吉林省东北师范大学附属中学2016届高考数学第一轮复习函数与定积分应用(3)学案理
吉林省东北师范大学附属中学2016届高三数学第一轮复习阶段测试卷(第15周)理
高三数学阶段测试卷[理科](第15周)【测试范围】:2014年全国高考函数题型:选择,填空,解答 【测试目的】:明确高考考点,掌握高考考试题型函数模型及其应用 1. [2014·湖南卷] 某市生产总值连续两年持续增加,第一年的增长率为p ,第二年的增长率为q ,则该市这两年生产总值的年平均增长率为( )A.p +q 2B.(p +1)(q +1)-12C.pqD.(p +1)(q +1)-12. [2014·陕西卷] 如图12,某飞行器在4千米高空水平飞行,从距着陆点A 的水平距离10千米处开始下降,已知下降飞行轨迹为某三次函数图像的一部分,则该函数的解析式为 ( )图12 A .y =1125x 3-35x B .y =2125x 3-45x C .y =3125x 3-x D .y =-3125x 3+15x 导数及其运算3. [2014·安徽卷] 设函数f (x )=1+(1+a )x -x 2-x 3,其中a >0.(1)讨论f (x )在其定义域上的单调性;(2)当x ∈[0,1]时 ,求f (x )取得最大值和最小值时的x 的值.4.[实验班] [2014·安徽卷] 设实数c >0,整数p >1,n ∈N *.(1)证明:当x >-1且x ≠0时,(1+x )p>1+px ;(2)数列{a n }满足a 1>c 1p ,a n +1=p -1p a n +c p a 1-p n ,证明:a n >a n +1>c 1p.5. [2014·福建卷] 已知函数f (x )=e x-ax (a 为常数)的图像与y 轴交于点A ,曲线y =f (x )在点A 处的切线斜率为-1.(1)求a 的值及函数f (x )的极值;(2)证明:当x >0时,x 2<e x;(3)证明:对任意给定的正数c ,总存在x 0,使得当x ∈(x 0,+∞)时,恒有x 2<c e x.6. [2014·广东卷] 曲线y =e -5x+2在点(0,3)处的切线方程为________.7. [2014·江西卷] 若曲线y =e -x上点P 处的切线平行于直线2x +y +1=0,则点P 的坐标是________.8.[2014·江西卷] 已知函数f (x )=(x 2+bx +b )1-2x (b ∈R ).(1)当b =4时,求f (x )的极值;(2)若f (x )在区间⎝ ⎛⎭⎪⎫0,13上单调递增,求b 的取值范围.9. [2014·全国卷] 曲线y =x e x -1在点(1,1)处切线的斜率等于( )A .2eB .eC .2D .110. [2014·新课标全国卷Ⅱ] 设曲线y =ax -ln(x +1)在点(0,0)处的切线方程为y =2x ,则a =( )A .0B .1C .2D .3 11. [2014·陕西卷] 设函数f (x )=ln(1+x ),g (x )=xf ′(x ),x ≥0,其中f ′(x )是f (x )的导函数.(1)令g 1(x )=g (x ),g n +1(x )=g (g n (x )),n ∈N +,求g n (x )的表达式; (2)若f (x )≥ag (x )恒成立,求实数a 的取值范围;(3)设n ∈N +,比较g (1)+g (2)+…+g (n )与n -f (n )的大小,并加以证明.12.[2014·四川卷] 设等差数列{a n }的公差为d ,点(a n ,b n )在函数f (x )=2x的图像上(n ∈N *).(1)若a 1=-2,点(a 8,4b 7)在函数f (x )的图像上,求数列{a n }的前n 项和S n ;(2)若a 1=1,函数f (x )的图像在点(a 2,b 2)处的切线在x 轴上的截距为2-1ln 2,求数列⎩⎨⎧⎭⎬⎫a nb n 的前n 项和T n .导数的应用13. [2014·四川卷]已知函数f(x)=e x-ax2-bx-1,其中a,b∈R,e=2.718 28…为自然对数的底数.(1)设g(x)是函数f(x)的导函数,求函数g(x)在区间[0,1]上的最小值;(2)若f(1)=0,函数f(x)在区间(0,1)内有零点,求a的取值范围.14. [2014·安徽卷] 设函数f(x)=1+(1+a)x-x2-x3,其中a>0.(1)讨论f(x)在其定义域上的单调性;(2)当x∈[0,1]时,求f(x)取得最大值和最小值时的x的值.答案提示:【导数部分习题难度较高,普通班可以选择:选择题、填空完成】 函数模型及其应用1.[解析] 8.D 设年平均增长率为x ,则有(1+p )(1+q )=(1+x )2,解得x =(1+p )(1+q )-1.2. [2014·陕西卷] 9. 如图12,某飞行器在4千米高空水平飞行,从距着陆点A 的水平距离10千米处开始下降,已知下降飞行轨迹为某三次函数图像的一部分,则该函数的解析式为 ( )图12 A .y =1125x 3-35x B .y =2125x 3-45x C .y =3125x 3-x D .y =-3125x 3+15x 导数及其运算3. [2014·安徽卷] 18. 设函数f (x )=1+(1+a )x -x 2-x 3,其中a >0. (1)讨论f (x )在其定义域上的单调性;(2)当x ∈[0,1]时 ,求f (x )取得最大值和最小值时的x 的值. 18.解: (1)f (x )的定义域为(-∞,+∞), f ′(x )=1+a -2x -3x 2.令f ′(x )=0,得x 1=-1-4+3a3,x 2=-1+4+3a3,x 1<x 2,所以f ′(x )=-3(x -x 1)(x -x 2). 当x <x 1或x >x 2时,f ′(x )<0; 当x 1<x <x 2时,f ′(x )>0.故f (x )在⎝ ⎛⎭⎪⎫-∞,-1-4+3a 3和 ⎝ ⎛⎭⎪⎫-1+4+3a 3,+∞内单调递减,在⎝⎛⎭⎪⎫-1-4+3a 3,-1+4+3a 3内单调递增.(2)因为a >0,所以x 1<0,x 2>0,①当a ≥4时,x 2≥1.由(1)知,f (x )在[0,1]上单调递增,所以f (x )在x =0和x =1处分别取得最小值和最大值. ②当0<a <4时,x 2<1.由(1)知,f (x )在[0,x 2]上单调递增,在[x 2,1]上单调递减, 所以f (x )在x =x 2=-1+4+3a3处取得最大值.又f (0)=1,f (1)=a ,所以当0<a <1时,f (x )在x =1处取得最小值;当a =1时,f (x )在x =0和x =1处同时取得最小值; 当1<a <4时,f (x )在x =0处取得最小值.4. [2014·安徽卷] 21. 设实数c >0,整数p >1,n ∈N *.(1)证明:当x >-1且x ≠0时,(1+x )p>1+px ;(2)数列{a n }满足a 1>c 1p ,a n +1=p -1p a n +c p a 1-p n ,证明:a n >a n +1>c 1p.21.证明:(1)用数学归纳法证明如下.①当p =2时,(1+x )2=1+2x +x 2>1+2x ,原不等式成立.②假设p =k (k ≥2,k ∈N *)时,不等式(1+x )k>1+kx 成立.当p =k +1时,(1+x )k +1=(1+x )(1+x )k >(1+x )(1+kx )=1+(k +1)x +kx 2>1+(k +1)x .所以当p =k +1时,原不等式也成立.综合①②可得,当x >-1,x ≠0时,对一切整数p >1,不等式(1+x )p>1+px 均成立.(2)方法一:先用数学归纳法证明a n >c 1p.①当n =1时,由题设知a 1>c 1p成立.②假设n =k (k ≥1,k ∈N *)时,不等式a k >c 1p 成立.由a n +1=p -1p a n +c pa 1-p n 易知a n >0,n ∈N *. 当n =k +1时,a k +1a k =p -1p +c pa -pk = 1+1p ⎝ ⎛⎭⎪⎫c a p k -1.由a k >c 1p >0得-1<-1p <1p ⎝ ⎛⎭⎪⎫c a p k-1<0.由(1)中的结论得⎝ ⎛⎭⎪⎫a k +1a k p=⎣⎢⎡⎦⎥⎤1+1p ⎝ ⎛⎭⎪⎫c a p k -1p>1+p · 1p ⎝ ⎛⎭⎪⎫c a p k -1=ca p k . 因此a pk +1>c ,即a k +1>c 1p,所以当n =k +1时,不等式a n >c 1p也成立.综合①②可得,对一切正整数n ,不等式a n >c 1p均成立.再由a n +1a n =1+1p ⎝ ⎛⎭⎪⎫c a p n -1可得a n +1a n<1, 即a n +1<a n .综上所述,a n >a n +1>c 1p,n ∈N *.方法二:设f (x )=p -1p x +c p x 1-p ,x ≥c 1p,则x p ≥c , 所以f ′(x )=p -1p +c p (1-p )x -p=p -1p ⎝ ⎛⎭⎪⎫1-c x p >0.由此可得,f (x )在[c 1p,+∞)上单调递增,因而,当x >c 1p时,f (x )>f (c 1p)=c 1p.①当n =1时,由a 1>c 1p>0,即a p1>c 可知a 2=p -1p a 1+c p a 1-p 1=a 1⎣⎢⎡⎦⎥⎤1+1p ⎝ ⎛⎭⎪⎫c a p 1-1<a 1,并且a 2=f (a 1)>c 1p ,从而可得a 1>a 2>c 1p , 故当n =1时,不等式a n >a n +1>c 1p成立.②假设n =k (k ≥1,k ∈N *)时,不等式a k >a k +1>c 1p成立,则当n =k +1时,f (a k )>f (a k +1)>f (c 1p),即有a k +1>a k +2>c 1p,所以当n =k +1时,原不等式也成立.综合①②可得,对一切正整数n ,不等式a n >a n +1>c 1p均成立.5. [2014·福建卷] 20.已知函数f (x )=e x-ax (a 为常数)的图像与y 轴交于点A ,曲线y =f (x )在点A 处的切线斜率为-1.(1)求a 的值及函数f (x )的极值;(2)证明:当x >0时,x 2<e x;(3)证明:对任意给定的正数c ,总存在x 0,使得当x ∈(x 0,+∞)时,恒有x 2<c e x.20.解:方法一:(1)由f (x )=e x -ax ,得f ′(x )=e x-a . 又f ′(0)=1-a =-1,得a =2.所以f (x )=e x -2x ,f ′(x )=e x-2. 令f ′(x )=0,得x =ln 2.当x <ln 2时,f ′(x )<0,f (x )单调递减; 当x >ln 2时,f ′(x )>0,f (x )单调递增. 所以当x =ln 2时,f (x )取得极小值,且极小值为f (ln 2)=e ln 2-2ln 2=2-ln 4, f (x )无极大值.(2)证明:令g (x )=e x -x 2,则g ′(x )=e x-2x . 由(1)得,g ′(x )=f (x )≥f (ln 2)=2-ln 4>0, 故g (x )在R 上单调递增,又g (0)=1>0,所以当x >0时,g (x )>g (0)>0,即x 2<e x.(3)证明:①若c ≥1,则e x ≤c e x .又由(2)知,当x >0时,x 2<e x.故当x >0时,x 2<c e x.取x 0=0,当x ∈(x 0,+∞)时,恒有x 2<c e x.②若0<c <1,令k =1c>1,要使不等式x 2<c e x 成立,只要e x >kx 2成立.而要使e x >kx 2成立,则只要x >ln(kx 2),只要x >2ln x +ln k 成立. 令h (x )=x -2ln x -ln k ,则h ′(x )=1-2x =x -2x.所以当x >2时,h ′(x )>0,h (x )在(2,+∞)内单调递增. 取x 0=16k >16,所以h (x )在(x 0,+∞)内单调递增.又h (x 0)=16k -2ln(16k )-ln k =8(k -ln 2)+3(k -ln k )+5k ,易知k >ln k ,k >ln 2,5k >0,所以h (x 0)>0. 即存在x 0=16c,当x ∈(x 0,+∞)时,恒有x 2<c e x.综上,对任意给定的正数c ,总存在x 0,当x ∈(x 0,+∞)时,恒有x 2<c e x. 方法二:(1)同方法一. (2)同方法一.(3)对任意给定的正数c ,取x 0=4c,由(2)知,当x >0时,e x >x 2,所以e x=e x2·e x 2>⎝ ⎛⎭⎪⎫x 22·⎝ ⎛⎭⎪⎫x 22,当x >x 0时,e x>⎝ ⎛⎭⎪⎫x 22⎝ ⎛⎭⎪⎫x 22>4c ⎝ ⎛⎭⎪⎫x 22=1c x 2, 因此,对任意给定的正数c ,总存在x 0,当x ∈(x 0,+∞)时,恒有x 2<c e x. 方法三:(1)同方法一. (2)同方法一.(3)首先证明当x ∈(0,+∞)时,恒有13x 3<e x.证明如下:令h (x )=13x 3-e x ,则h ′(x )=x 2-e x.由(2)知,当x >0时,x 2<e x,从而h ′(x )<0,h (x )在(0,+∞)上单调递减, 所以h (x )<h (0)=-1<0,即13x 3<e x.取x 0=3c ,当x >x 0时,有1c x 2<13x 3<e x.因此,对任意给定的正数c ,总存在x 0,当x ∈(x 0,+∞)时,恒有x 2<c e x.6. [2014·广东卷] 10.曲线y =e -5x+2在点(0,3)处的切线方程为________. 10.y =-5x +3 [解析] 本题考查导数的几何意义以及切线方程的求解方法.因为y ′=-5e -5x ,所以切线的斜率k =-5e 0=-5,所以切线方程是:y -3=-5(x -0),即y =-5x +3.7. [2014·江西卷] 13. 若曲线y =e -x上点P 处的切线平行于直线2x +y +1=0,则点P 的坐标是________.13.(-ln 2,2) [解析] 设点P 的坐标为(x 0,y 0),y ′=-e -x.又切线平行于直线2x +y +1=0,所以-e -x 0=-2,可得x 0=-ln 2,此时y =2,所以点P 的坐标为(-ln 2,2).8.解:(1)当b =4时,f ′(x )=-5x (x +2)1-2x,由f ′(x )=0,得x =-2或x =0.所以当x ∈(-∞,-2)时,f ′(x )<0,f (x )单调递减;当x ∈(-2,0)时,f ′(x )>0,f (x )单调递增;当x ∈⎝⎛⎭⎪⎫0,12时,f ′(x )<0,f (x )单调递减,故f (x )在x =-2处取得极小值f (-2)=0,在x =0处取得极大值f (0)=4.(2)f ′(x )=-x [5x +(3b -2)]1-2x ,易知当x ∈⎝ ⎛⎭⎪⎫0,13时,-x 1-2x<0,依题意当x ∈⎝ ⎛⎭⎪⎫0,13时,有5x +(3b -2)≤0,从而53+(3b -2)≤0,得b ≤19. 所以b 的取值范围为⎝⎛⎦⎥⎤-∞,19.9. C [解析] 因为y ′=(x e x -1)′=e x -1+x e x -1,所以y =x e x -1在点(1,1)处的导数是y ′|x =1=e 1-1+e 1-1=2,故曲线y =x e x -1在点(1,1)处的切线斜率是2.10. D [解析] y ′=a -1x +1,根据已知得,当x =0时,y ′=2,代入解得a =3.11. 解:由题设得,g (x )=x1+x(x ≥0). (1)由已知,g 1(x )=x 1+x ,g 2(x )=g (g 1(x ))=x1+x 1+x 1+x=x1+2x,g 3(x )=x1+3x,…,可得g n (x )=x1+nx. 下面用数学归纳法证明.①当n =1时,g 1(x )=x1+x ,结论成立.②假设n =k 时结论成立,即g k (x )=x1+kx.那么,当n =k +1时,g k +1(x )=g (g k (x ))=g k (x )1+g k (x )=x1+kx 1+x 1+kx =x1+(k +1)x,即结论成立.由①②可知,结论对n ∈N +成立.(2)已知f (x )≥ag (x )恒成立,即ln(1+x )≥ax1+x 恒成立.设φ(x )=ln(1+x )-ax1+x (x ≥0),则φ′(x )=11+x -a (1+x )2=x +1-a(1+x )2,当a ≤1时,φ′(x )≥0(仅当x =0,a =1时等号成立),∴φ(x )在[0,+∞)上单调递增,又φ(0)=0,∴φ(x )≥0在[0,+∞)上恒成立, ∴a ≤1时,ln(1+x )≥ax1+x恒成立(仅当x =0时等号成立). 当a >1时,对x ∈(0,a -1]有φ′(x )<0,∴φ(x )在(0,a -1]上单调递减,∴φ(a -1)<φ(0)=0. 即a >1时,存在x >0,使φ(x )<0,故知ln(1+x )≥ax1+x不恒成立. 综上可知,a 的取值范围是(-∞,1].(3)由题设知g (1)+g (2)+…+g (n )=12+23+…+nn +1,比较结果为g (1)+g (2)+…+g (n )>n -ln(n +1).证明如下:方法一:上述不等式等价于12+13+…+1n +1<ln(n +1),在(2)中取a =1,可得ln(1+x )>x1+x ,x >0.令x =1n ,n ∈N +,则1n +1<ln n +1n .下面用数学归纳法证明.①当n =1时,12<ln 2,结论成立.②假设当n =k 时结论成立,即12+13+…+1k +1<ln(k +1).那么,当n =k +1时,12+13+…+1k +1+1k +2<ln(k +1)+1k +2<ln(k +1)+ln k +2k +1=ln(k +2),即结论成立.由①②可知,结论对n ∈N +成立.方法二:上述不等式等价于12+13+…+1n +1<ln(n +1),在(2)中取a =1,可得ln(1+x )>x1+x,x >0.令x =1n ,n ∈N +,则ln n +1n >1n +1.故有ln 2-ln 1>12,ln 3-ln 2>13,……ln(n +1)-ln n >1n +1,上述各式相加可得ln(n +1)>12+13+…+1n +1,结论得证.方法三:如图,⎠⎛0n x x +1d x 是由曲线y =xx +1,x =n 及x 轴所围成的曲边梯形的面积,而12+23+…+nn +1是图中所示各矩形的面积和,∴12+23+…+n n +1>⎠⎛0n x x +1d x =⎠⎛0n ⎝ ⎛⎭⎪⎫1-1x +1d x =n -ln (n +1),结论得证.12.解:(1)由已知得,b 7=2a 7,b 8=2a 8=4b 7,所以2a 8=4×2a 7=2a 7+2,解得d =a 8-a 7=2,所以S n =na 1+n (n -1)2d =-2n +n (n -1)=n 2-3n .(2)函数f (x )=2x在点(a 2,b 2)处的切线方程为y -2a 2=(2a 2ln 2)(x -a 2), 其在x 轴上的截距为a 2-1ln 2. 由题意有a 2-1ln 2=2-1ln 2,解得a 2=2.所以d =a 2-a 1=1.从而a n =n ,b n =2n,所以数列{a n b n }的通项公式为a n b n =n2n ,所以T n =12+222+323+…+n -12n -1+n2n ,2T n =11+22+322+…+n2n -1,因此,2T n -T n =1+12+122+…+12n -1-n 2n =2-12n -1-n 2n =2n +1-n -22n. 所以,T n =2n +1-n -22n. 导数的应用13. [2014·四川卷] 21.解:(1)由f (x )=e x -ax 2-bx -1,得g (x )=f ′(x )=e x-2ax -b .所以g ′(x )=e x-2a .当x ∈[0,1]时,g ′(x )∈[1-2a ,e -2a ].当a ≤12时,g ′(x )≥0,所以g (x )在[0,1]上单调递增,因此g (x )在[0,1]上的最小值是g (0)=1-b ;当a ≥e2时,g ′(x )≤0,所以g (x )在[0,1]上单调递减,因此g (x )在[0,1]上的最小值是g (1)=e -2a -b ;当12<a <e2时,令g ′(x )=0,得x =ln(2a )∈(0,1),所以函数g (x )在区间[0,ln(2a )]上单调递减,在区间(ln(2a ),1]上单调递增,于是,g (x )在[0,1]上的最小值是g (ln(2a ))=2a -2a ln(2a )-b .综上所述,当a ≤12时,g (x )在[0,1]上的最小值是g (0)=1-b ;当12<a <e2时,g (x )在[0,1]上的最小值是g (ln(2a ))=2a -2a ln(2a )-b ; 当a ≥e2时,g (x )在[0,1]上的最小值是g (1)=e -2a -b .(2)设x 0为f (x )在区间(0,1)内的一个零点,则由f (0)=f (x 0)=0可知,f (x )在区间(0,x 0)上不可能单调递增,也不可能单调递减. 则g (x )不可能恒为正,也不可能恒为负. 故g (x )在区间(0,x 0)内存在零点x 1.同理g (x )在区间(x 0,1)内存在零点x 2.故g (x )在区间(0,1)内至少有两个零点.由(1)知,当a ≤12时,g (x )在[0,1]上单调递增,故g (x )在(0,1)内至多有一个零点; 当a ≥e 2时,g (x )在[0,1]上单调递减,故g (x )在(0,1)内至多有一个零点,都不合题意.所以12<a <e 2. 此时g (x )在区间[0,ln(2a )]上单调递减,在区间(ln(2a ),1]上单调递增. 因此x 1∈(0,ln(2a )],x 2∈(ln(2a ),1),必有g (0)=1-b >0,g (1)=e -2a -b >0.由f (1)=0得a +b =e -1<2,则g (0)=a -e +2>0,g (1)=1-a >0,解得e -2<a <1.当e -2<a <1时,g (x )在区间[0,1]内有最小值g (ln(2a )).若g (ln(2a ))≥0,则g (x )≥0(x ∈[0,1]),从而f (x )在区间[0,1]内单调递增,这与f (0)=f (1)=0矛盾,所以g (ln(2a ))<0. 又g (0)=a -e +2>0,g (1)=1-a >0.故此时g (x )在(0,ln(2a ))和(ln(2a ),1)内各只有一个零点x 1和x 2.由此可知f (x )在[0,x 1]上单调递增,在(x 1,x 2)上单调递减,在[x 2,1]上单调递增. 所以f (x 1)>f (0)=0,f (x 2)<f (1)=0,故f (x )在(x 1,x 2)内有零点.综上可知,a 的取值范围是(e -2,1).14. [2014·安徽卷] 18.解: (1)f (x )的定义域为(-∞,+∞),f ′(x )=1+a -2x -3x 2.令f ′(x )=0,得x 1=-1-4+3a 3, x 2=-1+4+3a 3,x 1<x 2, 所以f ′(x )=-3(x -x 1)(x -x 2).当x <x 1或x >x 2时,f ′(x )<0;当x 1<x <x 2时,f ′(x )>0.故f (x )在⎝ ⎛⎭⎪⎫-∞,-1-4+3a 3和 ⎝ ⎛⎭⎪⎫-1+4+3a 3,+∞内单调递减, 在⎝ ⎛⎭⎪⎫-1-4+3a 3,-1+4+3a 3内单调递增. (2)因为a >0,所以x 1<0,x 2>0,①当a ≥4时,x 2≥1.由(1)知,f (x )在[0,1]上单调递增,所以f (x )在x =0和x =1处分别取得最小值和最大值.②当0<a <4时,x 2<1.由(1)知,f (x )在[0,x 2]上单调递增,在[x 2,1]上单调递减,所以f (x )在x =x 2=-1+4+3a 3处取得最大值. 又f (0)=1,f (1)=a ,所以当0<a <1时,f (x )在x =1处取得最小值;当a=1时,f(x)在x=0和x=1处同时取得最小值;当1<a<4时,f(x)在x=0处取得最小值.。
吉林省东北师范大学附属中学2016届高三上学期理科数学第一轮复习阶段测试卷(第4周) Word版含答案[ 高考]
高三数学阶段测试卷(第四周) (考试时间:120分钟 满分150分) 拟题人:毕伟 审题人:暴偶奇 2015.9.11【测试范围:集合,命题,简易逻辑,全称特称命题,函数性质,线性规划】一、选择题:本题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的,把正确的代号填在指定位置上.1.【2014高考安徽卷理第2题】“0<x ”是“0)1ln(<+x ”的( )A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件 2.【2014高考湖南卷第5题】已知命题.,:,:22y x y x q y x y x p ><-<->则若;命题则若在命题①q p q p q p q p ∨⌝⌝∧∨∧)④(③②);(;;中,真命题是( ) A ①③ B.①④ C.②③ D.②④ 3.函数y =的定义域是( )(A )(3,2)(2,3)- (B )[3,2)(2,3]- (C )(3,3)-(D )[3,3]-4.已知偶函数[)()0,f x +∞在区间单调递增,则满足1(21)()3f x f -<的x 的取值范围是 ( )A .12(,)33B .12,33⎡⎫⎪⎢⎣⎭C .12(,)23D .12,23⎡⎫⎪⎢⎣⎭5.设222,2(),((5))log (1),2x x f x f f x x -⎧≤==⎨->⎩则( )A .-1B .1C .-2D .26.如右图是李大爷晨练时所走的离家距离(y)与行走时间(x)之间的函数关系图,若用黑点表示李大爷家的位置,则李大爷散步行走的路线可能是( )8.设函数3()12f x x x =-,则下列结论正确的是 ( )A .函数()f x 在(,1)-∞-上单调递增B .函数()f x 的极小值是-12C .函数()f x 的图象与直线10y =只有一个公共点D .函数()f x 的图象在点(2,(2))f --处的切线方程为16y = 9.已知⎩⎨⎧≥<--=)1(log )1()3()(x xx ax a x f a 是),(+∞-∞上的增函数,那么a 的取值范围是 ……………………………( )A .(1,+∞)B . (0,3)C .(1,3)D . [32,3).10.已知函数()f x 的定义域为R,对任意实数,m n 都有1()()()2f m n f m f n +=++,且第6题图1()02f =,当12x >时, ()f x >0,则)2011(f 的值为( ) A .22011 B .26031 C .26033 D .3017二、填空题:本大题共5个小题,每小题4分,共20分.把答案填在题中横线上.11.若变量x y ,满足约束条件30101x y x y y +-≤⎧⎪-+≥⎨⎪≥⎩,则2z x y =-的最大值为 。
吉林省东北师范大学附属中学高考数学第一轮复习函数与
导数与定积分(尖刀班)(4)【探究11】 利用导数证明不等式 思路提示利用导数证明不等式常用的方法是构造辅助函数,通过构造辅助函数将不等式的证明问题转化为函数的单调性证明或函数的最值问题. 例18 设a 为实数,函数()22,xf x e x a x R =-+∈(1)求()f x 的单调区间与极值;(2)求证:当ln 21a >-且0x >时221x e x ax >-+分析 构造辅助函数()221xg x e x ax =-+-,转化为证明函数在()0,+∞上恒大于0.解析 (1)由()22,xf x e x a x R =-+∈()知()()2xf x e x R =-∈,令()0f x '=得ln 2x =,于是当x 变化时,()()f x f x ',的变化如表3-12所示表3-12x(),ln 2-∞ln 2()ln2,+∞()f x ' -0 +()f x极小值故()f x 的单调减区间是(),ln 2-∞,单调增区间是()ln2,+∞,()f x 在x ln 2=处取得最小值,()()ln2ln22ln2221ln2f ea a =-+=-+.(2)设()221,xg x e x ax x R =-+-∈,于是()22,xg x e x a x R '=-+∈.由(1)知当ln 21a >-时,()g x '的最小值为()()221ln20g a '=-+>.于是对任意x R ∈,都有()0g x '>,所以()g x 在R上单调递增,于是当ln 21a >-时,对()0,x ∈+∞都有()()0g x g >,而()00g =,从而()0g x >,即2210x e x a x -+->,故221x e x ax >-+. 评注 一般地,要证()()(),0,f x g x x >∈+∞,在区间I上恒成立,构造辅助函数()()()F x f x g x =-,通过分析()F x 的单调性,从而求出()F x 在I上的最小值,只要能证明()min 0F x >,就可证明()()f x g x >. 变式1 设()()20,x 1ln 2ln 0a f x x a xx ≥=--+>.(1)令()()F x xf x '=,讨论()F x 在()0,+∞上的单调性并求极值;(2)求证:当1x >时,恒有2ln 21x x ax >-+变式2 已知函数()()0bf x ax c a x=++>的图象在点()()1,1f 处的切线方程为1y x =-.(1)用a 表示出,b c ;(2)若()ln f x x ≥在[1,)+∞上恒成立,求a 的取值范围.(3)证明:()()()*1111ln 11,2321n n n n N n n ++++>++≥∈+ 变式3 (2012山东理22)已知函数ln ()xx kf x e +=(k 为常数, 2.71828e =⋅⋅⋅是自然对数的底数),曲线()y f x =在点(1,(1))f 处的切线与x 轴平行. (Ⅰ)求k 的值;(Ⅱ)求()f x 的单调区间;(Ⅲ)设2()()'()g x x x f x =+,其中'()f x 为()f x 的导函数.证明:对任意20,()1x g x e -><+.三.方法提升1.用定义求导数的步骤 (1) 求函数的改变量 ;(2):求平均变化率 (3)、取极限 (2) 导数物理意义与几何意义(3) 求复合函数的导数要坚持“将求导进行到底”的原则; (4) 求切线方程时已知点是否切点至关重要。
吉林省东北师范大学附属中学2016届高三数学第一轮复习阶段测试卷(第12周)理
高三数学阶段测试卷[理科](第12周)【测试范围:2014年全国高考函数:选择、填空、解答】1.[2014·湖南卷] 已知f (x ),g (x )分别是定义在R 上的偶函数和奇函数,且f (x )-g (x )=x 3+x 2+1,则f (1)+g (1)=( ) A .-3 B .-1 C .1 D .32.[2014·新课标全国卷Ⅰ] 设函数f (x ),g (x )的定义域都为R ,且f (x )是奇函数,g (x )是偶函数,则下列结论中正确的是( ) A .f (x )g (x )是偶函数B .|f (x )|g (x )是奇函数C .f (x )|g (x )|是奇函数D .|f (x )g (x )|是奇函数3.[2014·新课标全国卷Ⅱ] 已知偶函数f (x )在[0,+∞)单调递减,f (2)=0,若f (x -1)>0,则x 的取值范围是________.(五) 二次函数4.[2014·全国卷] 若函数f (x )=cos 2x +a sin x 在区间⎝ ⎛⎭⎪⎫π6,π2是减函数,则a 的取值范围是________. (六) 指数与指数函数5.[2014·福建卷] 若函数y =log a x (a >0,且a ≠1)的图像如图11所示,则下列函数图像正确的是( )图11A BC D图126.[2014·江西卷] 已知函数f (x )=5|x |,g (x )=ax 2-x (a ∈R ).若f [g (1)]=1,则a =( )A .1B .2C .3D .-17..[2014·辽宁卷] 已知a =2-13,b =log 213,c =log 1213,则( )A .a >b >cB .a >c >bC .c >a >bD .c >b >a8.[2014·山东卷] 设集合A ={x ||x -1|<2},B ={y |y =2x,x ∈[0,2]},则A ∩B =( )A .[0,2]B .(1,3)C .[1,3)D .(1,4)9.[2014·山东卷] 已知实数x ,y 满足a x <a y(0<a <1),则下列关系式恒成立的是( ) A.1x 2+1>1y 2+1B. ln(x 2+1)>ln(y 2+1)C. sin x >sin yD. x 3>y 310.[2014·陕西卷] 下列函数中,满足“f (x +y )=f (x )·f (y )”的单调递增函数是( )A .f (x )=x 12B .f (x )=x 3C .f (x )=⎝ ⎛⎭⎪⎫12xD .f (x )=3x11.[2014·陕西卷] 已知4a=2,lg x =a ,则x =________. (七) 对数与对数函数12.[2014·山东卷] 已知实数x ,y 满足a x <a y(0<a <1),则下列关系式恒成立的是( ) A.1x 2+1>1y 2+1B. ln(x 2+1)>ln(y 2+1)C. sin x >sin yD. x 3>y 313.[2014·山东卷] 函数f (x )=1(log 2x )2-1的定义域为( ) A.⎝ ⎛⎭⎪⎫0,12 B .(2,+∞) C. ⎝ ⎛⎭⎪⎫0,12∪(2,+∞) D. ⎝ ⎛⎦⎥⎤0,12∪[2,+∞)14.[2014·广东卷] 若等比数列{a n }的各项均为正数,且a 10a 11+a 9a 12=2e 5,则 ln a 1+ln a 2+…+ln a 20=________.15.[2014·辽宁卷] 已知a =2-13,b =log 213,c =log 1213,则( )A .a >b >cB .a >c >bC .c >a >bD .c >b >a16.[2014·天津卷] 函数f (x )=log 12(x 2-4)的单调递增区间为( )A .(0,+∞)B .(-∞,0)C .(2,+∞)D .(-∞,-2)17.[2014·浙江卷] 在同一直角坐标系中,函数f (x )=x a(x >0),g (x )=log a x 的图像可能是( )A BC D 图1218.[2014·重庆卷] 函数f (x )=log 2x ·log 2(2x )的最小值为________.答案提示:1.[解析]3.C 因为f (x )是偶函数,g (x )是奇函数,所以f (1)+g (1)=f (-1)-g (-1)=(-1)3+(-1)2+1=1.2.[解析] C 由于偶函数的绝对值还是偶函数,一个奇函数与一个偶函数之积为奇函数,故正确选项为C.3. [解析] (-1,3) 根据偶函数的性质,易知f (x )>0的解集为(-2,2),若f (x -1)>0,则-2<x -1<2,解得-1<x <3. (五) 二次函数4. [解析] 16.(-∞,2] 。
吉林省东北师范大学附属中学2016届高三上学期理科数学第一轮复习阶段测试卷(第6周)
高三数学阶段测试卷(第六周) (考试时间:120分钟 满分150分) 拟题人:毕伟 审题人:暴偶奇本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,其中第Ⅱ卷第22~24题为选考题,其它题为必考题。
考生作答时,将答案答在答题卡上,在本试卷上答题无效。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,考生务必先将自己的姓名、准考证号填写在答题卡上,认真核对条形码上的姓名、准考证号,并将条形码粘贴在答题卡的指定位置上。
2.选择题答案使用2B 铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案的标号;非选择题答案使用0.5毫米的黑色中性(签字)笔或碳素笔书写,字体工整、笔迹清楚。
3.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效。
4.保持卡面清洁,不折叠,不破损。
5.做选考题时,考生按照题目要求作答,并用2B 铅笔在答题卡上把所选题目对应的题号涂黑。
参考公式:样本数据n x x x ,,21的标准差 锥体体积公式s =13V Sh =其中x 为样本平均数 其中S 为底面面积,h 为高 柱体体积公式 球的表面积,体积公式V Sh = 24S R π= 343V R π=其中S 为底面面积,h 为高 其中R 为球的半径第I 卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合}4,3,2,1{=U ,}05|{2=+-=p x x x M ,若}3,2{=M C U ,则实数p 的值为A. 6-B. 4-C. 4D. 6 2.若复数iia 213++(i R a ,∈为虚数单位)是纯虚数,则实数a 的值为A. 6-B. 2-C. 4D. 6 3.已知}{n a 为等差数列,若π=++951a a a ,则)cos(82a a +的值为A. 21-B. 23- C. 21 D. 23 4.已知函数,0,)21(0,)(21⎪⎩⎪⎨⎧≤>=x x x x f x则=-)]4([f fA. 4-B. 41- C. 45.下列命题错误的是A. 命题“若022=+y x ,则0==y x ”的逆否命题为“若y x ,中至少有一个不为0,则022≠+y x ”;B. 若命题01,:0200≤+-∈∃x x R x p ,则01,:2>+-∈∀⌝x x R x p ; C. ABC ∆中,B A sin sin >是B A >的 充要条件;D. 若向量b a ,满足0<⋅b a ,则a 与b的夹角为钝角.6. 执行右面的程序框图,如果输入30,72==n m , 则输出的n 是A. 12B. 6C. 3D. 07. 从5,4,3,2,1中不放回地依次取2个数,事件=A “第一次取到的是奇数”,=B “第二次取到的是奇数”,则=)|(A B P A.51 B. 103 C. 52 D. 218. 函数)sin()(ϕω+=x x f (其中2||πϕ<)的图象如图所示,为了得到x y ωsin =的图象,只需把)(x f y =的图象上所有点 A. 向右平移6π个单位长度 B. 向右平移12π个单位长度C. 向左平移6π个单位长度 D. 向左平移12π个单位长度9. 曲线c bx x y ++=2在点))(,(00x f x P 处切线的倾斜角的取值范围为]4,0[π,则点P 到该曲线对称轴距离的取值范围为 A. ]1,0[ B. ]21,0[ C. ]2||,0[b D. ]2|1|,0[-b 10. 若圆2221:240,()C x y ax a a R +++-=∈与圆2222:210,()C x y by b b R +--+=∈外切,则a b +的最大值为A. 23-B. 3-C. 3D. 2311.若不重合的四点C B A P ,,,,满足0PA PB PC ++= ,AB AC mAP +=,则实数m 的值为A. 2B. 3C. 4D. 512. 函数)(x f y =的最小正周期为2,且)()(x f x f =-.当]1,0[∈x 时,1)(+-=x x f ,那么在区间]4,3[-上,函数)(x f y =的图像与函数||)21(x y =的图像的交点个数是 A. 8 B. 7 C. 6 D. 5第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答. 二、填空题:本大题共4小题,每小题5分.13.已知双曲线)0,0(12222>>=-b a by a x 与抛物线x y 82=有一个公共的焦点F ,且两曲线的一个交点为P ,若5||=PF ,则双曲线方程为 . 14.设等比数列}{n a 的前n 项之和为n S ,已知20111=a ,且)(0221∙++∈=++N n a a a n n n ,则=2012S .15.已知不等式组⎪⎩⎪⎨⎧≤-≥≤a x x y x y 表示的平面区域S 的面积为4,点S y x P ∈),(,则y x z +=2 的最大值为 .16. 一个空间几何体的三视图如图所示,且这个空间几何体的所有顶点都在同一个球面上,则这个球的表ED CBA面积是 .三、解答题:解答应写出文字说明.证明过程或演算步骤 17.(本小题满分12分)如图,AB 是底部B 不可到达的一个塔型建筑物,A 为塔的最高点.现需在对岸测出塔高AB ,甲、乙两同学各提出了一种测量方法,甲同学的方法是:选与塔底B 在同一水平面内的一条基线CD ,使B D C ,,三点不在同一 条直线上,测出DCB ∠及CDB ∠的大小(分别 用βα,表示测得的数据)以及D C ,间的距离(用 s 表示测得的数据),另外需在点C 测得塔顶A 的 仰角(用θ表示测量的数据),就可以求得塔高AB .乙同学的方法是:选一条水平基线EF ,使B F E ,,三点在同一条直线上.在F E ,处分别测得塔顶A 的仰角(分别用βα,表示测得的数据)以及F E ,间的距离(用s 表示测得的数据),就可以求得塔高AB .请从甲或乙的想法中选出一种测量方法,写出你的选择并按如下要求完成测量计算:①画出测量示意图;②用所叙述的相应字母表示测量数据,画图时B D C ,,按顺时针方向标注,F E ,按从左到右的方向标注;③求塔高AB .18.(本小题满分12分)如图,四边形DCBE 为直角梯形,90=∠DCB ,CB DE //,2,1==BC DE ,又1=AC , 120=∠ACB , AB CD ⊥,直线AE 与直线CD 所成角为 60.(Ⅰ)求证:平面⊥ACD 平面ABC ; (Ⅱ)求BE 与平面ACE 所成角的正弦值.19.(本小题满分12分)现有B A ,两个项目,投资A 项目100万元,一年后获得的利润为随机变量1X (万元),根据市场分析,1X 的分布列为:投资B 项目100万元,一年后获得的利润2X (万元)与B 项目产品价格的调整(价格上调或下调)有关, 已知B 项目产品价格在一年内进行2次独立的调整,且在每次调整中价格下调的概率都是)10(<≤p p .经专家测算评估B 项目产品价格的下调与一年后获得相应利润的关系如下表:(Ⅰ)求1X 的方差)(1X D ; (Ⅱ)求2X 的分布列;(Ⅲ)若3.0=p ,根据投资获得利润的差异,你愿意选择投资哪个项目? (参考数据:555.909.08.942.07.049.02.1222=⨯+⨯+⨯).20.(本小题满分12分)如图椭圆134:22=+y x C 的右顶点是A ,上下两个顶点分别为D B ,,四边形OANB 是矩形(O 为原点),点M E ,分别为线段AN OA ,的中点.(Ⅰ)证明:直线DE 与直线BM 的交点在椭圆C 上;(Ⅱ)若过点E 的直线交椭圆于S R ,两点,K为R 关于x 轴的对称点(E K R ,,不共线), 问:直线KS 是否经过x 求这个定点的坐标,如果不是,说明理由.21.(本小题满分12分)设函数a aex x f x-++=-)1ln()(,R a ∈.(Ⅰ)当1=a 时,证明)(x f 在),0(+∞是增函数; (Ⅱ)若),0[+∞∈x ,0)(≥x f ,求a 的取值范围.请考生在第22、23、24三题中任选一题做答,如果多做,则按所做的第一题记分.答时FEDCBA用2B 铅笔在答题卡上把所选题目的题号涂黑. 22.(本小题满分10分) 选修4—1;几何证明选讲.如图,A ,B ,C ,D 四点在同一圆上,BC 与AD 的延长线交于点E ,点F 在 BA 的延长线上.(Ⅰ)若21,31==EA ED EB EC ,求ABDC的值; (Ⅱ)若FB FA EF ⋅=2,证明:CD EF //.23.(本小题满分10分)选修4—4;坐标系与参数方程.在平面直角坐标系xoy 中,曲线1C 的参数方程为⎩⎨⎧==ϕϕsin cos b y a x (0>>b a ,ϕ为参数),在以O 为极点,x 轴的正半轴为极轴的极坐标系中,曲线2C 是圆心在极轴上,且经过极点的圆.已知曲线1C 上的点)23,1(M 对应的参数3πϕ=,射线3πθ=与曲线2C 交于点)3,1(πD . (I )求曲线1C ,2C 的方程; (II )若点),(1θρA ,)2,(2πθρ+B 在曲线1C 上,求222111ρρ+的值.24.(本小题满分10分)选修4—5;不等式选讲.设不等式1|12|<-x 的解集是M ,M b a ∈,. (I )试比较1+ab 与b a +的大小;(II )设max 表示数集A 的最大数.⎭⎬⎫⎪⎩⎪⎨⎧+=b ab ba ah 2,,2max 22,求证:2≥h .答案参考:一、1. C 2.A 3.A 4.C 5.D 6.B 7.D 8.A 9.B 10.D 11.B 12.C 二、13. x 2-y 2/3=1; 14 .0; 15. 6; 16. 16π 三、选甲:示意图1图1 ----------4分 在BCD △中,πCBD αβ∠=--.由正弦定理得sin sin BC CDBDC CBD=∠∠.所以sin sin sin sin()CD BDC s BC CBD βαβ∠==∠+·.在ABC Rt ∆中,)sin(sin tan tan βαβθ+⋅=∠=s ACB BC AB .---------12分选乙:图2图2----------4分在AEF ∆中,αβ-=∠EAF ,由正弦定理得ααβsin )sin(AFEF =-, 所以)sin(sin )sin(sin αβααβα-⋅=-⋅=s EF AF .在ABF Rt ∆中,)sin(sin sin sin αββαβ-⋅⋅=⋅=s AF AB .---------12分由直线AE 与直线CD 所成角为60,得60cos ||||=⋅,即3222+=a aa ,解得1=a .∴)1,1,0(=CE ,)0,21,23(-=,)1,1,0(-=BE , 设平面ACE 的一个法向量为),,(z y x =n ,则⎪⎩⎪⎨⎧=⋅=⋅0CA n n ,即⎪⎩⎪⎨⎧=+=-002123z y y x ,取,3=x 则3,3-==z y ,得)3,3,3(n -=,设BE 与平面ACE 所成角为θ,则742sin ==θ,于是BE 与平面ACE 所成角的正弦值为742.---------12分19.(本小题满分12分) 【解析】(Ⅰ)1X 的概率分布为则8.1137.1128.11612)(1=⨯+⨯+⨯=X E . 01.031)8.117.11(21)8.118.11(61)8.1112()(2221=⨯-+⨯-+⨯-=X D . ---------4分(Ⅱ)解法1: 由题设得),2(~p B X ,则X 的概率分布为故2X 的概率分布为分解法2: 设i A 表示事件”第i 次调整,价格下调”()2,1=i ,则)0(=X P = 212()()(1)P A P A p =-;)1(=X P =1212()()()()2(1)P A P A P A P A p p +=-;)2(=X P =212()()P A P A p =故2X 的概率分布为(Ⅲ)当3.0=p 时. (12E ,由于01.0)(1=X D . 555.9)(2=X D .所以)()(12X D X D >,当投资两个项目的利润均值相同的情况下,投资B 项目的风险高于A 项目.从获得稳定收益考虑, 当3.0=p 时应投资A 项目. ---------12分20.(本小题满分12分)解:(1)由题意,得)23,2(),0,1(),3,0(),3,0(),0,2(M E D B A -, 所以直线DE 的方程33-=x y ,直线BM 的方程为343+-=x y ,------2分 由⎪⎩⎪⎨⎧+-=-=34333x y x y ,得⎪⎪⎩⎪⎪⎨⎧==53358y x ,所以直线DE 与直线BM 的交点坐标为)533,58(,---------------4分因为13)533(4)58(22=+,所以点)533,58(在椭圆134:22=+y x C 上.---------6分 (2)设RS 的方程为)1(-=x k y ,代入134:22=+y x C , 得01248)43(2222=-+-+k x k x k , 设),(),,(2211y x S y x R ,则),(11y x K -,2221222143124,438k k x x k k x x +-=+=+,直线SK 的方程为)(212122x x x x y y y y --+=-,令,0=y 得121221y y x y x y x ++=,将)1(11-=x k y ,)1(22-=x k y 代入上式得(9设42)(2212121=-++-=x x x x x x x , 所以直线SK 经过x 轴上的点)0,4(.---------12分21.(本小题满分12分)解:(1))1()1(11)('x e x a e e a x x f x x x ++-=-+=, 当1=a 时, )1()1()('x e x e x f x x ++-=, ---------2分 令x e x g x --=1)(,则1)('-=xe x g ,当),0(+∞∈x 时,01)('>-=x e x g ,所以)(x g 在),0(+∞为增函数,因此),0(+∞∈x 时,0)0()(=>g x g ,所以当),0(+∞∈x 时,0)('>x f , 则)(x f 在),0(+∞是增函数. ---------6分 (2)由)1()1()('x e x a e x f x x ++-=, 由(1)知,,1x e x +≥当且仅当0=x 等号成立. 故)1()1)(1()1()1(1)('x e x a x e x a x x f x x ++-=++-+≥, 从而当01≥-a ,即1≤a 时,对),0[+∞∈x ,0)('≥x f ,于是对),0[+∞∈∀x 0)0()(=≥f x f .由),0(1≠+>x x e x 得)0(1≠->-x x ex ,从而当1>a 时, )1())(()1(2)1()(22222'x e a a a e a a a e x e a ae e x e a ae a e x f x x x x x x x x x +----+-=++-=+-+-<- 故当))ln(,0(2a a a x -+∈时,0)('<x f , 于是当))ln(,0(2a a a x -+∈时,0)0()(=<f x f ,综上, a 的取值范围是]1,(-∞.---------12分请考生在第(22)、(23)、(24)三题中任选一题做答,如果多做,则按所做的第一题记分.答时用2B 铅笔在答题卡上把所选题目的题号涂黑.22.(本小题满分10分) 选修4—1;几何证明选讲.FE D CBA证明:(1) D C B A ,,,四点共圆,∴EBF EDC ∠=∠,又 AEB CED ∠=∠,∴CED ∆∽AEB ∆, ABDC EB ED EA EC ==∴,21,31==EA ED EB EC , ∴66=AB DC . (2) FB FA EF ⋅=2,∴FE FB FA EF =, 又 BFE EFA ∠=∠,∴FAE ∆∽FEB ∆,∴EBF FEA ∠=∠,又 D C B A ,,,四点共圆,∴EBF EDC ∠=∠,∴EDC FEA ∠=∠,∴CD EF //.23.(本小题满分10分)选修4—4;坐标系与参数方程.解:(I )将)23,1(M 及对应的参数3πϕ=,代入⎩⎨⎧==ϕϕsin cos b y a x ,得⎪⎪⎩⎪⎪⎨⎧==3sin 233cos 1ππb a , 即⎩⎨⎧==12b a ,所以曲线1C 的方程为⎩⎨⎧==ϕϕsin cos 2y x (ϕ为参数),或1422=+y x . 设圆2C 的半径为R ,由题意,圆2C 的方程为θρcos 2R =,(或222)(R y R x =+-). 将点)3,1(πD 代入θρcos 2R =, 得3cos 21πR =,即1=R .(或由)3,1(πD ,得)23,21(D ,代入222)(R y R x =+-,得1=R ), 所以曲线2C 的方程为θρcos 2=,或1)1(22=+-y x .(II )因为点),(1θρA ,)2,(2πθρ+B 在在曲线1C 上, 所以1sin 4cos 221221=+θρθρ,1cos 4sin 222222=+θρθρ, 所以45)cos 4sin ()sin 4cos (1122222221=+++=+θθθθρρ.。
吉林省东北师范大学附属中学2016届高三数学第一轮复习阶段测试卷(第3周)文
高三文科数学阶段测试卷范围:[三角函数、三角恒等变换、解三角形基础题]一、选择题:(12×5=60分) 1、已知锐角α满足3sin 5α=,则sin(2)πα+= A .1225- B .2425- C..1225D .24252、函数)3sin()(πω+=x x f (0>ω)的图象的相邻两条对称轴间的距离是2π.若将函数()f x 图象向右平移6π个单位,得到函数()g x 的解析式为 A .)64sin()(π+=x x f B .)34sin()(π-=x x fC .)62sin()(π+=x x f D .x x f 2sin )(=3、【15年福建文科】若5sin 13α=-,且α为第四象限角,则tan α的值等于( ) A .125 B .125- C .512 D .512-4、函数()2cos()f x x ωϕ=+(0,0ωϕπ><<)为奇函数,该函数的部分图象如图所示,点A B 、分别为该部分图象的最高点与最低点,且||42AB =,则函数()f x 图象的一条对称轴的方程为A .2x =B .2x π=C .12x =D .2x π= 5、若π<α<π223,则直线α+αsin cos y x =1必不经过 A.第一象限 B.第二象限 C.第三象限 D.第四象限6、在ABC ∆中,,,a b c 分别是角,,A B C 的对边,3B π=,且sin :sin 3:1A C =,则:b c的值为A .3B .2C .7D .77、右图所示的是函数()φ+=wx A y sin 图象的一部分,则其函数解析式是A .⎪⎭⎫⎝⎛+=3sin πx y B .⎪⎭⎫ ⎝⎛-=3sin πx y C .⎪⎭⎫⎝⎛+=62sin πx y D .⎪⎭⎫ ⎝⎛-=62sin πx y8、已知角α的顶点在原点,始边与x 轴的正半轴重合,终边与单位圆交点的横坐标为35-,若(0,)a π∈,则tan α=A .34 B .34- C .43 D .43- 9、已知ABC ∆的面积为23,2=AC ,3π=∠BAC ,则=∠ACBA .6π B .3π C .2π D .65π10、【高考题改编】已知函数()sin(2)f x x ϕ=+,其中ϕ为实数,若()()6f x f π≤对x R∈恒成立,且()()2f f ππ>,则()f x 的单调递增区间是A ,()36k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦ B ,()2k k k Z πππ⎡⎤+∈⎢⎥⎣⎦ C 2,()63k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦D ,()2k k k Z πππ⎡⎤-∈⎢⎥⎣⎦ 11、函数()cos f x x x =-在[0,)+∞内A 没有零点B 有且仅有一个零点C 有且仅有两个零点D 有无穷多个零点12、在△ABC 中,222sin sin sin sin sin A B C B C ≤+-,则A 的取值范围是 A (0,]6πB [,)6ππC (0,]3πD [,)3ππ题号 1 2 3 4 5 6 7 8 9 10 11 12 答案二、填空题:(5×5=25分)13、在ABC ∆中,角A B C 、、所对的边分别为a b c 、、.若2a =,23b =,60B =︒,则sin C = .14、已知1()cos f x x =,且1()()n n f x f x +'=(*)n N ∈,则 . 15、若角α的终边经过点()2,1P ,则α2sin 的值是 16、已知函数2()12sin ,()f x x f x =-则的周期T=17、若函数在)1,0[内恰有两个零点,则实数k 的取值范围是三、解答题:(10+10+15=35分) 18、阅读下面材料:根据两角和与差的正弦公式,有sin()sin cos cos sin αβαβαβ+=+------① sin()sin cos cos sin αβαβαβ-=-------②由①+② 得()()sin sin 2sin cos αβαβαβ++-=------③令,A B αβαβ+=-= 有,22A B A Bαβ+-== 代入③得 sin sin 2sin cos 22A B A BA B +-+=. (Ⅰ) 类比上述推证方法,根据两角和与差的余弦公式,证明:cos cos 2sinsin 22A B A BA B +--=-;(Ⅱ) 若ABC ∆的三个内角,,A B C 满足2cos 2cos 22sin A B C -=,试判断ABC ∆的形状.19、设ABC ∆的三个内角C B A ,,所对的边分别为c b a ,,.已知A A cos 6sin =⎪⎭⎫⎝⎛-π. (Ⅰ)求角A的大小;(Ⅱ)若2=a ,求c b +的最大值.20、函数的性质通常指函数的定义域、值域、周期性、单调性、奇偶性等,请选择适当的探究顺序,研究函数f (x )= 1-sin x +1+sin x 的性质,并在此基础上......,作出其在[,]ππ-的草图.答案提示: 一、选择题 题号123456789101112答案 B D D A B C A D A C B C 二.填空题13.1; 14.sinx ; 15.0.8 ; 16.17.18.(1).cos()=coscos-sinsin ①cos()=coscos+sinsin ②由①- ②得cos()- cos()=-2 sinsin令=A ,=B ,有= , =,所以,cos A- cos B=-2sinsin .(2). cos 2A- cos2 B=-2sin(A+B)sin(A-B)=2si,在,因为A+B+C= ,所以sin(A+B)=sinC,所以- sin(A-B)=sinC,所以sin(A+B)+sin(A-B)=0, 所以有2sinAcosB=0因为sinA ,所以cosB=0 ,因为B为三角形内角,所以B= ,所以三角形为直角三角形。
吉林省东北师范大学附属中学2016届高三上学期理科数学第一轮复习阶段测试卷(第2周)Word版含答案
高三数学阶段测试卷(第二周) (考试时间:120分钟 满分150分) 拟题人:毕伟 审题人:暴偶奇 2015.8.30【测试范围:集合,命题,简易逻辑,全称特称命题】一、选择题:本题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的,把正确的代号填在指定位置上.1. 【2014高考北京理第1题】已知集合2{|20}A x x x =-=,{0,1,2}B =,则A B =( )A.{0} B .{0,1} C .{0,2} D .{0,1,2}2.【2014高考湖北卷理第3题】设U 为全集,B A ,是集合,则“存在集合C 使得C C B C A U ⊆⊆,是“∅=B A ”的( )A. 充分而不必要条件B.必要而不充分条件C. 充要条件D. 既不充分也不必要条件 3.关于命题25sin ,:=∈∃x R x p 使;命题01,:2>++∈∀x x R x q 都有。
下列结论中正确的是( )A .命题“q p ∧”是真命题B .命题“q p ⌝∧”是真命题C .命题“q p ∨⌝)(”是真命题D .命题“)()(q p ⌝∨⌝”是假命题 4.已知点(3,1)和点(-4,6)在直线 3x –2y + m = 0 的两侧,则 ( ) A .m <-7或m >24 B .-7<m <24C .m =-7或m =24D .-7≤m ≤ 245.已知O 是坐标原点,点A (—1,1)。
若点M (x ,y )为平面区域⎪⎩⎪⎨⎧≤≤≥+212y x y x 上的一个动点,则OM ∙的取值范围是( )A .]0,1[-B .]1,0[C .]2,0[D .]2,1[-6.已知(x ,y )满足⎪⎩⎪⎨⎧≥->≤+0206y x y y x ,则x y 4-的最大值为( )A .32-B .21- C .0 D .不存在7.在如图所示的坐标平面的可行域(阴影部分且包括边 界)内,目标函数ay x z -=2取得最大值的最优解有无数个,则a 的值为 ( ) A .-2B .2C .-6D .68.已知向量b a z y b z x a ⊥-=+=且,),2(),3,(。
吉林省东北师范大学附属中学高考数学第一轮复习 函数与定积分应用(3)学案 理
导数与定积分(尖刀班)(3)【探究10】:不等式恒成立与存在性问题 思路提示在不等式恒成立或不等式有解条件下求参数的取值范围,一般利用等价转化的思想其转化为函数的最值或值域问题加以求解,可采用分离参数或不分离参数法直接移项构造辅助函数.(1)若函数()f x 在区间D 上存在最小值()min f x 和最大值()max f x ,则 不等式()f x a >在区间D 上恒成立()min f x a ⇔>; 不等式()f x a ≥在区间D 上恒成立()min f x a ⇔≥; 不等式()f x b <在区间D 上恒成立()max f x b ⇔<; 不等式()f x b ≤在区间D 上恒成立()max f x b ⇔≤;(2)若函数()f x 在区间D 上不存在最大(小)值,且值域为(),m n ,则不等式()()()f x a f x a >≥或在区间D 上恒成立m a ⇔≥.不等式()()()f x b f x b <≤或在区间D 上恒成立m b ⇔≤.例14. 已知函数()ln f x x x = (1)求()f x 的最小值.(2)对所有1x ≥都有()1f x ax ≥-,求实数a 的取值范围. 分析 第(2)问可用分离变量的方法求解参数的取值范围. 解析 函数()ln f x x x =的定义域是()0,+∞, (1)()1ln f x x '=+,令()0f x '=,解得1x e =,当10,x e ⎛⎫∈ ⎪⎝⎭时()0f x '<,当1,x e ⎛⎫∈+∞ ⎪⎝⎭,时()0f x '>;故()f x 在10,e ⎛⎫ ⎪⎝⎭上单调递减,在1,e ⎛⎫+∞ ⎪⎝⎭上单调递增,所以,当1x e =时,函数取得最小值11f e e ⎛⎫=- ⎪⎝⎭.(2)依题意,得()1f x ax ≥-在[1,)+∞上恒成立,即不等式1ln a x x≤+对于x [1,)∈+∞恒成立,即min 1ln ,[1,+a x x x ⎛⎫≤+∈∞ ⎪⎝⎭).设()()1ln 1,g x x x x =+≥则()22111x g x x x x -'=-=,令()0g x '=,得1x =,当1x ≥时,因为()210x g x x-'=≥,故()g x 在[1,)+∞上是增函数,所以()g x 在[1,)+∞上的最小值是()11g =,故a 的取值范围是(,1]-∞.评注 对于恒成立问题,其根本思路是转化,而转化只有两种方法.1,变量分离法,2,不分离参数法,本例第(2)问运用分离变量的方法,使得构造中的函数不含有参数,避免了对参数的分类讨论,对于不等式验证区间端点成立的情形,一般采用不分离参数法(见本例的变式1),同学们应该视不同的情形使用不同的方法.变式1 设函数()()()212ln 1f x x x =+-+. (1)求()f x 的单调区间;(2)若当11,1x e e ⎡⎤∈--⎢⎥⎣⎦时,不等式()f x m ≤恒成立,求实数m 的取值范围; (3)若关于x 的方程()2f x x x a =++在区间[]0,2上恰好有两个相异的实根,求实数a的取值范围.变式2 (2012湖南22(1))已知函数()axf x e x =-,其中0a ≠,若对一切(),1x R f x ∈≥恒成立,求a 的取值集合. 例15. 设函数()f xxx e e -=-(1)证明; ()f x 的导数()f 0x '≥;(2)若对所有0x ≥,都有()f x ax ≥,求a 的取值范围.解析 (1)()xxf x e e -'=+,由基本不等式得2xxe e-+≥=,故()2f x '≥,当且仅当0x =时()2f x '=. (2)令()()()0xxg x f x ax e eax x -=-=--≥,由()()0=02x x g g x e e a a a -'=+-≥=-,.①当2a ≤时,()0g x '≥,函数()g x 在[0,)+∞上单调递增,则()()00g x g ≥=,满足题意.②当2a >时,,因为函数()g x '在[0,)+∞上单调递增,令()00g x '=,得当()00,x x ∈时,()0g x '<,函数()g x 在()00,x 上单调递减,当()0,x x ∈+∞时,()0g x '>,函数()g x 在()0,x +∞上单调递增,因此,当()00,x x ∈时()0g x <,不满足在()min x [0,),0g x ∈+∞≥,故2a >不满足题意,舍去. 综上,a 的取值范围为(,2]-∞.评注 对于恒成立问题,其根本思想是 “转化”,而转化有两种方法:分离参数法和不分离参数法,对于不等式试验区间端点值成立的情形,一般采用不分离参数法,相比分离参数法操作上简单,可以视不同情形,选择不同的方法变式1 (2012天津20)已知()()ln f x x x a =-+的最小值为0,其中0a >. (1)求a 的值;(2)若对任意的[0,)x ∈+∞,均有()2f x kx ≤成立,求实数k 的最小值.变式2 已知函数()()ln 1,f x x a x a R =--∈. (1)讨论函数()f x 的单调性; (2)当1x ≥时,()ln f 1xx x ≤+恒成立,求a 的取值范围. 思路提示2(1)若函数()f x 在区间D上存在最小值()min f x 和最大值()max f x ,即()[],f x m n ∈,则对不等式有解问题有以下结论:不等式()a f x <在区间D 上有解()max a f x ⇔<; 不等式()a f x ≤在区间D 上有解()max a f x ⇔≤; 不等式()a f x >在区间D 上有解()min a f x ⇔>;不等式()a f x ≥在区间D 上有解()min a f x ⇔≥;(2)若函数()f x 在区间D 上不存在最大(小)值,如值域为(),m n ,则对不等式有解问题有以下结论:不等式()()()a f x f x <≤或a 在区间D 上有解a n ⇔< 不等式()()()b f x f x >≥或b 在区间D 上有解b m ⇔>例16.已知函数()()()1ln ,a f x x a x g x a R x+=-=-∈. (1)若1a =,求函数()f x 的极值;(2)设函数()()()h x f x g x =-,求函数()h x 的单调区间;(3)若在[]1e ,上存在一点0x ,使得()()00f x g x <成立,求a 的取值范围. 分析 若在区间[]1,e 上存在一点0x ,使得()()00f x g x <成立,转化为函数()()f x g x -在区间[]1,e 上的最小值小于0.解析 (1)当a 1=时,()ln f x x x =-,函数的定义域为{}|0x x >,()111x f x x x-'=-=当()0,1x ∈时()0f x '<,()f x 单调递减;当()1,x ∈+∞时,()0f x '>,()f x 单调递增,()f x 的极小值为()11f = (2)()()()1ln ,0a h x f x g x x a x x x+=-=-+>,()()()()22211a+1x a x x ax h x x x-++⎡⎤--⎣⎦'==,导函数()h x '的零点为1x a =+. 若10a +≤,即1a ≤-,则()()0+h x ∞在,上单调递增;若10a +>,即1a >-,则()()01h x a +在,上单调递减,在()1,a ++∞上单调递增.(3)依题意,只需要()()()[]000min0,x 1,f x g x e -<∈,令()()()[]+1ln 1,,a h x f x g x x a x x e x=-=-+∈, ()()()()222211111x a x x ax a a a h x x x x x -++⎡⎤--++⎣⎦=--==,讨论()h x '的零点与区间[]1,e 的位置关系. ①若11a +≤时,即()()0,0,a h x h x '≤≥单调递增,()()min 120h x h a ==+<,得2a ≤-;②若11a e <+<时,即01a e <<-,()h x 在[1,a+1)上单调递减,在(a+1,e]上单调递增,故()()()()()min 11ln 11,0,1h x h a a a a a e =+=+-++∈-,令()()()()()()1ln 11,0,1,012p x x x x x e p p e =+-++∈-=-=,()1p x x >+12x -+=,()0,1x e ∈-,因此()[]2,0,1p x x e ≥∈-,不符,故舍去.③若1a e +≥时,即1a e ≥-,()h x 在[]1,e 上单调递减,则()()min10a h x h e e a e+==-+<,得211e a e e +>>-成立.综上,a 的取值范围为()21,2,1e e ⎛⎫+-∞-+∞⎪-⎝⎭U 变式1 (2012北京丰台期末理19)设函数()ln bf x x a x x=-+,在1x =处取得极值.(1)求a 与b 满足的关系式;(2)若1a >,求函数()f x 的单调区间;(3)若3a >,函数()223g x a x =+,若存在121,,22m m ⎡⎤∈⎢⎥⎣⎦,使得()()12|f g |9m m -<成立,求a 的取值范围. 思路提示3(1)对于任意的[]1,x a b ∈,总存在[]2m,x n ∈,使得()()()()1212max max f x g x f x g x ≤⇔≤;(2)对于任意的[]1,x a b ∈,总存在[]2m,x n ∈,使得()()()()1212min min f x g x f x g x ≥⇔≥;(3)若存在[]1,x a b ∈,对于任意的[]2m,x n ∈,使得()()()()1212min min f x g x f x g x ≤⇔≤;(4)若存在[]1,x a b ∈,对于任意的[]2m,x n ∈,使得()()()()1212max max f x g x f x g x ≥⇔≥;(5)对于任意的[]1,x a b ∈,[]2m,x n ∈使得()()()()1212max min f x g x f x g x ≤⇔≤; (6)对于任意的[]1,x a b ∈,[]2m,x n ∈使得()()()()1212min max f x g x f x g x ≥⇔≥; (7)若存在[]1,x a b ∈,总存在[]2m,x n ∈,使得()()()()1212min max f x g x f x g x ≤⇔≤(8)若存在[]1,x a b ∈,总存在[]2m,x n ∈,使得()()()()1212max min f x g x f x g x ≥⇔≥.例17. 已知()()1ln 1af x x ax a R x-=-+-∈.(1)当12a ≤时,讨论()f x 的单调性;(2)设()224g x x bx =-+,当14a =时,若对任意()10,2x ∈,存在[]21,2x ∈,使()()12f x g x ≥.求实数b 的取值范围.分析 对于任意的()10,2x ∈,存在[]21,2x ∈,使得()()12f x g x ≥成立转化为()()12min min f x g x ≥解析 (1)函数()f x 的定义域为{}|0x x >,()()[]()222211111ax a x ax x a a f x a x x x x+------'=-+== ①当0a =时,()21x f x x-'=,由()0f x '>,得1x >,由()0f x '<,得01x <<②当0a ≠时,()()211a a x x a f x x-⎛⎫--- ⎪⎝⎭'=, (Ⅰ)当11aa -=时,得()()221112,2x a f x x--'==,函数()f x 在()0,+∞上单调递减. (Ⅱ)当102a <<时,11aa->,当x 变化时,()(),f x f x '变化情况如表3-11所示.函数()f x 的单调递减区间为()0,1和1,a a -⎛⎫+∞ ⎪⎝⎭,单调递增区间为11,a a -⎛⎫⎪⎝⎭.(Ⅲ)当0a <时,10aa-<,函数()f x 在()0,1上单调递减,在()1,+∞上单调递增; 综上,当0a ≤时,函数()f x 在()0,1的单调递减区间为,递增区间为()1,+∞;当102a <<时,函数()f x 在()0,1,1,a a -⎛⎫+∞ ⎪⎝⎭上单调递减,在11,a a -⎛⎫⎪⎝⎭上单调递增;当12a =时,函数()f x 在()0,+∞上单调递减. (2)依题意,()()()[]1212min min ,0,2,1,2f x g x x x ≥∈∈,当14a =时,()3ln 144x f x x x=-+-在()0,1上递减,在()1,2上递增,故()()()[]2min 11= -,24,1,22f x fg x x bx x ==-+∈.当1x b =≤时,()()min 152g x g b ==-,则1522b -≥-,即114b ≥(舍)当12b <≤时,()()222min 244g x g b b b b ==-+=-,得22194,,22b b -≥-≥即b ≥或b ≤当2b ≥时,()()min 284g x g b ==-,则1842b -≥-,得178b ≥综上,实数b 的取值范围是17[,8+∞).评注 对于存在性与任意性的综合问题,不妨先定存在,如本例中对任意的()10,2x ∈,总存在[]21,2x ∈,使()()12f x g x ≥,令()2g x M =,则()10,2,x ∀∈()()11min f x M f x M ≥⇔≥,设()()11min ,0,2f x m x =∈,再分析存在[]()22min 1,2,x g x m ∈≤,则,即最终转化为()()21min min g x f x ≤的问题.变式1 已知函数.(1)求的单调区间;(2)设,若对任意的,均存在,使得,求的取值范围.变式2 已知函数,(为常数,)(1)若是函数的一个极值点,求的值; (2)求证:当时,在上是增函数; (3)若对任意的,总存在,使不等式成立,求实数的取值范围.。
吉林省东北师范大学附属中学2016届高考数学第一轮复习 函数与方程学案 理
函数与方程一、知识梳理:(阅读教材必修1第85页—第94页)1、方程的根与函数的零点(1)零点:对于函数,我们把使0的实数x叫做函数的零点。
这样,函数的零点就是方程0的实数根,也就是函数的图象与x轴交点的横坐标,所以方程0有实根。
(2)、函数的零点存在性定理:如果函数在区间[a,b]上的图象是连续不断的一条曲线,并且有那么,在区间(a,b)内有零点,即存在c,使得=0,这个C 也就是方程0的实数根。
(3)、零点存在唯一性定理:如果单调函数在区间[a,b]上的图象是连续不断的一条曲线,并且有那么,在区间(a,b)内有零点,即存在唯一c,使得=0,这个C 也就是方程0的实数根。
(4)、零点的存在定理说明:①求在闭间内连续,满足条件时,在开区间内函数有零点;②条件的函数在区间(a,b)内的零点至少一个;③间[a,b]上连续函数,不满足,这个函数在(a,b)内也有可能有零点,因此在区间[a,b]上连续函数,是函数在(a,b)内有零点的充分不必要条件。
2、用二分法求方程的近似解(1)、二分法定义:对于区间[a,b]连续不断且的函数通过不断把区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点的近似值的方法叫做二分法。
(2)、给定精确度()用二分法求函数的零点近似值步骤如下:①确定区间[a,b],验证给定精确度();②求区间(a,b)的中点c;③计算(I)若=0,则c就是函数的零点;(II)若则令b=c,(此时零点);(III)若则令a=c,(此时零点);④判断是否达到精确度,若|a-b|,则得到零点的近似值a(或b),否则重复②--④步骤。
函数的零点与相应方程根的关系,我们可用二分法来求方程的近似解,由于计算量较大,而且是重复相同的步骤,因此,我们可以通过设计一定的程序,借助计算器或者计算机来完成计算。
二、题型探究[探究一]:考察零点的定义及求零点例1:已知函数(1)m为何值时,函数的图象与x轴只有一个公共点?(1或1/3)(2)如果函数的一个零点为2,则m的值及函数的另一个零点。
吉林省东北师范大学附属中学高三数学第一轮复习函数与定积分应用课时作业理
导数与定积分应用(尖刀班)(5)五.课时作业 一、 选择题1.已知函数432()410f x x x x =-+,则方程()0f x =在区间[]1,2上的根有.A 3个 .B 2个 .C 1个 .D 0个2.若函数()y f x =在R 上可导且满足不等式()()0xf x f x '+>恒成立,且常数,a b 满足a b >,则下列不等式一定成立的是 .A ()()af a bf b > .B ()()af b bf a > .C ()()af a bf b < .D ()()af b bf a <3、如果()f x '是二次函数, 且()f x '的图象开口向上,顶点坐标为(1,3)-, 那么曲线()y f x =上任一点的切线的倾斜角α的取值范围是.A 2(0,]3π .B 2[0,)[,)23πππ .C 2[0,][,)23πππ .D 2[,]23ππ4、如图,是函数d cx bx x x f +++=23)(的大致图像,则2221x x +等于 .A 98 .B 910 .C 916 .D 9285、函数()f x 的定义域是开区间(),a b ,导函数()f x '在(),a b 内的图象如图所示,则函数()f x 在开区间内有极小值点.A 1个 .B 2个 .C 3个 .D 4个6、函数x bx ax x f 2)(23-+=的图象如图所示, 且021<+x x ,则有.A 0,0>>b a .B 0,0><b a .C 0,0<<b a .D 0,0<>b axyab()'y f x =O7.(原创题)用S 表示图中阴影部分的面积,则S 的值是( )A .⎠⎛a c f (x )d xB .|⎠⎛ac f (x )d x |C .⎠⎛ab f (x )d x +⎠⎛bc f (x )d x D .⎠⎛b c f (x )d x -⎠⎛ab f (x )d x8.设函数f (x )=x m+ax 的导函数f ′(x )=2x +1,则⎠⎛12f (-x )d x 的值等于( )A.56B.12C.23 D.169.已知f (x )为偶函数且⎠⎛06 f (x )d x =8,则⎠⎛-66f (x )d x 等于( )A .0B .4C .8D .1610.由直线x =12,x =2,曲线y =1x及x 轴所围成图形的面积为( )A.154B.174C.12ln2 D .2ln2二、填空题11.若等比数列{a n }的首项为23,且a 4=⎠⎛14 (1+2x )d x ,则公比等于________.12.如图,设点P 从原点沿曲线y =x 2向点A (2,4)移动,记直线OP 、曲线y =x 2及直线x =2所围成的面积分别记为S 1,S 2,若S 1=S 2,求点P 的坐标.13.使ax x y +=sin 为R 上增函数,则a 的范围是 14. 【2015高考新课标2,理12改编】设函数'()f x 是奇函数()()f x x R ∈的导函数,(1)0f -=,当0x >时,'()()0xf x f x -<,则使得()0f x >成立的x 的取值范围是15.【2015高考新课标1,理12改编】设函数()f x =(21)x e x ax a --+,其中a 1,若存在唯一的整数0x ,使得0()f x 0,则a 的取值范围是16. 【2015高考天津,理11】曲线2y x = 与直线y x = 所围成的封闭图形的面积为 . 三、解答题17、已知:1x >,证明不等式:()ln 1x x >+18、设x ax x f +=3)(恰有三个单调区间,试确定a 的取值范围,并求出这三个单调区间19.【2015安徽理】(本小题满分13分) 设函数2()f x x ax b =-+. (Ⅰ)讨论函数(sin )f x 在(,)22ππ-内的单调性并判断有无极值,有极值时求出极值;(Ⅱ)记2000()f x x a x b =-+,求函数0(sin )(sin )f x f x -在[]22ππ-,上的最大值D ; (Ⅲ)在(Ⅱ)中,取000a b ==,求24a zb =-满足1D ≤时的最大值.20.(2015新课标2卷,本题满分12分.21) 设函数2()mxf x e x mx =+-.(Ⅰ)证明:()f x 在(,0)-∞单调递减,在(0,)+∞单调递增;(Ⅱ)若对于任意12,[1,1]x x ∈-,都有12()()1f x f x e -≤-,求m 的取值范围.部分题解析:7.解析:选D.由定积分的几何意义知选项D 正确.9.解析:选D.原式=⎠⎛-60f (x )d x +⎠⎛06f (x )d x ,∵原函数为偶函数,∴在y 轴两侧的图象对称.∴对应的面积相等.故选D.8.解析:选A.由于f (x )=x m +ax 的导函数为f ′(x )=2x +1,所以f (x )=x 2+x ,于是⎠⎛12f (-x )d x =⎠⎛12(x 2-x )d x =⎪⎪⎪⎝ ⎛⎭⎪⎫13x 3-12x 221=56.10.11.解析:本题考查定积分运算及等比数列基本量的求解.由已知得a 4=(x +x 2)|41=18,故q 3=1823=27⇒q =3.答案:312.解:设直线OP 的方程为y =kx ,P 点的坐标为(x ,y ),则⎠⎛0x (kx -x 2)d x =⎠⎛x2(x 2-kx )d x ,即(12kx 2-13x 3)|x 0=(13x 3-12kx 2)|2x , 解得12kx 2-13x 3=83-2k -(13x 3-12kx 2),解得k =43,即直线OP 的方程为y =43x ,所以点P 的坐标为(43,169).14.(,1)(0,1)-∞- 15.[32e,1)16. 1619.【2015安徽理21】.解析:(Ⅰ)极小值为24a b -;(Ⅱ)00||||D a a b b =-+-; (Ⅲ)1.分析:(Ⅰ)将sin x 代入()f x 为2(sin )sin sin sin (sin )f x x a x b x x a b =-+=-+,22x ππ-<<.求导得[(sin )]'(2sin )cos f x x a x =-,22x ππ-<<.因为22x ππ-<<,所以cos 0,22sin 2x x >-<<.按a 的范围分三种情况进行讨论:①当2,a b R ≤-∈时,函数(sin )f x 单调递增,无极值.②当2,a b R ≥∈时,函数(sin )f x 单调递减,无极值.③当22a -<<,在(,)22ππ-内存在唯一的0x ,使得02sin x a =.02x x π-<≤时,函数(sin )f x 单调递减;02x x π<<时,函数(sin )f x 单调递增.因此,22a -<<,b R ∈时,函数(sin )f x 在0x 处有极小值20(sin )()24a a f x fb ==-.(Ⅱ)当22x ππ-≤≤时,依据绝对值不等式可知00000|(sin )(sin )||()sin |||||f x f x a a x b b a a b b -=-+-≤-+-,从而能够得出函数0(sin )(sin )f x f x -在[]22ππ-,上的最大值为00||||D a a b b =-+-.(Ⅲ)当D 1≤,即||||1a b +≤,此时201,11a b ≤≤-≤≤,从而214a zb =-≤.依据式子特征取0,1a b ==,则||||1a b +≤,并且214a zb =-=.由此可知,24a z b =-满足条件D 1≤的最大值为1. 解析:(Ⅰ)2(sin )sin sin sin (sin )f x x a x b x x a b =-+=-+,22x ππ-<<.[(sin )]'(2sin )cos f x x a x =-,22x ππ-<<.因为22x ππ-<<,所以cos 0,22sin 2x x >-<<.①当2,a b R ≤-∈时,函数(sin )f x 单调递增,无极值. ②当2,a b R ≥∈时,函数(sin )f x 单调递减,无极值. ③当22a -<<,在(,)22ππ-内存在唯一的0x ,使得02sin x a =. 02x x π-<≤时,函数(sin )f x 单调递减;02x x π<<时,函数(sin )f x 单调递增.因此,22a -<<,b R ∈时,函数(sin )f x 在0x 处有极小值20(sin )()24a a f x fb ==-.(Ⅱ)22x ππ-≤≤时,00000|(sin )(sin )||()sin |||||f x f x a a x b b a a b b -=-+-≤-+-,当00()()0a a b b --≥时,取2x π=,等号成立,当00()()0a a b b --<时,取2x π=-,等号成立,由此可知,函数0(sin )(sin )f x f x -在[]22ππ-,上的最大值为00||||D a a b b =-+-.(Ⅲ)D 1≤,即||||1a b +≤,此时201,11a b ≤≤-≤≤,从而214a zb =-≤. 取0,1a b ==,则||||1a b +≤,并且214a z b =-=. 由此可知,24a zb =-满足条件D 1≤的最大值为1.考点:1.函数的单调性、极值与最值;2.绝对值不等式的应用. 20.【新课标2, 21.】解析 (Ⅰ)详见解析;(Ⅱ)[1,1]-. 解析:(Ⅰ)'()(1)2mxf x m ex =-+.若0m ≥,则当(,0)x ∈-∞时,10mxe -≤,'()0f x <;当(0,)x ∈+∞时,10mx e -≥,'()0f x >.若0m <,则当(,0)x ∈-∞时,10mx e ->,'()0f x <;当(0,)x ∈+∞时,10mx e -<,'()0f x >.所以,()f x 在(,0)-∞单调递减,在(0,)+∞单调递增.(Ⅱ)由(Ⅰ)知,对任意的m ,()f x 在[1,0]-单调递减,在[0,1]单调递增,故()f x 在0x =处取得最小值.所以对于任意12,[1,1]x x ∈-,12()()1f x f x e -≤-的充要条件是:(1)(0)1,(1)(0)1,f f e f f e -≤-⎧⎨--≤-⎩即1,1,m m e m e e m e -⎧-≤-⎪⎨+≤-⎪⎩①,设函数()1t g t e t e =--+,则'()1tg t e =-.当0t <时,'()0g t <;当0t >时,'()0g t >.故()g t 在(,0)-∞单调递减,在(0,)+∞单调递增.又(1)0g =,1(1)20g e e --=+-<,故当[1,1]t ∈-时,()0g t ≤.当[1,1]m ∈-时,()0g m ≤,()0g m -≤,即①式成立.当1m >时,由()g t 的单调性,()0g m >,即1m e m e ->-;当1m <-时,()0g m ->,即1m e m e -+>-.综上,m 的取值范围是[1,1]-. 考点:导数的综合应用.。
吉林省东北师范大学附属中学2016届高三上学期理科数学第一轮复习阶段测试卷(第10周)Word版含答案
高三数学阶段测试卷[理科] (第十周)拟题人:毕伟 审题人:暴偶奇【测试题型:2014年全国高考函数:选择、填空、解答】【测试内容:函数;二次函数、二次方程、二次函数三个二的关系】1. [2014·安徽卷6.] 设函数f (x )(x ∈R )满足f (x +π)=f (x )+sin x .当0≤x <π时,f (x )=0,则f ⎝⎛⎭⎫23π6=( )A.12B.32 C .0 D .-122. [2014·北京卷2.] 下列函数中,在区间(0,+∞)上为增函数的是( )A .y =x +1B .y =(x -1)2C .y =2-x D .y =log 0.5(x +1)3. [2014·福建卷7.] 已知函数f (x )=⎩⎪⎨⎪⎧x 2+1,x >0,cos x , x ≤0,则下列结论正确的是( )A .f (x )是偶函数B .f (x )是增函数C .f (x )是周期函数D .f (x )的值域为[-1,+∞)4. [2014·江西卷2.] 函数f (x )=ln(x 2-x )的定义域为( )A .(0,1]B .[0,1]C .(-∞,0)∪(1,+∞)D .(-∞,0]∪[1,+∞)5. [2014·山东卷3.] 函数f (x )=1(log 2x )2-1的定义域为( )A.⎝⎛⎭⎫0,12 B .(2,+∞) C. ⎝⎛⎭⎫0,12∪(2,+∞) D. ⎝⎛⎦⎤0,12∪[2,+∞)6. [2014·全国卷12.] 函数y =f (x )的图像与函数y =g (x )的图像关于直线x +y =0对称,则y =f (x )的反函数是( )A .y =g (x )B .y =g (-x )C .y =-g (x )D .y =-g (-x )7. [2014·北京卷2.] 下列函数中,在区间(0,+∞)上为增函数的是( ) A .y =x +1 B .y =(x -1)2 C .y =2-x D .y =log 0.5(x +1)8. [2014·福建卷7.] 已知函数f (x )=⎩⎪⎨⎪⎧x 2+1,x >0,cos x , x ≤0,则下列结论正确的是( )A .f (x )是偶函数B .f (x )是增函数C .f (x )是周期函数D .f (x )的值域为[-1,+∞)9. [2014·福建卷] 7. 已知函数f (x )=⎩⎪⎨⎪⎧x 2+1,x >0,cos x , x ≤0,则下列结论正确的是( )A .f (x )是偶函数B .f (x )是增函数C .f (x )是周期函数D .f (x )的值域为[-1,+∞)10. [2014·四川卷12.] 设f (x )是定义在R 上的周期为2的函数,当x ∈[-1,1)时,f (x )=⎩⎪⎨⎪⎧-4x 2+2,-1≤x <0,x , 0≤x <1,则f ⎝⎛⎭⎫32=________. 11. [2014·四川卷15.] 以A 表示值域为R 的函数组成的集合,B 表示具有如下性质的函数φ(x )组成的集合:对于函数φ(x ),存在一个正数M ,使得函数φ(x )的值域包含于区间[-M ,M ].例如,当φ1(x )=x 3,φ2(x )=sin x 时,φ1(x )∈A ,φ2(x )∈B .现有如下命题:①设函数f (x )的定义域为D ,则“f (x )∈A ”的充要条件是“∀b ∈R ,∃a ∈D ,f (a )=b ”; ②函数f (x )∈B 的充要条件是f (x )有最大值和最小值;③若函数f (x ),g (x )的定义域相同,且f (x )∈A ,g (x )∈B ,则f (x )+g (x )∉B ; ④若函数f (x )=a ln(x +2)+xx 2+1(x >-2,a ∈R )有最大值,则f (x )∈B .其中的真命题有________.(写出所有真命题的序号)12. [2014·四川卷21.] 已知函数f (x )=e x -ax 2-bx -1,其中a ,b ∈R ,e =2.718 28…为自然对数的底数.(1)设g (x )是函数f (x )的导函数,求函数g (x )在区间[0,1]上的最小值; (2)若f (1)=0,函数f (x )在区间(0,1)内有零点,求a 的取值范围.13. [2014·广东卷21.] 设函数f (x )=1(x 2+2x +k )2+2(x 2+2x +k )-3,其中k <-2.(1)求函数f (x )的定义域D (用区间表示); (2)讨论函数f (x )在D 上的单调性;(3)若k <-6,求D 上满足条件f (x )>f (1)的x 的集合(用区间表示).答案提示: 1.[解析]6.A. 由已知可得,f ⎝⎛⎭⎫23π6=f ⎝⎛⎭⎫17π6+sin 17π6=f ⎝⎛⎭⎫11π6+sin 11π6+sin 17π6 =f ⎝⎛⎭⎫5π6+sin5π6+sin 11π6+sin 17π6=2sin 5π6+sin ⎝⎛⎭⎫-π6=sin 5π6=12. 2.[解析] 2.A. 由基本初等函数的性质得,选项B 中的函数在(0,1)上递减,选项C ,D 中的函数在(0,+∞)上为减函数,所以排除B ,C ,D ,选A.3. [解析]7.D 由函数f (x )的解析式知,f (1)=2,f (-1)=cos(-1)=cos 1,f (1)≠f (-1),则f (x )不是偶函数;当x >0时,令f (x )=x 2+1,则f (x )在区间(0,+∞)上是增函数,且函数值f (x )>1;当x ≤0时,f (x )=cos x ,则f (x )在区间(-∞,0]上不是单调函数,且函数值f (x )∈[-1,1]; ∴函数f (x )不是单调函数,也不是周期函数,其值域为[-1,+∞). 4.[解析]2.C. 由x 2-x >0,得x >1或x <0.5. [解析] 3.C 根据题意得,⎩⎪⎨⎪⎧x >0,(log 2)2-1>0,解得⎩⎪⎨⎪⎧x >0,x >2或x <12.故选C. 6.[解析] 12.D. 设(x 0,y 0)为函数y =f (x )的图像上任意一点,其关于直线x +y =0的对称点为(-y 0,-x 0).根据题意,点(-y 0,-x 0)在函数y =g (x )的图像上,又点(x 0,y 0)关于直线y =x 的对称点为(y 0,x 0),且(y 0,x 0)与(-y 0,-x 0)关于原点对称,所以函数y =f (x )的反函数的图像与函数y =g (x )的图像关于原点对称,所以-y =g (-x ),即y =-g (-x ). 7.[解析]2.A 由基本初等函数的性质得,选项B 中的函数在(0,1)上递减,选项C ,D 中的函数在(0,+∞)上为减函数,所以排除B ,C ,D ,选A. 8.[解析] 7.D 由函数f (x )的解析式知,f (1)=2,f (-1)=cos(-1)=cos 1,f (1)≠f (-1),则f (x )不是偶函数;当x >0时,令f (x )=x 2+1,则f (x )在区间(0,+∞)上是增函数,且函数值f (x )>1;当x ≤0时,f (x )=cos x ,则f (x )在区间(-∞,0]上不是单调函数,且函数值f (x )∈[-1,1]; ∴函数f (x )不是单调函数,也不是周期函数,其值域为[-1,+∞).9. . [解析]7.D. 由函数f (x )的解析式知,f (1)=2,f (-1)=cos(-1)=cos 1,f (1)≠f (-1),则f (x )不是偶函数;当x >0时,令f (x )=x 2+1,则f (x )在区间(0,+∞)上是增函数,且函数值f (x )>1;当x ≤0时,f (x )=cos x ,则f (x )在区间(-∞,0]上不是单调函数,且函数值f (x )∈[-1,1]; ∴函数f (x )不是单调函数,也不是周期函数,其值域为[-1,+∞). 10 [解析] 12.1 由题意可知,f ⎝⎛⎭⎫32=f ⎝⎛⎭⎫2-12=f ⎝⎛⎭⎫-12=-4⎝⎛⎭⎫-122+2=1. 11.[解析] 15.①③④ 若f (x )∈A ,则f (x )的值域为R ,于是,对任意的b ∈R ,一定存在a ∈D ,使得f (a )=b ,故①正确.取函数f (x )=x (-1<x <1),其值域为(-1,1),于是,存在M =1,使得f (x )的值域包含于[-M ,M ]=[-1,1],但此时f (x )没有最大值和最小值,故②错误.当f (x )∈A 时,由①可知,对任意的b ∈R ,存在a ∈D ,使得f (a )=b ,所以,当g (x )∈B 时,对于函数f (x )+g (x ),如果存在一个正数M ,使得f (x )+g (x )的值域包含于[-M ,M ],那么对于该区间外的某一个b 0∈R ,一定存在一个a 0∈D ,使得f (a 0)=b -g (a 0),即f (a 0)+g (a 0)=b 0∉[-M ,M ],故③正确.对于f (x )=a ln(x +2)+xx 2+1 (x >-2),当a >0或a <0时,函数f (x )都没有最大值.要使得函数f (x )有最大值,只有a =0,此时f (x )=xx 2+1(x >-2).易知f (x )∈⎣⎡⎦⎤-12,12,所以存在正数M =12,使得f (x )∈[-M ,M ],故④正确. 12. 解:21. (1)由f (x )=e x -ax 2-bx -1,得g (x )=f ′(x )=e x -2ax -b .所以g ′(x )=e x -2a .当x ∈[0,1]时,g ′(x )∈[1-2a ,e -2a ].当a ≤12时,g ′(x )≥0,所以g (x )在[0,1]上单调递增,因此g (x )在[0,1]上的最小值是g (0)=1-b ; 当a ≥e2时,g ′(x )≤0,所以g (x )在[0,1]上单调递减,因此g (x )在[0,1]上的最小值是g (1)=e -2a -b ;当12<a <e2时,令g ′(x )=0,得x =ln(2a )∈(0,1),所以函数g (x )在区间[0,ln(2a )]上单调递减,在区间(ln(2a ),1]上单调递增,于是,g (x )在[0,1]上的最小值是g (ln(2a ))=2a -2a ln(2a )-b . 综上所述,当a ≤12时,g (x )在[0,1]上的最小值是g (0)=1-b ;当12<a <e2时,g (x )在[0,1]上的最小值是g (ln(2a ))=2a -2a ln(2a )-b ; 当a ≥e2时,g (x )在[0,1]上的最小值是g (1)=e -2a -b .(2)设x 0为f (x )在区间(0,1)内的一个零点,则由f (0)=f (x 0)=0可知,f (x )在区间(0,x 0)上不可能单调递增,也不可能单调递减. 则g (x )不可能恒为正,也不可能恒为负. 故g (x )在区间(0,x 0)内存在零点x 1. 同理g (x )在区间(x 0,1)内存在零点x 2. 故g (x )在区间(0,1)内至少有两个零点.由(1)知,当a ≤12时,g (x )在[0,1]上单调递增,故g (x )在(0,1)内至多有一个零点;当a ≥e2时,g (x )在[0,1]上单调递减,故g (x )在(0,1)内至多有一个零点,都不合题意.所以12<a <e 2.此时g (x )在区间[0,ln(2a )]上单调递减,在区间(ln(2a ),1]上单调递增. 因此x 1∈(0,ln(2a )],x 2∈(ln(2a ),1),必有g (0)=1-b >0,g (1)=e -2a -b >0.由f (1)=0得a +b =e -1<2,则g (0)=a -e +2>0,g (1)=1-a >0,解得e -2<a <1. 当e -2<a <1时,g (x )在区间[0,1]内有最小值g (ln(2a )). 若g (ln(2a ))≥0,则g (x )≥0(x ∈[0,1]),从而f (x )在区间[0,1]内单调递增,这与f (0)=f (1)=0矛盾,所以g (ln(2a ))<0. 又g (0)=a -e +2>0,g (1)=1-a >0.故此时g (x )在(0,ln(2a ))和(ln(2a ),1)内各只有一个零点x 1和x 2.由此可知f (x )在[0,x 1]上单调递增,在(x 1,x 2)上单调递减,在[x 2,1]上单调递增. 所以f (x 1)>f (0)=0,f (x 2)<f (1)=0,故f (x )在(x 1,x 2)内有零点. 综上可知,a 的取值范围是(e -2,1).13. 13.解法一:21.(1).可知222(2)2(2)30x x k x x k +++++->,22[(2)3][(2)1]0x x k x x k ∴+++⋅++->,223x x k ∴++<-或221x x k ++>,2(1)2x k ∴+<--(20)k -->或2(1)2x k +>-(20)k ->,|1|x ∴+<|1|x +>1∴-<1x <-1x <--1x >-+ 所以函数()f x 的定义域D 为(,1-∞-(1-1-+(1)-++∞;(2).232(2)(22)2(22)'()x x k x x f x +++++=-23(21)(22)x x k x ++++=-,由'()0f x >得2(21)(22)0x x k x ++++<,即(1)()(1)0x x x +++<,1x ∴<-或11x -<<-+,结合定义域知1x <--或11x -<<-+所以函数()f x的单调递增区间为(,1-∞--,(1,1--+,同理递减区间为(11)--,(1)-+∞;(3).由()(1)f x f =得2222(2)2(2)3(3)2(3)3x x k x x k k k +++++-=+++-,2222[(2)(3)]2[(2)(3)]0x x k k x x k k ∴++-++++-+=, 22(225)(23)0x x k x x ∴+++⋅+-=,(11(3)(1)0x x x x ∴+++-⋅+-=,1x ∴=-1x =-+3x =-或1x =, 6k <-,1(1,1∴∈--+,3(11)-∈--,11-<-11->-+ 结合函数()f x 的单调性知()(1)f x f >的解集为(11--(13)--(1,1-(11--.解法二:解:(1)依题意有222(2)2(2)30x x k x x k +++++->()()222+3210xx k x x k ++⋅++->2,31,13k k k <-∴+<-<-故222+3=021=0x x k x x k ++++-,均有两根记为12341111x x x x =-=-=-=-注意到3124x x x x >>>,故不等式()()222+3210x x k x x k ++⋅++->的解集为()()()4213,,,x x x x -∞⋃⋃+∞ ,即()()()4213,,,D x x x x =-∞⋃⋃+∞(2)令()222=(2)2(2)3,g x x x k x x k x D +++++-∈则()()()()'22=2(2)222(22)412+1g x x x k x x x x x k ++⋅+++=+⋅++令()'0g x =,注意到2,11k k <-+<-,故方程2210x x k +++=有两个不相等的实数根记为5611x x =-=-71x =- 注意到3512641x x x x x x >>>->>>结合图像可知 在区间()()23,1,,x x -+∞上()'0g x >,()g x 单调递增在区间()()41,,1,x x -∞-上()'0g x <,()g x 单调递减故()f x 在区间()()23,1,,x x -+∞上单调递减,在区间()()41,,1,x x -∞-上单调递增. (3)(1)f ==在区间D 上,令()()1f x f =,,即2222(2)2(2)3=812x x k x x k k k +++++-++()()222(2)2(2)350x x k x x k k k +++++-+⋅+=()()2223250x x k k x x k k ⎡⎤⎡⎤++-+++++=⎣⎦⎣⎦ 22232250x x x x k ⎡⎤⎡⎤+-+++=⎣⎦⎣⎦()*方程22250x x k +++=的判别式8160k ∆=-->,故此方程()*有4个不相等的实数根,记为8910111,3,11x x x x ==-=-=-注意到6k <-,故,1211,13x x =->=--,故89,x x D ∈ (103110x x -=--+=>,故10x D ∈4112420k k x x -----===>故11x D ∈结合()()()4213,,,D x x x x =-∞⋃⋃+∞和函数的图像 可得()(1)f x f >的解集为()()()()1142981310,,,,x x x x x x x x ⋃⋃【品题】函数题(1)考查了数轴标根法,4个根,学过这个方法的学生就能快速做出第一问.我记得考纲上有这样一句“试题中函数一般不超过3次”这次真超过4次了.(2)考查了复合函数单调性,利用导数作工具,这个题还是很容易的,而且不涉及到分类讨论,就是题目的根太多太多了.(3)利用数形结合的思想,容易知道所求的范围,接下来只要根不求错,那就没问题了. 总的来说,本题就是根太多,结合图像,不要搞错咯~~二次函数问题依旧是备考的重点,也是难点,平时努力了,也未必有大收获.。
吉林省东北师范大学附属中学2016届高考数学第一轮复习二次函数(3)学案理
二次函数(3)二次函数在高考中占有重要地位,函数的很多题型都与二次函数有关,函数的单调性,奇偶性,周期性,三次函数求导,图象讨论等等,所以二次函数的有关问题必须过关。
五.课时作业三个二次问题(二次函数、不等式、方程)1.典题:【2014高考江苏卷第10题】已知函数2()1f x x mx =+-,若对于任意的[],1x m m ∈+都有()0f x <,则实数m 的取值范围为 .2.解关于x 的不等式:(1) x 2-(a +1)x +a <0,(2) 0222>++mx x .3.设集合A={x |x 2+3k 2≥2k (2x -1)},B={x |x 2-(2x -1)k +k 2≥0},且A ⊆B ,试求k 的取值范围.4.不等式(m 2-2m -3)x 2-(m -3)x -1<0的解集为R ,求实数m 的取值范围.5.已知二次函数y =x 2+px +q ,当y <0时,有-21<x <31,解关于x 的不等式qx 2+px +1>0.6.若不等式012>++p qx x p的解集为{}42|<<x x ,求实数p 与q 的值.7. 设()()f x ax bx c a =++≠20,若()f 01≤,()f 11≤,()f -11≤, 试证明:对于任意-≤≤11x ,有()f x ≤54.8.【尖刀班】 设二次函数()()02>++=a c bx ax x f ,方程()f x x -=0的两个根x x 12,满足ax x 1021<<<. 当()1,0x x ∈时,证明()1x x f x <<.9.已知关于x 的二次方程x 2+2mx +2m +1=0.(1)若方程有两根,其中一根在区间(-1,0)内,另一根在区间(1,2)内,求m 的范围. (2)若方程两根均在区间(0,1)内,求m 的范围.10. 已知二次函数f (x )=ax 2+bx +c 和一次函数g (x )=-bx ,其中a 、b 、c 满足a >b >c ,a +b +c =0,(a ,b ,c ∈R ).(1)求证:两函数的图象交于不同的两点A 、B ; (2)求线段AB 在x 轴上的射影A 1B 1的长的取值范围.11.已知实数t 满足关系式33log log aya t a a= (a >0且a ≠1) (1)令t=a x,求y =f (x )的表达式;(2)若x ∈(0,2]时,y 有最小值8,求a 和x 的值.12.如果二次函数y =mx 2+(m -3)x +1的图象与x 轴的交点至少有一个在原点的右侧,试求m 的取值范围.13.二次函数f (x )=px 2+qx +r 中实数p 、q 、r 满足mrm q m p ++++12=0,其中m >0,求证: (1)pf (1+m m)<0; (2)方程f (x )=0在(0,1)内恒有解.14.一个小服装厂生产某种风衣,月销售量x (件)与售价P (元/件)之间的关系为P =160-2x ,生产x 件的成本R =500+30x 元.(1)该厂的月产量多大时,月获得的利润不少于1300元?(2)当月产量为多少时,可获得最大利润?最大利润是多少元?15. 已知a 、b 、c 是实数,函数f(x)=ax 2+bx +c ,g(x)=ax +b ,当-1≤x ≤1时,|f(x)|≤1.(1)证明:|c|≤1;(2)证明:当-1≤x ≤1时,|g(x)|≤2;16. 设二次函数()()f x ax bx c a =++>20,方程()f x x -=0的两个根x x 12,满足0112<<<x x a . 且函数()f x 的图像关于直线x x =0对称,证明:x x 012<.17 已知二次函数)0,,(1)(2>∈++=a R b a bx ax x f ,设方程x x f =)(的两个实数根为1x 和2x .(1)如果4221<<<x x ,设函数)(x f 的对称轴为0x x =,求证:10->x ; (2)如果21<x ,212=-x x ,求b 的取值范围. 18. 设0232=++++=c b a .c bx ax )x (f 若,00>)(f ,01>)(f ,求证:(Ⅰ) a >0且-2<ba<-1; (Ⅱ)方程0=)x (f 在(0,1)内有两个实根.19. 已知二次函数的图象如图所示:(1)试判断及的符号;(2)若|OA|=|OB|,试证明。
吉林省东北师范大学附属中学届高三数学第一轮复习函数与定积分应用课时作业理
导数与定积分应用(尖刀班)(5)五.课时作业 一、 选择题1.已知函数432()410f x x x x =-+,则方程()0f x =在区间[]1,2上的根有.A 3个 .B 2个 .C 1个 .D 0个2.若函数()y f x =在R 上可导且满足不等式()()0xf x f x '+>恒成立,且常数,a b 满足a b >,则下列不等式一定成立的是 .A ()()af a bf b > .B ()()af b bf a > .C ()()af a bf b < .D ()()af b bf a <3、如果()f x '是二次函数, 且()f x '的图象开口向上,顶点坐标为(1,3)-, 那么曲线()y f x =上任一点的切线的倾斜角α的取值范围是.A 2(0,]3π .B 2[0,)[,)23πππ .C 2[0,][,)23πππ .D 2[,]23ππ4、如图,是函数d cx bx x x f +++=23)(的大致图像,则2221x x +等于 .A 98 .B 910 .C 916 .D 9285、函数()f x 的定义域是开区间(),a b ,导函数()f x '在(),a b 内的图象如图所示,则函数()f x 在开区间内有极小值点.A 1个 .B 2个 .C 3个 .D 4个6、函数x bx ax x f 2)(23-+=的图象如图所示, 且021<+x x ,则有.A 0,0>>b a .B 0,0><b a .C 0,0<<b a .D 0,0<>b axyab()'y f x =O7.(原创题)用S 表示图中阴影部分的面积,则S 的值是( )A .⎠⎛a c f (x )d xB .|⎠⎛ac f (x )d x |C .⎠⎛ab f (x )d x +⎠⎛bc f (x )d x D .⎠⎛b c f (x )d x -⎠⎛ab f (x )d x8.设函数f (x )=x m+ax 的导函数f ′(x )=2x +1,则⎠⎛12f (-x )d x 的值等于( )A.56B.12C.23 D.169.已知f (x )为偶函数且⎠⎛06 f (x )d x =8,则⎠⎛-66f (x )d x 等于( )A .0B .4C .8D .1610.由直线x =12,x =2,曲线y =1x及x 轴所围成图形的面积为( )A.154B.174C.12ln2 D .2ln2二、填空题11.若等比数列{a n }的首项为23,且a 4=⎠⎛14 (1+2x )d x ,则公比等于________.12.如图,设点P 从原点沿曲线y =x 2向点A (2,4)移动,记直线OP 、曲线y =x 2及直线x =2所围成的面积分别记为S 1,S 2,若S 1=S 2,求点P 的坐标.13.使ax x y +=sin 为R 上增函数,则a 的范围是 14. 【2015高考新课标2,理12改编】设函数'()f x 是奇函数()()f x x R ∈的导函数,(1)0f -=,当0x >时,'()()0xf x f x -<,则使得()0f x >成立的x 的取值范围是15.【2015高考新课标1,理12改编】设函数()f x =(21)x e x ax a --+,其中a 1,若存在唯一的整数0x ,使得0()f x 0,则a 的取值范围是16. 【2015高考天津,理11】曲线2y x = 与直线y x = 所围成的封闭图形的面积为 . 三、解答题17、已知:1x >,证明不等式:()ln 1x x >+18、设x ax x f +=3)(恰有三个单调区间,试确定a 的取值范围,并求出这三个单调区间19.【2015安徽理】(本小题满分13分) 设函数2()f x x ax b =-+. (Ⅰ)讨论函数(sin )f x 在(,)22ππ-内的单调性并判断有无极值,有极值时求出极值;(Ⅱ)记2000()f x x a x b =-+,求函数0(sin )(sin )f x f x -在[]22ππ-,上的最大值D ; (Ⅲ)在(Ⅱ)中,取000a b ==,求24a zb =-满足1D ≤时的最大值.20.(2015新课标2卷,本题满分12分.21) 设函数2()mxf x e x mx =+-.(Ⅰ)证明:()f x 在(,0)-∞单调递减,在(0,)+∞单调递增;(Ⅱ)若对于任意12,[1,1]x x ∈-,都有12()()1f x f x e -≤-,求m 的取值范围.部分题解析:7.解析:选D.由定积分的几何意义知选项D 正确.9.解析:选D.原式=⎠⎛-60f (x )d x +⎠⎛06f (x )d x ,∵原函数为偶函数,∴在y 轴两侧的图象对称.∴对应的面积相等.故选D.8.解析:选A.由于f (x )=x m +ax 的导函数为f ′(x )=2x +1,所以f (x )=x 2+x ,于是⎠⎛12f (-x )d x =⎠⎛12(x 2-x )d x =⎪⎪⎪⎝ ⎛⎭⎪⎫13x 3-12x 221=56.10.11.解析:本题考查定积分运算及等比数列基本量的求解.由已知得a 4=(x +x 2)|41=18,故q 3=1823=27⇒q =3.答案:312.解:设直线OP 的方程为y =kx ,P 点的坐标为(x ,y ),则⎠⎛0x (kx -x 2)d x =⎠⎛x2(x 2-kx )d x ,即(12kx 2-13x 3)|x 0=(13x 3-12kx 2)|2x , 解得12kx 2-13x 3=83-2k -(13x 3-12kx 2),解得k =43,即直线OP 的方程为y =43x ,所以点P 的坐标为(43,169).14.(,1)(0,1)-∞- 15.[32e,1)16. 1619.【2015安徽理21】.解析:(Ⅰ)极小值为24a b -;(Ⅱ)00||||D a a b b =-+-; (Ⅲ)1.分析:(Ⅰ)将sin x 代入()f x 为2(sin )sin sin sin (sin )f x x a x b x x a b =-+=-+,22x ππ-<<.求导得[(sin )]'(2sin )cos f x x a x =-,22x ππ-<<.因为22x ππ-<<,所以cos 0,22sin 2x x >-<<.按a 的范围分三种情况进行讨论:①当2,a b R ≤-∈时,函数(sin )f x 单调递增,无极值.②当2,a b R ≥∈时,函数(sin )f x 单调递减,无极值.③当22a -<<,在(,)22ππ-内存在唯一的0x ,使得02sin x a =.02x x π-<≤时,函数(sin )f x 单调递减;02x x π<<时,函数(sin )f x 单调递增.因此,22a -<<,b R ∈时,函数(sin )f x 在0x 处有极小值20(sin )()24a a f x fb ==-.(Ⅱ)当22x ππ-≤≤时,依据绝对值不等式可知00000|(sin )(sin )||()sin |||||f x f x a a x b b a a b b -=-+-≤-+-,从而能够得出函数0(sin )(sin )f x f x -在[]22ππ-,上的最大值为00||||D a a b b =-+-.(Ⅲ)当D 1≤,即||||1a b +≤,此时201,11a b ≤≤-≤≤,从而214a zb =-≤.依据式子特征取0,1a b ==,则||||1a b +≤,并且214a zb =-=.由此可知,24a z b =-满足条件D 1≤的最大值为1. 解析:(Ⅰ)2(sin )sin sin sin (sin )f x x a x b x x a b =-+=-+,22x ππ-<<.[(sin )]'(2sin )cos f x x a x =-,22x ππ-<<.因为22x ππ-<<,所以cos 0,22sin 2x x >-<<.①当2,a b R ≤-∈时,函数(sin )f x 单调递增,无极值. ②当2,a b R ≥∈时,函数(sin )f x 单调递减,无极值. ③当22a -<<,在(,)22ππ-内存在唯一的0x ,使得02sin x a =. 02x x π-<≤时,函数(sin )f x 单调递减;02x x π<<时,函数(sin )f x 单调递增.因此,22a -<<,b R ∈时,函数(sin )f x 在0x 处有极小值20(sin )()24a a f x fb ==-.(Ⅱ)22x ππ-≤≤时,00000|(sin )(sin )||()sin |||||f x f x a a x b b a a b b -=-+-≤-+-,当00()()0a a b b --≥时,取2x π=,等号成立,当00()()0a a b b --<时,取2x π=-,等号成立,由此可知,函数0(sin )(sin )f x f x -在[]22ππ-,上的最大值为00||||D a a b b =-+-.(Ⅲ)D 1≤,即||||1a b +≤,此时201,11a b ≤≤-≤≤,从而214a zb =-≤. 取0,1a b ==,则||||1a b +≤,并且214a z b =-=. 由此可知,24a zb =-满足条件D 1≤的最大值为1.考点:1.函数的单调性、极值与最值;2.绝对值不等式的应用. 20.【新课标2, 21.】解析 (Ⅰ)详见解析;(Ⅱ)[1,1]-. 解析:(Ⅰ)'()(1)2mxf x m ex =-+.若0m ≥,则当(,0)x ∈-∞时,10mxe -≤,'()0f x <;当(0,)x ∈+∞时,10mx e -≥,'()0f x >.若0m <,则当(,0)x ∈-∞时,10mx e ->,'()0f x <;当(0,)x ∈+∞时,10mx e -<,'()0f x >.所以,()f x 在(,0)-∞单调递减,在(0,)+∞单调递增.(Ⅱ)由(Ⅰ)知,对任意的m ,()f x 在[1,0]-单调递减,在[0,1]单调递增,故()f x 在0x =处取得最小值.所以对于任意12,[1,1]x x ∈-,12()()1f x f x e -≤-的充要条件是:(1)(0)1,(1)(0)1,f f e f f e -≤-⎧⎨--≤-⎩即1,1,m m e m e e m e -⎧-≤-⎪⎨+≤-⎪⎩①,设函数()1t g t e t e =--+,则'()1tg t e =-.当0t <时,'()0g t <;当0t >时,'()0g t >.故()g t 在(,0)-∞单调递减,在(0,)+∞单调递增.又(1)0g =,1(1)20g e e --=+-<,故当[1,1]t ∈-时,()0g t ≤.当[1,1]m ∈-时,()0g m ≤,()0g m -≤,即①式成立.当1m >时,由()g t 的单调性,()0g m >,即1m e m e ->-;当1m <-时,()0g m ->,即1m e m e -+>-.综上,m 的取值范围是[1,1]-. 考点:导数的综合应用.。
吉林省东北师范大学附属中学2016届高三上学期理科数学第一轮复习阶段测试卷(第1周)
高三数学阶段测试卷(第一周) (考试时间:120分钟 满分150分) 拟题人:毕伟 审题人:暴偶奇 2015.8.23 【测试范围:集合,命题,简易逻辑,全称特称命题】一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,把正确的代号填在指定位置上.1.【2015高考四川,理1】设集合{|(1)(2)0}A x x x =+-<,集合{|13}B x x =<<,则A B = ( )(){|13}A x x -<< (){|11}B x x -<< (){|12}C x x << (){|23}D x x <<2. 【2015高考广东,理1】若集合{|(4)(1)0}M x x x =++=,{|(4)(1)0}N x x x =--=,则M N = ( )A .{}1,4B .{}1,4--C .{}0D .∅3.【2015高考新课标1,理3】设命题p :2,2nn N n ∃∈>,则p ⌝为( )(A )2,2n n N n ∀∈> (B )2,2n n N n ∃∈≤ (C )2,2n n N n ∀∈≤ (D )2,=2n n N n ∃∈4.设集合{}1,A x x a x =-<∈R ,{}15,B x x x =<<∈R .若φ=B A ,则实数a 的取值范围是( ).A .{}06a a ≤≤ B .{}2,4a a a ≤≥或 C .{}0,6a a a ≤≥或 D .{}24a a ≤≤ 5.下列命题中,真命题是( ).A .m ∃∈R ,使函数()()2f x x mx x =+∈R 是奇函数B .m ∃∈R ,使函数()()2f x x mx x =+∈R 是偶函数C .m ∀∈R ,使函数()()2f x x mx x =+∈R 都是奇函数D .m ∀∈R ,使函数()()2f x x mx x =+∈R 都是偶函数6.【2015高考陕西,理1】设集合2{|}M x x x ==,{|lg 0}N x x =≤,则M N = ( )A .[0,1]B .(0,1]C .[0,1)D .(,1]-∞7.命题“对于∀a ,b ,c ∈R,若a b c ++=3,则222a b c ++≥3”的否命题是( )A.∀a ,b ,c ∈R,若a +b+c≠3,则222a b c ++<3B.∀a ,b ,c ∈R,若a+b+c=3,则222a b c ++<3C.∃a ,b ,c ∈R,若a +b+c≠3,则222a b c ++<3D.∃a ,b ,c ∈R,若a+b+c=3,则222a b c ++<38. 【2015高考天津,理4】设x R ∈ ,则“21x -< ”是“220x x +-> ”的( ) (A )充分而不必要条件 (B )必要而不充分条件 (C )充要条件 (D )既不充分也不必要条件9.已知:命题p :“对于R x ∈∀,总有022≥--a x x ”;命题q :“]8,2[∈∃x ,能使式子0log 2<-x a ”。
吉林省东北师范大学附属中学2016届高三上学期文科数学第一轮复习阶段测试卷(第2周)Word版含答案
高三文科数学阶段测试卷拟题人:辛颖 审题人:杨艳昌【测试范围:函数的重要性质,指对幂函数,函数与方程】一、选择题(本大题共10小题,每小题5分,共50分.每小题中只有一项符合题目要求)1、【15年北京文科】下列函数中为偶函数的是( )A .2sin y x x =B .2cos y x x =C .ln y x =D .2xy -= 2、幂函数()f x x α=的图像经过点)21,4(,则1()4f 的值为( )A .4B .3C .2D .13、【15年广东文科】下列函数中,既不是奇函数,也不是偶函数的是( )A .2sin y x x =+B .2cos y x x =- C .122x xy =+ D .sin 2y x x =+ 4、已知函数3log ,0()2,0xx x f x x >⎧=⎨≤⎩,则1(())9f f =( ) A.4 B.14 C.4- D.14- 5、函数()2xf x e x =+-的零点所在的一个区间是( )A .(2,1)--B .(1,0)-C .(0,1)D .(1,2)6、函数⎪⎩⎪⎨⎧≥-<=)0(12)0(2x x x y x 的图象大致是( )7、设2131og a =,3.02)21(3log ==c b ,,则( ) A. a<b<c B. a<c<b C. b<c<a D. b<a<c 8、利用计算器,列出自变量和函数值的对应值如下表:那么方程2x =的一个根位于下列区间的( ).A.(0.6,1.0)B.(1.4,1.8)C.(1.8,2.2)D.(2.6,3.0) 9、已知函数()f x 是(,)-∞+∞上的偶函数,若对于0x ≥,都有(2()f x f x +=),且当[0,2)x ∈时,2()log (1f x x =+),则f(-2015)+f(2016)的值为( ) A .2- B .1- C .1 D .210、设0x 是方程3log 3x x =-的根,且0(,1)x k k ∈+,则k =( ) A .(0,1) B .(1,3) C .(3,4) D .(4,+∞) 请将选择题答案填入下表二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)11、【15年安徽文科】在平面直角坐标系xOy 中,若直线a y 2=与函数1||--=a x y 的图像只有一个交点,则a 的值为 .12、若函数()()2ln 1f x x ax =++是偶函数,则实数a 的值为 .13. 【15年安徽文科】化简=-+-1)21(2lg 225lg. 14、已知()f x 为偶函数,且(1)(3),20,()3xf x f x x f x +=--≤≤=当时,则f(2015)= .三、解答题(本大题共4小题,共50分,解答应写出文字说明、证明过程或演算步骤)15、(10分)计算: (1)0021)51(1212)4(2---+-+-(2)91log 161log 25log 532∙∙16、(13分)已知定义域为R 的函数ab x f x x+-=22)(是奇函数。
吉林省东北师范大学附属中学高考一轮复习 阶段测试卷(第16周)
吉林省东北师范大学附属中学2015届高考一轮复习阶段测试卷(第16周)(一)函数的单调性与最值1.[2014·江苏卷] 19.已知函数f(x)=e x+e-x,其中e是自然对数的底数.(1)证明:f(x)是R上的偶函数.(2)若关于x的不等式mf(x)≤e-x+m-1在(0,+∞)上恒成立,求实数m的取值范围.(3)已知正数a满足:存在x0∈[1,+∞),使得f(x0)<a(-x30+3x0)成立.试比较e a -1与a e-1的大小,并证明你的结论.2.[2014·四川卷]21.已知函数f(x)=e x-ax2-bx-1,其中a,b∈R,e=2.718 28…为自然对数的底数.(1)设g(x)是函数f(x)的导函数,求函数g(x)在区间[0,1]上的最小值;(2)若f(1)=0,函数f(x)在区间(0,1)内有零点,证明:e-2<a<1.(二)函数的奇偶性与周期性3.[2014·江苏卷] 19.已知函数f(x)=e x+e-x,其中e是自然对数的底数.(1)证明:f(x)是R上的偶函数.(2)若关于x的不等式mf(x)≤e-x+m-1在(0,+∞)上恒成立,求实数m的取值范围.(3)已知正数a满足:存在x0∈[1,+∞),使得f(x0)<a(-x30+3x0)成立.试比较e a-1与a e-1的大小,并证明你的结论.A .y =12x 3-12x 2-xB .y =12x 3+12x 2-3xC .y =14x 3-xD .y =14x 3+12x 2-2x(五)导数及其运算5.[2014·陕西卷] 21. 设函数f (x )=ln x +m x,m ∈R . (1)当m =e(e 为自然对数的底数)时,求f (x )的极小值; (2)讨论函数g (x )=f ′(x )-x3零点的个数;(3)若对任意b >a >0,f (b )-f (a )b -a<1恒成立,求m 的取值范围.6.[2014·安徽卷] 20.设函数f (x )=1+(1+a )x -x 2-x 3,其中a >0. (1)讨论f (x )在其定义域上的单调性;(2)当x ∈[0,1]时,求f (x )取得最大值和最小值时的x 的值.7.[2014·北京卷] 20.已知函数f (x )=2x 3-3x . (1)求f (x )在区间[-2,1]上的最大值;(2)若过点P (1,t )存在3条直线与曲线y =f (x )相切,求t 的取值范围; (3)问过点A (-1,2),B (2,10),C (0,2)分别存在几条直线与曲线y =f (x )相切?(只需写出结论)8.[2014·福建卷] 22.已知函数f (x )=e x-ax (a 为常数)的图像与y 轴交于点A ,曲线y =f (x )在点A 处的切线斜率为-1. (1)求a 的值及函数f (x )的极值;(2)证明:当x >0时,x 2<e x;(3)证明:对任意给定的正数c ,总存在x 0,使得当x ∈(x 0,+∞)时,恒有x <c e x.9.[2014·广东卷] 11.曲线y =-5e x+3在点(0,-2)处的切线方程为________.10.[2014·江苏卷] 11. 在平面直角坐标系xOy 中,若曲线y =ax 2+bx(a ,b 为常数)过点P (2,-5),且该曲线在点P 处的切线与直线7x +2y +3=0平行,则a +b 的值是________.11.[2014·江苏卷] 23.已知函数f 0(x )=sin xx(x >0),设f n (x )为f n -1(x )的导数,n ∈N *.(1)求2f 1⎝ ⎛⎭⎪⎫π2+π2f 2⎝ ⎛⎭⎪⎫π2的值;(2)证明:对任意的n ∈N *,等式⎪⎪⎪⎪⎪⎪nf n -1⎝ ⎛⎭⎪⎫π4+π4f n ⎝ ⎛⎭⎪⎫π4=22都成立.12.[2014·全国新课标卷Ⅰ] 21. 设函数f (x )=a ln x +1-a 2x 2-bx (a ≠1),曲线y =f (x )在点(1,f (1))处的切线斜率为0. (1)求b ;(2)若存在x 0≥1,使得f (x 0)<aa -1,求a 的取值范围.13. [2014·山东卷] 20.设函数f (x )=a ln x +x -1x +1,其中a 为常数. (1)若a =0,求曲线y =f (x )在点(1,f (1))处的切线方程; (2)讨论函数f (x )的单调性.14. [2014·四川卷] 19.设等差数列{a n }的公差为d ,点(a n ,b n )在函数f (x )=2x的图像上(n ∈N *).(1)证明:数列{b n }为等比数列;(2)若a 1=1,函数f (x )的图像在点(a 2,b 2)处的切线在x 轴上的截距为2-1ln 2,求数列{a n b 2n }的前n 项和S n .15. [2014·天津卷] 19. 已知函数f (x )=x 2-23ax 3(a >0),x ∈R .(1)求f (x )的单调区间和极值;(2)若对于任意的x 1∈(2,+∞),都存在x 2∈(1,+∞),使得f (x 1)·f (x 2)=1,求a 的取值范围.(六)导数的应用16. [2014·四川卷] 21.已知函数f (x )=e x -ax 2-bx -1,其中a ,b ∈R ,e =2.718 28…为自然对数的底数.(1)设g (x )是函数f (x )的导函数,求函数g (x )在区间[0,1]上的最小值; (2)若f (1)=0,函数f (x )在区间(0,1)内有零点,证明:e -2<a <1.17. [2014·安徽卷] 15. 若直线l 与曲线C 满足下列两个条件: (i)直线l 在点P (x 0,y 0)处与曲线C 相切;(ii)曲线C 在点P 附近位于直线l 的两侧.则称直线l 在点P 处“切过”曲线C .下列命题正确的是________(写出所有正确命题的编号).①直线l :y =0在点P (0,0)处“切过”曲线C :y =x 3;②直线l :x =-1在点P (-1,0)处“切过”曲线C :y =(x +1)2; ③直线l :y =x 在点P (0,0)处“切过”曲线C :y =sin x ; ④直线l :y =x 在点P (0,0)处“切过”曲线C :y =tan x ; ⑤直线l :y =x -1在点P (1,0)处“切过”曲线C :y =ln x .18. [2014·安徽卷] 20.设函数f (x )=1+(1+a )x -x 2-x 3,其中a >0. (1)讨论f (x )在其定义域上的单调性;(2)当x∈[0,1]时,求f(x)取得最大值和最小值时的x的值.19. [2014·北京卷] 20.已知函数f(x)=2x3-3x.(1)求f(x)在区间[-2,1]上的最大值;(2)若过点P(1,t)存在3条直线与曲线y=f(x)相切,求t的取值范围;(3)问过点A(-1,2),B(2,10),C(0,2)分别存在几条直线与曲线y=f(x)相切?(只需写出结论)20. [2014·福建卷] 22.已知函数f(x)=e x-ax(a为常数)的图像与y轴交于点A,曲线y=f(x)在点A处的切线斜率为-1.(1)求a的值及函数f(x)的极值;(2)证明:当x>0时,x2<e x;(3)证明:对任意给定的正数c,总存在x0,使得当x∈(x0,+∞)时,恒有x<c e x.21. [2014·广东卷] 21.已知函数f (x )=13x 3+x 2+ax +1(a ∈R ).(1)求函数f (x )的单调区间;(2)当a <0时,试讨论是否存在x 0∈⎝ ⎛⎭⎪⎫0,12∪⎝ ⎛⎭⎪⎫12,1,使得f (x 0)=f ⎝ ⎛⎭⎪⎫12.22. [2014·湖北卷] 21.π为圆周率,e =2.718 28…为自然对数的底数.(1)求函数f (x )=ln xx的单调区间;(2)求e 3,3e ,e π,πe ,3π,π3这6个数中的最大数与最小数.23.9.[2014·湖南卷] 若0<x 1<x 2<1,则( )A .e x 2-e x 1>ln x 2-ln x 1B .e x 2-e x 1<ln x 2-ln x 1C .x 2e x 1>x 1e x 2D .x 2e x 1<x 1e x 2。
吉林省东北师范大学附属中学2016届高考数学第一轮复习函数的奇偶性学案理
函数的奇偶性一、知识梳理:(阅读教材必修1第33页—第36页)1、 函数的奇偶性定义:2、 利用定义判断函数奇偶性的步骤(1) 首先确定函数的定义域,并判断定义域是否关于原点对称;(2) 确定与的关系;(3) 作出相应结论3、 奇偶函数的性质:(1)定义域关于原点对称;(2)偶函数的图象关于y 轴对称,奇函数的图象关于原点对称;(3)为偶函数(4)若奇函数的定义域包含0,则(5)判断函数的奇偶性,首先要研究函数的定义域,有时还要对函数式化简整理,但必须注意使定义域不受影响;(6)牢记奇偶函数的图象特征,有助于判断函数的奇偶性;(7)判断函数的奇偶性有时可以用定义的等价形式:4、一些重要类型的奇偶函数(1)、f(x)= (a>0,a) 为偶函数;f(x)= (a>0,a) 为奇函数;(2)、f(x)=(3)、f(x)=(4)、f(x)=x+(5)、f(x)=g(|x|)为偶函数;二、题型探究[探究一]:判断函数的奇偶性例1:判断下列函数的奇偶性1.(15年广东理科)下列函数中,既不是奇函数,也不是偶函数的是A .x e x y +=B .x x y 1+= C .x x y 212+= D .21x y += 【答案】A .【解析】令()x f x x e =+,则()11f e =+,()111f e --=-+即()()11f f -≠,()()11f f -≠-,所以x y x e =+既不是奇函数也不是偶函数,而BCD 依次是奇函数、偶函数、偶函数,故选A .2.(15年福建理科)下列函数为奇函数的是( )A .y =.sin y x = C .cos y x = D .x x y e e -=-【答案】D【考点定位】本题考查函数的奇偶性,属于容易题.例2: 函数f(x)的定义域为R ,且对任意的a 、b ,f(a+b) = f(a)+f(b),(1)、判断f(x)的奇偶性,并证明。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
导数与定积分(尖刀班)(3)【探究10】:不等式恒成立与存在性问题 思路提示在不等式恒成立或不等式有解条件下求参数的取值范围,一般利用等价转化的思想其转化为函数的最值或值域问题加以求解,可采用分离参数或不分离参数法直接移项构造辅助函数.(1)若函数()f x 在区间D 上存在最小值()min f x 和最大值()max f x ,则 不等式()f x a >在区间D 上恒成立()min f x a ⇔>; 不等式()f x a ≥在区间D 上恒成立()min f x a ⇔≥; 不等式()f x b <在区间D 上恒成立()max f x b ⇔<; 不等式()f x b ≤在区间D 上恒成立()max f x b ⇔≤;(2)若函数()f x 在区间D 上不存在最大(小)值,且值域为(),m n ,则不等式()()()f x a f x a >≥或在区间D 上恒成立m a ⇔≥.不等式()()()f x b f x b <≤或在区间D 上恒成立m b ⇔≤.例14. 已知函数()ln f x x x = (1)求()f x 的最小值.(2)对所有1x ≥都有()1f x ax ≥-,求实数a 的取值范围. 分析 第(2)问可用分离变量的方法求解参数的取值范围. 解析 函数()ln f x x x =的定义域是()0,+∞, (1)()1ln f x x '=+,令()0f x '=,解得1x e =,当10,x e ⎛⎫∈ ⎪⎝⎭时()0f x '<,当1,x e ⎛⎫∈+∞ ⎪⎝⎭,时()0f x '>;故()f x 在10,e ⎛⎫ ⎪⎝⎭上单调递减,在1,e ⎛⎫+∞ ⎪⎝⎭上单调递增,所以,当1x e =时,函数取得最小值11f e e ⎛⎫=- ⎪⎝⎭.(2)依题意,得()1f x ax ≥-在[1,)+∞上恒成立,即不等式1ln a x x≤+对于x [1,)∈+∞恒成立,即min1ln ,[1,+a x x x ⎛⎫≤+∈∞ ⎪⎝⎭).设()()1ln 1,g x x x x =+≥则()22111x g x x x x -'=-=,令()0g x '=,得1x =,当1x ≥时,因为()210x g x x-'=≥,故()g x 在[1,)+∞上是增函数,所以()g x 在[1,)+∞上的最小值是()11g =,故a 的取值范围是(,1]-∞.评注 对于恒成立问题,其根本思路是转化,而转化只有两种方法.1,变量分离法,2,不分离参数法,本例第(2)问运用分离变量的方法,使得构造中的函数不含有参数,避免了对参数的分类讨论,对于不等式验证区间端点成立的情形,一般采用不分离参数法(见本例的变式1),同学们应该视不同的情形使用不同的方法.变式1 设函数()()()212ln 1f x x x =+-+. (1)求()f x 的单调区间;(2)若当11,1x e e ⎡⎤∈--⎢⎥⎣⎦时,不等式()f x m ≤恒成立,求实数m 的取值范围; (3)若关于x 的方程()2f x x x a =++在区间[]0,2上恰好有两个相异的实根,求实数a的取值范围.变式2 (2012湖南22(1))已知函数()axf x e x =-,其中0a ≠,若对一切(),1x R f x ∈≥恒成立,求a 的取值集合. 例15. 设函数()f xxx e e -=-(1)证明; ()f x 的导数()f 0x '≥;(2)若对所有0x ≥,都有()f x ax ≥,求a 的取值范围. 解析 (1)()xxf x e e -'=+,由基本不等式得22xxx x e ee e --+≥⋅=,故()2f x '≥,当且仅当0x =时()2f x '=. (2)令()()()0xxg x f x ax e eax x -=-=--≥,由()()0=022x x x x g g x e e a e e a a --'=+-≥⋅-=-,.①当2a ≤时,()0g x '≥,函数()g x 在[0,)+∞上单调递增,则()()00g x g ≥=,满足题意.②当2a >时,,因为函数()g x '在[0,)+∞上单调递增,令()00g x '=,得当()00,x x ∈时,()0g x '<,函数()g x 在()00,x 上单调递减,当()0,x x ∈+∞时,()0g x '>,函数()g x 在()0,x +∞上单调递增,因此,当()00,x x ∈时()0g x <,不满足在()min x [0,),0g x ∈+∞≥,故2a >不满足题意,舍去. 综上,a 的取值范围为(,2]-∞.评注 对于恒成立问题,其根本思想是 “转化”,而转化有两种方法:分离参数法和不分离参数法,对于不等式试验区间端点值成立的情形,一般采用不分离参数法,相比分离参数法操作上简单,可以视不同情形,选择不同的方法变式1 (2012天津20)已知()()ln f x x x a =-+的最小值为0,其中0a >. (1)求a 的值;(2)若对任意的[0,)x ∈+∞,均有()2f x kx ≤成立,求实数k 的最小值.变式2 已知函数()()ln 1,f x x a x a R =--∈. (1)讨论函数()f x 的单调性; (2)当1x ≥时,()ln f 1xx x ≤+恒成立,求a 的取值范围. 思路提示2(1)若函数()f x 在区间D上存在最小值()min f x 和最大值()max f x ,即()[],f x m n ∈,则对不等式有解问题有以下结论:不等式()a f x <在区间D 上有解()max a f x ⇔<; 不等式()a f x ≤在区间D 上有解()max a f x ⇔≤; 不等式()a f x >在区间D 上有解()min a f x ⇔>;不等式()a f x ≥在区间D 上有解()min a f x ⇔≥;(2)若函数()f x 在区间D 上不存在最大(小)值,如值域为(),m n ,则对不等式有解问题有以下结论:不等式()()()a f x f x <≤或a 在区间D 上有解a n ⇔< 不等式()()()b f x f x >≥或b 在区间D 上有解b m ⇔>例16.已知函数()()()1ln ,a f x x a x g x a R x+=-=-∈. (1)若1a =,求函数()f x 的极值;(2)设函数()()()h x f x g x =-,求函数()h x 的单调区间;(3)若在[]1e ,上存在一点0x ,使得()()00f x g x <成立,求a 的取值范围. 分析 若在区间[]1,e 上存在一点0x ,使得()()00f x g x <成立,转化为函数()()f x g x -在区间[]1,e 上的最小值小于0.解析 (1)当a 1=时,()ln f x x x =-,函数的定义域为{}|0x x >,()111x f x x x-'=-= 当()0,1x ∈时()0f x '<,()f x 单调递减;当()1,x ∈+∞时,()0f x '>,()f x 单调递增,()f x 的极小值为()11f = (2)()()()1ln ,0a h x f x g x x a x x x+=-=-+>,()()()()22211a+1x a x x ax h x x x-++⎡⎤--⎣⎦'==,导函数()h x '的零点为1x a =+. 若10a +≤,即1a ≤-,则()()0+h x ∞在,上单调递增;若10a +>,即1a >-,则()()01h x a +在,上单调递减,在()1,a ++∞上单调递增.(3)依题意,只需要()()()[]000min0,x 1,f x g x e -<∈,令()()()[]+1ln 1,,a h x f x g x x a x x e x=-=-+∈, ()()()()222211111x a x x ax a a a h x x x x x -++⎡⎤--++⎣⎦=--==,讨论()h x '的零点与区间[]1,e 的位置关系.①若11a +≤时,即()()0,0,a h x h x '≤≥单调递增,()()min 120h x h a ==+<,得2a ≤-;②若11a e <+<时,即01a e <<-,()h x 在[1,a+1)上单调递减,在(a+1,e]上单调递增,故()()()()()min 11ln 11,0,1h x h a a a a a e =+=+-++∈-,令()()()()()()1ln 11,0,1,012p x x x x x e p p e =+-++∈-=-=,()1p x x >+12x -+=,()0,1x e ∈-,因此()[]2,0,1p x x e ≥∈-,不符,故舍去.③若1a e +≥时,即1a e ≥-,()h x 在[]1,e 上单调递减,则()()min10a h x h e e a e +==-+<,得211e a e e +>>-成立.综上,a 的取值范围为()21,2,1e e ⎛⎫+-∞-+∞ ⎪-⎝⎭变式1 (2012北京丰台期末理19)设函数()ln bf x x a x x=-+,在1x =处取得极值.(1)求a 与b 满足的关系式;(2)若1a >,求函数()f x 的单调区间;(3)若3a >,函数()223g x a x =+,若存在121,,22m m ⎡⎤∈⎢⎥⎣⎦,使得()()12|f g |9m m -<成立,求a 的取值范围. 思路提示3(1)对于任意的[]1,x a b ∈,总存在[]2m,x n ∈,使得()()()()1212max max f x g x f x g x ≤⇔≤;(2)对于任意的[]1,x a b ∈,总存在[]2m,x n ∈,使得()()()()1212min min f x g x f x g x ≥⇔≥;(3)若存在[]1,x a b ∈,对于任意的[]2m,x n ∈,使得()()()()1212min min f x g x f x g x ≤⇔≤;(4)若存在[]1,x a b ∈,对于任意的[]2m,x n ∈,使得()()()()1212max max f x g x f x g x ≥⇔≥;(5)对于任意的[]1,x a b ∈,[]2m,x n ∈使得()()()()1212max min f x g x f x g x ≤⇔≤; (6)对于任意的[]1,x a b ∈,[]2m,x n ∈使得()()()()1212min max f x g x f x g x ≥⇔≥; (7)若存在[]1,x a b ∈,总存在[]2m,x n ∈,使得()()()()1212min max f x g x f x g x ≤⇔≤(8)若存在[]1,x a b ∈,总存在[]2m,x n ∈,使得()()()()1212max min f x g x f x g x ≥⇔≥.例17. 已知()()1ln 1af x x ax a R x-=-+-∈. (1)当12a ≤时,讨论()f x 的单调性; (2)设()224g x x bx =-+,当14a =时,若对任意()10,2x ∈,存在[]21,2x ∈,使()()12f x g x ≥.求实数b 的取值范围.分析 对于任意的()10,2x ∈,存在[]21,2x ∈,使得()()12f x g x ≥成立转化为()()12min min f x g x ≥解析 (1)函数()f x 的定义域为{}|0x x >,()()[]()222211111ax a x ax x a a f x a x x x x+------'=-+== ①当0a =时,()21x f x x-'=,由()0f x '>,得1x >,由()0f x '<,得01x <<②当0a ≠时,()()211a a x x a f x x-⎛⎫--- ⎪⎝⎭'=, (Ⅰ)当11a a -=时,得()()221112,2x a f x x--'==,函数()f x 在()0,+∞上单调递减. (Ⅱ)当102a <<时,11aa->, 当x 变化时,()(),f x f x '变化情况如表3-11所示.表3-11x()0,1111,a a -⎛⎫ ⎪⎝⎭1aa- 1,a a -⎛⎫+∞ ⎪⎝⎭()f x ' -0 +0 -()f x极小值极大值函数()f x 的单调递减区间为()0,1和1,a a -⎛⎫+∞ ⎪⎝⎭,单调递增区间为11,a a -⎛⎫⎪⎝⎭.(Ⅲ)当0a <时,10aa-<,函数()f x 在()0,1上单调递减,在()1,+∞上单调递增; 综上,当0a ≤时,函数()f x 在()0,1的单调递减区间为,递增区间为()1,+∞;当102a <<时,函数()f x 在()0,1,1,a a -⎛⎫+∞ ⎪⎝⎭上单调递减,在11,a a -⎛⎫ ⎪⎝⎭上单调递增;当12a =时,函数()f x 在()0,+∞上单调递减. (2)依题意,()()()[]1212min min ,0,2,1,2f x g x x x ≥∈∈,当14a =时,()3ln 144x f x x x=-+-在()0,1上递减,在()1,2上递增,故()()()[]2min 11= -,24,1,22f x fg x x bx x ==-+∈.当1x b =≤时,()()min 152g x g b ==-,则1522b -≥-,即114b ≥(舍)当12b <≤时,()()222min 244g x g b b b b ==-+=-,得22194,,22b b -≥-≥即322b ≥或322b ≤-(舍) 当2b ≥时,()()min 284g x g b ==-,则1842b -≥-,得178b ≥综上,实数b 的取值范围是17[,8+∞).评注 对于存在性与任意性的综合问题,不妨先定存在,如本例中对任意的()10,2x ∈,总存在[]21,2x ∈,使()()12f x g x ≥,令()2g x M =,则()10,2,x ∀∈()()11min f x M f x M ≥⇔≥,设()()11min ,0,2f x m x =∈,再分析存在[]()22min 1,2,x g x m ∈≤,则,即最终转化为()()21min min g x f x ≤的问题.变式1 已知函数.(1)求的单调区间;(2)设,若对任意的,均存在,使得,求的取值范围.变式2 已知函数,(为常数,)(1)若是函数的一个极值点,求的值; (2)求证:当时,在上是增函数; (3)若对任意的,总存在,使不等式成立,求实数的取值范围.。