抛物线与x 轴有两个交点的坐标分别为(-2,0)、(43-,0)-------5分 20.解:(1)画出△AB 1C 1,如图. ………………………………2分(2)由图可知△ABC 是直角三角形,AC =4,BC =3,所以AB =5. ………………3分 点B 旋转到B 1的过程中所经过的路径是一段弧, 且它的圆心角为90°,半径为5. …………4分∴=πππ25521241=⨯=⨯⨯AB . …………5分所以点B 旋转到B 1的过程中所经过的路径长为π25. 21.解(1)3; --------------------------------------------------1分 (2)>; -----------------------------2分(3)观察表格可知抛物线顶点坐标为(2,-1)且过(0,3)点,设抛物线表达式为2(2)1y a x =----------------3分把(0,3)点代入,4a -1=3,解得a =1--------------------------------------------------4分 ∴2(2)1y x =--243y x x =-+∴-----------------------------------5分22.解:每天获得的利润为:(3108)(20)p x x =-+- …… ……………………… 1分231682160x x =-+-23(28)192x =--+ ……………………………… 3分∵202836<<∴当销售价定为28元时,每天获得的利润最大,…… 4分 最大利润是192元. . ……5分23. (1)解:如图所示.-----2分(2)思路:a .由切线性质可得PO ⊥l ;b .由l ∥BC 可得PD ⊥BC ;c .由垂径定理知,点E 是BC 的中点;d .由三角形面积公式可证S △ABE = S △AEC . -----5分24. 解法一:如图所示建立平面直角坐标系.--------------------------- 1分 此时,抛物线与x 轴的交点为C(-100,0), D(100,0).l设这条抛物线的解析式为)100x )(100x (a y +-=.-------------------- 2分∵抛物线经过点B (50,150),可得 )10050)(10050(a 150+-= .解得501a -=. ------------------------- 3分 ∴200x 501)100x )(100x (501y 2+-=+--=.-------4分 顶点坐标是(0,200)∴ 拱门的最大高度为200米.-------------------------------------- 5分 解法二:如图所示建立平面直角坐标系.-------------------------------- 1分 设这条抛物线的解析式为2ax y =.--------------------------------- 2分 设拱门的最大高度为h 米,则抛物线经过点B(50,-h+150), D(100,-h) 可得解得. ----------------------- 4分∴ 拱门的最大高度为200米.--------------------- 5分25.(1)证明:连接OD ,∵ABC ∆是等边三角形, ∴︒=∠=∠60C B . ∵OD OB =,∴︒=∠=∠60B ODB .…………………………………………………………1分∵AC DE ⊥, ∴︒=∠90DEC . ∴︒=∠30EDC . ∴︒=∠90ODE . ∴OD DE ⊥于点D .∵点D 在⊙O 上,∴DE 是⊙O 的切线. 2分 (2)连接AD ,BF , ∵AB 为⊙O 直径,∴︒=∠=∠90ADB AFB . ∴BF AF ⊥,BD AD ⊥. ∵ABC ∆是等边三角形,∴221==BC DC ,221==AC FC . …………………………………………3分 ∵︒=∠30EDC ,∴121==DC EC .……………………………………………………………4分∴1=-=EC FC FE . ………………………………………………5分26. 解:①构造函数,画出图象:根据不等式特征构造二次函数221y x x =-+或223y x x =--;并在坐标系中画出二次函数221y x x =-+或223y x x =--;的图象(如图). ………………… 2分;②求得界点,标示所需:当y =4时,求得方程2214x x -+=的解为11x =-,23x =;并用锯齿线标示出函数221y x x =-+图象中y ≥4的部分(如图).或当y =0时,求得方程2230x x --=的解为11x =-,23x =;并用锯齿线标示出函数223y x x =--图象中y ≥0的部分(如图). …………… 4分;③借助图象,写出解集:∴不等式221x x -+≥4的解集为x ≤-1或x ≥3. ………………… 5分; 27. 解:(1)∵抛物线的对称轴是1=x∴1222=--=-m a b ∴1=m …………. ………...1分∴x x y22+-=. ………. ………...2分 (2)3>n 或1-<n . ………. ………...4分 (3) 由题意得抛物线22(12)y x x x =-+-<<关于y 轴对称的抛物线为22(2y x x =---<当13x y ==-时,;当直线4-=kx y 经过点()3,1-时,可得1=k ………5分 当20x y =-=时,;当直线4-=kx y 经过点()0,2-时,可得2-=k ……6分 综上所述,k 的取值范围是12≤≤-k . ………7分 28.解:(1)①90°. …………………………………………… 1分②线段OA ,OB ,OC 之间的数量关系是222OA OB OC +=.如图1,连接OD .∵△BOC 绕点C 按顺时针方向旋转60°得△ADC , ∴△ADC ≌△BOC ,∠OCD=60°.∴CD = OC ,∠ADC =∠BOC =120°, AD= OB . ∴△OCD 是等边三角形.∴OC =OD =CD ,∠COD =∠CDO =60°.DA∵∠AOB =150°,∠BOC =120°, ∴∠AOC =90°.∴∠AOD =30°,∠ADO =60°. ∴∠DAO =90°.在Rt △ADO 中,∠DAO =90°, ∴222OA AD OD +=.∴222OA OB OC +=. ………………… 3分(2)①如图2,当α=β=120°时,OA +OB +OC 有最小值. 作图如图2的实线部分. …………………… 4分如图2,将△AOC 绕点C 按顺时针方向旋转60°得△A’O’C ,连接OO’. ∴△A’O’C ≌△AOC ,∠OCO’=∠ACA’=60°. ∴O’C = OC , O’A’ = OA ,A’C = BC, ∠A’O’C =∠AOC . ∴△OC O’是等边三角形.∴OC = O’C = OO’,∠COO’=∠CO’O =60°. ∵∠AOB =∠BOC =120°, ∴∠AOC =∠A’O’C =120°. ∴∠BOO’=∠OO’A’=180°. ∴四点B ,O ,O ’,A ’共线.∴OA +OB +OC = O’A’ +OB +OO’ =BA’ 时值最小. …………… 6分②当等边△ABC 的边长为1时,OA +OB +OC 的最小值A ’B … 7分 29.解:(1)①由题意得,'(2,2),'(3,1).M N -- ∴''OM ON =>∴'M 在⊙O 上,'N 在⊙O 外. ----2 ②设点(,2)P x x +,则'(22,2)P x +-. ∵点'P 在⊙O 内,∴2<2+2<2-x ,解得0<<2-x .∴点P 横坐标的取值范围是0<<2-x O O /A /4321ABC图2-----5分(2)设点(,)P a b ,则'(,)P a b a b +-. 由题意,得2()6.a b a b -++=- 整理,得3 6.b a =-+ ∴36P y x =-+点在直线上. ∴点O 到直线y = -3x +6的距离是1053∴点P 1-. -----8分。

相关文档
最新文档