北师大数学第一册测试题

合集下载

(北师大版2019课标)高中数学必修第一册 第七章综合测试(含答案)

(北师大版2019课标)高中数学必修第一册 第七章综合测试(含答案)

第七章综合测试一、选择题(每小题5分,共40分) 1.下列事件是随机事件的是( )①同种电荷,互相排斥;②明天是晴天;③自由下落的物体做匀速直线运动;④函数01xy a a a =≠(>且)在定义域上是增函数. A .①③B .①④C .②④D .③④2.从装有红球、白球和黑球各2个的口袋内一次取出2个球,则与事件“两球都为白球”互斥而非对立的事件是以下事件:“①两球都不是白球;②两球恰有一白球;③两球至少有一个白球”中的( ) A .①②B .①③C .②③D .①②③3.西周初数学家商高在公元前1000年发现勾股定理的一个特例,勾三,股四,弦五.此发现早于毕达哥拉斯定理五百到六百年,我们把可以构成一个直角三角形三边的一组正整数(a ,b ,c )称为勾股数.现从(3,4,5),(5,12,13),(6,8,10),(7,24,25),(8,15,17),(9,40,41),(9,12,15),(10,24,26),(15,20,25),(15,36,39)这几组勾股数中随机抽取1组,则被抽出的这组勾股数满足2b a c =+的概率为( ) A .25B .79C .78D .9104.抛掷一枚质地均匀的骰子,观察掷出的点数,设事件A 为“出现奇数点”,事件B 为“出现2点”,已知()12P A =,()16P B =,则“出现奇数点或2点”的概率为( ) A .16B .13C .12D .235.下列试验属于古典概型的有( )①从装有大小、形状完全相同的红、黑、绿各一球的袋子中任意取出一球,取出的球为红色的概率; ②在公交车站候车不超过10分钟的概率;③同时抛掷两枚硬币,观察出现“两正”“两反”“一正一反”的次数; A .0个B .1个C .2个D .3个6.若某公司从五位大学毕业生甲、乙、丙、丁、戊中录用三人,这五人被录用的机会均等,则甲或乙被录用的概率为( ) A .23B .25C .35D .9107.某运动会期间,从来自A 大学的2名志愿者和来自B 大学的4名志愿者中随机抽取2人到体操比赛场馆服务,至少有一名A 大学志愿者的概率是( ) A .115B .25C .35D .14158.一位家长送孩子去幼儿园的路上要经过4个有红绿灯的路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是13,遇到红灯时停留的时间都是2 min .则这位家长送孩子上学到第三个路口时首次遇到红灯的概率为( ) A .13B .227C .427D .527二、多选题(每小题5分,共20分,全部选对得5分,选对但不全的得3分,有选错的得0分)9.在一个古典概型中,若两个不同的随机事件A ,B 发生的概率相等,则称A 和B 是“等概率事件”,如:随机抛掷一枚骰子一次,事件“点数为奇数”和“点数为偶数”是“等概率事件”.关于“等概率事件”,以下判断正确的是( )A .在同一个古典概型中,所有的样本点之间都是“等概率事件”B .若一个古典概型的事件总数大于2,则在这个古典概型中除样本点外没有其他“等概率事件”C .因为所有必然事件的概率都是1,所以任意两个必然事件都是“等概率事件”D .同时抛掷三枚硬币一次,则事件“仅有一个正面”和“仅有两个正面”是“等概率事件”10.某超市随机选取1 000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成统计表,其中“√”表示购买,“×”表示未购买.A .顾客购买乙商品的概率最大B .顾客同时购买乙和丙的概率约为0.2C .顾客在甲、乙、丙、丁中同时购买3种商品的概率约为0.3D .顾客仅购买1种商品的概率不大于0.311.某篮球运动员在最近几次参加的比赛中的得分情况如表:C ,用频率估计概率的方法,得到的下述结论中,正确的是( ) A .()0.55P A =B .()0.18P B =C .()0.27P C =D .()0.55P B C +=12.一个袋子中装有3件正品和1件次品,按以下要求抽取2件产品,其中结论正确的是( ) A .任取2件,则取出的2件中恰有1件次品的概率是12B .每次抽取1件,不放回抽取两次,样本点总数为16C .每次抽取1件,不放回抽取两次,则取出的2件中恰有1件次品的概率是12D .每次抽取1件,有放回抽取两次,样本点总数为16 三、填空题(每小题5分,共20分) 13.若A ,B 是相互独立事件,且()12P A =,()23P B =,则()P AB =________,()P AB =________.14.《九章算术》是中国古代数学专著,全书采用问题集的形式,收有246个与生产、生活实践有联系的应用问题,其中“均赋粟”问题讲的是古代劳动人民的赋税问题.现拟编试题如下:已知甲、乙、丙、丁四县向国家交税,则甲必须第一个交且乙不是第三个交的概率为________.15.用红、黄、蓝三种不同颜色给图中的3个矩形随机涂色,每个矩形只涂一种颜色,则3个矩形颜色都相同的概率是________,3个矩形颜色都不同的概率是________.16.在一次数学考试中,第.设4名学生选做这两题的可能性均为12.则其中甲、乙2名学生选做同一道题的概率为________;甲、乙2名学生都选做第22题的概率为________.四、解答题(共70分)17.(10分)某校在教师外出培训学习活动中,在一个月派出的培训人数及其概率如表所示:(1(2)求至少有3个人培训的概率.18.(12分)用一台自动机床加工一批螺母,从中抽出100个逐个进行直径(单位:cm)检验,结果如表:从这100(1)事件A:螺母的直径在(6.93,6.95]内;(2)事件B:螺母的直径在(6.91,6.95]内;(3)事件C :螺母的直径大于6.96.19.(12分)甲、乙两人玩一种游戏,每次由甲、乙各出1到5根手指,若和为偶数算甲赢,否则算乙赢. (1)若以A 表示和为6的事件,求P (A );(2)现连玩三次,若以B 表示甲至少赢一次的事件,C 表示乙至少赢两次的事件,试问B 与C 是否为互斥事件?为什么?(3)这种游戏规则公平吗?试说明理由.20.(12分)A ,B 两个箱子分别装有标号为0,1,2的三种卡片,每种卡片的张数如表所示.(1)从A ,B 箱中各取12x =的概率;(2)从A ,B 箱中各取1张卡片,用y 表示取出的2张卡片的数字之和,求0x =且2y =的概率.21.(12分)某产品的三个质量指标分别为x ,y ,z ,用综合指标S x y z =++评价该产品的等级.若4S ≤,则该产品为一等品.现从一批该产品中,随机抽取10件产品作为样本,其质量指标如表:(1)利用表中提供的样本数据估计该批产品的一等品率;(2)在该样本的一等品中,随机抽取2件产品.①用产品编号列出所有可能的结果;②设事件B为“在取出的2件产品中,每件产品的综合指标S都等于4”,求事件B发生的概率.22.(12分)某重点中学为了解高一年级学生身体发育情况,对全校700名高一年级学生按性别进行分层随机抽样检查,测得身高(单位:cm)频数分布表如表1、表2.表1:男生身高频数分布表表2(1(2)估计该校学生身高在[165,180)的概率;(3)以样本频率为概率,现从高一年级的男生和女生中分别选出1人,求这2人中至少有1人的身高在[165,180)内的概率.第七章综合测试答案解析一、 1.【答案】C【解析】②④是随机事件,①是必然事件,③是不可能事件. 2.【答案】A【解析】从装有红球、白球和黑球各2个的口袋内一次取出2个球,所有的样本点为:白白,白红,白黑,红红,红黑,黑黑.除“两球都不是白球”外,还有其他事件如白红可能发生,故①与“两球都为白球”互斥但不对立.除“两球都为白球”和“两球恰有一白球”外,还有其他事件,如无白球,故②与“两球都为白球”互斥但不对立.③两球至少有一个白球,其中包含两个都是白球,故不互斥. 3.【答案】A【解析】从这10组勾股数随机抽取1组,共10种抽取方法,其中满足2b a c =+的有:(3,4,5),(6,8,10),(9,12,15),(15,20,25),共4种,故所求概率为42105P ==. 4.【答案】D【解析】因为“出现奇数点”与“出现2点”两事件互斥,所以()()111263P P A P B =+=+=. 5.【答案】B【解析】古典概型的两个基本特征是有限性和等可能性,①符合两个特征,是古典概型;②中的样本点的个数无限多;对于③,出现“两正”“两反”“一正一反”的可能性不相等,故不是古典概型. 6.【答案】D【解析】事件“甲或乙被录用”的对立事件是“甲和乙都未被录用”,从五位学生中选三人的总的样本点的个数为10,“甲和乙都未被录用”只有1种情况,根据古典概型和对立事件的概率公式可得,甲或乙被录用的概率1911010P =-=. 7.【答案】C【解析】用列举法可得样本空间中样本点的总数为15,所求概率的事件包括的样本点的个数为9,所以93155P ==. 8.【答案】C【解析】设“这位家长送孩子上学到第三个路口时首次遇到红灯”为事件A ,因为事件A 等于事件“这位家长送孩子在第一个路口和第二个路口没有遇到红灯,在第三个路口遇到红灯”,所以事件A 的概率为()111433327P A ⨯⨯==(1-)(1-). 二、9.【答案】AD【解析】对于A ,由古典概型的定义知,所有样本点的概率都相等,故所有样本点之间都是“等概率事件”,故A 正确;对于B ,如在1,3,5,7,9五个数中,任取两个数,所得和为8和10这两个事件发生的概率相等,故B 错误;对于C ,由题可知“等概率事件”是针对同一个古典概型的,故C 不正确;对于D ,同时抛掷三枚硬币一次共有8种不同的结果,其中“仅有一个正面”包含3种结果,其概率为38,“仅有两个正面”包含3种结果,其概率为38,故这两个事件是“等概率事件”,故D 正确. 10.【答案】BCD【解析】对于A ,由于购买甲商品的顾客有685位,购买乙商品的顾客有515位,故A 错误;对于B ,因为从统计表可以看出,在这1 000位顾客中,有200位顾客同时购买了乙和丙,所以顾客同时购买乙和丙的概率可以估计为2000.21000=,故B 正确;对于C ,因为从统计表可以看出,在这1000位顾客中,有100位顾客同时购买了甲、丙、丁,另有200位顾客同时购买了甲、乙、丙,其他顾客最多购买了2种商品,所以顾客在甲、乙、丙、丁中同时购买3种商品的概率可以估计为1002000.31000+=,故C 正确;对于D ,因为从统计表可以看出,在这1000位顾客中,有183位顾客仅购买1种商品,所以顾客仅购买1种商品的概率可以估计为0.1830.2<,故D 正确. 11.【答案】ABC【解析】由题意可知,()550.55100P A ==,()180.18100P B ==,事件A B +与事件C 为对立事件,且事件A ,B ,C 互斥,所以()()()()110.27P C P A B P A P B =+==---,()()()0.45P B C P B P C +=+=. 12.【答案】ACD【解析】记4件产品分别为1,2,3,a ,其中a 表示次品.A 选项,样本空间Ω={(1,2),(1,3),(1,a ),(2,3),(2,a ),(3,a )},“恰有1件次品”的样本点为(1,a ),(2,a ),(3,a ),因此其概率3162P ==,A 正确;B 选项,每次抽取1件,不放回抽取两次,样本空间Ω={(1,2),(1,3),(1,a ),(2,1),(2,3),(2,a ),(3,1),(3,2),(3,a ),(a ,1),(a ,2),(a ,3)},因此()12n Ω=,B 错误;C 选项,“取出的2件中恰有1件次品”的样本点数为6,其概率为12,C 正确;D 选项,每次抽取1件,有放回抽取两次,样本空间Ω={(1,1),(1,2),(1,3),(1,a ),(2,1),(2,2),(2,3),(2,a ),(3,1),(3,2),(3,3),(3,a ),(a ,1),(a ,2),(a ,3),(a ,a )},因此()16n Ω=,D 正确. 三、 13.【答案】16 16【解析】因为()()1223P A P B ==,,所以()()11122P A P A =-=-=1,()21133P B =-=.因为A ,B 相互独立,所以A 与B ,A 与B 相互独立,所以()()()111236P AB P A P B ==⨯=,()()()111236P AB P A P B ==⨯=.14.【答案】16【解析】依题意,所有的样本点为:甲—乙—丙—丁,甲—乙—丁—丙,甲—丙—乙—丁,甲—丙—丁—乙,甲—丁—丙—乙,甲—丁—乙—丙,乙、丙、丁第一个交的情况也各有6种,故总的样本点数有24种,其中满足条件的样本点为:甲—乙—丁—丙,甲—乙—丙—丁,甲—丙—丁—乙,甲—丁—丙—乙,共4种,故所求概率为41246=. 15.【答案】19 29【解析】以“红黄蓝”表示从左到右三个矩形所涂的颜色,则所有的样本点有:红红红、红红黄、红红蓝、红黄红、红黄黄、红黄蓝、红蓝红、红蓝黄、红蓝蓝、黄红红、黄红黄、黄红蓝、黄黄红、黄黄黄、黄黄蓝、黄蓝红、黄蓝黄、黄蓝蓝、蓝红红、蓝红黄、蓝红蓝、蓝黄红、蓝黄黄、蓝黄蓝、蓝蓝红、蓝蓝黄、蓝蓝蓝,共27个样本点,事件“3个矩形颜色都相同”所包含的样本点有:红红红、黄黄黄、蓝蓝蓝,共3个,所以3个矩形颜色都相同的概率是31279=.事件“3个矩形颜色都不同”所包含的样本点有:红黄蓝、红蓝黄、黄红蓝、黄蓝红、蓝黄红、蓝红黄,共6个,所以3个矩形颜色都不同的概率是62279=. 16.【答案】12 14【解析】设事件A 表示“甲选做第22题”,事件B 表示“乙选做第22题”,则甲,乙2名学生选做同一道题的事件为“AB AB +”,且事件A ,B 相互独立,所以()()()()()111111122222P AB AB P A P B P A P B +=+=⨯+-⨯-=()().所以甲、乙2名学生选做同一道题的概率为12;因为()()111224P A P B =⨯=,所以甲、乙2名学生都选做第22题的概率为14. 四、17.【答案】(1)设“有2人及以下培训”为事件A ,“有3人培训”为事件B ,“有4人培训”为事件C ,“有5人培训”为事件D ,“有6人及以上培训”为事件E ,所以“有4个人或5个人培训”的事件为事件C 或事件D ,A ,B ,C ,D ,E 为互斥事件,根据互斥事件的概率加法公式可知()()()0.30.10.4P C D P C P D =+=+=.(2)“至少有3个人培训”的对立事件为“有2人及以下培训”,所以由对立事件的概率可知()110.10.9P P A =-=-=.18.【答案】(1)螺母的直径在(6.93,6.95]内的频数为261541A n =+=,所以事件A 的频率为410.41100=. (2)螺母的直径在(6.91,6.95]内的频数为1717261575B n =+++=.所以事件B 的频率为750.75100=.(3)螺母的直径大于6.96的频数为224C n =+=,所以事件C 的频率为40.04100=.19.【答案】(1)甲、乙出手指都有5种可能,因此样本点的总数为5525⨯=,事件A 包括甲、乙出的手指的情况有(1,5),(5,1),(2,4),(4,2),(3,3)共5种情况,所以()51255P A ==. (2)B 与C 不是互斥事件.因为事件B 与C 可以同时发生,如甲赢一次,乙赢两次的事件.(3)这种游戏规则不公平.和为偶数的样本点的个数为13个,(1,1),(1,3),(1,5),(2,2),(2,4),(3,1),(3,3),(3,5),(4,2),(4,4),(5,1),(5,3),(5,5).所以甲赢的概率为1325,乙赢的概率为1325.所以这种游戏规则不公平. 20.【答案】(1)记事件A ={从A ,B 箱中各取1张卡片,2张卡片的数字之积等于2}.样本点的总个数为6530⨯=,事件A 包含样本点的个数为5.由古典概型的概率公式得()51306P A ==.则2x =的概率为16. (2)记事件B ={从A ,B 箱中各取1张卡片,其数字之和为2且积为0}.事件B 包含的样本点的个数为10.由古典概型的概率公式得()101303P B ==.则0x =且2y =的概率为13. 21.【答案】(1)计算10件产品的综合指标S ,如表:其中4S ≤的有A 1,A 2,A 4,A 5,A 7,A 9,共6件,故该样本的一等品率为0.610=,从而可估计该批产品的一等品率为0.6.(2)①在该样本的一等品中,随机抽取2件产品的所有可能结果为{A 1,A 2},{A 1,A 4},{A 1,A 5},{A 1,A 7},{A 1,A 9},{A 2,A 4},{A 2,A 5},{A 2,A 7},{A 2,A 9},{A 4,A 5},{A 4,A 7},{A 4,A 9},{A 5,A 7},{A 5,A 9},{A 7,A 9},共15种.②在该样本的一等品中,综合指标S 等于4的产品编号分别为A 1,A 2,A 5,A 7,则事件B 发生的所有可能结果为{A 1,A 2},{A 1,A 5},{A 1,A 7},{A 2,A 5},{A 2,A 7},{A 5,A 7},共6种.所以()62155P B ==. 22.【答案】(1)设高一女生人数为x ,由题中表1和表2可得样本中男、女生人数分别为40,30,则7004030x x -=,解得300x =.因此高一女生的人数为300.(2)由题中表1和表2可得样本中身高在[165,180)的男、女生人数分别为32,10,其和为42.样本容量为70.所以样本中该校学生身高在[165,180)的概率为423705=.估计该校学生身高在[165,180)的概率为35. (3)由题中表格可知:女生身高在[165,180)的概率为13.男生身高在[165,180)的概率为45,所以这2人中至少有1人的身高在[165,180)内的概率为414141131153535315⨯-+-⨯+⨯=()().。

北师大版小学一年级上册数学各单元练习题(全套)

北师大版小学一年级上册数学各单元练习题(全套)

小学数学第一册第一单元测试题(1)一、看图写数(9分)★★★★★★★★( ) ( ) ( )二、数数在内画○计数(18分)三、数一数,在横线上画出相应的“○”(5分)你家里有几口人?今年你几岁了?你这一小组有几个同学?你书包里有几本书?你喜欢上的课有几节?四、连一连(28分)1.2.(12分)五、把同样多的用线连起来(16分)○○○○○○○○○○○○○○○○六、小红今年上一年级,妈妈带她去买学习用品,应该买什么,请把它们圈起来好吗?(8分)七、数一数,在○里涂色(8分)○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○八、这些食物该分给谁才合适呢?把它们用线连一连(8分)九、提高题(10分,不计入总分)1.画○,○比△多3个。

2. 画△, △比□少4个。

△△△△□□□□□□□□□小学数学第一册第二单元测试题(2)姓名得分一、比长短(10分)1.长□√,短□○。

2.最长□√,最短□○。

二、比高矮(15分)1.最高□√,最矮□○。

2.重的画“□√”轻的画“□○”。

三、比远近(10分)1.小蚂蚁回家,走哪条路最近,在□里画“√”。

2.在最长的后面的“□”里画“√”。

四、实践能力题(7分)把同样多的方糖放进下面的杯中,哪一杯水最甜,在()里打√。

() () ()五、多□√,少□○(6分)□□六、1.比一比,大□√,小□○(10分)□□2.比一比,厚的画□√,薄的画□○。

□□□七、比一比(12分)1.最轻的画√,最重的画△。

2. 最快的画√,最慢的画△。

① ② ③ ④ □ □ □ □八、 和 哪个重?重□√,轻□○(8分)。

九、找几个同学,从高到矮排排队。

(6分)十、两个杯里的水一样多,放进大小不同的石块后,哪个杯子里的水会变得更高?在更高□√。

(6分)①□ ②□ (杯子一样大)① ② ③ ④ □ □十一、比一比,哪一种水果最重?在最重□√。

(10分)十二、益智题(10分,不计入总分)请同学们想一想,在一天中,大树是早晨的影子长,还是中午的影子长?早晨() 中午()小学数学第一册第三单元测试题(3)姓名得分一、把同类的物体圈出来(8分)二、请把一类的东西涂成同一种颜色(8分)三、把应放在书包里的东西圈出来(8分)四、圈出一个不同类的东西(12分)(1)(2)(3)五、看图说一说,图1和图2怎样分的(8分) 1. 2.六、把□涂上红色, 涂绿色,△涂黄色(8分)七、想一想,可以怎样分(10分)八、把下面物品的序号填在下面相应的圈里(10分)(7)(8)(9)(10)文具玩具服装鞋帽2.怎样放合适呢?(用线连一连8分)九、数一数、分一分,你能想出几种分类方法(10分)十、下面这些动物你认识吗?它们各有几只脚?会游泳的是哪几个号?请把动物编号写在相应的圈内。

新北师大版第一章《预备知识》综合测试(一) 数学试卷

新北师大版第一章《预备知识》综合测试(一) 数学试卷

新北师大版必修第一册第一章综合测试(一)数学试卷(满分150分,考试时间120分钟)注意事项:1.答题前,考生先将自己的姓名、准考证号填写在试卷和答题卡上,并认真核准条形码上的准考证号、姓名及科目,在规定位置粘贴好条形码。

2.答题要求:选择题每小题选出答案后,用2B铅笔将答题卡上对应题目的答案标号涂黑;非选择题使用黑色签字笔在答题卡上对应的答题区域内作答。

3.考试结束后,请将本试卷和答题卡一并上交。

第I卷(选择题共60分)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合A={x∈R|x≤3},B={x∈R|x2-x-2>0},则A∩B=().A.{x|2<x≤3}B.{x|x<-1或2<x≤3}C.{x|-1<x≤3}D.{x|x<-1}2.已知命题p:实数的平方是非负数,则下列结论正确的是().A.命题p的否定是真命题B.命题p是存在量词命题C.命题p是全称量词命题D.命题p既不是全称量词命题也不是存在量词命题3.在直角三角形ABC中,“∠A=60°”是“sin A).A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件4.若关于x的不等式x2-x+m>0在R上恒成立,则实数m的取值范围为().A.m>14B.m<14C.m<1D.m>15.已知命题p:∃x∈N,3x≤1,则().A.p是假命题;p的否定为∀x∈N,3x≤1B.p是假命题;p的否定为∀x∈N,3x>1C.p是真命题;p的否定为∀x∈N,3x≤1D.p是真命题;p的否定为∀x∈N,3x>1 6.若不等式ax2+bx+c>0的解集为{x|-2<x<1},则不等式ax2+(a+b)x+c-a<0的解集为().A.{x|xx} B.{x|-3<x<1}C.{x|-1<x<3}D.{x|x<-3或x>1}7.某辆汽车以x km/h的速度在高速公路上匀速行驶(考虑到高速公路行车安全,要求60≤x≤120)时,每小时的油耗(所需要的汽油量)为14500-5x kx⎛⎫+⎪⎝⎭L,其中k为常数.若汽车以120 km/h的速度行驶时,每小时的油耗为11.5 L,则欲使每小时的油耗不超过9 L,速度x的取值范围为().A.40≤x≤60B.50≤x≤80C.40≤x≤80D.60≤x≤1008.已知x,y均为正实数,且111226x y+=++,则x+y的最小值为().A.24B.32C.20D.28二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9.已知集合A={x|x≤2},集合B={-1,0,1,2},则下列结论正确的是().A.B⊆AB.A∪B=AC.A∩B={-1,0,1,2}D.A∪B=B10.已知p:x≥m,q:2+x-x2<0,下列给出的实数m的值,能使p是q的充分不必要条件的是().A.m=2B.m=52C.m=3D.m=-111.下列说法正确的是().A.∀x∈R,x2-2x+3>0均成立B.命题“∃x∈R,x2-x>0”的否定是“∀x∈R,x2-x<0”C.“x>1”是“|x|>0”的充分不必要条件D.四边形的对角相等是全称量词命题12.已知x,y是正数,且2x+y=1,下列结论正确的是().A.xy的最大值为18B.4x2+y2的最小值为1C.x(x+y)的最大值为14D.2x yxy+的最小值为9第II卷(非选择题共90分)三、填空题:本题共4小题,每小题5分,共20分.把答案填在题中的横线上.13.不等式2x2+2x-4≤12的解集为.14.若关于x的不等式mx2+mx+1>0在R上恒成立,则实数m的取值范围为.15.给出下列存在量词命题:①有些不相似的三角形面积相等;②存在实数x,使x2+x+1<0;③存在实数a,使函数y=ax+b的值随x的增大而增大;④有一个实数的倒数是它本身.其中是真命题的是.(填序号)16.某地区要建造一条防洪堤,其横断面为等腰梯形,腰与底边夹角为60°(如图),考虑到防洪堤的坚固性及水泥用料等因素,要求设计其横断面的面积为93平方米,且高度不低于3米.记防洪堤横断面的腰长为x米,外周长(梯形的上底与两腰长的和)为y米,若要使堤的上面与两侧面的水泥用料最省(即横断面的外周长最小),则防洪堤的腰长x=;横断面外周长的最小值为.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)已知全集U=R,集合A={x|-1<x<1},B=3|02x x⎧⎫≤≤⎨⎬⎩⎭,C={x|-4<x≤2a-7},(1)求A∩(U B);(2)若A∩C=A,求实数a的取值范围.18.(12分)在①x+1-1x(x>1)的最小值是a,②不等式(1-a)x2-4x+6>0的解集是{x|-3<x<1}这两个条件中任选一个,补充在下面的问题中,再进行求解.已知.(1)解不等式2x2+(2-a)x-a>0.(2)当b为何值时,ax2+bx+3≥0的解集为R?19.(12分)设a>0,b>0,且a+b=11a b+.证明:0<a<1与0<b<1不可能同时成立.20.(12分)已知命题甲:二次函数y=x2+2(a-1)x+a2图象与x轴无交点.命题乙:一次函数y=(a-1)x+2a+1在第一、二、四象限内有图象.请分别求出符合下列条件的实数a的取值范围.(1)甲、乙至少有一个是真命题;(2)甲、乙中有且只有一个是真命题.21.(12分)已知y=x2+ax+3.(1)若a=-3,试求yx(x>0)的最小值;(2)当-1≤x≤1时,y>a恒成立,求a的取值范围.22.(12分)随着“新冠”疫情得到有效控制,企业进入了复工复产阶段.为了支持一家小微企业发展,某科创公司研发了一种玩具供其生产销售.根据测算,该企业每月生产该种玩具的成本p由两部分费用(单位:元)构成:①固定成本(与生产玩具套数x无关),总计2万元;②生产所需成本为5x+1200x2.(1)该企业每月生产多少套玩具时,可使得平均每套所需的成本费用最少?此时每套玩具的成本费用是多少?(2)因疫情防控的需要,要求企业的复工复产逐步进行,假设复工后,企业每月生产x套,售价(单位:元)定为30+100x,且每月生产出的玩具能全部售出.若企业的月产量与复工率成正比,且该企业复工率达100%时的月产量为4000套,则该企业的复工率至少达到多少时,才能确保月利润不少于10万元?必修第一册 第一章综合测试(一) 数学试卷参考答案1.【答案】B【解析】∵集合A ={x ∈R|x ≤3},B ={x ∈R|x 2-x -2>0}={x |x <-1或x >2}, ∴A ∩B ={x |x <-1或2<x ≤3}. 2.【答案】C【解析】命题p :实数的平方是非负数,是全称量词命题,且是真命题,故p 的否定是假命题. 3.【答案】A【解析】在直角三角形ABC 中,由∠A =60°可得sin A =√32,同理由sin A =√32可得∠A =60°. 4.【答案】A【解析】关于x 的不等式x 2-x +m >0在R 上恒成立,则Δ=(-1)2-4m =1-4m <0,解得m >14.5.【答案】D【解析】当x =0时,3x =0<1,故p 是真命题.p 的否定为∀x ∈N ,3x >1.故选D. 6.【答案】D【解析】由已知得方程ax 2+bx +c =0的两个根分别为x 1=-2,x 2=1且a <0,∴ba=1,ca=-2,∴不等式ax 2+(a +b )x +c -a <0可化为x 2+(1+b a )x +ca -1>0,即x 2+2x -3>0,解得x <-3或x >1. 7.【答案】D【解析】因为汽车以120 km/h 的速度行驶时,每小时的油耗为11.5 L ,所以15(120-k +4500120)=11.5,解得k =100,故每小时的油耗为15(x +4500x)-20L.依题意,15(x +4500x)-20≤9,解得45≤x ≤100.又因为60≤x ≤120,所以60≤x ≤100. 8.【答案】C【解析】∵x ,y 均为正实数,且1x+2+1y+2=16,∴x +y =(x +2+y +2)-4=6(1x+2+1y+2)·(x +2+y +2)-4=6×(2+x+2y+2+y+2x+2)-4≥6×(2+2√x+2y+2·y+2x+2)-4=20,当且仅当x =y =10时取等号. 9.【答案】ABC【解析】∵集合A ={x |x ≤2},集合B ={-1,0,1,2},∴A ∩B ={-1,0,1,2},B ⊆A ,A ∪B =A ,故A ,B ,C 正确,D 错误.10.【答案】BC【解析】记A ={x |x ≥m },对于q :2+x -x 2<0,记B ={x |x <-1或x >2}.由p 是q 的充分不必要条件,得A 是B 的真子集,所以m >2,故B ,C 成立. 11.【答案】ACD【解析】A 正确,∀x ∈R ,x 2-2x +3=(x -1)2+2>0; B 错误,应为∀x ∈R ,x 2-x ≤0;C 正确,若x >1,则|x |>0,若|x |>0,则x 不一定大于1;D 正确,该命题是全称量词命题. 12.【答案】AD【解析】因为x >0,y >0,所以1=2x +y ≥2√2x ·y ,所以xy ≤18,当且仅当x =14,y =12时等号成立,所以xy 的最大值为18,故A 正确;因为4x 2+y 2=4x 2+(1-2x )2=8x 2-4x +1=8x -142+12,又y =1-2x >0,即0<x <12,所以当x =14时,4x 2+y 2取得最小值12,故B 不正确;x (x +y )=x (x +1-2x )=-x 2+x =-(x -12)2+14,因为0<x <12,所以由二次函数的图象(图略)可知-x 2+x <14,即x (x +y )<14,故C 不正确;x+2y xy=1y+2x=(2x +y )1y+2x=5+2x y+2yx ≥5+2√2x y·2yx=9,当且仅当x =y =13时等号成立,故D 正确.13.【答案】{x|-√10+12≤x ≤√10-12} 【解析】由4x 2+4x -8≤1,得4x 2+4x -9≤0,解得-1+√102≤x ≤√10-12. 14.【答案】0≤m <4【解析】因为关于x 的不等式mx 2+mx +1>0在R 上恒成立,所以分以下两种情况讨论: ①当m =0时,可得1>0,符合题意; ②当m ≠0时,有{m >0,Δ=m 2-4m <0,解得0<m <4.综上所述,实数m 的取值范围是0≤m <4. 15.【答案】①③④【解析】①为真命题,等底等高的两个三角形,面积相等,但不一定相似;②为假命题,对任意x ∈R ,x 2+x +1=(x +12)2+34>0,所以不存在实数x ,使x 2+x +1<0;③为真命题,当a >0时,结论成立;④为真命题,如1的倒数是它本身.故填①③④.16.【答案】2√3 6√3 【解析】设横断面的高为h , 由题意得AD =BC +2·x2=BC +x ,h =√32x , ∴9√3=12(AD +BC )h =12(2BC +x )·√32x , 故BC =18x −x2,由{ℎ=√32x ≥√3,BC =18x-x2>0,得2≤x <6, ∴y =BC +2x =18x+3x 2(2≤x <6),从而y =18x +3x 2≥2 √18x ·3x2=6√3,当且仅当18x =3x 2(2≤x <6),即x =2√3时等号成立.17.【解析】(1)∵A ={x |-1<x <1},B ={x|0≤x ≤32}, ∴U B ={x|x <0或x >32},∴A ∩(U B )={x |-1<x <0}. (2)∵A ∩C =A ,∴A ⊆C , ∴2a -7≥1,解得a ≥4, ∴实数a 的取值范围为[4,+∞).18.【解析】若选①,因为x >1,所以x +1x -1=(x -1)+1x -1+1≥2√(x -1)·1x -1+1=3, 当且仅当x -1=1x -1,即x =2时等号成立. 故最小值为3.所以a =3.(1)不等式2x 2+(2-a )x -a >0,即2x 2-x -3>0,解得x <-1或x >32,所以所求不等式的解集为{x |x <-1或x >32}. (2)ax 2+bx +3≥0,即3x 2+bx +3≥0,若此不等式的解集为R ,则Δ=b 2-4×3×3≤0,所以-6≤b ≤6.若选②,由题意知1-a <0且-3和1是方程(1-a )x 2-4x +6=0的两根,所以{ 1-a <0,41-a =-2,61-a =-3,解得a =3.(1)不等式2x 2+(2-a )x -a >0,即2x 2-x -3>0,解得x <-1或x >32,所以所求不等式的解集为{x |x <-1或x >32}.(2)ax 2+bx +3≥0,即3x 2+bx +3≥0,若此不等式的解集为R ,则Δ=b 2-4×3×3≤0,所以-6≤b ≤6.19.【解析】由a +b =1a+1b=a+b ab,a >0,b >0,得ab =1.假设0<a <1与0<b <1同时成立, 则由0<a <1,0<b <1,得ab <1, 这与ab =1矛盾.故0<a <1与0<b <1不可能同时成立.20.【解析】当命题甲为真命题时,Δ=4(a -1)2-4a 2<0,即a >12. 当命题乙为真命题时,{a -1<0,2a +1>0,即-12<a <1.(1)甲、乙至少有一个是真命题,即上面两个范围取并集,故a 的取值范围是{a |a >-12}.(2)甲、乙中有且只有一个是真命题,有两种情况: 甲真乙假时,a ≥1;甲假乙真时,-12<a ≤12.综上可知,当甲、乙中有且只有一个真命题时,a 的取值范围为-12<a ≤12或a ≥1. 21.【解析】(1)当a =-√3时,yx=x +3x −√3≥2√3−√3=√3,当且仅当x =3x,即x =√3时,等号成立.∴yx(x >0)的最小值为√3.(2)当-1≤x ≤1时,不等式x 2+ax +3>a ⇔x 2+3>a (1-x ). ∵-1≤x ≤1,∴0≤1-x ≤2.当x =1时,1-x =0,x 2+3>a (1-x )对一切a ∈R 恒成立; 当x ≠1时,0<1-x ≤2,则a <x 2+31-x ,∵x 2+31-x=(1-x )2-2(1-x )+41-x =(1-x )+41-x -2≥2√(1-x )·41-x -2=2,当且仅当1-x =41-x,即x =-1时,取到等号,∴(x 2+31-x)min=2,从而a <2.综上所述,a 的取值范围为a <2.22.【解析】(1)依题意,p =20000+5x +1200x 2,则px =20000x+1200x +5≥2√20000x·1200x +5=25,当且仅当20000x=1200x ,即x =2000时取等号,所以每月生产2000套玩具时,可使平均每套所需的成本费用最少,此时每套玩具的成本费用为25元.(2)设月利润为s 元,则s =x (30+x 100)-20000+5x +1200x 2=x 2200+25x -20000≥100000, 所以x 2+5000x -24000000≥0,即(x +8000)(x -3000)≥0, 所以x ≥3000,所以30004000=75%,所以该企业的复工率至少达到75%时,才能确保月利润不少于10万元.。

2024-2025年北师大版数学选择性必修第一册第一章达标检测(带答案)

2024-2025年北师大版数学选择性必修第一册第一章达标检测(带答案)

第二部分阶段测试 第一章达标检测时间:120分钟 分数:150分一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.直线ax +by +c =0同时经过第一、二、四象限,则a ,b ,c 应满足( ) A .ab>0,bc<0 B .ab>0,bc>0 C .ab<0,bc>0 D .ab<0,bc<0 2.已知点M(0,-1),点N 在直线x -y +1=0上,若直线MN 垂直于直线x +2y -3=0,则点N 的坐标是( )A .(-2,-3)B .(2,1)C .(2,3)D .(-2,-1) 3.若直线l 1:x +(1+m)y +m -2=0和直线l 2:mx +2y +8=0平行,则m 的值为( )A .1B .-2C .1或-2D .-234.直线x -2y +1=0关于直线x =1对称的直线方程是( )A .x +2y -1=0B .2x +y -1=0C .2x +y -3=0D .x +2y -3=05.若圆x 2+y 2-2ax +3by =0的圆心位于第三象限,那么直线x +ay +b =0一定不经过( )A .第一象限B .第二象限C .第三象限D .第四象限6.经过点(1,0)且圆心是两直线x =1与x +y =2的交点的圆的方程为( ) A .(x -1)2+y 2=1 B .(x -1)2+(y -1)2=1 C .x 2+(y -1)2=1 D .(x -1)2+(y -1)2=2 7.直线y =kx +1与圆(x -2)2+(y -1)2=4相交于P ,Q 两点.若|PQ|≥2 2 ,则k 的取值范围是( )A .⎣⎢⎡⎦⎥⎤-34,0 B .⎣⎢⎡⎦⎥⎤-33,33 C .[-1,1] D .[- 3 , 3 ]8.设有一组圆C k :(x -1)2+(y -k)2=k 4(k∈N +),给出下列四个命题:①存在k ,使圆与x 轴相切;②存在一条直线与所有的圆均相交;③存在一条直线与所有的圆均不相交;④所有的圆均不经过原点.其中正确的命题序号是( )A.①②③ B.②③④ C.①②④ D.①③④二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.如图,直线l 1,l 2相交于点O ,点P 是平面内的任意一点,若x ,y 分别表示点P 到l 1,l 2的距离,则称(x ,y )为点P 的“距离坐标”.下列说法正确的是( )A.距离坐标为(0,0)的点有1个B.距离坐标为(0,1)的点有2个C.距离坐标为(1,2)的点有4个D.距离坐标为(x ,x )的点在一条直线上10.已知圆M 与直线x +y +2=0相切于点A (0,-2),圆M 被x 轴所截得的弦长为2,则下列结论正确的是( )A .圆M 的圆心在定直线x -y -2=0上B .圆M 的面积的最大值为50πC .圆M 的半径的最小值为1D .满足条件的所有圆M 的半径之积为1011.已知圆O :x 2+y 2=9和圆M :x 2+y 2+6x -4y +9=0交于P ,Q 两点,下列说法正确的是( )A.两圆有两条公切线B.直线PQ 的方程为3x -2y +9=0C.线段PQ 的长为61313D.所有过点P ,Q 的圆的方程可以记为x 2+y 2-9+λ(x 2+y 2+6x -4y +9)=0(λ∈R ,λ≠-1)三、填空题:本题共3小题,每小题5分,共15分.12.过圆x 2+y 2-2y -4=0与x 2+y 2-4x +2y =0的交点,且圆心在直线l :2x +4y -1=0上的圆的方程是________________.13.已知直线l 1:3x -2y -1=0和l 2:3x -2y -13=0,直线l 与l 1,l 2的距离分别是d 1,d 2,若d 1∶d 2=2∶1,则直线l 的方程为________________.14.[双空题]已知圆C :x 2+y 2+2(a -1)x -12y +2a 2=0.当圆C 的面积最大时,实数a 的值为________;若此时圆C 关于直线l :mx +ny -6=0(m >0,n >0)对称,则mn3m +n 的最大值为________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤. 15.(本小题满分13分)在平面直角坐标系xOy 中,已知△ABC 的三个顶点的坐标分别为A (-3,2),B (4,3),C (-1,-2).(1)求△ABC 中,BC 边上的高线所在直线的方程; (2)求△ABC 的面积.16.(本小题满分15分)已知圆C :x 2+y 2-2y -4=0,直线l :mx -y +1-m =0. (1)判断直线l 与圆C 的位置关系; (2)若直线l 与圆C 交于不同两点A ,B ,且|AB |=32 ,求直线l 的方程.17.(本小题满分15分)已知半径为5的动圆C 的圆心在直线l :x -y +10=0上. (1)若动圆C 过点(-5,0),求圆C 的方程; (2)是否存在正实数r ,使得动圆C 中满足与圆O :x 2+y 2=r 2相外切的圆有且仅有一个?若存在,请求出r 的值;若不存在,请说明理由.18.(本小题满分17分)①圆心C在直线l:2x-7y+8=0上,且B(1,5)是圆上的点;②圆心C在直线x-2y=0上,但圆C不经过点(4,2),并且直线4x-3y=0与圆C相交所得的弦长为4;③圆C过直线l:2x+y+4=0和圆x2+y2+2x-4y-16=0的交点.在以上三个条件中任选一个,补充在下面问题中,问题:平面直角坐标系xOy中,圆C过点A(6,0),且________.(1)求圆C的标准方程;(2)求过点A的圆C的切线方程.19.(本小题满分17分)已知P是直线3x+4y+8=0上的动点,PA,PB是圆C:x2+y2-2x-2y+1=0的两条切线,A、B是切点.(1)求四边形PACB面积的最小值;(2)直线上是否存在点P,使得∠BPA=60°?若存在,求出点P的坐标;若不存在,请说明理由.第一章达标检测1.解析:由题意,令x =0,得y =-cb >0;令y =0,得x =-c a>0.即bc <0,ac <0,从而ab >0.答案:A2.解析:由点N 在直线x -y +1=0上,排除A ,B.由k MN =2,排除D.故选C. 答案:C 3.解析:∵直线l 1:x +(m +1)y +m -2=0与l 2:mx +2y +8=0平行,∴m (m +1)=1×2,解得m =1或m =-2.当m =-2时,直线l 1:x -y -4=0,l 2:x -y -4=0,l 1与l 2重合,故舍去;当m =1时,l 1∥l 2.∴m =1.故选A.答案:A4.解析:将“关于直线对称的两条直线”转化为“关于直线对称的两点”,在直线x -2y +1=0上取一点P (3,2),点P 关于直线x =1的对称点P ′(-1,2)必在所求直线上,只有选项D 满足.答案:D5.解析:圆x 2+y 2-2ax +3by =0的圆心为⎝ ⎛⎭⎪⎫a ,-32b ,由于圆心位于第三象限,所以a <0,b >0.直线方程x +ay +b =0可化为y =-1a x -b a .因为-1a >0,-ba >0,所以直线不经过第四象限.答案:D6.解析:由⎩⎪⎨⎪⎧x =1,x +y =2, 得⎩⎪⎨⎪⎧x =1,y =1,即所求圆的圆心坐标为(1,1).由该圆过点(1,0),得其半径为1,故圆的方程为(x -1)2+(y -1)2=1.答案:B7.解析:若|PQ |≥22 ,则圆心(2,1)到直线y =kx +1的距离d ≤ 4-⎝ ⎛⎭⎪⎫2222 =2 ,即|2k |1+k 2≤2 ,解得-1≤k ≤1. 答案:C8.解析:命题①中,当k =1时,圆心(1,1),半径r =1,满足与x 轴相切,故①正确;命题②③中,圆心(1,k )恒在直线kx -y =0上,该线与圆一定相交,故②正确,只要k 足够大,对任意直线,总有直线与圆相交,故③错误;命题④中,若(0,0)在圆上,则1+k 2=k 4,而k ∈N +,若k 是奇数,则左式是偶数,右式是奇数,方程无解,若k 是偶数,则左式是奇数,右式是偶数,方程无解,故所有的圆均不经过原点,故④正确.故选C.答案:C9.解析:对于A ,若距离坐标为(0,0),即P 到两条直线的距离都为0,P 为两直线的交点,即距离坐标为(0,0)的点只有1个,A 正确;对于B ,若距离坐标为(0,1),即P 到直线l 1的距离为0,到直线l 2的距离为1,P 在直线l 1上,到直线l 2的距离为1,符合条件的点有2个,B 正确;对于C ,若距离坐标为(1,2),即P 到直线l 1的距离为1,到直线l 2的距离为2,有4个符合条件的点,即与直线l 1相距为2的两条平行线和与直线l 2相距为1的两条平行线的交点,C 正确;对于D ,若距离坐标为(x ,x ),即P 到两条直线的距离相等,则距离坐标为(x ,x )的点在2条相互垂直的直线上,D 错误.故选ABC.答案:ABC10.解析:∵圆M 与直线x +y +2=0相切于点A (0,-2),∴直线AM 与直线x +y +2=0垂直,∴直线AM 的斜率为1,则点M 在直线y =x -2,即x -y -2=0上,A 正确;设M (a ,a -2),∴圆M 的半径r =|AM |=a 2+(a -2+2)2 =2 |a |,∴圆M 被x 轴截得的弦长为2r 2-(a -2)2 =2a 2+4a -4 =2,解得a =-5或a =1,当a =-5时,圆M 的面积最大,为πr 2=50π,B 正确;当a =1时,圆M 的半径最小,为2 ,C 错误;满足条件的所有圆M 的半径之积为52 ×2 =10,D 正确.故选ABD.答案:ABD11.解析:A ,因为圆O :x 2+y 2=9和圆M :x 2+y 2+6x -4y +9=0相交于P ,Q 两点,所以两圆有两条公切线,故正确;B ,圆O :x 2+y 2=9和圆M :x 2+y 2+6x -4y +9=0的方程相减得3x -2y +9=0,所以直线PQ 的方程为3x -2y +9=0,故正确;C ,圆心O 到直线PQ 的距离为d =99+4=91313,所以线段PQ 的长|PQ |=2r 2-d 2=2 9-8113 =121313,故错误;D ,因为λ∈R ,λ≠-1,所以⎩⎪⎨⎪⎧x 2+y 2=9,x 2+y 2+6x -4y +9=0, 可知该圆恒过P ,Q 两点,方程可化为x 2+y 2+6λx 1+λ -4λy 1+λ +9λ-91+λ =0,而(6λ1+λ )2+(4λ1+λ )2-49λ-91+λ =16λ2+36(1+λ)2 >0,所以方程x 2+y 2-9+λ(x 2+y 2+6x -4y +9)=0(λ∈R ,λ≠-1)表示圆,但不包括圆M ,故错误.故选AB.答案:AB12.解析:设圆的方程为x 2+y 2-4x +2y +λ(x 2+y 2-2y -4)=0(λ≠-1),则(1+λ)x 2-4x +(1+λ)y 2+(2-2λ)y -4λ=0,把圆心⎝⎛⎭⎪⎫21+λ,λ-11+λ 代入2x +4y -1=0,可得λ=13,所以所求圆的方程为x 2+y 2-3x +y -1=0.答案:x 2+y 2-3x +y -1=013.解析:由直线l 1,l 2的方程知l 1∥l 2,又由题意知,直线l 与l 1,l 2均平行. 设直线l :3x -2y +m =0(m ≠-1且m ≠-13),由两平行直线间的距离公式,得d 1=|m +1|13 ,d 2=|m +13|13 ,又d 1∶d 2=2∶1,所以|m +1|=2|m +13|,解得m =-25或m =-9.故所求直线l 的方程为3x -2y -25=0或3x -2y -9=0. 答案:3x -2y -25=0或3x -2y -9=014.解析:圆C 的方程可化为[x +(a -1)]2+(y -6)2=-a 2-2a +37,当a =-1时,-a 2-2a +37取得最大值38,此时圆C 的半径最大,面积也最大;当a =-1时,圆心坐标为(2,6),圆C 关于直线l :mx +ny -6=0(m >0,n >0)对称,则点(2,6)在直线上,所以2m+6n -6=0,即m +3n =3,由题得mn 3m +n =11m +3n,所以1m +3n =13 (m +3n )(1m +3n )=13(10+3n m +3m n )≥13(10+2 3n m ×3m n )=163 ,当且仅当3n m =3m n ,即m =n =34时取等号,所以mn 3m +n =11m +3n≤316.答案:-131615.解析:(1)∵直线BC 的斜率k BC =3+24+1 =1,∴BC 边上的高线所在直线的斜率k =-1.∴BC 边上的高线所在直线的方程为y -2=-(x +3), 即x +y +1=0.(2)∵B (4,3),C (-1,-2),∴|BC |=(-2-3)2+(-1-4)2=52 .由B (4,3),C (-1,-2),得直线BC 的方程为x -y -1=0,∴点A 到直线BC 的距离d =|-3-2-1|2 =32 ,∴S △ABC =12×52 ×32 =15.16.解析:(1)圆C 的标准方程为x 2+(y -1)2=5,所以圆C 的圆心为C (0,1),半径r=5 ,圆心C (0,1)到直线l :mx -y +1-m =0的距离d =|0-1+1-m |m 2+1 =|m |m 2+1 <1<5 ,因此直线l 与圆C 相交.(2)圆心C 到直线l 的距离d =(5)2-⎝ ⎛⎭⎪⎫3222=22 .又d =|m |m 2+1 ,|m |m 2+1=22,解得m =±1,∴直线l 的方程为x -y =0或x +y -2=0. 17.解析:(1)依题意,可设动圆C 的方程为(x -a )2+(y -b )2=25, 其中圆心(a ,b )满足a -b +10=0. 又因为动圆过点(-5,0),所以(-5-a )2+(0-b )2=25,联立⎩⎪⎨⎪⎧a -b +10=0,(-5-a )2+(0-b )2=25, 解得⎩⎪⎨⎪⎧a =-10,b =0, 或⎩⎪⎨⎪⎧a =-5,b =5.故所求圆C 的方程为(x +10)2+y 2=25或(x +5)2+(y -5)2=25.(2)圆O 的圆心(0,0)到直线l 的距离d =|10|1+1=52 .当r 满足r +5<d 时,动圆C 中不存在与圆O :x 2+y 2=r 2相外切的圆; 当r 满足r +5>d 时,r 每取一个数值,动圆C 中存在两个圆与圆O :x 2+y 2=r 2相外切; 当r 满足r +5=d ,即r =52 -5时,动圆C 中有且仅有1个圆与圆O :x 2+y 2=r 2相外切. 故当动圆C 中与圆O 相外切的圆仅有一个时,r =52 -5. 18.解析:选①条件.(1)方法一:设所求圆的方程为(x -a )2+(y -b )2=r 2, 由题意得⎩⎪⎨⎪⎧(6-a )2+(0-b )2=r 2,(1-a )2+(5-b )2=r 2,2a -7b +8=0,解得a =3,b =2,r 2=13,∴所求圆的方程是(x -3)2+(y -2)2=13. 方法二:设线段AB 的垂直平分线为m ,则圆心C 在直线m 上且在直线l 上,即C 是m 与l 的交点, 直线AB 的斜率是-1,直线m 的斜率是1,AB 中点为(72 ,52 ),∴直线m :x -y -1=0,由⎩⎪⎨⎪⎧x -y -1=0,2x -7y +8=0, 解得⎩⎪⎨⎪⎧x =3,y =2, ∴圆心C (3,2)且|CA |=13 ,∴所求圆的方程是(x -3)2+(y -2)2=13.(2)∵A 在圆C 上,k AC =-23 ,过点A 的切线斜率为32 ,∴过点A 的切线方程是y =32 (x -6),即3x -2y -18=0.选②条件.(1)设所求圆的方程为(x -a )2+(y -b )2=r 2,由题意得a =2b ,设圆心C 到直线4x -3y =0的距离为d ,r 2=(a -6)2+b 2, 由垂径定理可知r 2=d 2+22,即(|4a -3b |5 )2+4=(a -6)2+b 2,将a =2b 代入得,b 1=2,b 2=4, 又∵圆C 不经过点(4,2),∴a =8,b =4,r 2=20,∴所求圆的方程是(x -8)2+(y -4)2=20.(2)∵A 在圆C 上,k AC =2,过点A 的切线斜率为-12 ,∴过点A 的切线方程是y =-12(x -6),即x +2y -6=0.选③条件.(1)方法一:设所求圆C 的方程为x 2+y 2+2x -4y -16+λ(2x +y +4)=0, 代入点A (6,0)得λ=-2,∴所求圆的方程为x 2+y 2-2x -6y -24=0,即(x -1)2+(y -3)2=34.方法二:设直线l :2x +y +4=0与圆x 2+y 2+2x -4y -16=0的交点E (x 1,y 1),F (x 2,y 2),则⎩⎪⎨⎪⎧2x +y +4=0,x 2+y 2+2x -4y -16=0, 即5x 2+26x +16=0,解得x 1=-13+895 ,x 2=-13-895,∴E (-13+895 ,6-2895 ),F (-13-895 ,6+2895),设所求圆C 的方程为(x -a )2+(y -b )2=r 2,将A ,E ,F 代入,得所求圆的方程为(x -1)2+(y -3)2=34.(2)∵A 在圆C 上,k AC =-35 ,过点A 的切线斜率为53 ,∴过点A 的切线方程是y =53(x -6),即5x -3y -30=0.19.解析:(1)如图,连接PC ,由点P 在直线3x +4y +8=0上,可设点P 的坐标为⎝ ⎛⎭⎪⎫x ,-2-34x .圆C 的标准方程为(x -1)2+(y -1)2=1,所以圆心C (1,1),半径为1.所以S 四边形PACB =2S △PAC =2×12 ×|AP |×|AC |=|AP |.因为|AP |2=|PC |2-|CA |2=|PC |2-1,所以当|PC |2最小时,|AP |最小.因为|PC |2=(1-x )2+⎝ ⎛⎭⎪⎫1+2+34x 2 =⎝ ⎛⎭⎪⎫54x +1 2+9,所以当x =-45 时,|PC |2min =9,所以|AP |min =9-1 =22 ,即四边形PACB 面积的最小值为22 .(2)假设直线上存在点P 满足题意.因为∠BPA =60°,|AC |=1,所以|PC |=2.设P (x ,y ),则⎩⎪⎨⎪⎧(x -1)2+(y -1)2=4,3x +4y +8=0,整理可得25x 2+40x +96=0,所以Δ=402-4×25×96<0.所以这样的点P 是不存在的.。

北师大版高中数学选择性必修第一册课后习题 第五章 §3 第1课时 组合(一)

北师大版高中数学选择性必修第一册课后习题 第五章 §3 第1课时 组合(一)

第五章计数原理§3组合问题第1课时组合(一)课后篇巩固提升合格考达标练1.下列问题中,组合问题的个数是( )①从全班50人中选出5人组成班委会;②从全班50人中选出5人分别担任班长、副班长、团支部书记、学习委员、生活委员;③从1,2,3,…,9中任取两个数求积;④从1,2,3,…,9中任取两个数求差或商.A.1B.2C.3D.4,从50人中选出5人组成班委会,不考虑顺序,是组合问题;②为排列问题;对于③,从1,2,3,…,9中任取两个数求积是组合问题;因为乘法满足交换律,而减法和除法不满足,故④为排列问题.2.有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有( ) A.60种 B.70种 C.75种 D.150种,选2名男医生、1名女医生的方法有C 62C 51=75(种). 3.C 30+C 41+C 52+C 63+…+C 的值为( )A.C 3B.C 3C.C 4D.C 430+C 41+C 52+C 63+…+C =C 44+C 43+C 53+…+C 3=C 4.4.若集合M={的元素共有 ( )A.1个B.3个C.6个D.7个C 70=C 77=1,C 71=C 76=7,C 72=C 75=7×62!=21,C 73=C 74=7×6×53×2=35>21,∴x=0,1,2,5,6,7.5.从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有 种(用数字填写答案).方法一)可分两种情况:第一种情况,只有1位女生入选,不同的选法有C 21C 42=12(种);第二种情况,有2位女生入选,不同的选法有C 22C 41=4(种).根据分类加法计数原理知,至少有1位女生入选的不同的选法有16种.(方法二)从6人中任选3人,不同的选法有C 63=20(种),从6人中任选3人都是男生,不同的选法有C 43=4(种),所以至少有1位女生入选的不同的选法有20-4=16(种).6.以下四个式子:①C n m =A n m m !;②A n m =n A n -1m -1;③C n m ÷C nm+1=m+1n -m;④C n+1m+1=n+1m+1C n m.其中正确的个数是 .;②式中A n m =n(n-1)(n-2)…(n -m+1),A n -1m -1=(n-1)(n-2)…(n -m+1), 所以A n m =n A n -1m -1,故②式成立; 对于③式,C nm ÷C nm+1=C n m C nm+1=A n m ·(m+1)!m !·A nm+1=m+1n -m,故③式成立;对于④式,C n+1m+1=A n+1m+1(m+1)!=(n+1)·A n m (m+1)m !=n+1m+1C n m,故④式成立.7.从2,3,5,7四个数中任取两个不同的数相乘,有m个不同的积;任取两个不同的数相除,有n个不同的商,则mn=.m=C42,n=A42,∴mn =12.8.如图,有A,B,C,D四个区域,用五种不同的颜色给它们涂色,要求共边的两区域颜色互异,每个区域只涂一种颜色,共有多少种不同的涂色方法?1步,涂A区域有C51种方法;第2步,涂B区域有C41种方法;第3步,涂C区域和D区域;若C区域涂与A区域相同的颜色,则D区域有4种涂法;若C区域涂A、B剩余3种颜色之一,即有C31种涂法,则D区域有C31种涂法.故共有C51·C41·(4+C31·C31)=260种不同的涂色方法.9.在一次数学竞赛中,某学校有12人通过了初试,学校要从中选出5人去参加市级培训,在下列条件下,有多少种不同的选法?(1)任意选5人;(2)甲、乙、丙三人必须参加;(3)甲、乙、丙三人不能参加;(4)甲、乙、丙三人只能有1人参加.从中任取5人是组合问题,共有C125=792种不同的选法.(2)甲、乙、丙三人必须参加,则只需从另外9人中选2人,是组合问题,共有C92=36种不同的选法.(3)甲、乙、丙三人不能参加,则只需从另外的9人中选5人,共有C95=126种不同的选法.(4)甲、乙、丙三人只能有1人参加,可分为两步:先从甲、乙、丙中选1人,有C31=3种选法,再从另外9人中选4人,有C94种选法,共有C31C94=378种不同的选法.等级考提升练10.用0,1,…,9十个数字组成的三位数中,有重复数字的三位数的个数为( )A.243B.252C.261D.2799×10×10=900.没有重复数字的三位数有C91A92=648,所以有重复数字的三位数的个数为900-648=252.11.若A n3=12C n2,则n等于( )A.8B.5或6C.3或4D.4A n3=n(n-1)(n-2),C n2=12n(n-1),所以n(n-1)(n-2)=12×12n(n-1).又n∈N+,且n≥3,所以n=8.12.(山东济宁期末)某校开设10门课供学生选修,其中A,B,C三门由于上课时间相同,至多选一门,学校规定每位学生选修三门,则每位学生不同的选修方案种数是( )A.120B.98C.63D.35,分2种情况讨论:①从A,B,C三门中选出1门,其余7门中选出2门,选法有C31C72=63(种);②从除A,B,C三门之外的7门中选出3门,选法有C73=35(种).故不同的选法种数为63+35=98.13.(多选题)若C17x=C172x-1,则正整数x的值是( )A.1B.4C.6D.8C 17x =C 172x -1,∴x=2x-1或x+2x-1=17, 解得x=1或x=6, 经检验都满足题意. 故选AC.14.(多选题)在100件产品中,有98件合格品,2件不合格品,从这100件产品中任意抽出3件,则( )A.抽出的3件中恰好有1件是不合格品的抽法有C 21C 982种B.抽出的3件中恰好有1件是不合格品的抽法有C 21C 982+C 22C 981种C.抽出的3件中至少有1件是不合格品的抽法有C 21C 982+C 22C 981种D.抽出的3件中至少有1件是不合格品的抽法有C 1003−C 983种,依次分析选项:对于A,抽出的3件中恰好有1件是不合格品,即2件合格品,1件不合格品,有C 21C 982种抽取方法,A 正确,B 错误;对于C,抽出的3件中至少有1件是不合格品,即2件合格品,1件不合格品或1件合格品,2件不合格品,有C 21C 982+C 22C 981种抽取方法,C 正确;对于D,用间接法分析,抽出的3件中没有不合格品的抽取方法有C 983种,则抽出的3件中至少有1件是不合格品的抽法有C 1003−C 983种,D 正确.故选ACD.15.某餐厅供应饭菜,每位顾客可以在餐厅提供的菜肴中任选2荤2素共4种不同的品种.现在餐厅准备了5种不同的荤菜,若要保证每位顾客有200种以上不同的选择,则餐厅至少还需准备不同的素菜品种 种(结果用数值表示).x 种不同的素菜.由题意,得C 52·C x 2≥200, 从而有C x 2≥20,即x(x-1)≥40.又x ∈N +,所以x 的最小值为7.16.已知集合A={1,2,3,4,5},则至少含一个偶数的集合A 的子集个数为 .方法一)当子集中含有1个偶数时,共有C 21(C 30+C 31+C 32+C 33)=16(个);当子集中含有2个偶数时,共有C 30+C 31+C 32+C 33=8(个);满足题意的集合A的子集个数为16+8=24(个).(方法二)集合A的子集共有C50+C51+C52+C53+C54+C55=32(个),不符合题意的子集有空集、分别只含有1,2,3个奇数的子集,有C50+C31+ C32+C33=8(个),故符合题意的子集个数为32-8=24(个).17.已知10件不同产品中有4件是次品,现对它们一一进行测试,直至找出所有4件次品为止.(1)若恰在第5次测试,才测试到第一件次品,第十次测试才找到最后一件次品,则这样的不同测试方法数是多少?(2)若恰在第5次测试后,就找出了所有4件次品,则这样的不同测试方法数是多少?先排前4次测试,只能取正品,有A64种不同的测试方法,再从4件次品中选2件排在第5和第10的位置上测试,有A42种测法,再排余下4件的测试位置,有A44种测法.所以共有不同测试方法A64·A42·A44=103680(种).(2)第5次测试恰为最后一件次品,另3件在前4次中出现,从而前4次有一件正品出现.所以共有不同测试方法C41·(C61·C33)A44=576(种).新情境创新练18.某次足球比赛中,共有32支球队参加,它们先平均分成8个小组进行循环赛,决出16强(每队均与本组其他队赛一场,各组第一、二名晋级16强),这16支球队按确定的程序进行淘汰赛,最后决出冠、亚军,此外还要决出第三名、第四名,请问这次足球赛总共进行多少场比赛?:(1)小组循环赛:每组有C42=6(场),8个小组共有48场;(2)八分之一淘汰赛:8个小组的第一、二名组成16强,根据赛制规则,每两个队比赛一场,可以决出8强,共有8场;(3)四分之一淘汰赛:根据赛制规则,8强中每两个队比赛一次,可以决出4强,共有4场;(4)半决赛:根据赛制规则,4强每两个队比赛一场,可以决出2强,共有2场;(5)决赛:2强比赛1场确定冠、亚军,4强中的另两支队比赛1场决出第三、四名,共有2场.综上,由分类加法计数原理知,共有48+8+4+2+2=64场比赛.。

获取数据的途径测试卷-高一上学期数学北师大版(2019)必修第一册

获取数据的途径测试卷-高一上学期数学北师大版(2019)必修第一册

6.1获取数据的途径测试卷一、单选题1.从某年级300名学生中抽取50名学生进行体重的统计分析,就这个问题来说,下列说法正确的是()A.300名学生是总体B.每个被抽取的学生是个体C.样本容量是50 D.样本容量是3002.“知名雪糕31℃放1小时不化”事件曝光后,某市市场监管局从所管辖十五中、十七中、常青一中三校周边超市在售的28种雪糕中抽取了18种雪糕,对其质量进行了检查.在这个问题中,18是()A.总体B.个体C.样本D.样本量3.我国古代数学名著《九章算术》有一抽样问题:“今有北乡若干人,西乡四百人,南乡两百人,凡三乡,发役六十人,而北乡需遗十,问北乡人数几何?“其意思为:“今有某地北面若干人,西面有400人,南面有200人,这三面要征调60人,而北面共征调10人(用分层抽样的方法),则北面共有()人.”A.200 B.100 C.120 D.1404.为了了解霍城县江苏中学高二年级参加数学测试的1000名学生的数学成绩,从中抽取了200名学生进行调查分析,在这个问题中,被抽取的200名学生是()A.总体B.个体C.样本D.样本量5.以下是100g大米和100g小麦面粉的营养成分表.下列结论最符合实际的是()A.大米营养略高于小麦面粉营养B.小麦面粉营养略高于大米营养C.大米与小麦面粉的营养一致D.大米与小麦面粉的营养无法比较6.对总数为N的一批零件抽取一个容量为15的样本,若每个零件被抽到的概率为0.25,则N的值为()A.60 B.100 C.75 D.507.为检查某校学生心理健康情况,市教委从该校1400名学生中随机抽查400名学生,检查他们心理健康程度,则下列说法正确的是()A.1400名学生的心理健康情况是总体B.每个学生是个体C.400名学生是总体的一个样本D.400名学生为样本容量8.要调查下列问题,适合采用全面调查(普查)的是()A.中央电视台《开学第一课》的收视率B.某城市居民6月份人均网上购物的次数C.即将发射的气象卫星的零部件质量D.某品牌新能源汽车的最大续航里程二、多选题9.下面问题可以用抽样调查方法的是()A.武汉火神山医院供应库房工作人员对新入库的10万只一次性医用口罩进行质检B.中国银行临沂兰山支行对某公司100万元存款的现钞的真假检验C.空降兵战士检查20个伞包及伞的质量D.某单位检测新生产出来的一批电子器件的使用寿命10.某公司生产三种型号的轿车,年产量分别为1500辆、6000辆和2000辆.为检验产品质量,公司质检部门要抽取57辆进行检验,则下列说法正确的是()A.应采用分层随机抽样抽取B.应采用抽签法抽取C.三种型号的轿车依次应抽取9辆、36辆、12辆D.这三种型号的轿车,每一辆被抽到的可能性相同11.下列项目中需要收集的数据,可以通过试验获取的有()A.某种新式海水稻的亩产量B.某省人民群众对某任省长的满意度C.某品牌的新款汽车A柱(挡风玻璃和左、右前车门之间的柱)的安全性D.某地区降水量对土豆产量的影响情况12.对于下列调查,其中不属于抽样调查的是()①某商场对所进的一批盒装牛奶中三聚氰胺含量进行调查;②入学报考者的学历调查;③某种灯泡使用寿命的测定;④要了解高一一班50名学生的身高.A.①B.②C.③D.④三、填空题13.为了了解某水库里大概有多少条鱼,先打捞出了1000条鱼,在鱼身上标记一个不会掉落的印记后放回水库,过一段时间后再次捕捞了200条鱼,发现其中5条鱼有印记.则这个水库里大概有______条鱼14.我国古代数学名著《数书九章》有“米谷粒分”题:粮仓开仓收粮,有人送来米1500石,验得米内夹谷,抽样取米一把,数得120粒内夹谷12粒,则这批米内夹谷约为__________石.15.某校高二年级有300人,为调查年级学生每天上网时间,现抽取40%的同学做调查问卷,该统计的样本量为___________.16.为了解高中学生双休日的户外活动时长,通过简单随机抽样获取1200名高中生在双休日的户外活动时长数据,在该问题中,样本是___________.四、解答题17.某校高中学生有900人,校医务室想对全体高中学生的身高情况做一次调查,为了不影响正常教学活动,准备抽取50名学生作为调查对象.若校医务室用从高一年级中抽取的50名学生的身高来估计全校高中学生的身高,你认为这样的调查结果准确吗?该问题中的总体、个体和样本是什么?18.为了解决下列问题,哪些需要运用样本?并就怎样选取样本说出自己的想法.(1)某年级学生1分钟做俯卧撑的个数;(2)网课中,教师要了解学生作业的完成情况.19.某市两所高级中学联合在暑假组织全体教师外出旅游,活动分为两条线路:华东五市游和长白山之旅,且每位教师至多参加了其中的一条线路.在参加活动的教师中,高一教师占42.5%,高二教师占47.5%,高三教师占10%.参加华东五市游的教师占参加活动总人数的14,且该组中,高一教师占50%,高二教师占40%,高三教师占10%.为了了解各条线路不同年级的教师对本次活动的满意程度,现用分层随机抽样的方法从参加活动的全体教师中抽取一个容量为200的样本.试确定:(1)参加长白山之旅的高一教师、高二教师、高三教师在该组分别所占的比例;(2)参加长白山之旅的高一教师、高二教师、高三教师分别应抽取的人数.20.某单位2 000名职工,老年、中年、青年分布在管理、技术开发、营销、生产各部门中,如下表所示:人数管理技术开发营销生产共计老年40 40 40 80 200中年80 120 160 240 600青年40 160 280 720 1 200小计160 320 480 1 040 2 000(1)若要抽取40人调查身体状况,则应怎样抽样?(2)若要开一个25人的讨论单位发展与薪金调整方面的座谈会,则应怎样抽选出席人?(3)若要抽20人调查对北京9月3日阅兵情况的了解,则应怎样抽样?21.某校的3000名高三学生参加了天一大联考,为了分析此次联考数学学科的情况,现随机从中抽取15名学生的数学成绩(满分:150分),并绘制成如图所示的茎叶图.将成绩低于90分的称为“不及格”,不低于120分的称为“优秀”,其余的称为“良好”.根据样本的数字特征估计总体的情况.(1)估算此次联考该校高三学生的数学学科的平均成绩.(2)估算此次联考该校高三学生数学成绩“不及格”和“优秀”的人数各是多少.(3)在国家扶贫政策的倡导下,该地教育部门提出了教育扶贫活动,要求对此次数学成绩“不及格”的学生分两期进行学业辅导:一期由优秀学生进行一对一帮扶辅导,二期由老师进行集中辅导.根据实践总结,优秀学生进行一对一辅导的转化率为20%;老师集中辅导的转化率为30%,试估算经过两期辅导后,该校高三学生中数学成绩仍然不及格的人数.注:转化率=-辅导前不及格人数辅导后不及格人数辅导前不及格人数100%⨯22.某地铁公司为了解A、B、C三个地铁站的日均人流量,从中选取一年中四个月的人流数据,如下表所示.在这个问题中,总体和样本分别是什么?参考答案1.C【分析】由总体,个体,样本容量概念可得答案.【详解】对于A 选项,300名学生的体重数据是总体,故A 错误. 对于B 选项,每个被抽取学生的体重数据是个体,故B 错误.对于C 选项,因要分析50名学生的体重,故样本是抽取的50名同学的体重,样本容量是50.故C 正确.对于D 选项,由C 选项分析可知D 错误. 故选:C 2.D【分析】根据抽样调查中总体、个体、样本、样本容量的概念,即可判断. 【详解】总体:我们把与所研究问题有关的全体对象称为总体; 个体:把组成总体的每个对象称为个体;样本:从总体中,抽取的一部分个体组成了一个样本; 样本量:样本中个体的个数叫样本容量,其不带单位;在售的28种雪糕中抽取了18种雪糕,对其质量进行了检查,在这个问题中,28种雪糕是总体,每一种雪糕是个体,18种雪糕是样本,18是样本量; 故选:D. 3.C【分析】根据分层抽样的定义结合题意列方程求解即可 【详解】设北面共有x 人,则由题意可得 1040020060x x =++,解得120x =所以北面共有120人, 故选:C 4.C【分析】根据总体、个体、样本 、样本量的定义判断即可.【详解】在这个问题中,1000名学生是总体,被抽取的200名学生是样本,每个学生是个体,样本量为200, 故选:C 5.B【分析】数据分析,得到小麦面粉只有水分与碳水化合物两项指标略低于大米,其余8项指标均比大米高,从而得到小麦面粉营养略高于大米营养.【详解】由统计表得,100g 大米和100g 小麦面粉中,小麦面粉只有水分与碳水化合物两项指标略低于大米,其余8项指标均比大米高,所以小麦面粉营养略高于大米营养.故选:B6.A【分析】对总数为N的一批零件抽取一个容量为15的样本,则每个零件被抽取的概率都相等,据此即可解决.【详解】解:每个零件被抽取的概率都相等,∴150.25=,N∴=.60N故选:A.7.A【分析】根据总体、个体、样本容量概念依次判断选项即可.【详解】对选项A:1400名学生的心理健康情况是总体,故A正确;对选项B,每个学生的心理健康情况是个体,故B错误;对选项C,400名学生的心理健康情况是总体的一个样本,故C错误;对选项D,400名学生的心理健康情况为样本容量,故D错.故选:A8.C【分析】结合普查和抽查的适用条件即可求解.【详解】普查的适用条件是:总体数量较小,调查的工作量较小时适用,而抽查的适用条件是:总体数量较大,调查的工作量较大时适用,故ABD选项的总体数量和工作量都较大,适用抽查;C选项总体数量较少,工作量较少适用普查.故选:C.9.AD【分析】根据选项提供的信息,结合抽样调查的现实意义进行求解.【详解】对于A,10万只一次性医用口罩数量很大,应采用抽样调查的方法;对于B,100万元存款的现钞的真假检验必须普查,不能放过任何一张假钞;对于C,伞包及伞的质量决定战士的生命,必须普查;对于D,检测会对产品产生破坏,应采取抽样调查的方法.故选:AD.10.ACD【分析】根据分层抽样的概念及计算方法,逐项判定,即可求解.【详解】因为是三种型号的轿车,个体差异明显,所以选择分层随机抽样,所以A正确;个体数目多,用抽签法制签难,搅拌不均匀,抽出的样本不具有代表性,所以B错误;因为573150060002000500=++,所以315009500⨯=(辆),3600036500⨯=(辆),3200012500⨯=(辆),所以三种型号的轿车依次应抽取9辆、36辆、12辆,所以C正确;分层随机抽样中,每一个个体被抽到的可能性相同,故选项D正确.故选:ACD.11.AC【分析】根据试验获取数据的特点即可判断.【详解】解:A,C两项所需数据都没有现存数据可供查询,需要通过试验的方法来获取样本观测数据.B项数据宜通过调查获取,D项数据宜通过观察或查询获取.故选:AC.12.BD【分析】根据抽样调查和普查的特征判断.【详解】①某商场对所进的一批盒装牛奶中三聚氰胺含量进行调查采用的抽样调查;②对入学报考者的学历调查,采用的是普查分式;③对某种灯泡使用寿命的测定,采用的抽样调查;④要了解高一一班50名学生的身高,采用的是普查分式;.A、C是抽样调查,B、D是用普查的方式调查.故选:BD13.40000【分析】利用“捉放捉”原则即可求得这个水库里大概有40000条鱼【详解】设水库里大概有x条鱼,则10005200x=,解之得40000x=故答案为:4000014.150【分析】按照成比例的原则计算即可.【详解】设米内夹谷约为x石,则有:1500:120:12,150x x=∴=(石)故答案为:15015.120【分析】根据样本量的定义求解即可.【详解】由已知总体中的元素的个数为300,抽取变量为40%,故样本量为30040%120⨯=,故答案为:120.16.被抽取的1200名高中生在双休日的户外活动时长【分析】根据样本定义可得答案.【详解】根据题意,通过简单随机抽样获取1200名高中生在双休日的户外活动时长数据,所以样本是被抽取的1200名高中生在双休日的户外活动时长.故答案为:被抽取的1200名高中生在双休日的户外活动时长17.不准确,总体是该校全体高中学生的身高,个体是每名学生的身高,样本是抽取的50名学生的身高.【分析】由已知,根据抽样调查方案的特性,结合题意可做出分析,在抽样调查中应遵循抽取样本具有代表性的特征,即在高中学生各个年级段的样本,而非只抽取高一年级段的学生,由此特性即可回答该问题.【详解】由于学生的身高与年龄有关系,所以在抽样时应当关注高中各年级学生的身高.如果只抽取高一的学生,结果是不准确的.这个问题中的总体是该校全体高中学生的身高,个体是每名学生的身高,样本是抽取的50名学生的身高.【点睛】根据调查对象的特点设计抽样调查方案时,应遵循以下原则:(1)要确保抽取的样本具有代表性,能很好地代表总体.(2)要保证调查内容的真实性.18.(1)答案见解析(2)答案见解析【分析】(1)了解学生做俯卧撑的个数,需要用样本,用样本估计总体,可随机抽样若干学生获取学生1分钟做俯卧撑的个数,然后求出样本的数据特征,得出结论;(2)了解学生作业的完成情况,需要运用样本了解,通过网络调查可得.(1)了解学生做俯卧撑的个数,需要用样本,该年级的学生有性别和体质的差别,需要对不同的学生进行测试,再获得样本.比如随机抽取10名学生1分钟做俯卧撑的个数,分别为18,21,25,28,30,26,20,16,24,22,求算术平均数,得10名学生1分钟做俯卧撑的平均个数为23,从而估计该年级学生1分钟做俯卧撑的个数为23.(2)网课中,教师要了解学生作业的完成情况,需要运用样本了解,交作业的方式、人数,可以电话调查、班级QQ群中调查、班级钉钉群中调查还可以通过家长调查等.19.(1)40%,50%,10%.(2)60人,75人,15人【解析】(1)设参加华东五市游的人数为x,参加长白山之旅的高一教师、高二教师、高三教师所占的比例分别为a,b,c,计算得到答案.(2)根据分层抽样公式计算得到答案.【详解】(1)设参加华东五市游的人数为x ,参加长白山之旅的高一教师、高二教师、高三教师所占的比例分别为a ,b ,c 则有40%347.5%4x xb x ⋅+=,10%310%4x xcx⋅+=,解得50%b =,10%c =.故100%50%10%40%a =--=参加长白山之旅的高一教师、高二教师、高三教师在该组所占的比例分别为40%,50%,10%. (2)参加长白山之旅的高一教师应抽取人数为320040%604⨯⨯=;抽取的高二教师人数为320050%754⨯⨯=;抽取的高三教师人数为320010%154⨯⨯=.【点睛】本题考查了分层抽样的计算,意在考查学生的综合应用能力.20.(1) 老年4人,中年12人,青年24人 (2) 用分层抽样(3) 系统抽样【详解】试题分析:(1)用分层抽样方法从老年人、中年人和青年人中抽取对应的人数即可;(2)用分层抽样法从管理层、技术开发部、营销部以及生产部抽取对应的人数即可;(3)用分层抽样方法从老年人、中年人和青年人中抽取对应的人数即可 试题解析:(1)用分层抽样,并按老年4人,中年12人,青年24人抽取. (2)用分层抽样,并按管理2人,技术开发4人,营销6人,生产13人抽取.(3)用系统抽样.对全部2 000人随机编号,号码从0001~2 000,每100号分为一组,从第一组中用随机抽样抽取一个号码,然后将这个号码分别加100,200,…,1 900,共20人组成一个样本.考点:1.系统抽样;2.分层抽样21.(1)112分;(2)不及格的人数为200人,优秀的人数为1000人;(3)112人 【分析】(1)根据题意即求15个数的平均数;(2)根据题意,在随机抽取的15人中,不及格的人数为1,优秀的人数为5,所以不及格率为115,优秀率为13,分别乘以3000即得;(3)根据一期辅导的转化率,求出一期辅导后不及格的人数,再根据二期辅导的转化率,求出二期辅导后不及格的人数.【详解】(1)因为抽取的15名学生的数学学科的平均成绩为()11035680368246358293104113122131015⨯++++++++++++++++⨯+⨯+⨯+⨯+⨯⨯⎡⎤⎣⎦112=.所以依此估计此次联考该校高三学生的数学学科的平均成绩为112分. (2)依题意知,随机抽取的15人中,不及格的人数为1,优秀的人数为5.所以不及格率为115,优秀率为13.所以估计在此次联考中该校高三学生数学成绩不及格的人数为1 300020015⨯=,优秀的人数为1 300010003⨯=.(3)由(2)知,不及格人数为200.设一期辅导后不及格人数为x,则20020200100x-=,解得160x=.设二期辅导后不及格人数为y,则16030160100y-=,解得112y=.所以估计经过两次辅导后,该校高三学生中数学成绩仍然不及格的人数为112.【点睛】本题考查茎叶图,考查用样本估计总体,考查学生对实际问题的分析能力和解决能力.22.总体:A、B、C三个地铁站的日均人流量;样本:2、5、8和11月的日均人流量.【分析】根据总体和样本的概念,结合题意,即可求解.【详解】由题意,为了解A、B、C三个地铁站的日均人流量,从中选取一年中四个月的人流数据,所以总体为:A、B、C三个地铁站的日均人流量;样本为:2、5、8和11月的日均人流量.。

北师大版数学一年级上全册每课练习题

北师大版数学一年级上全册每课练习题

第一单元生活中的数第一课时快乐的家园A案:课时作业一、照样子数一数,画一画。

二、照样子,圈一圈。

三、看一看,填一填。

一共有()朵花,排第()。

第二课时玩具A案:课时作业一、看图圈数。

二、写数。

第三课时小猫钓鱼A案:课时作业一、看图写数。

二、按顺序写数。

第四课时文具A案:课时作业一、数一数,写数。

二、照样子,画点子。

三、按顺序填数。

第五课时快乐的午餐A案:课时作业一、画一画。

1.画,和一样多。

2.画,比多。

二、哪一组正合适?画“√”。

1.每人1双。

2.每只兔子一根。

三、比一比,最多的画“V”,最少的画“△”。

1.2.第六课时动物乐园A案:课时作业一、送小鸟回家。

(连线)二、比一比,填一填。

第二单元比较第一课时过生日A案:课时作业一、比一比,大的画“√”,小的画“O"。

二、用下面的篮子装一些同样大小的苹果,哪个装得更多?在下面画“√”。

第二课时下课啦A案:课时作业一、给最高的树涂上红色,最矮的树涂上绿色。

二、给最长的线画上“√”。

三、谁最高?请画“√”。

第三课时跷跷板A案:课时作业一、给轻的涂红色。

二、在最轻的后面画“√”。

第三单元加与减(一)第一课时一共有多少A案:课时作业一、在口里填数。

口+1=2 2+口=3 2+3=口二、看算式接着画,接着填。

三、说一说,填一填。

第二课时还剩下多少A案:课时作业一、填一填。

5一2=口4一1=口二、看图摆一摆,再填得数。

4一1=口4一3=口5一3=口3一1=口三、看算式,先画去O,再填数。

第三课时可爱的小猫A案:课时作业一、直接写得数。

3+0= 5-4= 2-1=3-3= 5-5= 1+0=二、在○里填上“>”“<”或“=”。

3-2○1+1 5-5○1+0 5○4+05-4○0+0 2+2○4+1 3-3○0三、看图写算式。

1盘子里还剩几个苹果?2鱼缸里还剩几条鱼?第四课时练习一看图列式计算。

4+1=□5-1=□3+□=□5-□=□3+1=□5-4=□2+□=□4-□=□第五课时猜数游戏A案:课时作业一、看图填空。

北师大版一年级数学上册10套试卷合集(详尽答案版)

北师大版一年级数学上册10套试卷合集(详尽答案版)

北师大版一年级数学上册(附答案)全册10套试卷(1-8单元试卷、期中、期末试卷)第一单元达标测试卷一、数一数,连一连。

(11分)二、圈一圈,涂一涂,画一画。

(2题8分,其余每题9分,共26分) 1.照样子,把每组图中与左边同样多的部分圈起来。

2.照样子,看数涂一涂。

3.我是小画家。

(1)画△,和○一样多。

○○○○○○________________________________________________________ ________________(2)画☆,比□多。

□□□□□□□________________________________________________________ ________________(3)看数接着画图形。

7○○○___________________________________________________ 5△△____________________________________________________ 9□□□□__________________________________________________ 10▭▭▭________________________________________________三、比一比,画一画,填一填。

(3题10分,其余每题6分,共22分)1.比一比,圈一圈,填一填。

比(多、少)比(多、少)2.最多的画“√”,最少的画“○”。

3.在里填上“>”“<”或“=”,在里填上合适的数。

4231891>5>109 08 7 5 7< <8四、圈一圈,填一填。

(1题4分,2题6分,共10分)1.请你把小猫要吃的鱼圈起来。

2.在0,4,7,9,6,3,1中。

(1)最大的数是(),最小的数是()。

(2)()与4最接近,()与1最接近。

(3)大于3的数有()。

五、(变式题)哪一堆正合适?画“√”。

不等式 测试卷-高一上学期数学北师大版(2019)必修第一册

不等式 测试卷-高一上学期数学北师大版(2019)必修第一册

1.3不等式 测试卷一、单选题1.已知0a >,0b >,设2,m a n b =-=,则( ) A .m n ≥B .m n >C .m n ≤D .m n <2.已知a b c ,,为互不相等的正数,222a c bc +=,则下列说法正确的是( ) A .a c -与a b -同号 B .a c -与a b -异号 C .a c -与b c -异号D .a c -与b c -同号3.若0x >,0y >,31x y +=,则3xyx y+的最大值为( ) A .19B .112C .116D .1204.下列结论正确的是( ) A .a b >时22ac bc >,B .0ab <时,a by b a=+的最大值是2-,C .y =D .a b >时一定有a b >5.若0,0m n >>且2m n +=,则41m n+的最小值等于( ) A .2B .52C .3D .926.下列命题是真命题的是( ) A .若a b > ,则 22ac bc > ; B .若,a b c d >> ,则 ac bd > ; C .若a b > ,则 11a b< ;D .若22ac bc > ,则 a b > .7.已知关于x 的不等式()()()2233100,0a m x b m x a b +--->>>的解集为1(,1)(,)2-∞-+∞,则下列结论错误的是( )A .21a b +=B .ab 的最大值为18C .12a b+的最小值为4D .11a b+的最小值为3+ 8.已知实数a 、b 满足1)28()(a b ++=,有结论:①若0a >,0b >,则ab 有最大值;②若a<0,0b <,则a+b 有最小值;正确的判断是( ) A .①成立,②成立 B .①不成立,②不成立 C .①成立,②不成立 D .①不成立,②成立二、多选题9.若,,a b c ∈R ,且a b >,在下列不等式一定成立的是( )A .a c b c +>+B .22ac bc ≥C .20c a b>+D .()()0a b a b +->10.已知a ,b ,c ,d 均为实数,则下列命题正确的是( ) A .若a b >,c d >则ac bd > B .若a b >,c d >则a d b c ->-C .若0a b <<,0c d >>,则a b d c< D .若0ab <,0bc ad ->,则c d a b> 11.以下说法正确的有( ) A .实数0x y >>是11x y<成立的充要条件 B .不等式22a b ab +⎛⎫≤ ⎪⎝⎭对,R a b ∈恒成立C .命题“0R x ∃∈,20010x x ++≥”的否定是“R x ∀∈,210x x ++<”D .若12x x +=,则11222x x -+=12.下列命题中为真命题的是( ) A .设,0x y >,若111-=y x,则1x y -< B .若>x x y y ,则33x y >C .若正数,x y 满足11+≤x y 且()()329-=x y xy ,则23xy =D .若0x y >>,则41++≥+-x x y x y三、填空题13.已知4255m n m n +-=+,利用等式的性质比较m 与n 的大小关系:m ________n (填“>”“<”或“=”).14.当m >1时,m 3与m 2-m +1的大小关系为________.15.一个盒子中红、白、黑三种球分别为x 个、y 个、z 个,黑球个数至少是白球个数的一半,至多是红球个数的13,白球与黑球的个数之和至少为55,则用不等式(组)将题中的不等关系表示为________.16.若实数a 、b 、c 满足221a b c +=≤,则a b c +-的最大值为__________. 四、解答题17.已知0x >,0y >,24x y +=.(1)求12x y+的最小值并说明取得最小值时x ,y 满足的条件;(2)M ∈R ,234x x M x++≤恒成立,求M 的取值范围.18.(1)若正数x y ,满足26x y xy ++=,求x y +的最小值. (2)已知1x >,求27101x x x ++-的最小值.19.若3x >,求23x y x =-的最小值.20.已知实数0x >,0y >,且222()(R).xy x y a x y a =+++∈ (1)当0a =时,求24x y +的最小值,并指出取最小值时,x y 的值; (2)当12a =时,求x y +的最小值,并指出取最小值时,x y 的值.21.(1)设27a <<,12b <<,求3a b +,2a b -,ab 的范围;(2)已知1a b c ++=,求证:13ab bc ca ++≤.22.为了抗击新冠,某区需要建造隔离房间.如图,每个房间是长方体,且有一面靠墙,底面积为48a 平方米(0)a >,侧面长为x 米,且x 不超过8,房高为4米.房屋正面造价400元/平方米,侧面造价150元/平方米.如果不计房屋背面、屋顶和地面费用,问:当x 为多少时,总价最低.参考答案1.A【分析】利用作差法判断m n -的正负即可得出结果.【详解】由题意可知,))222110m n a b -=--=+≥当且仅当1a b ==时,等号成立; 即m n ≥. 故选:A 2.D【分析】利用基本不等式判断出b a >,由a c ,的大小不确定,判断出A 、B 不正确;分类讨论在c b >和b c >时,都有a c -与b c -同号.即可判断C 、D. 【详解】因为a b c ,,为互不相等的正数,所以222a c ac +>. 因为222a c bc +=,所以22bc ac >,所以b a >.所以0a b -<.因为a c ,的大小不确定,所以a c -的符号不确定.故A 、B 不正确; 若c b >,则c b a >>,所以0a c -<,0b c -<,所以a c -与b c -同号. 若b c >,则22222a c bc c +=>,所以22a c >. 因为a c ,为互不相等的正数,所以a c >. 所以a c -与b c -同号. 综上所述:a c -与b c -同号. 故C 错误,D 正确. 故选:D 3.C【分析】利用基本不等式“1”的妙用求得3x yxy +的最小值,即可得到3xy x y+的最大值. 【详解】因为0x >,0y >,31x y +=,则()33131333101016x y x y x y xy y x y x y x ⎛⎫+=+=++=++≥= ⎪⎝⎭, 当且仅当33x y y x =时,即14x y ==时,等号成立; 所以10316xy x y <≤+,即3xy x y +的最大值为116, 故选:C. 4.B【分析】取0c ,即可判断选项A,由0ab <,可得0ab <,0b a <,将a b y b a=+写为a b y b a ⎡⎤⎛⎫⎛⎫=--+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦再用基本不等式,即可判断选项B,计算基本不等式中取等条件是否满足,即可判断选项C,取1a b =-=,即可判断选项D. 【详解】解:由题知对于A: 取0c ,则22ac bc =, 故选项A 错误; 对于B:0ab <,0a b∴<,0ba <,a b a b b a b a ⎡⎤⎛⎫⎛⎫∴+=--+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦22a b b a ⎛⎫⎛⎫≤---=- ⎪⎪⎝⎭⎝⎭,当且仅当a bb a-=-,即a b =-时取等号, 故选项B 正确; 对于C: 2233y x x =++22223223x x ≥+⋅+,2233x x +=+即21x =-时成立,显然等式不能成立, 即y 取不到的最小值为2故选项C 错误; 对于D: 取1a b =-=, 则a b >, 但是a b =, 故选项D 错误. 故选:B 5.D【分析】巧用常数的关系即可求解41m n+的最小值.【详解】因为0,0m n >>且2m n +=, 所以()4114114194152222m n m n m n m n n m ⎛⎛⎫⎛⎫+=++=+++≥+= ⎪ ⎪ ⎝⎭⎝⎭⎝ 当且仅当4m n n m =,即43m =,23n =时等号成立.故选:D. 6.D【分析】举反例排除A ,B ,C ,利用不等式的基本性质判断D.【详解】对于选项A ,当1,2,0a b c =-=-=时,满足a b >,但22ac bc =,故A 错误; 对于选项B , 当1,2,1,2a b c d =-=-=-=-时,满足,a b c d >>,但ac bd <,故B 错误; 对于选项C , 当1,2a b ==-时,满足a b >,但11a b>,故C 错误; 对于选项D ,因为22ac bc >,所以()2220ac bc a b c -=->,所以20,0a b c ->>,则a b >,故D 正确. 故选:D. 7.C【分析】根据不等式的解集与方程根的关系,结合韦达定理,求得232a m +=,31b m -=-,可判定A 正确;结合基本不等式和“1”的代换,可判断B 正确,C 错误,D 正确. 【详解】由题意,不等式()()223310a m x b m x +--->的解集为(]1,1,2⎡⎫-∞-⋃+∞⎪⎢⎣⎭,可得230a m +>,且方程()()223310a m x b m x +---=的两根为1-和12,所以131223111223b m a m a m -⎧-+=⎪⎪+⎨⎪-⨯=-⎪+⎩,所以232a m +=,31b m -=-,所以21a b +=,所以A 正确;因为0a >,0b >,所以21a b +=≥18ab ≤, 当且仅当122a b ==时取等号,所以ab 的最大值为18,所以B 正确;由12124()(2)44448b a a b a b a b a b +=++=++≥++=, 当且仅当4b aa b =时,即122a b ==时取等号,所以12a b+的最小值为8,所以C 错误;由()111122333b a a b a b a b a b ⎛⎫+=++=++≥+= ⎪⎝⎭当且仅当2b a a b=时,即2b a =时,等号成立, 所以11a b+的最小值为322+D 正确. 故选:C . 8.C【分析】由已知结合基本不等式及其应用条件分别检验①②即可判断. 【详解】解:因为1)28()(a b ++=, 所以(2)6ab a b =-+,①0a >,0b >,222242(2)(22()())44a b a b a b +=+++-≥++=,当且2a b =时取等号,所以64ab -≥,解得2ab ≤,即ab 取到最大值2;①正确; ②a<0,0b <, 当20a +>时,8881232(2)323222a b a a a a a a +=+-=++-≥+⋅=+++, 当且仅当822a a +=+时取等号,此时222a =不符合a<0,不满足题意; 当20a +<时,888123(2)3342222a b a a a a a a ⎡⎤+=+-=++-=--+--≤--⎢⎥+++⎣⎦当且仅当()822a a -+=-+时取等号,此时222a =- 此时取得最大值,没有最小值,②错误. 故选:C .【点睛】方法点睛:在用基本不等式求最值时,应具备三个条件:一正二定三相等.①一正:关系式中,各项均为正数;②二定:关系式中,含变量的各项的和或积必须有一个为定值;③三相等:含变量的各项均相等,取得最值. 9.AB【分析】根据已知条件,结合不等式的性质,以及特殊值法,即可求解. 【详解】对于A ,∵a b >,c c =,∴a c b c +>+,故A 正确, 对于B ,2c ≥0,a b >,∴22ac bc >,故B 正确,对于C ,令0c ,则20c a b =-,故C 错误, 对于D ,令1a =,1b ,满足a b >,但()()0a b a b +-=,故D 错误.故选:AB. 10.BC【分析】利用特殊值、不等式的性质、差比较法等知识确定正确答案. 【详解】A 选项,2,1,1,2a b c d ===-=-,,a b c d >>,但ac bd =,所以A 选项错误.B 选项,由于a b >,c d >,所以d c ->-,所以a d b c ->-,所以B 选项正确.C 选项,由于0a b <<,0c d >>,所以,0a b ->->,110d c>>, 所以0,a b a b d c d c-->><,C 选项正确. D 选项,由于0ab <,0bc ad ->,所以0,c d bc ad c da b ab a b--=<<,D 选项错误. 故选: BC 11.BCD【分析】对于A ,举反例排除即可;对于B ,利用作差法与完全平方公式即可判断; 对于C ,根据特称命题否定的方法判断即可; 对于D ,直接解方程得到1x =,代入1122x x -+即可判断. 【详解】对于A ,当11x y<时,可能1,2x y =-=-,不能得到0x y >>,故A 错误; 对于B ,()222220244a b a b a ab b ab -+-+⎛⎫-==≥ ⎪⎝⎭,当且仅当a b =时,等号成立, 所以22a b ab +⎛⎫≤ ⎪⎝⎭对,R a b ∈恒成立,故B 正确;对于C ,特称命题的否定是全称命题,其否定方法为“改量词,否结论”,所以命题“0R x ∃∈,20010x x ++≥”的否定是“R x ∀∈,210x x ++<”,故C 正确;对于D ,因为12x x+=,所以2120x x x ⎧+=⎨≠⎩,则22100x x x ⎧-+=⎨≠⎩,即()2100x x ⎧-=⎪⎨≠⎪⎩,故1x =,所以11112222112x x --+=+=,故D 正确. 故选:BCD. 12.BCD【分析】对于A,取一个反例即可,对于B,分情况讨论,x y 大小即可,对于C,根据等式化简,根据不等式找范围,求值,对于D,将x 写成22x y x y +-+的形式,然后分别用基本不等式,注意取等条件.【详解】解:由题知,对于选项A,当44,5x y ==时,满足111-=y x ,但是1->x y ,所以选项A 错误;对于选项B,当,0x y >时,>x x y y 可化为22x y >,即x y >,所以33x y >成立, 当0,0x y ><时,不等式>x x y y 成立,33x y >也成立, 当0,0x y <>时,不等式>x x y y 不成立,舍, 当0,0x y <<时,不等式>x x y y 可化为22x y ->-, 即22x y <,即x y >,所以33x y >成立,当0x =时,>x x y y 要想成立,0y <,此时33x y >成立, 当0y =时,>x x y y 要想成立,0x >,此时33x y >成立, 综上,33x y >成立,所以选项B 正确; 对于选项C,1123,23,x y xy x y+≤+≤ 2222222()12,122x y x y x y x y xy ∴+≤∴+≤-,()()222333,929x y xy x y xy x y -=+-=∴,22332292122x y x y xy x y xy +=≤-∴+,即2291240x y xy -+≤,即2(32)0xy -≤,此时若想成立,23xy =,故选项C 正确; 对于选项D,414122x y x y x x y x y x y x y+-++=++++-+- 4422222x y x y x y x y +++≥⋅=++当且仅当42x y x y+=+,即2x y +=, 112222x y x y x y x y--+≥⋅=--当且仅当12x y x y-=-,即2x y -=, 413222x y x y x y x y+-∴+++≥+-当且仅当222x y x y ⎧+=⎪⎨-=⎪⎩即322x y ==,故41++≥+-x x y x y选项D 正确, 故选:BCD. 13.>【分析】化简得到503m n -=>,得到答案. 【详解】4255m n m n +-=+,故335m n -=,即503m n -=>,故m n >. 故答案为:>14.m 3>m 2-m +1## m 2-m +1<m 3 【分析】应用作差法求比较大小即可.【详解】∵m 3-(m 2-m +1)=m 3-m 2+m -1=m 2(m -1)+(m -1)=(m -1)(m 2+1),又m >1, ∴(m -1)(m 2+1)>0,即m 3>m 2-m +1. 故答案为:m 3>m 2-m +1.15.()*,,2355yx z x y z N y z ⎧≤≤⎪∈⎨⎪+≥⎩【分析】根据已知条件可得出不等式组.【详解】由题意可得()*,,2355yx z x y z N y z ⎧≤≤⎪∈⎨⎪+≥⎩. 故答案为:()*,,2355yx z x y z N y z ⎧≤≤⎪∈⎨⎪+≥⎩. 16.12##0.5 【分析】利用基本不等式得到a b +≤a b c +-转化为a b c c +-,利用二次函数求出最大值.【详解】因为()()2222222a b a ab b a b +=++≤+,所以a b +a b +≤所以a b c c +-≤.因为221a b c +=≤,所以01c ≤≤,所以01≤≤.因为212a b c c +-≤=-+⎭,=a b c +-取得最大值12.故答案为:12.17.(1)最小值94,当x ,y 满足43x y ==时取得最小值. (2)实数M 的取值范围是{}|7M M ≤.【分析】(1)将12x y +化为()12421x y x y ⎛⎫⨯+ ⎝+⎪⎭,展开后由基本不等式进行求解; (2)将234x x x++化为43x x ++,使用基本不等式求出最小值即可求解 【详解】(1)∵24x y +=, ∴()1211212221444x y x y x y y x x y ⎛⎫⎛⎫+=⨯+=⨯+++ ⎪ ⎪⎝⎝+⎭⎭, ∵0x >,0y >,∴20x y >,20y x>, ∴由基本不等式,有22222244x y x y y x y x+≥⋅, 当且仅当22x y y x =,即43x y ==时,等号成立, ∴()121221914144444x y x y y x ⎛⎫+=⨯+++≥++= ⎪⎝⎭, 即12x y +的最小值为94,当且仅当43x y ==时,取得最小值. (2)由已知, 23443x x x x x++=++, 当0x >时,由基本不等式,有442244x x x x +≥⋅, 当且仅当4x x=,即2x =时等号成立, ∴23443437x x x x x++=++≥+=, 即已知0x >,当且仅当2x =时,234x x x ++取最小值,i 2m n734x x x ⎛⎫= ⎪++⎝⎭, 又∵234x x M x++≤恒成立, ∴min2734M x x x ⎛⎫≤= ⎪⎝⎭++,∴实数M 的取值范围是{}|7M M ≤.18.(1)3 ;(2)9+.【分析】(1)由题得261x y x +=-,又得8(1)31x y x x +=-++-即可解决; (2)令1t x =-,得27101891x x t x t++=++-即可解决. 【详解】由题得,正数x y ,满足26x y xy ++=,因为26x y xy ++=, 所以2601,10x y x x x +⎧=>⎪⇒>-⎨⎪>⎩所以26882(1)333;111x x y x x x x x x ++=+=++=-++≥=--- 当且仅当8(1)1x x -=-,得2(1)8x -=,即1x =+时,等号成立; 所以x y +的最小值为3.(2)因为1x >,所以10x ->,令1t x =-,所以0t >,所以222710(1)7(1)10918189991x x t t t t t x t t t ++++++++===++≥=+-当且仅当t =1x =+所以1x >时,27101x x x ++-的最小值为9+ 19.12【分析】利用换元法将3x -换成(0)t t >(要注意变量的取值),则函数变成96y t t=++,利用均值不等式即可求解.【详解】设3(0)t x t =->,则3x t =+, 所以22(3)963x t y t x t t+===++-612≥=,(当且仅当9t t =时,即3t =,也即6x =时取等号) 所以23x y x =-的最小值为12.20.(1)最小值为322+1222x y ++==(2)最小值为4,此时2x y ==.【分析】(1)变形得到11122x y+=,利用基本不等式“1”的妙用,求出最小值及此时,x y 的值; (2)变形得到()()262xy x y x y =+++,利用()24x y xy +≤得到关于()()()22322x y x y x y ++≤++,求出x y +的最小值及此时,x y 的值. 【详解】(1)0a =时,2xy x y =+,因为0,0x y >>, 所以11122x y+=, 故()22242411232322122x y x y x y x y y x y x y x ⎛⎫+=+=+++≥+⋅+ ⎪⎝⎭+ 当且仅当2x y y x =,即1222x y ++= (2)12a =时,()22122xy x y x y =+++, 变形为()()2242xy x y x y =+++,即()()22622xy xy x y x y =++++,()()262xy x y x y =+++, 其中()2362x y xy +≤, 故()()()22322x y x y x y ++≤++, 因为0,0x y >>,解得:4x y +≥,当且仅当2x y ==时,等号成立,所以x y +的最小值为4,此时2x y ==.21.(1)5313a b <+<,2213a b <-<,17a b<<;(2)证明见解析. 【分析】(1)结合不等式的基本性质即可求解;(2)利用基本不等式的性质可知222a b ab +≥,222b c bc +≥,222a c ac +≥,从而可得222a b c ab bc ac ++≥++,再结合()21a b c ++=即可得证.【详解】(1)27a <<,12b <<,4214a ∴<<,336b <<,21b -<-<-,1112b <<, 5313a b ∴<+<,2213a b <-<,17a b<<. 故5313a b <+<,2213a b <-<,17a b <<. (2)证明:由1a b c ++=,两边平方得2222221a b c ab bc ac +++++=, 根据基本不等式有222a b ab +≥,222b c bc +≥,222a c ac +≥, 当且仅当13a b c ===时等号成立, 将上述3个不等式相加得()2222222a b c ab bc ac ++≥++,即222a b c ab bc ac ++≥++,所以2221222333a b c ab bc ac ab bc ac =+++++≥++, 整理得13ab bc ca ++≤,当且仅当13a b c ===时等号成立.22.当01a <≤时,x =1a >时,8x =时总价最低【分析】根据题意表达出总造价()768001200,08a y x x x =+<≤,再根据基本不等式,结合对勾函数的性质分类讨论分析即可. 【详解】由题意,正面长为48a x 米,故总造价48400421504a y x x =⨯⨯+⨯⨯,即()768001200,08a y x x x=+<≤.由基本不等式有768001200a y x x =+≥768001200a x x =,即x =.故当8,即1a ≤,x =8,即1a >时,由对勾函数的性质可得,8x =时总价最低;综上,当01a <≤时,x =1a >时,8x =时总价最低.。

北师大版数学第一册 充要条件练习题附答案

北师大版数学第一册 充要条件练习题附答案

第二课时充要条件课标要求素养要求通过对典型数学命题的梳理,理解充要条件的意义,理解数学定义与充要条件的关系.针对充要条件问题,通过几个数学定义的研究比较,学生经历梳理知识、提炼定义、感悟思想的学习过程,提升逻辑推理素养.新知探究主人邀请张三、李四、王五三个人吃饭,时间到了,只有张三、李四准时赴约,王五打电话说:“临时有急事,不能去了.”主人听了,随口说了句:“该来的没有来.”张三听了脸色一沉,起来一声不吭地走了.主人愣了片刻,又道了句:“不该走的又走了.”李四听了大怒,拂袖而去.问题请你用逻辑学原理解释二人离去的原因.提示张三走的原因是:“该来的没有来”的等价命题是“来了不该来的”,张三觉得自己是不该来的.李四走的原因是:“不该走的又走了”的等价命题是“没走的应该走”,李四觉得自己是应该走的.一般地,如果p⇒q,且q⇒p,那么称p是q的充分且必要条件,简称p是q的充要条件,记作p⇔q.当p是q的充要条件时,q也是p的充要条件.p是q的充要条件也常常说成“p成立当且仅当q成立”,或“p与q等价”.拓展深化[微判断]判断下列说法的正误.1.p:1x<1,q:x>1,p是q的必要不充分条件.(√)2.p:M=∅,q:M∩N=∅,p是q的充分不必要条件.(√)3.“A⊆B”是“A∪B=B”的充要条件.(√)[微训练]1.设x∈R,则“x=1”是“x3=x”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件答案 A2.设a,b∈R,则“(a-b)a2<0”是“a<b”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件答案 A3.“m=1”是“函数y=x m2-4m+5为二次函数”的________条件.解析当m=1时,y=x m2-4m+5=x2是二次函数,y=x m2-4m+5是二次函数,则m2-4m+5=2,∴m=1或m=3.答案充分不必要[微思考]1.“p是q的充要条件”与“p的充要条件是q”的区别在哪里?提示p是q的充要条件说明p是条件,q是结论,p的充要条件是q说明q是条件,p是结论.2.证明充要条件的一般步骤是什么?提示根据充要条件的定义,证明充要条件时要从充分性和必要性两个方面分别证明:一般地,证明“p成立的充要条件为q”的步骤是:(1)充分性:把q当作已知条件,结合命题的前提条件,推出p;(2)必要性:把p当作已知条件,结合命题的前提条件,推出q.题型一充要条件的判断【例1】判断下列各题中,p是否为q的充要条件?(1)在△ABC中,p:∠A>∠B,q:a>b;(2)若a,b∈R,p:a2+b2=0,q:a=b=0;(3)p :|x |>3,q :x 2>9.解 (1)在△ABC 中,显然有∠A >∠B ⇔a >b , 所以p 是q 的充要条件.(2)若a 2+b 2=0,则a =b =0,即p ⇒q ; 若a =b =0,则a 2+b 2=0,即q ⇒p ,故p ⇔q , 所以p 是q 的充要条件.(3)由于p :|x |>3⇔q :x 2>9,所以p 是q 的充要条件.规律方法 判断p 是q 的充分必要条件,主要是判断p ⇒q 及q ⇒p 这两个命题是否成立.若p ⇒q 成立,则p 是q 的充分条件,同时q 是p 的必要条件;若q ⇒p 成立,则p 是q 的必要条件,同时q 是p 的充分条件. 【训练1】 a ,b 中至少有一个不为零的充要条件是( ) A.ab =0B.ab >0C.a 2+b 2=0D.a 2+b 2>0解析 a 2+b 2>0,则a 、b 不同时为零;a ,b 中至少有一个不为零,则a 2+b 2>0. 答案 D题型二 充要条件的证明【例2】 求证:方程x 2+(2k -1)x +k 2=0的两个根均大于1的充要条件是k <-2.证明 ①必要性:若方程x 2+(2k -1)x +k 2=0有两个大于1的根,不妨设两个根为x 1,x 2,则 ⎩⎨⎧Δ=(2k -1)2-4k 2≥0,(x 1-1)+(x 2-1)>0,(x 1-1)(x 2-1)>0⇒⎩⎪⎨⎪⎧k ≤14,(x 1+x 2)-2>0,x 1x 2-(x 1+x 2)+1>0. 即⎩⎪⎨⎪⎧k ≤14,-(2k -1)-2>0,k 2+(2k -1)+1>0, 解得k <-2.②充分性:当k <-2时,Δ=(2k -1)2-4k 2=1-4k >0. 设方程x 2+(2k -1)x +k 2=0的两个根为x 1,x 2.则(x1-1)(x2-1)=x1x2-(x1+x2)+1=k2+2k=k(k+2)>0.又(x1-1)+(x2-1)=(x1+x2)-2=-(2k-1)-2=-2k-1>0,∴x1-1>0,x2-1>0.∴x1>1,x2>1.综上可知,方程x2+(2k-1)x+k2=0有两个大于1的根的充要条件为k<-2.规律方法一般地,证明“p成立的充要条件为q”时,在证充分性时应以q为“已知条件”,p是该步中要证明的“结论”,即q⇒p;证明必要性时则是以p 为“已知条件”,q为该步中要证明的“结论”,即p⇒q.【训练2】求证:一次函数y=kx+b(k≠0)的图象过原点的充要条件是b=0. 证明①充分性:如果b=0,那么y=kx,x=0时y=0,函数图象过原点.②必要性:因为y=kx+b(k≠0)的图象过原点,所以x=0时y=0,得0=k·0+b,b=0.综上,一次函数y=kx+b(k≠0)的图象过原点的充要条件是b=0.题型三递推法判断命题间的关系【例3】已知p,q都是r的必要条件,s是r的充分条件,q是s的充分条件,那么:(1)s是q的什么条件?(2)r是q的什么条件?(3)p是q的什么条件?解(1)∵q是s的充分条件,∴q⇒s.∵q是r的必要条件,∴r⇒q.∵s是r的充分条件,∴s⇒r,∴s⇒r⇒q.即s是q的充要条件.(2)由r⇒q,q⇒s⇒r,知r是q的充要条件.(3)∵p是r的必要条件,∴r⇒p,∴q⇒r⇒p.∴p是q的必要不充分条件.规律方法解决传递性问题的关键是画出推出的结构图,也可以考虑命题之间的关系.【训练3】如果甲是乙的必要条件,丙是乙的充分条件,但不是乙的必要条件,那么()A.丙是甲的充分条件,但不是甲的必要条件B.丙是甲的必要条件,但不是甲的充分条件C.丙是甲的充要条件D.丙不是甲的充分条件,也不是甲的必要条件解析如图所示,∵甲是乙的必要条件,∴乙⇒甲.又∵丙是乙的充分条件,但不是乙的必要条件,∴丙⇒乙,但乙⇒丙.综上,有丙⇒乙⇒甲,甲⇒丙,即丙是甲的充分条件,但不是甲的必要条件.答案 A一、素养落地1.通过学习充要条件的概念培养数学抽象素养,通过判断充要条件提升逻辑推理素养.2.充要条件的证明与探求(1)充要条件的证明分充分性的证明和必要性的证明.在证明时要注意两种叙述方式的区别:①p是q的充要条件,则由p⇒q证的是充分性,由q⇒p证的是必要性;②p的充要条件是q,则由p⇒q证的是必要性,由q⇒p证的是充分性.(2)探求充要条件,可先求出必要条件,再证充分性;如果能保证每一步的变形转化过程都可逆,也可以直接求出充要条件.二、素养训练1.设a,b是实数,则“a>b”是“a3>b3”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 C2.“(2x-1)x=0”是“x=0”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析设命题p:(2x-1)x=0,命题q:x=0,则命题p:x=0或x=12,故p是q的必要不充分条件.选B.答案 B3.“1<x<2”是“x<2”成立的________条件.解析当1<x<2时,必有x<2;而x<2时,如x=0,推不出1<x<2,所以“1<x<2”是“x<2”的充分不必要条件.答案充分不必要4.在△ABC中,角A、B、C所对的边分别是a,b,c,则“a=b”是“A=B”的________条件.解析“a=b”等价于“A=B”.答案充要基础达标一、选择题1.已知集合A={1,m2+1},B={2,4},则“m=3”是“A∩B={4}”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析若A∩B={4},则m2+1=4,∴m=±3,而当m=3时,m2+1=4,∴A∩B ={4},故“m=3”是“A∩B={4}”的充分不必要条件.答案 A2.设a、b是实数,则“a>b>0”是“a2>b2”的()A.充要条件B.必要不充分条件C.充分不必要条件D.既不充分也不必要条件解析若a>b>0,则a2>b2成立,若a=-2,b=1,满足a2>b2,但a>b>0不成立,故“a>b>0”是“a2>b2”的充分不必要条件,故选C.答案 C3.设a ,b 是实数,则“a +b >0”是“ab >0”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件解析 若a +b >0,取a =3,b =-2,则ab >0不成立;反之,若ab >0,取a =-2,b =-3,则a +b >0也不成立,因此“a +b >0”是“ab >0”的既不充分也不必要条件. 答案 D4.已知两个三角形△ABC ,△A ′B ′C ′,则“△ABC ≌△A ′B ′C ′”是“S △ABC =S △A ′B ′C ′”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析 △ABC ≌△A ′B ′C ′可得S △ABC =S △A ′B ′C ′,但S △ABC =S △A ′B ′C ′不可以推出△ABC ≌△A ′B ′C ′.故选A. 答案 A5.四边形ABCD 中,则“四边形ABCD 为平行四边形”是“AB 綊CD ”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充要条件D.既不充分也不必要条件解析 四边形ABCD 为平行四边形等价于AB 綊CD ,故选C. 答案 C 二、填空题6.“x ,y 均为奇数”是“x +y 为偶数”的________条件.解析 当x ,y 均为奇数时,一定可以得到x +y 为偶数;但当x +y 为偶数时,不一定必有x ,y 均为奇数,也可能x ,y 均为偶数. 答案 充分不必要7.设x ∈R ,则“x >12”是“(2x -1)(x +1)>0”的________条件. 解析 由⎩⎨⎧2x -1>0,x +1>0,或⎩⎨⎧2x -1<0,x +1<0,∴⎩⎨⎧⎭⎬⎫x |x >12或x <-1, 所以⎩⎨⎧⎭⎬⎫x |x >12{x |2x 2+x -1>0}.答案 充分不必要8.函数y =x 2+mx +1的图象关于直线x =1对称的充要条件是m =________. 解析 当m =-2时,y =x 2-2x +1, 其图象关于直线x =1对称,反之也成立,所以函数y =x 2+mx +1的图象关于直线x =1对称的充要条件是m =-2. 答案 -2 三、解答题9.已知x ,y 都是非零实数,且x >y ,求证:1x <1y 的充要条件是xy >0. 证明 法一 充分性:由xy >0及x >y ,得x xy >y xy ,即1x <1y . 必要性:由1x <1y ,得1x -1y <0,即y -x xy <0. 因为x >y ,所以y -x <0,所以xy >0. 所以1x <1y 的充要条件是xy >0. 法二 1x <1y ⇔1x -1y <0⇔y -x xy <0. 由条件x >y ⇔y -x <0,知y -xxy<0⇔xy >0. 所以1x <1y ⇔xy >0,即1x <1y 的充要条件是xy >0.10.已知ab ≠0,求证:a 3+b 3+ab -a 2-b 2=0成立的充要条件是a +b =1. 证明 充分性:∵a +b =1,∴a +b -1=0,∴a 3+b 3+ab -a 2-b 2=(a +b )(a 2-ab +b 2)-(a 2+b 2-ab )=(a +b -1)(a 2-ab +b 2)=0. 必要性:∵a 3+b 3+ab -a 2-b 2=0, ∴(a +b -1)(a 2-ab +b 2)=0. 又ab ≠0,∴a ≠0且b ≠0, ∴a 2-ab +b 2=⎝ ⎛⎭⎪⎫a -b 22+34b 2>0,∴a +b -1=0,即a +b =1.综上可知,当ab ≠0时,a 3+b 3+ab -a 2-b 2=0成立的充要条件是a +b =1.能力提升11.命题p:x>0,y<0,命题q:x>y,1x>1y,则p是q的________条件.解析当x>0,y<0时,x>y且1x>1y成立,当x>y且1x>1y时,得⎩⎪⎨⎪⎧x-y>0,x-yxy<0⇒⎩⎨⎧x>0,y<0.所以p是q的充要条件.答案充要12.求证:关于x的方程ax2+bx+c=0有一个根是1的充要条件是a+b+c=0. 证明假设p:方程ax2+bx+c=0有一个根是1,q:a+b+c=0.①证明p⇒q,即证明必要性.∵x=1是方程ax2+bx+c=0的根,∴a·12+b·1+c=0,即a+b+c=0.②证明q⇒p,即证明充分性.由a+b+c=0,即c=-a-b.∵ax2+bx+c=0,∴ax2+bx-a-b=0,即a(x2-1)+b(x-1)=0.故(x-1)(ax+a+b)=0.∴x=1是方程的一个根.故方程ax2+bx+c=0有一个根是1的充要条件是a+b+c=0.创新猜想13.(多选题)在下列各命题中,p是q的充要条件的是()A.p:A⊆B,q:A∩B=AB.p:a=b,q:|a|=|b|C.p:x2+y2=0,q:x=y=0(x,y∈R)D.p:a,b都是偶数,q:a+b是偶数解析A、C中,p都是q的充要条件.B中,p是q的充分不必要条件.D中,p 是q的充分不必要条件.答案AC14.(多空题)p:两个三角形的三条边对应相等,q:两个三角形的三个角对应相等,r:两个三角形全等,则p是r的________条件;q是r的________条件.解析p⇒r,r⇒p;q⇒r,r⇒q,故前者为充要条件,后者为必要不充分条件.答案充要必要不充分如何学好数学1.圆锥曲线中最后题往往联立起来很复杂导致k算不出,这时你可以取特殊值法强行算出k过程就是先联立,后算代尔塔,用下伟达定理,列出题目要求解的表达式,就ok了2.选择题中如果有算锥体体积和表面积的话,直接看选项面积找到差2倍的小的就是答案,体积找到差3倍的小的就是答案,屡试不爽!3.三角函数第二题,如求a(cosB+cosC)/(b+c)coA之类的先边化角然后把第一题算的比如角A等于60度直接假设B和C都等于60°带入求解。

新教材北师大版高中数学选择性必修第一册第五章计数原理 课时分层练习题含解析

新教材北师大版高中数学选择性必修第一册第五章计数原理 课时分层练习题含解析

第五章计数原理课时练习题1、分类加法计数原理分步乘法计数原理............................................................ - 1 -2、基本计数原理的简单应用.................................................................................... - 5 -3、排列与排列数排列数公式.............................................................................. - 11 -4、组合组合数及其性质...................................................................................... - 14 -5、二项式定理的推导.............................................................................................. - 17 -6、二项式系数的性质.............................................................................................. - 20 -1、分类加法计数原理分步乘法计数原理一、选择题1.某班有男生26人,女生24人,从中选一位担任学习委员,不同的选法有()A.50种B.26种C.24种D.616种A[选一位学习委员分两类办法:第一类:选男生,有26种不同的选法;第二类:选女生,有24种不同的选法.根据分类加法计数原理,共有N=26+24=50种不同的选法.]2.已知集合A⊆{1,2,3},且A中至少有一个奇数,则这样的集合有() A.2个B.3个C.4个D.5个D[当集合A中含一个元素时,A={1}或{3};当集合A中含两个元素时,A={1,2}或{1,3}或{2,3},∴共有5个集合.]3.火车上有10名乘客,要在沿途的5个车站下车,则乘客下车的所有可能情况共有()A.510种B.105种C.50种D.以上都不对A[完成这件事可分为10步,即10名乘客全部下车,每名乘客选择下车的不同方法均为5种,由分步乘法计数原理知,所有可能的情况为510种.] 4.三人踢毽子,互相传递,每人每次只能踢一下.由甲开始踢,经过4次传递后,毽子又被踢回甲,则不同的传递方式共有()A.4种B.5种C.6种D.12种C[若甲先传给乙,则有甲→乙→甲→乙→甲,甲→乙→甲→丙→甲,甲→乙→丙→乙→甲3种不同的传法;同理,甲先传给丙也有3种不同的传法,故共有6种不同的传法.]5.从0,1,2,3,4,5这六个数字中,任取两个不同的数字相加,其和为奇数的不同取法的种数为()A.25B.12C.9D.6C[两个数字的和为奇数,这两个数必须一个是奇数,另一个是偶数,在所给的6个数中,3个奇数与3个偶数.因此,由分步乘法计数原理得,共有3×3=9种不同的取法.]二、填空题6.乘积(a+b+c)(m+n)(x+y)展开后,共有________项.12[∵乘积(a+b+c)(m+n)(x+y)的展开式中的每一项是由a+b+c中的一个字母与m+n中的一个字母与x+y中的一个字母的乘积组成.可分步完成此事.所以共有3×2×2=12项.]7.从3名女同学和2名男同学中选1人主持主题班会,则不同的选法种数为________.5[分两类:一类是女同学主持主题班会有3种方法;一类是男同学主持主题班会有2种方法,由分类加法计数原理知,共有3+2=5(种)方法.] 8.设a,b,c∈{1,2,3,4,5,6},若以a,b,c为三条边的长可以构成一个等腰(含等边)三角形,则这样的三角形有________个.27[先考虑等边的情况,a=b=c=1,2,…,6,有六个,再考虑等腰的情况,若a=b=1,c<a+b=2,此时c=1与等边重复,若a=b=2,c<a+b=4,则c=1,3,有两个,若a=b=3,c<a+b=6,则c=1,2,4,5,有四个,若a=b=4,c<a+b=8,则c=1,2,3,5,6,有五个,若a=b=5,c<a+b=10,则c=1,2,3,4,6,有五个,若a=b=6,c<a+b=12,则c=1,2,3,4,5,有五个,故一共有27个.]三、解答题9.若直线方程Ax+By=0中的A,B可以从0,1,2,3,5这五个数字中任取两个不同的数字,则方程所表示的不同直线共有多少条?[解]分两类完成:第1类:当A或B中有一个为0时,表示的直线为x=0或y=0,共2条;第2类:当A,B都不为0时,确定直线Ax+By=0需分两步完成:第1步:确定A的值,有4种不同的方法,第2步:确定B的值,有3种不同的方法,由分步乘法计数原理,共可确定4×3=12条直线.由分类加法计数原理,方程所表示的不同直线共有2+12=14条.10.已知椭圆x2m2+y2n2=1,其中m,n∈{1,2,3,4,5}.(1)求满足条件的椭圆的个数;(2)如果椭圆的焦点在x轴上,求椭圆的个数.[解](1)由椭圆的标准方程知m≠n,要确定一个椭圆,只要把m,n一一确定下来这个椭圆就确定了.故要确定一个椭圆共分两步,第一步确定m,有5种方法,第二步确定n,有4种方法,共有5×4=20个椭圆.(2)要使焦点在x轴上,必须m>n,故可以分类:m=2,3,4,5时,n的取值列表为:m 2345n 11,21,2,31,2,3,4故共有1+2+3+4=10个椭圆.11.如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为()A.24B.18C.12D.9B[分两步,第一步,从E→F,有6条可以选择的最短路径;第二步,从F→G,有3条可以选择的最短路径.由分步乘法计数原理可知有6×3=18条可以选择的最短路径.故选B.]12.如果一条直线与一个平面垂直,那么称此直线与平面构成一个“正交线面对”.在一个正方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“正交线面对”的个数是()A.48B.18C.24D.36D[在正方体中,每一个表面有四条棱与之垂直,六个表面,共构成24个“正交线面对”;而正方体的六个对角面中,每个对角面有两条面对角线与之垂直,共构成12个“正交线面对”,所以共有36个“正交线面对”.]13.从集合{1,2,3,4,…,10}中,选出5个数组成子集,使得这5个数中任意两个数的和都不等于11,则这样的子集有()A.32个B.34个C.36个D.38个A[将和等于11的放在一组:1和10,2和9,3和8,4和7,5和6.从每一小组中取一个,有2种,共有2×2×2×2×2=32(个).]14.(一题两空)已知a,b∈{0,1,2,3},则方程(x-a)2+(y-b)2=4可表示不同的圆的个数为________,其中与y轴相交的圆的个数为________.1612[得到圆的方程分两步:第一步:确定a有4种选法;第二步:确定b有4种选法,由分步乘法计数原理知,共有4×4=16(个).由与y轴相交知,a=0或1或2,b有4种选法,由分步乘法计数原理知,共有3×4=12(个).]15.我国古代数学名著《续古摘奇算法》(杨辉)一书中有关于三阶幻方的问题:如图所示,将1,2,3,4,5,6,7,8,9分别填入3×3的方格中,使得每一行、每一列及对角线上的三个数的和都相等,我们规定:只要两个幻方的对应位置(如每行第一列的方格)中的数字不全相同,就称为不同的幻方,那么所有不同的三阶幻方的个数是()834159672 A.9B.8C.6D.4B[因为所有数的和为9×(1+9)2=45,453=15,所以每一行、每一列以及对角线上的三个数的和都是15,采用列举法:492,357,816;276,951,438;294,753,618;438,951,276;816,357,492;618,753,294;672,159,834;834,159,672,共8个幻方,故选B.]2、基本计数原理的简单应用一、选择题1.从0,1,2,3,4,5这六个数字中,任取两个不同的数字相加,其和为偶数的不同取法的种数为()A.30B.20C.10D.6D[从0,1,2,3,4,5这六个数字中任取两个不同的数字的和为偶数可分为两类:第一类,取出的两个数都是偶数,有0和2,0和4,2和4,共3种不同的取法;第二类,取出的两个数都是奇数,有1和3,1和5,3和5,共3种不同的取法.由分类加法计数原理得,共有3+3=6种不同的取法.]2.如图所示的几何体由三棱锥P-ABC与三棱柱ABC-A1B1C1组合而成,现用3种不同颜色对这个几何体的表面涂色(底面A1B1C1不涂色),要求相邻的面均不同色,则不同的涂色方案共有()A.6种B.9种C.12种D.36种C[先涂三棱锥P-ABC的三个侧面,有3×2×1种情况,然后涂三棱柱的三个侧面,有2×1×1种情况,由分步乘法计数原理,共有3×2×1×2×1×1=12种不同的涂法.故选C.]3.在某种信息传输过程中,用4个数字的一个排列(数字允许重复)表示一个信息,不同排列表示不同信息.若所用数字只有0和1,则与信息0110至多有两个对应位置上的数字相同的信息个数为()A.10 B.11C.12 D.15B[分0个相同、1个相同、2个相同讨论.(1)若0个相同,则信息为:1001.共1个.(2)若1个相同,则信息为:0001,1101,1011,1000.共4个.(3)若2个相同,又分为以下情况:①若位置一与二相同,则信息为:0101;②若位置一与三相同,则信息为:0011;③若位置一与四相同,则信息为:0000;④若位置二与三相同,则信息为:1111;⑤若位置二与四相同,则信息为:1100;⑥若位置三与四相同,则信息为:1010.共有6个.故与信息0110至多有两个对应位置上的数字相同的信息个数为1+4+6=11.]4.如图所示的五个区域中,现有四种颜色可供选择,要求每一个区域只涂一种颜色,相邻区域所涂颜色不同,则不同的涂色方法种数为()A.24B.48C.72D.96C[分两种情况:①A,C不同色,先涂A有4种,C有3种,E有2种,B,D各有1种,各有4×3×2=24种涂法.②A,C同色,先涂A有4种,E有3种,C有1种,B,D各有2种,有4×3×2×2=48种涂法.故共有24+48=72种涂色方法.故选C.] 5.若m,n均为非负整数,在做m+n的加法运算时各位均不进位(例如:2 019+100=2 119),则称(m,n)为“简单的”有序对,而m+n称为有序对(m,n)的值,那么值为2 019的“简单的”有序对的个数是()A.100B.96C.60D.30C[m+n=2 019且各位均不进位,从高位分步处理:千位有2+0,1+1,0+2,共3种;百位有0+0,共1种;十位有0+1,1+0,共2种;个位有0+9,1+8,2+7,3+6,4+5,5+4,6+3,7+2,8+1,9+0,共10种,由分步乘法计数原理可知,值为2 019的“简单的”有序对的个数是3×1×2×10=60.故选C.]二、填空题6.我们把中间数位上的数字最大,而两边依次减小的多位数称为“凸数”,如132,341等,那么由1,2,3,4,5可以组成无重复数字的三位“凸数”的个数是________.20[根据“凸数”的特点,中间的数字只能是3,4,5,故分三类,第一类,当中间数字为“3”时,此时有2个(132,231);第二类,当中间数字为“4”时,则百位数字有两种选择,个位数字有三种选择,则“凸数”有2×3=6个;第三类,当中间数字为“5”时,则百位数字有三个选择,个位数字有四个选择,则“凸数”有4×3=12个;根据分类加法计数原理,得到由1,2,3,4,5可以组成无重复数字的三位“凸数”的个数是2+6+12=20.]7.某电商为某次活动设计了“和谐”“爱国”“敬业”三种红包,活动规定每人可以依次点击4次,每次都会获得三种红包中的一种,若集全三种即可获奖,但三种红包出现的顺序不同对应的奖次也不同.员工甲按规定依次点击了4次,直到第4次才获奖.则他获得奖次的不同情形种数为________.18[根据题意,若员工甲直到第4次才获奖,则其第4次才集全“和谐”“爱国”“敬业”三种红包,则甲第4次获得的红包有3种情况,前三次获得的红包为其余的2种,有23-2=6种情况,则他获得奖次的不同情形种数为3×6=18.] 8.满足a,b∈{-1,0,1,2},且关于x的方程ax2+2x+b=0有实数解的有序数对(a,b)的个数为________.13[当a=0时,b的值可以是-1,0,1,2,故(a,b)的个数为4;当a≠0时,要使方程ax2+2x+b=0有实数解,需使Δ=4-4ab≥0,即ab≤1.若a=-1,则b的值可以是-1,0,1,2,(a,b)的个数为4;若a=1,则b的值可以是-1,0,1,(a,b)的个数为3;若a=2,则b的值可以是-1,0,(a,b)的个数为2.由分类加法计数原理可知,(a,b)的个数为4+4+3+2=13.]三、解答题9.(1)如图①所示,有A,B,C,D四个区域,用红、黄、蓝三种颜色涂色,要求任意两个相邻区域的颜色各不相同,共有多少种不同的涂法?图①图②(2)如图②所示,将一个四棱锥的每一个顶点染上一种颜色,并使同一条棱上的两个端点异色,如果只有5种颜色可供使用,共有多少种不同染色方法?[解](1)①若A,C涂色相同,则按照分步乘法计数原理,A,B,C,D可涂颜色的种数依次是3,2,1,2,则有3×2×1×2=12种不同的涂法.②若A,C涂色不相同,则按照分步乘法计数原理,A,B,C,D可涂颜色的种数依次是3,2,1,1,则有3×2×1×1=6种不同的涂法.所以,根据分类加法计数原理,共有12+6=18种不同的涂法.(2)按照S→A→B→C→D的顺序进行染色,按照A,C是否同色分类:第一类,A,C同色,则有5×4×3×1×3=180种不同的染色方法.第二类,A,C不同色,则有5×4×3×2×2=240种不同的染色方法.根据分类加法计数原理,共有180+240=420种不同的染色方法.10.用0,1,2,3,4,5可以组成多少个无重复数字的且比2 000大的四位偶数.[解]完成这件事有3类方法:第一类是用0做结尾的比2 000大的4位偶数,它可以分三步去完成:第一步,选取千位上的数字,只有2,3,4,5可以选择,有4种选法;第二步,选取百位上的数字,除0和千位上已选定的数字以外,还有4个数字可供选择,有4种选法;第三步,选取十位上的数字,还有3种选法.依据分步乘法计数原理,这类数的个数有4×4×3=48个;第二类是用2做结尾的比2 000大的4位偶数,它可以分三步去完成:第一步,选取千位上的数字,除去2,1,0,只有3个数字可以选择,有3种选法;第二步,选取百位上的数字,在去掉已经确定的首尾两数字之后,还有4个数字可供选择,有4种选法;第三步,选取十位上的数字,还有3种选法.依据分步乘法计数原理,这类数的个数有3×4×3=36个;第三类是用4做结尾的比2 000大的4位偶数,其个数同第二类.用分类加法计数原理,所求无重复数字的比2 000大的四位偶数有48+36+36=120个.11.某班新年联欢会原定的6个节目已排成节目单,开演前又增加了3个新节目,如果将这3个新节目插入节目单中,那么不同的插法种数为() A.504B.210C.336D.120A[分三步,先插一个新节目,有7种方法,再插第二个新节目,有8种方法,最后插第三个节目,有9种方法.故共有7×8×9=504种不同的插法.]12.有4位教师在同一年级的4个班中各教一个班的数学,在数学检测时要求每位教师不能在本班监考,则监考的方法有()A.8种B.9种C.10种D.11种B[法一:设四位监考教师分别为A、B、C、D,所教的班分别为a、b、c、d,假设A监考b,则余下三人监考剩下的三个班,共有3种不同方法,同理A监考c、d时,也分别有3种不同方法,由分类加法计数原理共有3+3+3=9种.法二:班级按a、b、c、d的顺序依次排列,为避免重复或遗漏现象,教师的监考顺序可用“树形图”表示如下:∴共有9种不同的监考方法.]13.(多选题)从0,1,2,3,4中选取四个数组成一个能被6整除的四位数,则()A.这个四位数个位上的数字为偶数,且各数位上的数字之和能被3整除B.个位上的数字为0的这样的四位数有12个C.个位上的数字为2的这样的四位数有8个D.个位上的数字为4的这样的四位数有4个ABCD[A正确;当个位上的数字为0时,其余三个数为1,2,3或2,3,4,所以这样的四位数有3×2×1×2=12个,故B正确;当个位上的数字为2时,其余三个数为0,1,3或0,3,4,所以这样的四位数有2×2×1×2=8个,故C正确;当个位上的数字为4时,其余三个数为0,2,3,所以这样的四位数有2×2×1=4个,故D正确.]14.4位同学参加某种形式的竞赛,竞赛规则规定:每位同学必须从甲、乙两道题中任选一题作答,选甲题答对得100分,答错得-100分;选乙题答对得90分,答错得-90分.若4位同学的总分为0,则这4位同学不同得分情况的种数有________种.36[因为4个同学总分为0,所以可分为三类:都选甲且两对两错共有6种;都选乙且两对两错有6种;两个选甲一对一错,另两个选乙也一对一错,有6×2×2=24种.由分类加法计数原理N=6+6+24=36种.]15.(一题两空)回文数是指从左到右与从右到左读都一样的正整数,如22,121,3 443,94 249等.显然2位回文数有9个:11,22,33,…,99,3位回文数有90个:101,111,121,…,191,202,…,999.则(1)5位回文数有________个;(2)2n(n∈N+)位回文数有________个.(1)900(2)9×10n-1[(1)5位回文数相当于填5个方格,首尾相同,且不为0,共9种填法,第2位和第4位一样,有10种填法,中间一位有10种填法,共有9×10×10=900(种)填法,即5位回文数有900个.(2)根据回文数的定义,此问题也可以转化成填方格.结合分步乘法计数原理,知有9×10n-1种填法.]§2排列问题3、排列与排列数排列数公式一、选择题1.已知A2n=132,则n等于()A.11B.12C.13D.14B[∵A2n=n(n-1)=132,∴n=12或n=-11(舍),∴n=12.]2.89×90×91×…×100可表示为()A.A10100B.A11100C.A12100D.A13100C[最大数为100,共有12个连续整数的乘积,由排列数公式的定义可以得出.]3.将五辆车停在5个车位上,其中A车不停在1号车位上,则不同的停车方案种数为()A.24B.78C.96D.120C[∵A车不停在1号车位上,∴可先将A车停在其他四个车位中的任何一个车位上,有4种可能,然后将另外四辆车在剩余的四个车位上进行全排列,有A44种停法,由分步乘法计数原理,得共有4×A44=4×24=96种停车方案.] 4.已知A2n+1-A2n=10,则n的值为()A.4B.5C.6D.7B[A2n+1-A2n=n(n+1)-n(n-1)=10,2n=10,n=5.]5.不等式x A3x>3A2x的解集是()A.{x|x>3}B.{x|x>4,x∈N}C.{x|3<x<4,x∈Z}D.{x|x>3,x∈N+}D[由题意得x[x×(x-1)×(x-2)]>3×[x×(x-1)],∵x≥3且x∈N,∴x-1>0,∴x(x-2)>3,即x2-2x-3>0,解得x>3或x<+-1(舍),}.]∴原不等式的解集为{x|x>3,x∈N+二、填空题6.从6个不同元素中取出2个元素的排列数为________.(用数字作答)30[A26=6×5=30.]7.从4个蔬菜品种中选出3个,分别种植在不同土质的3块土地上进行试验,则不同的种植方法有________种.(用数字作答)24[本题可理解为从4个不同元素(4个蔬菜品种)中任取3个元素的排列个数,即为A34=24(种).]8.集合p={x|x=A m4,m∈N+},则p中元素的个数为________.3[由A m4,m∈N+的意义可知,m=1,2,3,4.当m=1时,A m4=A14=4;当m=2时,A m4=A24=12;当m=3时,A m4=A34=24;当m=4时,A m4=A44=24.由集合元素的互异性可知:p中元素共有3个.]三、解答题9.将3张电影票分给5人中的3人,每人1张,求共有多少种不同的分法.[解]问题相当于从5张电影票中选出3张排列起来,这是一个排列问题.故共有A35=5×4×3=60种分法.10.有三张卡片,正面分别写着1,2,3三个数字,反面分别写着0,5,6三个数字,问这三张卡片可组成多少个三位数?[解]先排列三张卡片,有A33×2×2×2种排法,0排在首位的个数为A22×2×2,则这三张卡片可以组成A33×2×2×2-A22×2×2=40个三位数.11.有5名同学被安排在周一至周五值日,已知同学甲只能在周一值日,那么5名同学值日顺序的编排方案共有()A.12种B.24种C.48种D.120种B [∵同学甲只能在周一值日,∴除同学甲外的4名同学将在周二至周五值日,∴5名同学值日顺序的编排方案共有A 44=24(种).]12.(多选题)下列等式中成立的是( )A .A 3n =(n -2)A 2nB .1n A n n +1=A n -1n +1C .n A n -2n -1=A n nD .n n -m A m n -1=A m n ACD [A 中,右边=(n -2)(n -1)n =A 3n 成立;C 中,左边=n ×(n -1)×…×2=n ×(n -1)×(n -2)×…×2×1=A n n 成立;D 中,左边=n n -m ×(n -1)!(n -m -1)!=n !(n -m )!=A m n 成立;经验证只有B 不正确.] 13.(多选题)当n ∈N +,且n ≥3时,A 3n 不可能取到( )A .60B .240C .2 020D .2 040BCD [A 35=60;由于A 37<240<A 38,所以A 3n 不可能取到240;A 3n 一定是6的倍数,所以A 3n 不可能取到2 020;由于A 313<2 040<A 314,所以A 3n 不可能取到2 040.] 14.(一题两空)由数字1,2,3,4,5组成无重复数字的四位数,其中偶数的个数是________,奇数的个数是________.48 72 [从2,4中取一个数作为个位数字,有2种取法,再从其余四个数中取出三个数排在前三位,有A 34种,由分步乘法计数原理知组成无重复数字的四位偶数的个数为2×A 34=48, 又四位偶数的个数与四位奇数的个数之和为A 45,故四位奇数的个数为A 45-48=72.]15.将A 、B 、C 、D 四名同学按一定顺序排成一行,要求自左向右,且A 不排在第一,B 不排在第二,C 不排在第三,D 不排在第四.试写出他们四人所有不同的排法.[解] 由于A 不排在第一,所以第一只能排B 、C 、D 中的一个,据此可分为三类.由此可写出所有的排法为:BADC ,BCDA ,BDAC ,CADB ,CDAB ,CDBA ,DABC,DCAB,DCBA.4、组合组合数及其性质一、选择题1.若A3m=6C4m,则m的值为()A.6B.7C.8D.9B[∵A3m=C3m A33=6C3m.∴6C3m=6C4m,∴C3m=C4m,∴m=3+4=7.]2.若C7n+1-C7n=C8n,则n=()A.12 B.13C.14D.15C[∵C7n+1-C7n=C8n,∴C7n+1=C7n+C8n=C8n+1,∴n+1=7+8,∴n=14.] 3.集合{0,1,2,3}中含有3个元素的子集的个数是()A.4B.5C.7D.8A[由于集合中的元素是没有顺序的,一个含有3个元素的子集就是一个从{0,1,2,3}中取出3个元素的组合,这是一个组合问题,组合数是C34=4.] 4.某城市纵向有6条道路,横向有5条道路,构成如图所示的矩形道路网(图中黑线表示道路),则从西南角A地到东北角B地的最短路线共有()A.125条B.126条C.127条D.128条B[要使路线最短,只能向右或向上走,途中不能向左或向下走.因此,从A 地到B地归结为走完5条横线段和4条纵线段.设每走一段横线段或纵线段为一个行走时段,从9个行走时段中任取4个时段走纵线段,其余5个时段走横线段,共有C49C55=126种走法,故从A地到B地的最短路线共有126条.] 5.假设200件产品中有3件次品,现在从中任取5件,其中至少有2件次品的抽法种数为()A.C23C2198B.C23C3197+C33C2197C .C 3200-C 4197D .C 5200-C 13C 4197B [分为两类:第一类,取出的5件产品有2件次品3件合格品,有C 23C 3197种抽法;第二类,取出的5件产品有3件次品2件合格品,有C 33C 2197种抽法.因此共有(C 23C 3197+C 33C 2197)种抽法.]二、填空题6.设A ={x |x =C n 4,n ∈N +},B ={1,2,3,4},则A ∩B =________.{1,4} [当n =0时,C 04=1;当n =1时,C 14=4;当n =2时,C 24=4×32×1=6; 当n =3时,C 34=C 14=4;当n =4时,C 44=C 04=1, ∴A ={x |x =C n 4,n ∈N +}={1,4,6}.又∵B ={1,2,3,4},∴A ∩B ={1,4}.]7.从2,3,5,7四个数中任取两个不同的数相乘,有m 个不同的积;任取两个不同的数相除,有n 个不同的商,则m ∶n =________.12 [∵m =C 24,n =A 24,∴m ∶n =12.] 8.7名志愿者中安排6人在周六、周日两天参加社区公益活动,若每天安排不同的3人,则不同的安排方案共有________种.(用数字作答)140 [可分步完成此事,第一步选周六的3人共有C 37种方法;第二步选周日的志愿者共有C 34种方法.由分步乘法计数原理可知:不同的安排方案共有C 37·C 34=140(种).]三、解答题9.已知1C m 5-1C m 6=710C m 7,求m 的值. [解] 由组合数公式化简整理得m 2-23m +42=0,解得m =2或m =21,又0≤m ≤5,所以m =2.10.(1)设集合A ={a 1,a 2,a 3,a 4,a 5},则集合A 中含有3个元素的子集有多少个?(2)10位同学聚会,见面后每两人之间要握手相互问候,共需握手多少次?[解] (1)从5个元素中取出3个元素并成一组,就是集合A 的子集,元素无序,则共有C 35=10(个).(2)每两人握手一次就完成这一件事,则共有握手次数为C 210=10×92×1=45(次).11.C 9798+2C 9698+C 9598=( )A .C 9799B .C 97100 C .C 9899D .C 98100 B [C 9798+2C 9698+C 9598=C 9798+C 9698+C 9698+C 9598=C 9799+C 9699=C 97100.]12.有两条平行直线a 和b ,在直线a 上取4个点,在直线b 上取5个点,以这些点为顶点作三角形,这样的三角形共有( )A .70个B .80个C .82个D .84个A [分两类,第1类:从直线a 上任取一个点,从直线b 上任取两个点,共有C 14C 25种方法;第2类:从直线a 上任取两个点,从直线b 上任取一个点,共有C 24C 15种方法.故满足条件的三角形共有C 14C 25+C 24C 15=70(个).]13.(多选题)若C 4n >C 6n ,则n 的值可以是( )A .6B .7C .8D . 9ABCD [∵C 4n >C 6n ,∴⎩⎨⎧C 4n >C 6n ,n ≥6, ⇒⎩⎨⎧ n !4!(n -4)!>n !6!(n -6)!,n ≥6,⇒⎩⎨⎧ n 2-9n -10<0,n ≥6,⇒⎩⎨⎧-1<n <10,n ≥6.∵n ∈N *,∴n =6,7,8,9.]14.(一题两空)在同一个平面内有一组平行线共8条,另一组平行线共10条,这两组平行线相互不平行,它们共能构成________个平行四边形,共有________个交点.1260 80 [第一组中每两条与另一组中的每两条直线均能构成一个平行四边形,故共有C 28C 210=1 260(个).第一组中每条直线与另一组中每条直线均有一个交点,所以共有C 18C 110=80(个).]15.(1)求C 3n 13+n +C 3n -112+n +C 3n -211+n +…+C 17-n 2n 的值;(2)求满足C 5n -1+C 3n -3C 3n -3=195的n 的值. [解] (1)由原式知,n 满足3n ≤13+n 且17-n ≤2n ,又∵n ∈N +,∴n =6.∴原式=C 1819+C 1718+C 1617+…+C 1112=C 119+C 118+C 117+…+C 112=124.(2)原方程可变形为C 5n -1C 3n -3+1=195,C 5n -1=145C 3n -3, ∴(n -1)(n -2)(n -3)(n -4)(n -5)5!=145×(n -3)(n -4)(n -5)3!. ∴n 2-3n -54=0.∴n =9或n =-6(舍去),∴n =9为原方程的解.5、 二项式定理的推导一、选择题1.(x +2)8的展开式中x 6的系数是( )A .28B .56C .112D .224C [该二项展开式的通项为T r +1=C r 8x 8-r 2r =2r C r 8x8-r ,令r =2,得T 3=22C 28x 6=112x 6,所以x 6的系数是112.]2.若(1+2)5=a +b 2(a ,b 为有理数),则a +b 等于( )A .45B .55C .70D .80C [由二项式定理,得(1+2)5=1+C 15·2+C 25·(2)2+C 35·(2)3+C 45·(2)4+C 55·(2)5 =1+52+20+202+20+42=41+292.所以a =41,b =29,a +b =70.故选C .]3.在⎝ ⎛⎭⎪⎫2x 2-1x 5的二项展开式中,x 的系数为( ) A .10 B .-10 C .40 D .-40D [∵T r +1=C r 5(2x 2)5-r ⎝ ⎛⎭⎪⎫-1x r =(-1)r C r 525-r x 10-3r ,令10-3r =1即r =3,此时x 的系数为(-1)3C 3522=-40.] 4.设k =1,2,3,4,5,则(x +2)5的展开式中x k 的系数不可能是( )A .10B .40C .50D .80C [x 1的系数为C 45·24=80,x 2的系数为C 35·23=80,x 3的系数为C 25·22=40,x 4的系数为C 15·21=10,x 5的系数为C 05·20=1,所以系数不可能为50.] 5.(x +3x )12的展开式中,含x 的正整数次幂的项共有( )A .4项B .3项C .2项D .1项B [设第(r +1)项含x 的正整数次幂,则T r +1=C r 12·⎝ ⎛⎭⎪⎫x 1212-r ·⎝ ⎛⎭⎪⎫x 13r =C r 12·x 6-16r ,其中0≤r ≤12.要使6-16r 为正整数,必须使r 为6的倍数.所以r =0,6,12,即第1项、第7项,第13项为符合条件的项.]二、填空题6.(a +x )4的展开式中x 3的系数等于8,则实数a =________.2 [∵T r +1=C r 4a4-r x r 且x 3的系数等于8,∴r =3,即C 34a 4-3=8,∴a =2.] 7.⎝ ⎛⎭⎪⎫x 2+1x 6的展开式中x 3的系数为________.(用数字作答) 20 [设第r +1项为含x 3的项,则T r +1=C r 6x 2(6-r )x -r =C r 6x 12-3r , 令12-3r =3,得r =3,∴x 3的系数为C 36=20.]8.在⎝⎛⎭⎪⎫32x -1220的展开式中,系数是有理数的项共有________项. 4 [T r +1=C r 20(32x )20-r ⎝ ⎛⎭⎪⎫-12r =⎝ ⎛⎭⎪⎫-22r ·(32)20-r ·C r 20·x 20-r . ∵系数为有理数,∴(2)r 与220-r3均为有理数. ∴r 能被2整除,且20-r 能被3整除.∴r 为偶数,20-r 是3的倍数,0≤r ≤20,∴r =2,8,14,20.∴共有4项系数为有理数.]三、解答题9.求(1+x )3+(1+x )4+…+(1+x )20的展开式中x 3的系数.[解] 所求x 3的系数为:C 33+C 34+C 35+…+C 320=(C 44+C 34)+C 35+…+C 320=(C 45+C 35)+C 36+…+C 320=…=C 420+C 320=C 421.所以展开式中x 3的系数是C 421=5 985.10.在⎝⎛⎭⎪⎫2x -1x 6的展开式中,求: (1)第3项的二项式系数及系数;(2)含x 2的项.[解] (1)第3项的二项式系数为C 26=15,又因为T 3=C 26(2x )4⎝⎛⎭⎪⎫-1x 2=24·C 26x , 所以第3项的系数为24C 26=240.(2)T k +1=C k 6(2x )6-k ⎝⎛⎭⎪⎫-1x k =(-1)k 26-k C k 6x 3-k , 令3-k =2,得k =1.所以含x 2的项为第2项,且T 2=-192x 2.11.二项式(1+x )6的展开式中有理项系数之和为( )A .64B .32C .24D .16B [二项式(1+x )6的展开式的通项为T r +1=C r 6x r 2,令r 2为整数,可得r =0,2,4,6,故展开式中有理项系数之和为C 06+C 26+C 46+C 66=32,故选B .]12.已知(1+ax )(1+x )5的展开式中x 2的系数为5,则a =( )A .-4B .-3C .-2D .-1D[展开式中含x2的系数为C25+a C15=5,解得a=-1,故选D.]13.(多选题)中国南北朝时期的著作《孙子算经》中,对同余除法有较深的研究.设a,b,m(m>0)为整数,若a和b被m除得的余数相同,则称a和b对模m 同余,记为a=b(mod m).若a=C020+C120·2+C220·22+…+C2020·220,a=b(mod 10),则b的值可以是()A.2 011B.2 012C.2 020D.2 021AD[∵a=(1+2)20=320=910=(10-1)10=C0101010-C110109+…-C91010+1,∴被10除得的余数为1,而2 011与2 021被10除得的余数是1,故选AD.] 14.(一题两空)在二项式(2+x)9的展开式中,常数项是________,系数为有理数的项的个数是________.1625[由二项展开式的通项公式可知T r+1=C r9·(2)9-r·x r,r∈N,0≤r≤9,当r=0时,第1项为常数项,所以常数项为T1=C09·(2)9·x0=(2)9=162.当项的系数为有理数时,9-r为偶数,可得r=1,3,5,7,9,即系数为有理数的项的个数为5.]15.(3-2x-x4)(2x-1)6的展开式中,含x3项的系数为()A.600B.360C.-600D.-360C[由二项展开式的通项可知,展开式中含x3项的系数为3×C3623(-1)3-2×C4622(-1)4=-600.故选C.]6、二项式系数的性质一、选择题1.若(x+3y)n展开式的系数和等于(7a+b)10展开式中的二项式系数之和,则n 的值为()A.5B.8C.10D.15A[(7a+b)10展开式的二项式系数之和为210,令x=1,y=1,则由题意知,4n=210,解得n=5.]2.若⎝ ⎛⎭⎪⎫x +1x n展开式的二项式系数之和为64,则展开式的常数项为( )A .10B .20C .30D .120 B [由2n =64,得n =6,∴T r +1=C r 6x 6-r ⎝ ⎛⎭⎪⎫1x r=C r 6x 6-2r(0≤r ≤6,r ∈N ). 由6-2r =0,得r =3. ∴T 4=C 36=20.]3.(x -1)11展开式中x 的偶次项系数之和是( ) A .-2 048 B .-1 023 C .-1 024D .1 024C [(x -1)11=C 011x 11+C 111x 10(-1)1+C 211x 9(-1)2+…+(-1)11,偶次项系数为负数,其和为-210=-1 024.]4.设(3-x )n =a 0+a 1x +a 2x 2+…+a n x n ,若n =4,则a 0-a 1+a 2-a 3+…+(-1)n a n =( )A .256B .136C .120D .16A [令x =-1,得a 0-a 1+a 2+…+(-1)n a n =(3-(-1))4=44=256.]5.已知C 0n +2C 1n +22C 2n +…+2n C n n =729,则C 1n +C 3n +C 5n 的值等于( )A .64B .32C .63D .31 B [由已知(1+2)n=3n=729,解得n =6.则C 1n +C 3n +C 5n =C 16+C 36+C 56=262=32.]二、填空题6.若⎝ ⎛⎭⎪⎫x 2+1x 3n展开式的各项系数之和为32,则其展开式中的常数项是________.10 [令x =1得2n =32,∴n =5. ∵T r +1=C r 5(x 2)5-r ·⎝ ⎛⎭⎪⎫1x 3r=C r 5·x 10-5r , ∴由10-5r =0即r =2可得展开式中的常数项是C 25=10.]7.如图,在由二项式系数所构成的杨辉三角形中,第________行中从左至右第14个与第15个数的比为2∶3.34 [由已知C 13n C 14n=23,即n !(n -13)!·13! × (n -14)!·14!n !=23,化简得14n -13=23.解得n =34.] 8.将函数f (x )=x 5表示为f (x )=a 0+a 1(1+x )+a 2(1+x )2+…+a 5(1+x )5,其中a 0,a 1,a 2,…,a 5为实数,则a 3=________.10 [∵f (x )=x 5=[(1+x )-1]5,∴a 3=C 25(-1)2=10.]三、解答题9.⎝⎛⎭⎪⎪⎫x +23x n 展开式第9项与第10项二项式系数相等,求x 的一次项系数. [解] ∵⎝ ⎛⎭⎪⎪⎫x +23x n 的展开式中第9项,第10项的二项式系数分别为C 8n 、C 9n . 又∵这两项的二项式系数相等.∴C 8n =C 9n ,∴n =17.其展开式的通项T r +1=C r 17x 17-r 2·2r ·x -r3=2r C r17x 17-r 2-r 3, 令17-r 2-r3=1, ∴r =9.∴T 10=29C 917x =29×24 310x =12 446 720x ,即x 的一次项系数为12 446 720.10.若(2x -3y )10=a 0x 10+a 1x 9y +a 2x 8y 2+…+a 10y 10,求: (1)各项系数之和;(2)奇数项系数的和与偶数项系数的和.[解] (1)各项系数之和即为a 0+a 1+a 2+…+a 10,可用“赋值法”求解.令x =y =1,得a 0+a 1+a 2+…+a 10=(2-3)10=(-1)10=1.(2)奇数项系数的和为a 0+a 2+a 4+…+a 10,偶数项系数的和为a 1+a 3+a 5+…+a 9.由(1)知a 0+a 1+a 2+…+a 10=1,①令x =1,y =-1,得a 0-a 1+a 2-a 3+…+a 10=510,②①+②得,2(a 0+a 2+…+a 10)=1+510,故奇数项系数的和为12(1+510); ①-②得,2(a 1+a 3+…+a 9)=1-510,故偶数项系数的和为12(1-510).11.若(x -2)5-3x 4=a 0+a 1(x -3)+a 2(x -3)2+a 3(x -3)3+a 4(x -3)4+a 5(x -3)5,则a 3=( )A .-70B .28C .-26D .40C [令t =x -3,则(x -2)5-3x 4=a 0+a 1(x -3)+a 2(x -3)2+a 3(x -3)3+a 4(x -3)4+a 5(x -3)5可化为(t +1)5-3(t +3)4=a 0+a 1t +a 2t 2+a 3t 3+a 4t 4+a 5t 5,则a 3=C 25-3×C 14×3=10-36=-26.]12.在⎝ ⎛⎭⎪⎫x +2x 2n(n ∈N +)的展开式中,若二项式系数最大的项仅是第六项,则展开式中常数项是( )A .180B .120C .90D .45A [在⎝ ⎛⎭⎪⎫x +2x 2n (n ∈N +)的展开式中,若二项式系数最大的项仅是第六项,则n =10,则⎝ ⎛⎭⎪⎫x +2x 2n=⎝ ⎛⎭⎪⎫x +2x 210的展开式的通项为T r +1=C r 10·2r ·x 5-5r 2,令5-5r 2=0,得r =2,可得展开式中常数项为C 210·22=180.] 13.(多选题)若将函数f ()x =x 5表示为f ()x =a 0+a 1(1+x )+a 2(1+x ) 2+…+a 5(1+x ) 5, 其中a 0,a 1,a 2,…,a 5为实数,则( )A .a 0=-1B .a 3=10C .∑i =15a i =1D .∑i =15(-1) i a i =-31ABCD [由已知得(x -1)5=a 0+a 1x +a 2x 2+…+a 5x 5,令x =0得,a 0=-1; 又a 0+∑i =15a i =(1-1)5=0,a 0+∑i =15(-1) i a i =(-1-1) 5=-32,。

高二上学期数学第一次月考卷(考试版)(北师大版选择性必修第一册第1.1~2.1:直线与圆+椭圆)

高二上学期数学第一次月考卷(考试版)(北师大版选择性必修第一册第1.1~2.1:直线与圆+椭圆)

高二上学期数学第一次月考卷(考试时间:120分钟 试卷满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

4.测试范围:北师大版2019选择性必修第一册第1.1~2.1章(直线与圆+椭圆)。

5.难度系数:0.68。

第一部分(选择题 共58分)一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.点()1,1到直线3420x y +−=的距离是( ) A .1 B .2 CD .32.已知方程2212x y m m+=−表示椭圆,则实数m 的取值范围是( ) A .(0,2)B .(0,1)C .(2,)+∞D .(0,1)(1,2) 3.圆()2249x y −+=和圆()2234x y +−=的公切线有( ) A .1条 B .2条 C .3条 D .4条4.已知实数x ,y 满足方程y y x 的最大值为( ) A .0 B .1 CD .25.某同学数星星的时候,突然想到了哈雷彗星:信息技术老师给他找了一幅哈雷彗星图片和轨道图片,地理老师告诉他哈雷彗星近日点距离太阳约0.6A.U.,将于2023年12月9日出现的远日点距离太阳约35A.U.(A.U.是天文单位,天文学中计量天体之间距离的一种单位,其数值取地球和太阳之间的平均距离,1A.U.149597870=千米).物理老师告诉他该彗星的周期约76年,质量约1510kg.化学老师说:彗核的成分以水冰为主,占70%,它只是个很松散的大雪堆而已,数学老师问:哈雷彗星的轨迹可以近似看成椭圆,那么该椭圆的离心率约是( )试卷第2页,共4页A .0.03B .0.97C .0.83D .0.776.已知直线l :10x my m −+−=,则下列说法不正确的是( ) A .直线l 恒过点()1,1B .若直线l 与y 轴的夹角为30°,则m =或m =C .直线l 的斜率可以等于0D .若直线l 在两坐标轴上的截距相等,则1m =或1m =−7.若圆222610x y x y +−−+=上恰有三点到直线y kx =的距离为2,则k 的值为( ) A .12 B .34 C .43 D .28.已知椭圆2214x y +=的左、右焦点分别为1F ,2F ,点P 在椭圆上,当12F PF 的面积为1时,12PF PF ⋅ 等于( )A .0B .1C .2D .12二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知两条直线1l ,2l 的方程分别为34120x y ++=与8110ax y +−=,下列结论正确的是( ) A .若12//l l ,则6a =B .若12//l l ,则两条平行直线之间的距离为74C .若12l l ⊥,则323a =D .若6a ≠,则直线1l ,2l 一定相交10.过点()2,1P 作圆O :221x y +=的切线l ,则切线l 的方程为( )A .1y =B .2x =C .3450x y −−=D .4350x y −−=11.已知椭圆2221(03)9x y b b+=<<的左、右焦点分别为12,F F ,过点1F 的直线l 交椭圆于,A B 两点,若AB 的最小值为4,则( )AB .22AF BF +的最大值为8C D .椭圆上不存在点P ,使得1290F PF ∠=第二部分(非选择题 共92分)三、填空题:本题共3小题,每小题5分,共15分。

北师大高中数学选择性必修第一册第六章 概率 单元测试卷【含答案】

北师大高中数学选择性必修第一册第六章 概率 单元测试卷【含答案】

北师大高中数学选择性必修第一册第六章概率单元测试卷(原卷版)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知X~B,则P=()A. B.C. D.2.小明的妈妈为小明煮了5个粽子,其中两个腊肉馅三个豆沙馅,小明随机取出两个,事件A=“取到的两个为同一种馅”,事件B=“取到的两个都是豆沙馅”,则P=()A. B.C. D.3.设X为随机变量,X~B,若随机变量X的数学期望EX=2,则P(X=2)等于()A. B.C. D.4.若随机变量X服从正态分布,其正态曲线上的最高点的坐标是,则该随机变量的方差等于()A.10B.100C. D.5.某人射击一次命中目标的概率为,则此人射击6次,3次命中且恰有2次连续命中的概率为()A. B.C. D.6.某次考试共有12个选择题,每个选择题的分值为5分,每个选择题四个选项且只有一个选项是正确的,A学生对12个选择题中每个题的四个选择项都没有把握,最后选择题的得分为X分,B学生对12个选择题中每个题的四个选项都能判断其中有一个选项是错误的,对其他三个选项都没有把握,选择题的得分为Y分,则DY-DX的值为()A. B.C. D.7.某篮球队对队员进行考核,规则是①每人进行3个轮次的投篮;②每个轮次每人投篮2次,若至少投中1次,则本轮通过,否则不通过.已知队员甲投篮1次投中的概率为,如果甲各次投篮投中与否互不影响,那么甲3个轮次通过的次数X期望是()A.3B.C.2D.8.设随机变量X,Y满足Y=2X+b(b为非零常数),若EY=4+b,DY=32,则EX和DX分别等于()A.4,8B.2,8C.2,16D.2+b,16二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知随机变量ξ的分布列如下,则Eξ的值可能是()ξ-10aP+a-bA.-B.-C.-D.-10.已知排球发球考试规则:每位考生最多可发球三次,若发球成功,则停止发球,否则一直发到3次结束为止.某考生一次发球成功的概率为p(0<p<1),发球次数为X,若X的数学期望EX>1.75,则p 的取值可能是()A. B.C. D.11.下列说法中正确的是()A.设随机变量X服从二项分布B,则P(X=3)=B.已知随机变量X服从正态分布N(2,σ2),且P(X<4)=0.9,则P(0<X<2)=0.4C.设随机变量ξ服从正态分布N(2,9),若P(ξ>c)=P(ξ<c-2),则常数c的值是3D.E(2X+3)=2EX+3;D(2X+3)=2DX+312.为弘扬我国古代“六艺”文化,某研学旅行夏令营主办单位计划在暑假开设“礼、乐、射、御、书、数”六门体验课程,若甲乙丙三名同学各只能体验其中一门课程.则()A.甲乙丙三人选择课程方案有120种方法B.恰有三门课程没有被三名同学选中的概率为C.已知甲不选择课程“御”的条件下,乙丙也不选择“御”的概率为D.设三名同学选择课程“礼”的人数为ξ,则Eξ=三、填空题:本题共4小题,每小题5分,共20分.13.已知ξ的分布列如下表,若η=3ξ+2,则Eη=乙.ξ123P t14.在一次射击比赛中,战士甲得1分、2分、3分的概率分别为0.4,0.1,0.5;战士乙得1分、2分、3分的概率分别为0.1,0.6,0.3,那么两名战士获胜希望较大的是.15.已知袋子中有大小相同的红球1个,黑球2个,从中任取2个.设ξ表示取到红球的个数,则Eξ=,Dξ=. 16.同时抛掷两枚质地均匀的硬币,当至少有一枚硬币正面向上时,就说这次试验成功,则在2次试验中成功次数X的均值是.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)有20件产品,其中5件是次品,其余都是合格品,现不放回地从中依次抽取2件,求:(1)第一次抽到次品的概率;(2)第一次和第二次都抽到次品的概率;(3)在第一次抽到次品的条件下,第二次抽到次品的概率.18.(12分)在某校举行的数学竞赛中,全体参赛学生的竞赛成绩近似地服从正态分布N(70,100),已知成绩在90分以上(含90分)的学生有12人.(1)试问此次参赛学生的总人数约为多少?(2)若成绩在80分以上(含80分)为优,试问此次竞赛成绩为优的学生约为多少人?19.(12分)一次同时投掷两枚相同的正方体骰子(骰子质地均匀,且各面分别刻有1,2,2,3,3,3六个数字).(1)设随机变量η表示一次掷得的点数和,求η的分布列;(2)若连续投掷10次,设随机变量ξ表示一次掷得的点数和大于5的次数,求Eξ,Dξ.20.(12分)在10件产品中,有3件一等品,4件二等品,3件三等品,从这10件产品中任取3件,求:(1)取出的3件产品中一等品件数X的分布列及期望;(2)取出的3件产品中一等品件数多于二等品件数的概率.21.(12分)甲、乙两选手比赛,每局比赛甲获胜的概率为p,乙获胜的概率为1-p,采用了“3局2胜制”(这里指最多比赛3局,先胜2局者为胜,比赛结束).若仅比赛2局就结束的概率为.(1)求p的值;(2)若采用“5局3胜制”(这里指最多比赛5局,先胜3局者为胜,比赛结束),求比赛局数X的分布列和数学期望.22.(12分)已知6名某疾病病毒密切接触者中有1名感染病毒,其余5名健康,需要通过化验血液来确定感染者.血液化验结果呈阳性的即为感染者,呈阴性即为健康.(1)若从这6名密切接触者中随机抽取3名,求抽到感染者的概率;(2)血液化验确定感染者的方法有:①逐一化验;②平均分组混合化验:先将血液样本平均分成若干组,对组内血液混合化验,若化验结果呈阴性,则该组血液不含病毒;若化验结果呈阳性,则对该组的备份血液逐一化验,直至确定感染者.①采取逐一化验,求所需化验次数ξ的分布列及数学期望;②采取平均分组混合化验(每组血液份数相同),求不同分组方法所需化验次数的数学期望.你认为选择哪种化验方案更合理?请说明理由.北师大高中数学选择性必修第一册第六章概率单元测试卷(解析版)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知X~B,则P=(C)A. B.C. D.解析:P=P(X=2)+P(X=3)=.故选C.2.小明的妈妈为小明煮了5个粽子,其中两个腊肉馅三个豆沙馅,小明随机取出两个,事件A=“取到的两个为同一种馅”,事件B=“取到的两个都是豆沙馅”,则P=(B)A. B.C. D.解析:由题意,P(A)=,P(AB)=,∴P(B|A)=,故选B.3.设X为随机变量,X~B,若随机变量X的数学期望EX=2,则P(X=2)等于(A)A. B.C. D.解析:因为EX=n=2,得n=6,即X~B.所以P(X=2)=.故选A.4.若随机变量X服从正态分布,其正态曲线上的最高点的坐标是,则该随机变量的方差等于(C)A.10B.100C. D.解析:由正态分布密度曲线上的最高点知,即σ=,∴DX=σ2=.故选C.5.某人射击一次命中目标的概率为,则此人射击6次,3次命中且恰有2次连续命中的概率为(B)A. B.C. D.解析:根据射手每次射击击中目标的概率是,且各次射击的结果互不影响,故此人射击6次,3次命中的概率为,恰有两次连续击中目标的概率为,故此人射击6次,3次命中且恰有2次连续命中的概率为.故选B.6.某次考试共有12个选择题,每个选择题的分值为5分,每个选择题四个选项且只有一个选项是正确的,A学生对12个选择题中每个题的四个选择项都没有把握,最后选择题的得分为X分,B学生对12个选择题中每个题的四个选项都能判断其中有一个选项是错误的,对其他三个选项都没有把握,选择题的得分为Y分,则DY-DX的值为(A)A. B.C. D.解析:设A学生答对题的个数为m,则得分X=5m,m~B,Dm=12×,所以DX=25×,同理设B学生答对题的个数为n,可知n~B,Dn=12×,所以DY=×25=,所以DY-DX=.故选A.7.某篮球队对队员进行考核,规则是①每人进行3个轮次的投篮;②每个轮次每人投篮2次,若至少投中1次,则本轮通过,否则不通过.已知队员甲投篮1次投中的概率为,如果甲各次投篮投中与否互不影响,那么甲3个轮次通过的次数X期望是(B)A.3B.C.2D.解析:在一轮投篮中,甲通过的概率为P=,通不过的概率为.由题意可知,甲3个轮次通过的次数X的取值分别为0,1,2,3,则P(X=0)=;P(X=1)=;P(X=2)=;P(X=3)=.所以随机变量X的分布列为X0123P数学期望EX=0×+1×+2×+3×,或由二项分布的期望公式可得EX=3×.故选B.8.设随机变量X,Y满足Y=2X+b(b为非零常数),若EY=4+b,DY=32,则EX和DX分别等于(B)A.4,8B.2,8C.2,16D.2+b,16解析:因为随机变量X,Y满足Y=2X+b,所以EY=2EX+b=4+b,∴EX=2;∵DY=4DX=32,∴DX=8.故选B.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知随机变量ξ的分布列如下,则Eξ的值可能是(BC)ξ-10aP+a-bA.-B.-C.-D.-解析:根据分布列的性质可知,所有的概率和为1,且每个概率都介于0和1之间,所以b-a=0,b∈.根据期望公式得到Eξ=-1×+b,化简得Eξ=-b2+,由二次函数的性质可知,Eξ∈,所以Eξ的值可能是-或-.故选BC.10.已知排球发球考试规则:每位考生最多可发球三次,若发球成功,则停止发球,否则一直发到3次结束为止.某考生一次发球成功的概率为p(0<p<1),发球次数为X,若X的数学期望EX>1.75,则p 的取值可能是(AB)A. B.C. D.解析:由题可知P(X=1)=p,P(X=2)=(1-p)p,P(X=3)=(1-p)2p+(1-p)3=(1-p)2,则EX=P(X=1)+2P(X=2)+3P(X=3)=p+2(1-p)p+3(1-p)2>1.75,解得p>或p<,由p∈(0,1)可得p∈(0,),所以p的取值可能是或.故选AB.11.下列说法中正确的是(ABC)A.设随机变量X服从二项分布B,则P(X=3)=B.已知随机变量X服从正态分布N(2,σ2),且P(X<4)=0.9,则P(0<X<2)=0.4C.设随机变量ξ服从正态分布N(2,9),若P(ξ>c)=P(ξ<c-2),则常数c的值是3D.E(2X+3)=2EX+3;D(2X+3)=2DX+3解析:设随机变量X服从二项分布B,则P(X=3)=,故A正确;∵随机变量ξ服从正态分布N(2,σ2),∴正态曲线的对称轴是直线x=2,∵P(X<4)=0.9,∴P(2<X<4)=0.9-0.5=0.4,∴P(0<X<2)=P(2<X<4)=0.4,故B正确;设随机变量ξ服从正态分布N(2,9),若P(ξ>c)=P(ξ<c-2),则c-2=2-(c-2),解得c=3,则常数c的值是3,故C正确;∵E(2X+3)=2EX+3,D(2X+3)=4DX,故D错误.故选ABC. 12.为弘扬我国古代“六艺”文化,某研学旅行夏令营主办单位计划在暑假开设“礼、乐、射、御、书、数”六门体验课程,若甲乙丙三名同学各只能体验其中一门课程.则(BCD)A.甲乙丙三人选择课程方案有120种方法B.恰有三门课程没有被三名同学选中的概率为C.已知甲不选择课程“御”的条件下,乙丙也不选择“御”的概率为D.设三名同学选择课程“礼”的人数为ξ,则Eξ=解析:对于A,甲乙丙三名同学各只能体验其中一门课程,则选择方法有63=216种,故A错误;对于B,恰有三门课程没有被三名同学选中,表示三位同学每个人选择了不重复的一门课程,所以概率为,故B正确;对于C,已知甲不选择课程“御”的概率为,甲乙丙都不选择“御”的概率为,所以条件概率为,故C正确;对于D,三名同学选择课程“礼”的人数为ξ,则ξ服从二项分布ξ~B,则Eξ=3×,故D正确.故选BCD.三、填空题:本题共4小题,每小题5分,共20分.13.已知ξ的分布列如下表,若η=3ξ+2,则Eη=.ξ123P t解析:由分布列的性质有=1,解得t=,从而Eξ=1×+2×+3×,所以Eη=E(3ξ+2)=3E(ξ)+2=3×+2=.14.在一次射击比赛中,战士甲得1分、2分、3分的概率分别为0.4,0.1,0.5;战士乙得1分、2分、3分的概率分别为0.1,0.6,0.3,那么两名战士获胜希望较大的是乙.解析:设这次射击比赛战士甲得X1分,战士乙得X2分,则分布列分别如下:X1123P0.40.10.5X2123P0.10.60.3根据均值公式得EX1=1×0.4+2×0.1+3×0.5=2.1;EX2=1×0.1+2×0.6+3×0.3=2.2;因为EX2>EX1,故这次射击比赛战士乙得分的均值较大,所以战士乙获胜的希望较大.15.已知袋子中有大小相同的红球1个,黑球2个,从中任取2个.设ξ表示取到红球的个数,则Eξ=,Dξ=.解析:从袋中3个球中任取2个球,共有种取法,则其中ξ的可能取值为0,1,且ξ服从超几何分布,所以P(ξ=0)=,P(ξ=1)=,由此可得,Eξ=0×+1×,Dξ=.16.同时抛掷两枚质地均匀的硬币,当至少有一枚硬币正面向上时,就说这次试验成功,则在2次试验中成功次数X的均值是.解析:解法一(直接法):由题意可知每次试验不成功的概率为,成功的概率为,在2次试验中成功次数X的可能取值为0,1,2,则P(X=0)=,P(X=1)=,P(X=2)=.所以在2次试验中成功次数X的分布列为X012P则在2次试验中成功次数X的均值为EX=0×+1×+2×.解法二(公式法):此试验满足二项分布,其中p=,所以在2次试验中成功次数X的均值为EX=np=2×.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)有20件产品,其中5件是次品,其余都是合格品,现不放回地从中依次抽取2件,求:(1)第一次抽到次品的概率;(2)第一次和第二次都抽到次品的概率;(3)在第一次抽到次品的条件下,第二次抽到次品的概率.解:记“第一次抽到次品”为事件A,“第二次抽到次品”为事件B.(1)第一次抽到次品的概率为P(A)=.(2)第一次和第二次都抽到次品的概率为P(AB)=.(3)在第一次抽到次品的条件下,第二次抽到次品的概率为P(B|A)=.18.(12分)在某校举行的数学竞赛中,全体参赛学生的竞赛成绩近似地服从正态分布N(70,100),已知成绩在90分以上(含90分)的学生有12人.(1)试问此次参赛学生的总人数约为多少?(2)若成绩在80分以上(含80分)为优,试问此次竞赛成绩为优的学生约为多少人?解:(1)设参赛学生的成绩为X.因为X~N(70,100),所以μ=70,σ=10.则P(X≥90)=P(X≤50)=[1-P(50<X<90)]=[1-P(μ-2σ<X<μ+2σ)]≈×(1-0.9544)=0.0228,则此次参赛学生的总人数约为12÷0.0228≈526.(2)易得P (X ≥80)=P (X ≤60)=[1-P (60<X <80)]=[1-P (μ-σ<X <μ+σ)]≈×(1-0.6826)=0.1587,得526×0.1587≈83,即此次竞赛成绩为优的学生约为83人.19.(12分)一次同时投掷两枚相同的正方体骰子(骰子质地均匀,且各面分别刻有1,2,2,3,3,3六个数字).(1)设随机变量η表示一次掷得的点数和,求η的分布列;(2)若连续投掷10次,设随机变量ξ表示一次掷得的点数和大于5的次数,求E ξ,D ξ.解:(1)由已知,随机变量η的取值为2,3,4,5,6.设掷一次正方体骰子所得点数为η0,则P (η0=1)=,P (η0=2)=,P (η0=3)=,即P (η=2)=,P (η=3)=2×,P (η=4)=2×,P (η=5)=2×.P (η=6)=.所以η的分布列为η23456P(2)由已知,满足条件的一次投掷的点数和取值为6,设其发生的概率为p,由(1)知,p=,因为随机变量ξ~B所以Eξ=np=10×,Dξ=np(1-p)=10×.20.(12分)在10件产品中,有3件一等品,4件二等品,3件三等品,从这10件产品中任取3件,求:(1)取出的3件产品中一等品件数X的分布列及期望;(2)取出的3件产品中一等品件数多于二等品件数的概率.解:(1)由于从10件产品中任取3件的结果为,从10件产品中任取3件,其中恰有k件一等品的结果为,那么从10件产品中任取3件,其中恰有k件一等品的概率为P(X=k)=,k=0,1,2,3,所以随机变量X的分布列是X0123PX的数学期望EX=0×+1×+2×+3×.(2)设“取出的3件产品中一等品的件数多于二等品件数”为事件A,“恰好取出1件一等品和2件三等品”为事件A1,“恰好取出2件一等品”为事件A2,“恰好取出3件一等品”为事件A3,由于事件A1,A2,A3,彼此互斥,且A=A1∪A2∪A3,而P(A1)=,P(A2)=P(X=2)=,P(A3)=P(X=3)=,所以取出的3件产品中一等品的件数多于二等品件数的概率为. 21.(12分)甲、乙两选手比赛,每局比赛甲获胜的概率为p,乙获胜的概率为1-p,采用了“3局2胜制”(这里指最多比赛3局,先胜2局者为胜,比赛结束).若仅比赛2局就结束的概率为.(1)求p的值;(2)若采用“5局3胜制”(这里指最多比赛5局,先胜3局者为胜,比赛结束),求比赛局数X的分布列和数学期望.解:(1)仅比赛2局就结束,即为甲连胜2局或乙连胜2局,所以p·p+(1-p)(1-p)=,即25p2-25p+6=0,解得p=或p=.(2)当p=时,即甲胜的概率为,乙胜的概率为1-.X的可能取值为3,4,5.P(X=3)=,P(X=4)=,P(X=5)=,所以X的分布列为X345P所以EX=3×+4×+5×.当p=时,结论与p=相同.22.(12分)已知6名某疾病病毒密切接触者中有1名感染病毒,其余5名健康,需要通过化验血液来确定感染者.血液化验结果呈阳性的即为感染者,呈阴性即为健康.(1)若从这6名密切接触者中随机抽取3名,求抽到感染者的概率;(2)血液化验确定感染者的方法有:①逐一化验;②平均分组混合化验:先将血液样本平均分成若干组,对组内血液混合化验,若化验结果呈阴性,则该组血液不含病毒;若化验结果呈阳性,则对该组的备份血液逐一化验,直至确定感染者.①采取逐一化验,求所需化验次数ξ的分布列及数学期望;②采取平均分组混合化验(每组血液份数相同),求不同分组方法所需化验次数的数学期望.你认为选择哪种化验方案更合理?请说明理由.解:(1)6名密切接触者中随机抽取3名共有=20种方法,抽取3名中有感染者的抽法共有=10种方法,所以抽到感染者的概率P=.(2)①按逐一化验法,ξ的可能取值是1,2,3,4,5,P(ξ=1)=,P(ξ=2)=,P(ξ=3)=,P(ξ=4)=,P(ξ=5)=,ξ=5表示第5次化验呈阳性或前5次化验都呈阴性(即不检验可确定第6个样本为阳性),分布列如下:ξ12345P所以Eξ=1×+2×+3×+4×+5×;②平均分组混合化验,6个样本可按(3,3)平均分成2组,或者按(2,2,2)分成3组.如果按(3,3)分2组,所需化验次数为η,η的可能取值是2,3,P(η=2)=,P(η=3)=×2=,分布列如下:η23PEη=2×+3×.如果按(2,2,2)分3组,所需化验次数为δ,δ的可能取值是2,3,P(δ=2)=,P(δ=3)=×1+×1=,分布列如下:δ23PEδ=2×+3×.因为Eξ>Eη=Eδ,所以我认为平均分组混合化验法较好,按(2,2,2)或(3,3)分组进行化验均可.。

(北师大版)高中数学必修第一册 第二章综合测试试卷02及答案

(北师大版)高中数学必修第一册 第二章综合测试试卷02及答案

第二章综合测试一、单选题(每小题5分,共40分),1.函数()f x = )A .[]12-,B .(]12-,C .[)2+¥,D .[)1+¥,2.设函数()221121x x f x x x x ì-ï=í+-ïî,≤,,>,则()12f f öæ÷çç÷èø的值为( )A .1-B .34C .1516D .43.已知()32f x x x =+,则()()f a f a +-=( )A .0B .1-C .1D .24.幂函数223a a y x --=是偶函数,且在()0+¥,上单调递减,则整数a 的值是( )A .0或1B .1或2C .1D .25.函数()34f x ax bx =++(a b ,不为零),且()510f =,则()5f -等于( )A .10-B .2-C .6-D .146.已知函数22113f x x x x öæ+=++ç÷èø,则()3f =( )A .8B .9C .10D .117.如果函数()2f x x bx c =++对于任意实数t 都有()()22f t f t +=-,那么( )A .()()()214f f f <<B .()()()124f f f <<C .()()()421f f f <<D .()()()241f f f <<8.定义在R 上的偶函数()f x 满足对任意的[)()12120x x x x Î+¥¹,,,有()()21210f x f x x x --,且()20f =,则不等式()0xf x <的解集是( )A .()22-,B .()()202-+¥U ,,C .()()8202--U ,,D .()()22-¥-+¥U ,,二、多选题(每小题5分,共20分,全部选对得5分,选对但不全的得3分,有选错的得0分)9.定义运算()()a ab a b b a b ìï=íïî≥□<,设函数()12x f x -=□,则下列命题正确的有( )A .()f x 的值域为[)1+¥,B .()f x 的值域为(]01,C .不等式()()12f x f x +<成立的范围是()0-¥,D .不等式()()12f x f x +<成立的范围是()0+¥,10.关于函数()f x =的结论正确的是( )A .定义域、值域分别是[]13-,,[)0+¥,B .单调增区间是(]1-¥,C .定义域、值域分别是[]13-,,[]02,D .单调增区间是[]11-,11.函数()f x 是定义在R 上的奇函数,下列命题中是正确命题的是( )A .()00f =B .若()f x 在[)0+¥,上有最小值1-,则()f x 在(]0-¥,上有最大值1C .若()f x 在[)1+¥,上为增函数,则()f x 在(]1-¥-,上为减函数D .若0x >时,()22f x x x =-,则0x <时,()22f x x x =--12.关于函数()f x )A .函数是偶函数B .函数在()1-¥-,)上递减C .函数在()01,上递增D .函数在()33-,上的最大值为1三、填空题(每小题5分,共20分)13.已知函数()()f x g x ,分别由表给出,则()()2g f =________.x 123()f x 131()g x 32114.已知()f x 为R 上的减函数,则满足()11f f x öæç÷èø>的实数x 的取值范围为________.15.已知函数()f x 是奇函数,当()0x Î-¥,时,()2f x x mx =+,若()23f =-,则m 的值为________.16.符号[]x 表示不超过x 的最大整数,如[][]3.143 1.62=-=-,,定义函数:()[]f x x x =-,则下列说法正确的是________.①()0.80.2f -=;②当12x ≤<时,()1f x x -;③函数()f x 的定义域为R ,值域为[)01,;④函数()f x 是增函数,奇函数.四、解答题(共70分)17.(10分)已知一次函数()f x 是R 上的增函数,()()()g x f x x m =+,且()()165f f x x =+.(1)求()f x 的解析式.(2)若()g x 在()1+¥,上单调递增,求实数m 的取值范围.18.(12分)已知()()212021021 2.f x x f x x x x x +-ìï=+íï-î,<<,,≤<,,≥(1)若()4f a =,且0a >,求实数a 的值.(2)求32f öæ-ç÷èø的值.19.(12分)已知奇函数()q f x px r x =++(p q r ,,为常数),且满足()()5171224f f ==,.(1)求函数()f x 的解析式.(2)试判断函数()f x 在区间102æùçúèû,上的单调性,并用函数单调性的定义进行证明.(3)当102x æùÎçúèû,时,()2f x m -≥恒成立,求实数m 的取值范围.20.(12分)大气中的温度随着高度的上升而降低,根据实测的结果,上升到12km 为止,温度的降低大体上与升高的距离成正比,在12km 以上温度一定,保持在55-℃.(1)当地球表面大气的温度是a ℃时,在km x 的上空为y ℃,求a x y 、、间的函数关系式.(2)问当地表的温度是29℃时,3km 上空的温度是多少?21.(12分)已知函数()f x 是定义在[]11-,上的奇函数,且()11f =,对任意[]110a b a b Î-+¹,,,时有()()0f a f b a b++成立.(1)解不等式()1122f x f x öæ+-ç÷èø<.(2)若()221f x m am -+≤对任意[]11a Î-,恒成立,求实数m 的取值范围.22.(12分)已知函数()[](]2312324.x x f x x x ì-Î-ï=í-Îïî,,,,,(1)画出()f x 的图象.(2)写出()f x 的单调区间,并指出单调性(不要求证明).(3)若函数()y a f x =-有两个不同的零点,求实数a 的取值范围.第二章综合测试答案解析一、1.【答案】B【解析】选B .由10420x x +ìí-î>,≥,得12x -<≤.2.【答案】C【解析】选C .因为()222224f =+-=,所以()211115124416f f f öæööææ==-=÷çç÷ç÷ç÷èèøøèø.3.【答案】A【解析】选A .()32f x x x =+是R 上的奇函数,故()()f a f a -=-,所以()()0f a f a +-=.4.【答案】C【解析】选C .因为幂函数223aa y x --=是偶函数,且在()0+¥,上单调递减,所以2223023a a a z a a ì--ïÎíï--î<,,是偶数.解得1a =.5.【答案】B【解析】选B .因为()51255410f a b =++=,所以12556a b +=,所以()()51255412554642f a b a b -=--+=-++=-+=-.6.【答案】C【解析】选C .因为22211131f x x x x x x ööææ+=++=++ç÷ç÷èèøø,所以()21f x x =+(2x -≤或2x ≥),所以()233110f =+=.7.【答案】A【解析】选A .由()()22f t f t +=-,可知抛物线的对称轴是直线2x =,再由二次函数的单调性,可得()()()214f f f <<.8.【答案】B【解析】选B .因为()()21210f x f x x x --<对任意的[)()12120x x x x Î+¥¹,,恒成立,所以()f x 在[)0+¥,上单调递减,又()20f =,所以当2x >时,()0f x <;当02x ≤<时,()0f x >,又()f x 是偶函数,所以当2x -<时,()0f x <;当20x -<<时,()0f x >,所以()0xf x <的解集为()()202-+¥U ,,.二、9.【答案】AC【解析】选AC .根据题意知()10210xx f x x ìöæïç÷=íèøïî,≤,,>,()f x 的图象为所以()f x 的值域为[)1+¥,,A 对;因为()()12f x f x +<,所以1210x x x +ìí+î>≤,或2010x x ìí+î<>,所以11x x ìí-î<≤,或01x x ìí-î<>,所以1x -≤或10x -<<,所以0x <,C 对.10.【答案】CD【解析】选CD .由2230x x -++≥可得,2230x x --≤,解可得,13x -≤≤,即函数的定义域为[]13-,,由二次函数的性质可知,()[]22231404y x x x =-++=--+Î,,所以函数的值域为[]02,,结合二次函数的性质可知,函数在[]11-,上单调递增,在[]13,上单调递减.11.【答案】ABD【解析】选ABD .()f x 为R 上的奇函数,则()00f =,A 正确;其图象关于原点对称,且在对称区间上具有相同的单调性,最值相反且互为相反数,所以B 正确,C 不正确;对于D ,0x <时,()()()22022x f x x x x x --=---=+>,,又()()f x f x -=-,所以()22f x x x =--,即D 正确.12.【答案】ABD【解析】选ABD .函数满足()()f x f x -=,是偶函数;作出函数图象,可知在()1-¥-,,()01,上递减,()10-,,()1+¥,上递增,当()33x Î-,时,()()max 01f x f ==.三、13.【答案】1【解析】由题表可得()()2331f g ==,,故()()21g f =.14.【答案】()()01-¥+¥U ,,【解析】因为()f x 在R 上是减函数,所以11x,解得1x >或0x <.15.【答案】12【解析】因为()f x 是奇函数,所以()()223f f -=-=,所以()2223m --=,解得12m =.16.【答案】①②③【解析】()[]f x x x =-,则()()0.80.810.2f -=---=,①正确,当12x ≤<时,()[]1f x x x x =-=-,②正确,函数()f x 的定义域为R ,值域为[)01,,③正确,当01x ≤<时,()[]f x x x x =-=;当12x ≤<时,()1f x x =-,当0.5x =时,()0.50.5f =;当 1.5x =时,()1.50.5f =,则()()0.5 1.5f f =,即有()f x 不为增函数,由()()1.50.5 1.50.5f f -==,,可得()()1.5 1.5f f -=,即有()f x 不为奇函数,④错误.四、17.【答案】(1)由题意设()()0f x ax b a =+>.从而()()()2165f f x a ax b b a x ab b x =++=++=+,所以21655a ab ì=í+=î,,解得41a b =ìí=î,或453a b =-ìïí=-ïî,(不合题意,舍去).所以()f x 的解析式为()41f x x =+.(2)()()()()()()()414241g x f x x m x x m x m x m g x =+=++=+++,图象的对称轴为直线418m x +=-.若()g x 在()1+¥,上单调递增,则4118m +-≤,解得94m -≥,所以实数m 的取值范围为94öé-+¥÷êëø.18.【答案】(1)若02a <<,则()214f a a =+=,解得32a =,满足02a <<;若2a ≥,则()214f a a =-=,解得a =或a =,所以32a =或a =.(2)由题意,3311222f f f öööæææ-=-+=-ç÷ç÷ç÷èèèøøø1111212222f f ööææ=-+==´+=ç÷ç÷èèøø.19.【答案】(1)因为()f x 为奇函数,所以()()f x f x -=-,所以0r =.又()()5121724f f ì=ïïíï=ïî,即52172.24p q q p ì+=ïïíï+=ïî解得212p q =ìïí=ïî,,所以()122f x x x =+.(2)()122f x x x =+在区间102æùçúèû,上单调递减.证明如下:设任意的两个实数12x x ,,且满足12102x x <<≤,则()()()12121211222f x f x x x x x -=-+-()()()()21211212121214222x x x x x x x x x x x x ---=-+=.因为12102x x <<≤,所以2112121001404x x x x x x -->,<<,>,所以()()120f x f x ->,所以()122f x x x =+在区间102æùçúèû,上单调递减.(3)由(2)知()122f x x x =+在区间102æùçúèû,上的最小值是122f öæ=ç÷èø.要使当102x æùÎçúèû,时,()2f x m -≥恒成立,只需当102x æùÎçúèû,时,()min 2f x m -≥,即22m -≥,解得0m ≥即实数m 的取值范围为[)0+¥,.20.【答案】(1)由题意知,可设()0120y a kx x k -=≤≤,<,即y a kx =+.依题意,当12x =时,55y =-,所以5512a k -=+,解得5512a k +=-.所以当012x ≤≤时,()()5501212x y a a x =-+≤≤.又当12x >时,55y =-.所以所求的函数关系式为()55012125512.x a a x y x ì-+ï=íï-î,≤≤,,>(2)当293a x ==,时,()3295529812y =-+=,即3km 上空的温度为8℃.21.【答案】(1)任取[]121211x x x x Î-,,,<,()()()()()()()()1212121212f x f x f x f x f x f x x x x x +--=+-=-+-g 由已知得()()()12120f x f x x x +-+->,所以()()120f x f x -<,所以()f x 在[]11-,上单调递增,原不等式等价于112211121121x x x x ì+-ïïï-+íï--ïïî<,≤≤≤,所以106x ≤<,原不等式的解集为106öé÷êëø,.(2)由(1)知()()11f x f =≤,即2211m am -+≥,即220m am -≥,对[]11a Î-,恒成立.设()22g a ma m =-+,若0m =,显然成立;若0m ¹,则()()1010g g -ìïíïî≥≥,即2m -≤或2m ≥,故2m -≤或2m ≥或0m =.22.【答案】(1)由分段函数的画法可得()f x 的图象.(2)单调区间:[]10-,,[]02,,[]24,,()f x 在[]10-,,[]24,上递增,在[]02,上递减.(3)函数()y a f x =-有两个不同的零点,即为()f x a =有两个实根,由图象可得,当11a -<≤或23a ≤<时,()y f x =与y a =有两个交点,则a 的范围是(][)1123-U ,,.。

一年级上册数学训练题北师大

一年级上册数学训练题北师大

一年级上册数学训练题北师大一、填空题。

1. 15里面有()个十和()个一。

题目解析:15的十位是1,代表1个十;个位是5,代表5个一。

所以15里面有1个十和5个一。

2. 与19相邻的两个数是()和()。

题目解析:按照数的顺序,19前面的数是18,后面的数是20,所以与19相邻的两个数是18和20。

3. 在10 + 3 = 13中,10是()数,3是()数,13是()。

题目解析:在加法算式中,相加的两个数叫做加数,它们相加的结果叫做和。

所以10是加数,3是加数,13是和。

二、计算题。

1. 3+4 =.题目解析:这是简单的加法运算,3和4合起来就是7。

答案:7。

2. 9 5 =.题目解析:9里面去掉5,还剩下4。

答案:4。

3. 2+7+1 =.题目解析:按照从左到右的顺序计算,先算2 + 7 = 9,再算9+1 = 10。

答案:10。

三、比大小。

1. 5()8.题目解析:5比8小,所以填“<”。

2. 10()10.题目解析:10和10是相等的,所以填“=”。

3. 12()9.题目解析:12比9大,所以填“>”。

四、解决问题。

1. 树上有7只鸟,又飞来了3只,树上一共有多少只鸟?题目解析:原来树上有7只鸟,又飞来3只,求现在一共有多少只,就是把原来的7只和飞来的3只合起来,用加法计算。

列式为:7+3 = 10(只)。

答:树上一共有10只鸟。

2. 小明有5个苹果,小红比小明多3个,小红有多少个苹果?题目解析:小明有5个苹果,小红比小明多3个,求小红的苹果数,就是在小明苹果数的基础上加上多的3个。

列式为:5 + 3 = 8(个)。

答:小红有8个苹果。

(北师大版2019课标)高中数学必修第一册 第六章综合测试(含答案)

(北师大版2019课标)高中数学必修第一册 第六章综合测试(含答案)

第六章综合测试一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.某公司从代理的A ,B ,C ,D 四种产品中,按分层随机抽样的方法抽取容量为110的样本,已知A ,B ,C ,D 四种产品的数量比是2:3:2:4,则该样本中D 类产品的数量为( )A.22B .33C .40D .552.在抽查产品尺寸的过程中,将其尺寸分成若干组,[]a b ,是其中的一组.已知该组的频率为m ,该组上的频率分布直方图的高为h ,则a b -等于( ) A.mhB .h mC .m hD .m h +3.我市对上、下班交通情况作抽样调查,上、下班时间各抽取12辆机动车测其行驶速度(单位:km/h )如下表:则上、下班时间行驶时速的中位数分别为( ) A .28与28.5B .29与28.5C .28与27.5D .29与27.54.下列数据的70%分位数为( )20,14,26,18,28,30,24,26,33,12,35,22. A .14B .20C .28D .305.下列说法:①一组数据不可能有两个众数; ②一组数据的方差必须是正数;③将一组数据中的每一个数据都加上或减去同一常数后,方差不变;④在频率分布直方图中,每个小长方形的面积等于相应小组的频率.其中错误的个数为( ) A .0B .1C .2D .36.某校为了对初三学生的体重进行摸底调查,随机抽取了50名学生的体重(kg ),将所得数据整理后,画出了频率分布直方图,如图所示,体重在[]4550,内适合跑步训练,体重在[)5055,内适合跳远训练,体重在[]5560,内适合投掷相关方面训练,估计该校初三学生适合参加跑步、跳远、投掷三项训练的集训人数之比为( )A .4:3:1B .5:3:1C .5:3:2D .3:2:17.设有两组数据1x ,2x ,…,n x 与1y ,2y ,…,n y ,它们的平均数分别是x 和y ,则新的一组数据11231x y -+,22231x y -+,…,231n n x y -+的平均数是( )A .23x y -B .231x y -+C .49x y -D .491x y -+8.为了了解某校高三学生的视力情况,随机地抽查了该校100名高三学生的视力情况,得到频率分布直方图如图所示,由于不慎将部分数据丢失,但知道后5组频数和为62,设视力在4.6到4.8之间的学生数为a ,最大频率为0.32,则a 的值为( )A .64B .54C .48D .27二、多项选择题:本题共4小题,每小题5分,共20分,在每小题给出的选项中,有多项符合题目要求.全部选对得5分,部分选对得3分,有选错的得0分.9.对一个容量为N 的总体抽取容量为n 的样本,当选取抽签法抽样、随机数法抽样和分层随机抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为1p ,2p ,3p ,三者关系不可能是( ) A .123p p p =<B .231p p p =<C .132p p p =<D .123p p p ==10.现要完成下列3项抽样调查:①从10盒酸奶中抽取3盒进行食品卫生检查;②东方中学共有160名教职工,其中一般教师120名,行政人员16名,后勤人员24名.为了了解教职工对学校在校务公开方面的意见,拟抽取一个容量为20的样本. 抽样方法不合理的是( ) A .①抽签法,②分层随机抽样 B .①随机数法,②分层随机抽样C .①随机数法,②抽签法D .①抽签法,②随机数法11.甲、乙两人在一次射击比赛中各射靶5次,两人成绩的条形统计图如图所示,则以下四种说法中正确的是( )甲乙①甲的成绩的平均数等于乙的成绩的平均数 ②甲的成绩的中位数大于乙的成绩的中位数 ③甲的成绩的方差小于乙的成绩的方差 ④甲的成绩的极差等于乙的成绩的极差 A .①B .②C .③D .④12.某台机床加工的1 000只产品中次品数的频率分布如下表:次品数 0 1 2 3 4 频率0.50.20.050.20.05则次品数的众数、平均数不可能为( ) A .0,1.1B .0,1C .4,1D .0.5,2三、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.13.为了解篮球爱好者小李的投篮命中率与打篮球时间之间的关系,下表记录了小李某月1号到5号每天打篮球的时间x (单位:小时)与当天投篮命中率y 之间的关系:时间x 1 2 3 4 5 命中率y0.40.50.60.60.4小李这5天的平均投篮命中率为________.14.一个样本a ,3,5,7的平均数是b ,且a ,b 是方程2540x x ++=的两根,则这个样本的方差是________. 15.从甲、乙、丙三个厂家生产的同一种产品中各抽取8件产品,对其使用寿命(单位:年)跟踪调查结果如下:甲:3,4,5,6,8,8,8,10; 乙:4,6,6,6,8,9,12,13; 丙:3,3,4,7,9,10,11,12.三个厂家在广告中都称该产品的使用寿命是8年,请根据结果判断厂家在广告中分别运用了平均数、众数、中位数中的哪一种集中趋势的特征数:甲________,乙________,丙________.16.甲、乙两名射击运动员参加某大型运动会的预选赛,他们分别射击了5次,成绩如下表(单位:环):甲108999乙1010799如果甲、乙两人中只有1人入选,则入选的最佳人选应是________.四、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)某单位有2 000名职工,老年、中年、青年分布在管理、技术开发、营销、生产各部门中,如下表所示:人数管理技术开发营销生产总计老年40404080200中年80120160240600青年40160280720 1 200总计160320480 1 040 2 000(1)若要抽取40人调查身体状况,则应怎样抽样?(2)若要开一个25人的讨论单位发展与薪金调整方面的座谈会,则应怎样抽选出席人?18.(本小题满分12分)在学校开展的综合实践活动中,某班进行了小制作评比,作品上交时间为5月1日至30日,评委会把同学们上交作品的件数按5天一组分组统计,绘制了频率分布直方图(如图所示),已知从左到右各长方形的高的比为2:3:4:6:4:1,第三组的频数为12,请解答下列问题:(1)本次活动共有多少件作品参加评比?(2)哪组上交的作品数量最多?有多少件?(3)经过评比,第四组和第六组分别有10件、2件作品获奖,问这两组哪组获奖率高?19.(本小题满分12分)为了更好地进行精准扶贫,在某地区经过分层随机抽样得到本地区贫困人口收入的平均数(单位:万元/户)和标准差,如下表:求所抽样本的这30户贫困人口收入的平均数和方差.20.(本小题满分12分)甲、乙两位学生参加数学竞赛培训,现分别从他们的培训期间参加的若干次预赛成绩中随机抽取8次,记录如下:甲:82 81 79 78 95 88 93 84乙:92 95 80 75 83 80 90 85(1)指出甲、乙两位学生成绩的中位数;(2)现要从中选派一人参加数学竞赛,从平均状况和方差的角度考虑,你认为派哪位学生参加合适?请说明理由.21.(本小题满分12分)某电视台为宣传本省,随机对本省内15~65岁的人群抽取了n人,回答问题“本省内著名旅游景点有哪些”.统计结果如下图表所示.组号 分组回答正确的人数回答正确的人数占本组的频率第1组 [)1525,a0.5第2组 [)2535, 18x第3组 [)3545,b0.9 第4组 [)4555, 9 0.36第5组[]5565,3y(1)分别求出a ,b ,x ,y 的值;(2)从第2,3,4组回答正确的人中用分层随机抽样的方法抽取6人,求第2,3,4组每组各抽取多少人?22.(本小题满分12分)从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:质量指标值分组[)7585,[)8595,[)95105,[)105115,[]115125,频数62638228(1)在相应位置上作出这些数据的频率分布直方图;(2)估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代表).第六章综合测试答案解析一、 1.【答案】C【解析】根据分层随机抽样,总体中产品数量比与抽取的样本中产品数量比相等,∴样本中D 类产品的数量为4110402324⨯=+++.2.【答案】C【解析】在频率分布直方图中小长方形的高等于频率组距,所以m h a b =-,ma b h-=,故选C.3.【答案】D【解析】上班时间行驶速度的中位数是2830292+=,下班时间行驶速度的中位数是272827.52+=. 4.【答案】C【解析】把所给的数据按照从小到大的顺序排列可得:12,14,18,20,22,24,26,26,28,30,33,35, 因为有12个数据,所以1270%8.4⨯=,不是整数,所以数据的70%分位数为第9个数28. 5.【答案】C【解析】①错,众数可以有多个;②错,方差可以为0. 6.【答案】B【解析】体重在[)4550,内的频率为0.150.5⨯=,体重在[)5055,内的频率为0.0650.3⨯=,体重在[]5560,内的频率为0.0250.1⨯=,0.5:0.3:0.15:3:1=∵,∴可估计该校初三学生适合参加跑步、跳远、投掷三项训练的集训人数之比为5:3:1,故选B. 7.【答案】B【解析】设()23112i i i z x y i n =-+=,,…,,则 ()()()121212123111231m n n z z z z x x x y y y x y n n n n +++⎛⎫=+++=+++-++++=-+ ⎪⎝⎭…………. 8.【答案】B【解析】前两组中的频数为()1000.050.1116⨯+=.因为后五组频数和为62,所以前三组频数和为38.所以第三组频数为381622-=.又最大频率为0.32,故第四组频数为0.3210032⨯=.所以223254a =+=.故选B. 二、9.【答案】ABC【解析】在抽签法抽样、随机数法抽样和分层随机抽样中,每个个体被抽中的概率均为nN,所以123p p p ==.10.【答案】BCD【解析】①总体较少,宜用抽签法;②各层间差异明显,宜用分层随机抽样. 11.【答案】ABCD【解析】()15556965x =⨯++++=乙,()14567865x =⨯++++=甲,故甲的成绩的平均数等于乙的成绩的平均数;甲的成绩的中位数为6,乙的成绩的中位数为5,故甲大于乙;甲的成绩的方差为()221221225⨯⨯+⨯=,乙的成绩的方差为()2211331 2.45⨯⨯+⨯=;③正确,甲的成绩的极差为4,乙的成绩的极差等于4,④正确. 12.【答案】BCD【解析】数据i x 出现的频率为()12i p i n =,,…,,则1x ,2x ,…,n x 的平均数为1122n n x p x p x p +++….因此次品数的平均数为00.510.220.0530.240.05 1.1⨯+⨯+⨯+⨯+⨯=.由频率知,次品数的众数为0. 三、13.【答案】0.5【解析】小李这5天的平均投篮命中率0.40.50.60.60.40.55y ++++==.14.【答案】5【解析】2540x x ++=的两根是1,4. 当1a =时,a ,3,5,7的平均数是4, 当4b =时,a ,3,5,7的平均数不是1.1a =∴,4b =.则方差()()()()2222211434547454s ⎡⎤=⨯-+-+-+-=⎣⎦.15.【答案】众数 平均数 中位数【解析】甲、乙、丙三个厂家从不同角度描述了一组数据的特征.甲:该组数据8出现的次数最多;乙:该组数据的平均数46389121388x +⨯++++==;丙:该组数据的中位数是7982+=.16.【答案】甲【解析】9x =甲,9x =乙,212255s =⨯=甲,216655s ⨯=乙,甲的方差较小,故甲入选. 四、17.【答案】(1)解:不同年龄段的人的身体状况有所差异,所以应该按年龄段用分层随机抽样的方法来调查该单位的职工的身体状况,老年、中年、青年所占的比例分别为2001200010=,6003200010=,1200320005=,所以在抽取40人的样本中,老年人抽140410⨯=人,中年人抽3401210⨯=人,青年人抽取340245⨯=人;(2)解:因为不同部门的人对单位的发展及薪金要求有所差异,所以应该按部门用分层随机抽样的方法来确定参加座谈会的人员,管理、技术开发、营销、生产人数分别占的比例为1602200025=,3204200025=,4806200025=,104013200025=,所以在抽取25人出席座谈会中,管理人员抽225225⨯=人,技术开发人员抽425425⨯=人,营销人员抽625625⨯=人,生产人员抽13251325⨯=人.18.【答案】(1)解:依题意知第三组的频率为412346415=+++++,又因为第三组的频数为12,∴本次活动的参评作品数为126015=(件). (2)解:根据频率分布直方图,可以看出第四组上交的作品数量最多,共有66018234641⨯=+++++(件). (3)第四组的获奖率是105189=,第六组上交的作品数量为1603234641⨯=+++++(件),∴第六组的获奖率为2639=,显然第六组的获奖率高. 19.【答案】解:由表可知所抽样本的这30户贫困人口收入的平均数为101081.222.4 1.84303030⨯+⨯+⨯=(万元),这30户贫困人口收入的方差为()()()222222101281 1.2 1.8442 1.844 2.4 1.8411.2304303030⎡⎤⎡⎤⎡⎤+-++-++-=⎣⎦⎣⎦⎣⎦.20.【答案】(1)解:甲的中位数是83,乙的中位数是84.(2)解:派甲,理由是:甲的平均数是85,乙的平均数是85,甲的方差是35.5,乙的方差是41,甲成绩更稳定.21.【答案】(1)解:由频率表中第4组数据可知,第4组总人数为9250.36=, 再结合频率分布直方图可知251000.02510n ==⨯,1000.01100.55a =⨯⨯⨯=∴, 1000.03100.927b =⨯⨯⨯=,180.920x ==,30.215y ==. (2)解:第2,3,4组回答正确的共有54人,∴利用分层随机抽样在54人中抽取6人,每组分别抽取的人数为:第2组:186254⨯=(人),第3组:276354⨯=(人),第4组:96154⨯=(人). 22.【答案】(1)解:频率分布直方图如图:高中数学 必修第一册 11 / 11(2)解:质量指标值的样本平均数为800.06900.261000.381100.221200.08100x =⨯+⨯+⨯+⨯+⨯=. 质量指标值的样本方差为()()22222200.06100.2600.38100.22200.08104s =-⨯+-⨯+⨯+⨯+⨯=. 所以这种产品质量指标值的平均数的估计值为100,方差的估计值为104.。

北师大高中数学选择性必修第一册第三章空间向量与立体几何单元测试卷

北师大高中数学选择性必修第一册第三章空间向量与立体几何单元测试卷

北师大高中数学选择性必修第一册第三章空间向量与立体几何单元测试卷(原卷版)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知向量a=,b=,且a∥b,则t=()A.10B.-10C.4D.-42.在空间四边形ABCD中,=a,=b,=c,P在线段AD 上,且DP=2PA,Q为BC的中点,则=()A.-a+b+cB.a+b-cC.a-b+cD.a+b-c3.如图,在棱长为2的正方体ABCD-A1B1C1D1中,E为BC的中点,点P在底面ABCD上(包括边界)移动,且满足B1P⊥D1E,则线段B1P 的长度的最大值为()A. B.2C.2D.34.设x,y∈R,向量a=(x,1,1),b=(1,y,1),c=(2,-2,2),且a⊥c,b∥c,则|a+b|=()A.2B.3C. D.45.正四棱柱ABCD-A1B1C1D1中,底面边长为2,侧棱长为4,则点B1到平面AD1C的距离为()A. B.C.6.已知在正方体ABCD-A1B1C1D1中,P为线段C1D1上的动点,则直线BC1与直线AP所成角余弦值的范围是()A. B.C. D.7.如图,在三棱柱ABC-A1B1C1中,AA1⊥底面ABC,AA1=3,AB =AC=BC=2,则AA1与平面AB1C1所成角的大小为()A.30°B.45°C.60°D.90°8.已知四棱锥P-ABCD中,=(4,-2,3),=(-4,1,0),=(-6,2,-8),则点P到底面ABCD的距离为()A. B.C.1D.2二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.下列说法错误的是()A.任何三个不共线的向量可构成空间向量的一组基B.空间的基有且仅有一组C.两两垂直的三个非零向量可构成空间的一组基D.基{a,b,c}中基向量与基{e,f,g}基向量对应相等10.若a=(1,λ,2),b=(2,-1,2),则下列λ的值中使a,b的夹角的余弦值为的有()A.2B.-2C. D.-11.将正方形ABCD沿对角线BD折成直二面角A-BD-C,则下列结论正确的是()A.AC⊥BDB.△ACD是等边三角形C.AB与平面BCD所成的角为90°D.AB与CD所成的角为30°12.一只小球放入一长方体容器内,且与共点的三个面相接触.若小球上一点到这三个面的距离分别为4,5,5,则这只小球的半径可以是()A.3B.5C.8D.11三、填空题:本题共4小题,每小题5分,共20分.13.在正四面体PABC中,棱长为2,且E是棱AB中点,则的值为1.14.四面体ABCD的每条棱长都等于2,点E,F分别为棱AB,AD的中点,则-1;-1.15.在矩形ABCD中,AB=4,BC=3,沿对角线AC把矩形折成二面角D-AC-B的平面角为60°,则|BD|=-1.16.如图,已知平面四边形ABCD,AB=BC=3,CD=1,AD=,∠ADC=90°.沿直线AC将△ACD翻折成△ACD',直线AC与BD'所成角的余弦的最大值是-1.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)已知向量a=(1,-3,2),b=(-2,1,1),点A(-3,-1,4),B(-2,-2,2).(1)求|2a+b|;(2)在直线AB上,是否存在一点E,使得⊥b?(O为原点)18.(12分)已知直三棱柱ABC-A1B1C1中,△ABC为等腰直角三角形,∠BAC=90°,且AB=AA1,D,E,F分别为B1A,C1C,BC的中点.(1)求证:直线DE∥平面ABC;(2)求B1E与平面AB1F所成角的正弦值.19.(12分)如图,四棱锥P-ABCD中,侧面P AD是边长为2的等边三角形且垂直于底面ABCD,AB=BC=AD,∠BAD=∠ABC=90°,E是PD的中点.(1)证明:直线CE∥平面PAB;(2)点M在棱PC上,且直线BM与底面ABCD所成角为45°,求二面角M-AB-D的余弦值.20.(12分)如图,四边形ABCD为菱形,∠ABC=120°,E,F是平面ABCD同一侧的两点,BE⊥平面ABCD,DF⊥平面ABCD,BE=2DF,AE⊥EC.(1)证明:平面AEC⊥平面AFC;(2)求直线AE与直线CF所成角的余弦值.21.(12分)如图,边长为2的正方形ABCD所在的平面与半圆弧所在平面垂直,M是上异于C,D的点.(1)证明:平面AMD⊥平面BMC;(2)当三棱锥M-ABC体积最大时,求平面MAB与平面MCD所成二面角的正弦值.22.(12分)如图,三棱柱ABC-A1B1C1中,AB⊥侧面BB1C1C,已知∠BCC1=,BC=1,AB=C1C=2,点E是棱C1C的中点.(1)求证:C1B⊥平面ABC;(2)求二面角A-EB1-A1的余弦值;(3)在棱CA上是否存在一点M,使得EM与平面A1B1E所成角的正弦值为,若存在,求出的值;若不存在,请说明理由.北师大高中数学选择性必修第一册第三章空间向量与立体几何单元测试卷(解析版)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知向量a=,b=,且a∥b,则t=(D)A.10B.-10C.4D.-4解析:因为a=(3,-1,2),b=(-6,2,t),且a∥b,则a=λb,即(3,-1,2)=λ(-6,2,t)=(-6λ,2λ,tλ),由相等向量可知解得故选D.2.在空间四边形ABCD中,=a,=b,=c,P在线段AD 上,且DP=2PA,Q为BC的中点,则=(A)A.-a+b+cB.a+b-cC.a-b+cD.a+b-c解析:由DP=2PA,则a,()=b+c,所以a+b+C.故选A.3.如图,在棱长为2的正方体ABCD-A1B1C1D1中,E为BC的中点,点P在底面ABCD上(包括边界)移动,且满足B1P⊥D1E,则线段B1P 的长度的最大值为(D)A. B.2C.2D.3解析:以D为原点,DA所在直线为x轴,DC所在直线为y轴,DD1所在直线为z轴,建立如图所示的空间直角坐标系,设P(a,b,0),则D1(0,0,2),E(1,2,0),B1(2,2,2),=(a-2,b-2,-2),=(1,2,-2),∵B1P⊥D1E,∴=a-2+2(b-2)+4=0,∴a+2b-2=0,0≤b≤1,∴点P的轨迹是一条线段,2=(a-2)2+(b-2)2+4=(2b)2+(b-2)2+4=5b2-4b+8,由二次函数的性质可得当b=1时,5b2-4b+8可取到最大值9,∴线段B1P的长度的最大值为3.故选D.4.设x,y∈R,向量a=(x,1,1),b=(1,y,1),c=(2,-2,2),且a⊥c,b∥c,则|a+b|=(C)A.2B.3C. D.4解析:∵a⊥c,∴a·c=2x-2+2=0,得x=0,又∵b∥c,则,得y=-1,∴a=(0,1,1),b=(1,-1,1),∴a+b=(0,1,1)+(1,-1,1)=(1,0,2),∴|a+b|=.故选C.5.正四棱柱ABCD-A1B1C1D1中,底面边长为2,侧棱长为4,则点B1到平面AD1C的距离为(A)A. B.C.解析:以D为坐标原点,的方向为x,y,z轴正方向,建立空间直角坐标系,则A(2,0,0),C(0,2,0),D1(0,0,4),B1(2,2,4),则=(-2,2,0),=(-2,0,4),=(-2,-2,0).设平面AD1C的一个法向量为n=(x,y,z),则取z=1,则x=y=2,所以n=(2,2,1),所以点B1到平面AD1C的距离d=,故选A.6.已知在正方体ABCD-A1B1C1D1中,P为线段C1D1上的动点,则直线BC1与直线AP所成角余弦值的范围是(A)A. B.C. D.解析:设正方体ABCD-A1B1C1D1的棱长为1,以DA,DC,DD1所在直线分别为x轴,y轴,z轴建立空间直角坐标系,则有A(1,0,0),B(1,1,0),C1(0,1,1).设P(0,t,1)(0≤t≤1),则=(-1,t,1),=(-1,0,1),所以cos<>==.又因为0≤t≤1,所以≤cos<>≤1.故选A.7.如图,在三棱柱ABC-A1B1C1中,AA1⊥底面ABC,AA1=3,AB =AC=BC=2,则AA1与平面AB1C1所成角的大小为(A)A.30°B.45°C.60°D.90°解析:取AB的中点D,连接CD,以AD所在直线为x轴,以CD 所在直线为y轴,以平行于BB1的直线为z轴,建立空间直角坐标系,可得A(1,0,0),A1(1,0,3),故=(1,0,3)-(1,0,0)=(0,0,3),而B1(-1,0,3),C1(0,,3),设平面AB1C1的一个法向量为m=(a,b,c),根据m·=0,m·=0,取c=2,解得m=(3,-,2),则cos<m,.故AA1与平面AB1C1所成角的大小为30°,故选A.8.已知四棱锥P-ABCD中,=(4,-2,3),=(-4,1,0),=(-6,2,-8),则点P到底面ABCD的距离为(D)A. B.C.1D.2解析:设n=(x,y,z)是平面ABCD的一个法向量,则由题设即令x=1,得即n=,由于n·=-6+8-,|n|=,=2,所以|cos<n,,故点P到平面ABCD的距离d=·|cos<n,>|=2=2,故选D.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.下列说法错误的是(ABD)A.任何三个不共线的向量可构成空间向量的一组基B.空间的基有且仅有一组C.两两垂直的三个非零向量可构成空间的一组基D.基{a,b,c}中基向量与基{e,f,g}基向量对应相等解析:A项中应是不共面的三个向量构成空间向量的基,所以A错误;B项空间基有无数组,所以B错误;C项符合空间向量基的定义,故C正确;D项中因为基不唯一,所以D错误.故选ABD. 10.若a=(1,λ,2),b=(2,-1,2),则下列λ的值中使a,b的夹角的余弦值为的有(BC)A.2B.-2C. D.-解析:a·b=2-λ+4=6-λ=×3×.解得λ=-2或.故选BC.11.将正方形ABCD沿对角线BD折成直二面角A-BD-C,则下列结论正确的是(AB)A.AC⊥BDB.△ACD是等边三角形C.AB与平面BCD所成的角为90°D.AB与CD所成的角为30°解析:如图,取BD的中点O,连接AO,CO,AC,则AO⊥BD,CO⊥BD.又AO∩CO=O,∴BD⊥平面AOC,又AC⊂平面AOC,∴AC⊥BD,A中结论正确;∵AC=AO=AD=CD,∴△ACD是等边三角形,B中结论正确;∵AO⊥平面BCD,∴∠ABD是AB与平面BCD所成的角,为45°,C中结论错误;,不妨设AB=1,则=()2=+2+2+2,∴1=1+2+1+2+2+2cos<>,∴cos<,∴<>=60°,即AB与CD所成的角为60°,D中结论错误.故选AB.12.一只小球放入一长方体容器内,且与共点的三个面相接触.若小球上一点到这三个面的距离分别为4,5,5,则这只小球的半径可以是(AD)A.3B.5C.8D.11解析:如图,设长方体的三个面共点为O,以OE,OF,OG所在直线分别为x轴、y轴、z轴建立空间直角坐标系,因为小球与共点的三个面相接触,所以设球心A(r,r,r),因为小球上一点P到三个面的距离分别为4,5,5,所以设点P(4,5,5),则=(r,r,r),=(4,5,5),由=(4-r,5-r,5-r),∴2=(4-r)2+(5-r)2+(5-r)2=r2,即r2-14r+33=0,解得r=3或r=11,故选AD.三、填空题:本题共4小题,每小题5分,共20分.13.在正四面体PABC中,棱长为2,且E是棱AB中点,则的值为-1.解析:由题意,设=a,=b,=c,建立空间的一组基{a,b,c},在正四面体中(a+b),=c-b,所以(a+b)·(c-b)=(a·c-a·b+b·c-b2)=(2×2cos60°-2×2cos60°+2×2cos60°-2×2)=-1.14.四面体ABCD的每条棱长都等于2,点E,F分别为棱AB,AD的中点,则;.解析:如图,设BD的中点为G,连接CG,AG.由题可知该四面体为正四面体,所以三角形ABD,三角形BCD为正三角形,所以AG⊥BD,CG⊥BD,因为CG,AG⊂平面ACG,且CG∩AG=G,所以BD⊥平面ACG.因为AC⊂平面ACG,所以BD⊥AC.因为点E,F分别为棱AB,AD的中点,所以EF∥BD,且EF=BD=1,所以AC⊥EF.所以2=()2=+2=4+1+0=5,所以,因为,所以.15.在矩形ABCD中,AB=4,BC=3,沿对角线AC把矩形折成二面角D-AC-B的平面角为60°,则|BD|=.解析:分别过B,D两点作DE⊥AC,BF⊥AC,垂足为E,F,如图所示,可求出,=5-2×.沿对角线AC把矩形折成二面角D-AC-B的平面角为60°时,则2=2+2+2+2+2+2×2++0+0+2××cos,∴.16.如图,已知平面四边形ABCD,AB=BC=3,CD=1,AD=,∠ADC=90°.沿直线AC将△ACD翻折成△ACD',直线AC与BD'所成角的余弦的最大值是.解析:设过点B,D'作BB1,D'D1分别与AC垂直,垂足为B1,D1,设二面角B-AC-D'的大小为θ(0<θ≤π),则有,,,,2=()2=+0+0+2××(-cos θ)=9-5cosθ,又=()·××cos∠ACD'-××cos∠ACB=1×-3×=1-3=-2.所以直线AC与BD'所成角的余弦值为|cos<=,当θ=0,即cosθ=1时,直线AC与BD'所成角的余弦值最大,最大值是.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)已知向量a=(1,-3,2),b=(-2,1,1),点A(-3,-1,4),B(-2,-2,2).(1)求|2a+b|;(2)在直线AB上,是否存在一点E,使得⊥b?(O为原点)解:(1)2a+b=(2,-6,4)+(-2,1,1)=(0,-5,5),故|2a+b|==5.(2)假设存在点E,设,则=(-3,-1,4)+t(1,-1,-2)=(-3+t,-1-t,4-2t),若⊥b,则·b=0,所以-2(-3+t)+(-1-t)+(4-2t)=0,解得t=,因此存在点E,使得⊥b,此时E点坐标为E.18.(12分)已知直三棱柱ABC-A1B1C1中,△ABC为等腰直角三角形,∠BAC=90°,且AB=AA1,D,E,F分别为B1A,C1C,BC的中点.(1)求证:直线DE∥平面ABC;(2)求B1E与平面AB1F所成角的正弦值.解:(1)证明:如图,设AB的中点为G,连接DG,CG,则DG∥AA1∥EC,且DG=AA1=EC.四边形DGCE为平行四边形,∴DE∥GC,又DE⊄平面ABC,GC⊂平面ABC,∴DE∥平面ABC.(2)以点A为坐标原点,的方向为x,y,z轴的正方向建立如图所示的空间直角坐标系,设AB=2,则A(0,0,0),B1(2,0,2),B(2,0,0),C(0,2,0),E(0,2,1),F(1,1,0),=(2,0,2),=(1,1,0),=(-2,2,-1),设平面AB1F的一个法向量n=(x,y,z),则令x=1,则n=(1,-1,-1).设B1E与平面AB1F所成的角为θ,∴sinθ=.19.(12分)如图,四棱锥P-ABCD中,侧面P AD是边长为2的等边三角形且垂直于底面ABCD,AB=BC=AD,∠BAD=∠ABC=90°,E是PD的中点.(1)证明:直线CE∥平面PAB;(2)点M在棱PC上,且直线BM与底面ABCD所成角为45°,求二面角M-AB-D的余弦值.解:(1)证明:取PA中点F,连接EF,BF.因为E为PD的中点,所以EF∥AD,EF=AD,由∠BAD=∠ABC=90°得BC∥AD,又BC=AD,所以EF BC,四边形BCEF为平行四边形,CE∥BF.又BF⊂平面PAB,CE⊄平面PAB,故CE∥平面PAB.(2)由已知得BA⊥AD,以A为坐标原点,的方向为x轴正方向,建立如图所示的空间直角坐标系A-xyz,则A(0,0,0),B(1,0,0),C(1,1,0),P(0,1,),=(1,0,-),=(1,0,0),设M(x,y,z),则=(x-1,y,z),=(x,y-1,z-),因为BM与底面ABCD所成的角为45°,而n=(0,0,1)是底面ABCD的一个法向量,所以=sin45°,,即(x-1)2+y2-z2=0.①又M在棱PC上,设=λ,则x=λ,y=1,z=λ.②由①②得(舍去)或所以M,从而设m=(x0,y0,z0)是平面ABM的一个法向量,则即所以可取m=(0,-,2).于是cos<m,n>=.因此二面角M-AB-D的余弦值为.20.(12分)如图,四边形ABCD为菱形,∠ABC=120°,E,F是平面ABCD同一侧的两点,BE⊥平面ABCD,DF⊥平面ABCD,BE=2DF,AE⊥EC.(1)证明:平面AEC⊥平面AFC;(2)求直线AE与直线CF所成角的余弦值.解:(1)证明:如图,连接BD,设BD∩AC=G,连接EG,FG,EF.在菱形ABCD中,不妨设GB=1.由∠ABC=120°,可得AG=GC=.由BE⊥平面ABCD,AB=BC,可知AE=EC.又AE⊥EC,所以EG=,且EG⊥AC.在Rt△EBG中,可得BE=,故DF=.在Rt△FDG中,可得FG=.在直角梯形BDFE中,由BD=2,BE=,DF=,可得EF=.从而EG2+FG2=EF2,所以EG⊥FG.又AC∩FG=G,可得EG⊥平面AFC.因为EG⊂平面AEC,所以平面AEC⊥平面AFC.(2)如图,以G为坐标原点,分别以的方向为x轴、y轴的正方向,建立空间直角坐标系G-xyz.由(1)可得A(0,-,0),E(1,0,),F,C(0,,0),所以=(1,),.故cos<.所以直线AE与直线CF所成角的余弦值为.21.(12分)如图,边长为2的正方形ABCD所在的平面与半圆弧所在平面垂直,M是上异于C,D的点.(1)证明:平面AMD⊥平面BMC;(2)当三棱锥M-ABC体积最大时,求平面MAB与平面MCD所成二面角的正弦值.解:(1)证明:由题设知,平面CMD⊥平面ABCD,交线为CD.因为BC⊥CD,BC⊂平面ABCD,所以BC⊥平面CMD,故BC⊥DM.因为M为上异于C,D的点,且DC为直径,所以DM⊥CM.又BC∩CM=C,所以DM⊥平面BMC.而DM⊂平面AMD,故平面AMD⊥平面BMC.(2)以D为坐标原点,的方向为x轴正方向,建立如图所示的空间直角坐标系D-xyz.当三棱锥M-ABC体积最大时,M为的中点.由题设得D(0,0,0),A(2,0,0),B(2,2,0),C(0,2,0),M(0,1,1),=(-2,1,1),=(0,2,0),=(2,0,0).设n=(x,y,z)是平面MAB的一个法向量,则即可取n=(1,0,2).又=(2,0,0)是平面MCD的一个法向量,因此cos<n,,sin<n,.所以平面MAB与平面MCD所成二面角的正弦值是.22.(12分)如图,三棱柱ABC-A1B1C1中,AB⊥侧面BB1C1C,已知∠BCC1=,BC=1,AB=C1C=2,点E是棱C1C的中点.(1)求证:C1B⊥平面ABC;(2)求二面角A-EB1-A1的余弦值;(3)在棱CA上是否存在一点M,使得EM与平面A1B1E所成角的正弦值为,若存在,求出的值;若不存在,请说明理由.解:(1)证明:由题意,因为BC=1,CC1=2,∠BCC1=,∴BC1=,∴BC2+B,∴BC1⊥BC,∵AB⊥侧面BB1C1C,BC1⊂侧面BB1C1C,∴AB⊥BC1.又∵AB∩BC=B,AB,BC⊂平面ABC,∴直线C1B⊥平面ABC.(2)以B为原点,分别以和的方向为x,y和z轴的正方向建立如图所示的空间直角坐标系,则有A(0,0,2),B1(-1,,0),E,A1,设平面AB1E的一个法向量为n=(x1,y1,z1),=(-1,,-2),.∵∴令y1=,则x1=1,∴n=(1,,1).设平面A1B1E的一个法向量为m=(x,y,z),=(0,0,-2),,∵令y=,则x=1,∴m=(1,,0),∵|m|=2,|n|=,m·n=4,∴cos<m,n>=.设二面角A-EB1-A1为α,由m,n的方向知cosα=cos<m,n>=.∴二面角A-EB1-A1的余弦值为.(3)假设存在点M,设M,=λ,λ∈[0,1],∴(x-1,y,z)=λ(-1,0,2),∴M(1-λ,0,2λ),∴,∵平面A1B1E的一个法向量为m=(1,,0),∴,得69λ2-38λ+5=0.即(3λ-1)(23λ-5)=0,∴λ=或λ=,∴存在这样的点M,或.。

北师大版数学一年级上学期期末试卷

北师大版数学一年级上学期期末试卷

小学数学(北师大版)水平测试卷一年级第一册期末测试(命题人:)题号一二三四五六总计分数26 16 8 10 12 28 100得分一、我会填:(26分)1、18=9+()()-7=82、个位上是0,十位上是2,这个数是()3、1个十和5个一组成的数是()4、13里面有()个十和()个一。

5、18减去()与8同样多。

6、与10相邻的两个数是()和()7、按要求做一做。

(5分)(1)一共有()个水果,从左边数排在第()位,从右边数排第()位。

(2)把左边的一个涂上颜色,右边的一个圈起来。

8、9、按规律填数。

6 1010、看图填一填有()个有()个有()个有()个二、比一比,画一画。

(16分)1、(6分)画△比少2个画○比多4个2、长的画√,短的画○(2分)3、画珠子(2分)十位个位1 24、最重的画“√”,最轻的画“○”。

(6分)三、连线(8分)四、我会分。

(10分)1、按颜色分:2、按形状分:五、我会算。

(12分)1、计算。

(8分)17-8=16-9=13+6=10-6=10-6+9=9+7-5=5+3+7=14-5-4=2、在○里填上“>”、“<”或“=”.(4分)10-2○7 7+6○14 9○3+5 11+7○18 六、我能解答。

(28分,前4题各5分,第5题8分)8:30 8:007:00 2时30分====(1)?个 19个(3)花园的草地上有3只,又来了7只,现在一共有几只?(4)笑笑原来有4朵小红花,语文老师给她奖励了6朵,数学老师又给她奖励了7朵,现在笑笑一共有几朵小红花?(5)看图提出一个数学问题,并列式解答。

(10分)①问题:②解答: 参考答案:一、我会填:1、19,15;2、20;3、15;4、1,3;5、10,;6、9,11;7、5,4,2;涂梨子,圈桃子;8、上,下,上下;9、2,4,8,12;10、3,1,2,1二、比一比,画一画。

1、△△△△△△○○○○○○○○○○○○2、第一条画√,第二条画○3、十位画一个圈,个位画两个圈。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四单元测试题
一、写一写,读一读。

写作:写作:写作:
读作:读作:读作:
()个十和()个一()个十和()个一
写作:写作:
读作:读作:
二、填一填。

里面有( )个十和( )个一。

个里和6个一是( )。

3.十位上是8,个位上是0,这个数是( )。

个十和7个一是( )。

个一是( ),100里面有( )个十。

前面的一个数是( ),后面的两个数是( )、( )。

7.从右边起,第一位是()位,第二位是(),第三位是()。

8.68里面的"6"在()位上,表示()个();"8"在()位上,表示()个()。

三、按顺序填数。

四、比一比。

28○2781○9191○89
39○93 74○47 67○76
69+1○70 79+1○80-1
五、分一分。

六、算一算。

20+3= 46-40= 39+1= 5+70= 78-8= 90-1= 27-20= 49+1= 69-9= 6+50= 9+30= 40-1=
七、解决问题。

1、小红跳了37下,小男孩跳的比小红多一些,小女孩跳的比小红多得多。

男孩可能跳了多少下(画“√”) 女孩可能跳了多少下(画“√”)
2、
吃了8个
还有20个 个
原来有多少个苹果
□○□=□(个)
答:原来有( )个苹果。

3、
有76条,给小明买走了6条黄瓜,还剩多少条黄瓜
□○□=□(条)
答:还剩( )条黄瓜。

42 8 85 35 42 85。

相关文档
最新文档