Ch 24 Mineral Assemblages

合集下载

外文翻译原文science 2

外文翻译原文science 2

/locate/rggThe stages and duration of formation of gold mineralizationat copper-skarn deposits (Altai–Sayan folded area )I.V. Gaskov *, A.S. Borisenko, V.V. Babich, E.A. NaumovV.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences,prosp. Akad. Koptyuga 3, Novosibirsk, 630090, RussiaReceived 20 March 2009; accepted l6 November 2009AbstractGold mineralization at copper-skarn deposits (Tardanskoe, Murzinskoe, Sinyukhinskoe, Choiskoe) in the Altai–Sayan folded area is related to different hydrothermal-metasomatic formations. It was produced at 400–150 ºC in several stages spanning 5–6 Myr, which determined the diversity of its mineral assemblages. Gold mineralization associated with magnetite bodies is spatially correlated with magnesian and calcareous skarns, whereas gold mineralization in crushing zones and along fault sutures in moderate- and low-temperature hydrothermal-metasomatic rocks (propylites, beresites, serpentinites, and argillizites) is of postskarn formation. Different stages were manifested with different intensities at gold deposits. For example, the Sinyukhinskoe deposit abounds in early high-temperature mineral assemblages; the Choiskoe deposit, in low-temperature ones; and the Tardanskoe and Murzinskoe deposits are rich in both early and late gold minerals. Formation of commercial gold mineralization at different copper-skarn deposits is due to the combination of gold mineralization produced at different stages as a result of formation of intricate igneous complexes (Tannu-Ola, Ust’-Belaya, and Yugala) composed of differentiated rocks from gabbros to granites.© 2010, V.S. Sobolev IGM, Siberian Branch of the RAS. Published by Elsevier B.V. All rights reserved.Keywords: gold mineralization; skarns, copper-skarn deposits; hydrothermal-metasomatic formationsIntroductionRecent data on the isotope geology and geochronology of rocks and ores and geological data on the ore genesis gaps proved that ore deposits formed for a much longer time than was assumed earlier (Rundkvist, 1997). This is also true for commercial gold mineralization at many Cu-skarn deposits in the Altai–Sayan folded area (ASFA).Gold-containing Cu-skarn deposits are widespread in many ore districts of the ASFA: Gorny Altai (Sinyukhinskoe,Murzinskoe, Choiskoe), Kuznetsk Alatau (Natal’evskoe, Fe-dorovskoe), Gornaya Shoria (Maisko-Lebedskoe), and Tuva (Tardanskoe, Khopto). Most of them are commercial deposits (Fig. 1).Skarn formation processes at these deposits were related to the Early and Middle Paleozoic granitoid magmatism in the Tannu-Ola (eastern Tuva), Yugala (Sinyukha, northeastern Altai), and Ust’-Belaya (northwestern Altai) intrusive com-plexes (Gusev, 2007; Shokalsky et al., 2000). Formation of commercial gold mineralization was a longer and more intricate process (Gaskov, 2008). In most part of these deposits, gold mineralization is the product of multistage ore process, which is characterized by different mineral composi-tions and spatial occurrences. Almost all these deposits bear gold mineralization spatially and genetically related to skarns and aposkarns in assemblage with magnetite and sulfides (Korobeinikov and Matsyushevskii, 1976; Korobeinikov and Zotov, 2006; Korobeinikov et al., 1987; Vakhrushev, 1972)and gold mineralization isolated from skarns and represented by sulfide-containing (pyrite, chalcopyrite, bornite, chalcocite)hydrothermal products of moderate-temperature assemblage in crushing zones (Shcherbakov, 1974). Often, the deposits also bear epithermal gold-containing assemblage with low-tem-perature sulfides, tellurides, and selenides usually developed at the final stage of mineral formation in rocks of different compositions, including sedimentary, igneous, and skarn (Gas-kov, 2008; Gaskov et al., 2005).The recently obtained ages of ore formation products and igneous rocks (Gaskov, 2008; Rudnev et al., 2004, 2006;Shokalsky et al., 2000) provide a new concept of the sequence of ore formation and its duration and relation with multiphasemagmatism.Russian Geology and Geophysics 51 (2010) 1091–1101*Corresponding author.E-mail address : gaskov@uiggm.nsc.ru (I.V. Gaskov)doi:10.1016/j.rgg.2010.0.0011068-7971/$-see front matter D 2010, IG M, Siberian Branch of the RAS.Published by E lsevier B.V .All rights reserved.V S. .Sabolev 9Let us dwell on the specific features of gold mineralization at particular deposits.Gold mineralization at Cu-skarn depositsThe Tardanskoe deposit is localized in the zone of the Kaa-Khem deep fault, in the exocontact part of the Kopto-Baisyut gabbro-diorite-plagiogranite massif (Fig. 2) (Korobe-inikov and Zotov, 2006; Korobeinikov et al., 1987). At the massif contact, Lower Cambrian volcanogenic-carbonate de-posits are transformed into magnesian and calcareous skarns described in detail earlier (Korobeinikov, 1999; Korobeinikov and Matsyushevskii, 1976; Korobeinikov et al., 1997). The skarn bodies are spatially close to aposkarn metasomatites bearing actinolite, tremolite, epidote, serpentine, chlorite, talc,quartz, carbonate, magnetite, and hematite.Gold mineralization at the deposit is of two types: (1) in skarn-magnetite rocks and (2) in metasomatites of linear crushing zones. These types have specific mineralogical and geochemical features.Gold mineralization in skarn-magnetite ores is widespread at the deposit. It is described elsewhere (Korobeinikov and Matsyushevskii, 1976; Korobeinikov and Zotov, 2006; Koro-beinikov et al., 1987; Kudryavtseva, 1969). Gold is spatially related to areas of sulfide mineralization, and its contents are in direct correlation with the amount of sulfide minerals.Gold-sulfide mineralization is extremely unevenly distributed and is localized at the sites of magnetite ores that underwent cataclasis as well as in magnetite microcracks and interstices.The total amount of sulfides (pyrite, chalcopyrite, bornite, and scarcer sphalerite, pyrrhotite, and arsenopyrite) is 1–3%. Gold occurs as fine thin (0.3–0.01 mm) native segregations. This is mainly high-fineness gold (820–990) (Fig. 3, a ) with impuri-ties of silver (up to 13.6%) and copper (up to 5.07%).According to Korobeinikov (1999) and Korobeinikov and Matsyushevskii (1976), the temperatures of formation of magnetite ores were 430–550 ºC, whereas the gold-sulfide assemblage and the hosting metasomatites (actinolite, tre-molite, serpentine, talc) were produced at 250–320 ºC (Gaskov et al., 2005; Vakhrushev, 1972).Gold mineralization in crushing zones is localized in steeply dipping linear tectonic structures of NW, NE, and NS strikes (Fig. 2), which develop after different rocks, including volcanosedimentary, igneous, and skarn ones. These zones reach several hundred meters in length and few tens of meters in width. The petrographic composition of these zones is di-verse and depends mainly on the composition of initial rocks that underwent transformation later. The rocks are metaso-matic, close in composition to propylites, listwaenites, talc-containing and sericite-quartz metasomatites, and beresite-like rocks. Almost each type of hydrothermal-metasomatic rocks is intimately associated with ore minerals. Though the total volume of these minerals does not exceed 3–5%, they are extremely diverse in composition and are extremely unevenly distributed. Along with sulfide minerals typical of Cu-skarn deposits (chalcopyrite, pyrite, bornite, chalcocite,digenite, sphalerite, galena), the mineralized zones of the deposit abound in tellurides—hessite (Ag 2Te), tellurobis-muthite (Bi 2Te 3), and tetradymite (Bi 2Te 2S),—and low-tem-perature Co and Ni sulfides and sulfoarsenides (Table 1). The latter have a variable composition and often consist of intermediate phases of continuous mineral series, e.g., allo-clasite(CoAsS)–arsenopyrite(FeAsS) or siegenite(CoNi 2S 4)–violarite(FeNi 2S 4).Gold occurs mainly as native fine thin (0.01–0.5 mm)disseminations in rock microcracks and as inclusions in pyrite,chalcopyrite, and bornite. The gold fineness varies over a broad range of values—from 440 to 820 (Fig. 3, b ). The lowest-fineness gold segregations are compositionally similar to electrum and have high contents of Ag (up to 54.78%) and Hg impurity (up to 3.65%).On the flanks of mineralized crushing zones, there is sometimes gold mineralization in low-temperature argillitized rocks of chlorite-kaolinite-carbonate-hydromica composition.This gold is of low fineness (no more than 600). The mainimpurities are Ag (20–66%) and Hg (up to 5.47%). The formation temperatures of sulfide-telluride assemblages andFig. 1. Schematic occurrence of gold-bearing Cu-skarn deposits in the Altai-Sayan folded area: 1, Murzinskoe; 2, Sinyukhinskoe; 3, Choiskoe; 4, Maisko-Lebedskoe;5, Fedorovskoe; 6, Natal’evskoe; 7, Tardanskoe; 8, Kopto.1092I.V. Gaskov et al. / Russian Geology and Geophysics 51 (2010) 1091–1101gold mineralization in metasomatites and argillitized rocks are within 200–75 ºC.The Murzinskoe deposit is localized at the contact of a small stock-like granodiorite body of the Ust’-Belaya gabbro-diorite complex (Fig. 4). In the exocontact zone, calcareous skarns composed of garnet, pyroxene, wollastonite, and mag-netite develop after the calcareous sandstones of the Murzinka Formation (D1-2). In the local zones, there are aposkarnFig. 2. Schematic geologic structure of the Tardanskoe deposit (compiled after the data of K.M. Kil’chichakov and L.V. Kopylova and our new data). 1–4, Lower Paleozoic deposits: 1, andesitic porphyrites and tuffs with siltstone and sandstone interbeds in the lower part of the Tumat-Taiga Formation (Cm 1tm 1); 2, quartz porphyrites with interbeds of andesitic porphyrites and limestones in the upper part of the Tumat-Taiga Formation (Cm 1tm 2); 3, limestones and calcareous shales of the Tapsa Formation (Cm 1tp); 4, Lower and Middle Silurian conglomerates and sandstones (S 1-2); 5, Quaternary deposits (Q IV ); 6, 7, Lower Paleozoic igneous rocks of the Tannu-Ola complex (γδO 1-2): 6, gabbro-diorite-plagiogranite formation; 7, small granite-porphyry and quartz diorite bodies; 8, calcareous and magnesian skarns; 9, hydrothermal-metasomatic rocks in mineralized crushing zones; 10, gold orebodies; 11, tectonic zones; 12, geologic boundaries.I.V. Gaskov et al. / Russian Geology and Geophysics 51 (2010) 1091–11011093Fig. 3. Variations in gold fineness in gold ores from skarn-magnetite bodies (a) and in ores from mineralized crushing zones (b) at the Tardanskoe deposit.Table 1. Mineral parageneses in gold-bearing ores produced at different stages and composition of host rocks at Au-Cu-skarn depositsDeposit Early aposkarn Au-sulfide mineralization in magnetite-skarn rocks Late Au-telluride-sulfide mineralization in superposed crushingzonesOre parageneses Host rocks Ore parageneses Host rocksTardanskoe Magneite (Fe3O4)Pyrite (FeS2)Chalcopyrite (CuFeS2)Bornite (Cu5FeS4)Sphalerite (ZnS)Pyrrhotite (FeS)Arsenopyrite (FeAsS)Gold (Au)Magnesian skarns (pyroxene +fassayite + phlogopite +pargasite + forsterite + spinel).Calcareous skarns (pyroxene +garnet + epidote +wollastonite + skapolite).Aposkarn serpentine andserpentine-chlorite rocksCobaltite (CoFe)AsSGlaucodot (Co,Fe)AsSSiegenite (CoNi2S4)Violarite (FeNi2S4)Hessite (Ag2Te)Gold (Au)Propylites, listvaenites, talc-serpentine-containing andsericite-quartz metasomatites,and argillitized rocksMurzinskoe Magnetite (Fe3O4)Chalcopyrite (CuFeS2)Pyrite (FeS2)Bornite (Cu5FeS4)Sphalerite (ZnS)Galena (PbS)FahloreArsenopyrite (FeAsS)Clinobisvanite (BiVO4)Gold (Au)Calcareous skarns (garnet +pyroxene + wollastonite).Aposkarn metasomatic rocks(quartz + epidote + chlorite +actinolite)Cinnabar (HgS)Metacinnabarite (HgS)Bismuthine (Bi2S3)Aikinite (CuPbBiS3)Emplectite (CuBiS2)Berryite [Pb2(Cu,Ag)3Bi5S11]Naumannite (Ag2Se)Polybasite (Ag16Sb2S11)Barite (BaSO4)Gold (Au)Quartz and quartz-carbonateveins, near-vein metasomatitesof quartz-chlorite-carbonatecomposition, and argillitizedrocksSinyukhinskoe Magnetite (Fe3O4)Pyrite (FeS2)Chalcopyrite (CuFeS2)Bornite (Cu5FeS4)Chalcocite (Cu2S)Sphalerite (ZnS)Pyrrhotite (FeS)Cubanite (CuFe2S3)Gold (Au)Wollastonite, garnet-wollastonite, garnet-pyroxeneand pyroxene skarns, andaposkarn metasomatic rocks(chlorite + actinolite + calcite)Tetradymite (Bi2TeS)Siegenite (CoNi2S4)Cobaltite ((CoNiFe)AsS)Melonite (NiTe2)Wittichenite (Cu3BiS3)Hessite (Ag2Te)Petzite (AuAg3Te2)Altaite (PbTe)Clausthalite (PbSe)Gold (Au)Local zones of actinolite-chlorite-calcite-quartzcompositionChoiskoe Magnetite (Fe3O4)Pyrite (FeS2)Chalcopyrite (CuFeS2)Gold (Au)Garnet, garnet-pyroxene,garnet-wollastonite, andpyroxene-epidote skarnsTetradymite (BiTe2S)Ingodite (Bi2TeS)Joseite (Bi4TeS2)Hedleyite (Bi2Te)Tellurobismuthite (Bi2Te3)Bismuthite (Bi2S3),Native bismuth (Bi)Gold (Au)Quartz and quartz-carbonateveins and quartz-carbonate-chlorite metasomatites1094I.V. Gaskov et al. / Russian Geology and Geophysics 51 (2010) 1091–1101metasomatic rocks consisting of quartz, epidote, calcite,chlorite, actinolite, and, more seldom, tourmaline, apatite, and rodonite.Gold mineralization at the Murzinskoe deposit was earlier ascribed to gold-skarn type. But recent data have shown that only a minor part of the deposit ores — scarce postskarn sulfide mineralization spatially associated with skarn-magnet-ite bodies—can be referred to this type. Most of the commer-cial ores occur in mineralized crushing zones. They form gold-sulfide mineralization in quartz and quartz-carbonate veins and near-vein metasomatites in a 300–400 m thick zone stretching in the N-NW direction for more than 3 km (Fig. 4).The crust of weathering widespread at the deposit contains hypergene copper minerals: malachite, chrysocolla, azurite,chalcocite, coveline, and high-fineness gold.Gold-sulfide mineralization spatially associated with skarn-magnetite bodies is superposed on skarn rocks. It was produced either at the regressive stage of the skarn formation or at the postskarn hydrothermal-metasomatic stage and was accompanied by the formation of moderate- and low-tempera-ture metasomatic minerals—chlorite, actinolite, epidote, and quartz. Sulfide mineralization is unevenly distributed and occurs as veinlet-disseminated chalcopyrite, pyrite, bornite,and sphalerite. It amounts to few percent. Gold occurs as fine thin (0.5–0.01 mm) native segregations. It is mainly of high fineness (840–994) (Fig. 5, a ).In crushing zones (Fig. 4), gold mineralization was found in quartz-carbonate-sulfide veinlets and veins in hydrothermal-metasomatic rocks of quartz-chlorite-carbonate composition with kaolinite, hydromica, and adularia (argillizite formation)developing after different rocks—skarns, hornfelses, shales,siltstones, and limestones,—often beyond skarning and horn-felsing zones. The quartz veins are 0.1 to 2.0 m (on average,0.4 m) thick, of N-S strike and eastern dip. In contrast to the gold-skarn-magnetite type, this mineralization is of more complex composition. In addition to minerals typical of skarn deposits (chalcopyrite, pyrite, bornite, sphalerite, and galena),it includes fahlore, arsenopyrite (FeAsS), cinnabar (HgS),metacinnabarite (HgS), bismuthine (Bi 2S 3), aikinite (CuPb BiS 3), emplectite (CuBiS 2), berryite [Pb 2(Cu,Ag)3Bi 5S 11],naumannite (Ag 2Se), polybasite (Ag 16Sb 2S 11), scheelite (Ca 3WO 4), hematite (Fe 2O 3), clinobisvanite (BiVO 4), bariteFig. 4. Schematic geologic structure of the Murzinskoe deposit. 1, mica-sili-ceous shales (O 1); 2, sandstones, siltstones, and aleuropelites (S 1); 3, terri-genous-carbonate deposits (D 1-2): a , conglomerates, b , limestones, c , sand-stones; 4, granodiorites of the Ust’-Belaya complex (D 3); 5, altered rocks and metasomatites: a , hornfelses, b , skarns, c , quartz-tourmaline metasomatites;6, mineralized crushing zones; 7, faults: a , established, b , predicted; 8, other types of mineralization: a , Murzinka-3 (Au), b, skarn Fe.Fig. 5. Variations in the fineness of gold associated with skarn-magnetite bodies (a ) and gold from ores of mineralized crushing zones (b ) at the Murzin-skoe deposit.I.V. Gaskov et al. / Russian Geology and Geophysics 51 (2010) 1091–11011095(BaSO 4), and gold (Table 1). The content of gold in the ores varies over a broad range of values, from 0.1 to 232 ppm.This gold occurs as fine (<0.1 mm) thin segregations in assemblage with sulfides. Its fineness also greatly varies (640–840), but, compared with the first type of ores, low-fine-ness gold prevails here (Fig. 5, b ).The presence of cinnabar, sulfides and sulfosalts of Bi, Se,and Sb, and barite, predominance of low-fineness gold and electrum, and low-temperature wallrock alteration (formation of kaolinite, hydromica, and adularia) differ these ores from earlier formed ores in skarn-magnetite bodies. The gap between the skarn and ore formation processes is evidenced from the presence of basite dikes cutting the skarns, which bear superposed gold mineralization of this type. At the same time, the presence of gold–cinnabar intergrowths and fine dissemination of gold in cinnabar, presence of Hg-minerals (cinnabar, Hg-sphalerite, saucovite) in the ores, and high contents of As, Sb, and Ti (typical elements of many Au-Hg deposits) permit this mineralization to be referred to as epithermal Au-Hg type (Borisenko et al., 2006). Thermometric studies showed that the homogenization temperatures of fluid inclusions in quartz veins in the northern and central parts ofthe mineralized zone are 215–200 ºC and decrease to 160–130 ºC in the southern part.Fig. 6. Schematic geologic structure of the Sinyukhinskoe deposit (compiled by Gusev (2007) and supplemented by our data). 1, loose Quaternary deposits; 2–6, rocksof the Choya (O 1cs), Elanda (C−2-3el), Ust’-Sema (C −2us), and Upper Ynyrga (C −2vy) Formations: 2, conglomerates, 3, siltstones, 4, sandstones, 5, limestones,6, andesite-basaltic porphyrites; 7–9, rocks of the Yugala (Sinyukha) complex: 7, granites and granodiorites of the early phase (γδD 2-3), 8, granites of the late phase (γD 2-3), 9, dolerite and gabbro-dolerite dikes; 10, plagiogranites of the Sarakoksha complex (ν C −2); 11, skarns; 12, sites with gold mineralization (1, Pervyi Rudnyi (First Ore), 2, Zapadnyi (Western), 3, Faifanov, 4, West Faifanov, 5, Ynyrga, 6, Nizhnii (Lower), 7, Tushkenek, 9, Gorbunov); 13, faults.1096I.V. Gaskov et al. / Russian Geology and Geophysics 51 (2010) 1091–1101The Sinyukhinskoe deposit is localized in northeastern Altai, at the contact of the large (600 km 2) complex Sarakok-sha pluton and Cambrian volcanosedimentary strata of the Ust’-Sema Formation (Shcherbakov, 1967; Vakhrushev, 1972)(Fig. 6). According to Shokalsky et al. (2000) and Gusev (2007), this massif includes the Lower Cambrian Sarakoksha diorite-tonalite-plagiogranite complex and Lower Devonian Yugala gabbro-diorite-granite complex (Sinyukha complex (Gusev, 2003)). It is in the latter complex that the commercial mineralization of the Sinyukha ore field is localized. In the contact zone of the Sinyukha massif, skarns of different compositions are developed in horizons of carbonate rocks and tuffs. Wollastonite and garnet-wollastonite varieties are the most widespread, and garnet-pyroxene and pyroxene ones are scarcer. Near the contact with basic effusive bodies, small magnetite orebodies have been revealed among garnet-py-roxene skarns.Gold mineralization occurs mainly among wollastonite,garnet-wollastonite, and pyroxene-wollastonite skarns and is intimately associated with an assemblage of sulfide minerals.The latter are dominated by bornite, chalcocite, chalcopyrite,and pyrite, which compose ore zones in these rocks and are present in the form of nest-disseminations and stockworks. In local zones of actinolite-chlorite-calcite-quartz composition we found minor amounts of sphalerite, pyrrhotite, cubanite, and tetradymite. There are also occasional findings of rare miner-als, such as siegenite (CoNi 2S 4), cobaltite ((CoNiFe)AsS),melonite (NiTe 2), wittichenite (Cu 3BiS 3), gessite (Ag 2Te),petzite (AuAg 3Te 2), altaite (PbTe), and clausthalite (PbSe)(Table 1). The total content of sulfides does not exceed 5–10%. The sulfides are extremely unevenly distributed—from occasional dissemination to densely disseminated, almost massive ores. The composition of sulfide mineralization slightly changes with depth: Gold-chalcocite-bornite assem-blage is changed by gold-chalcopyrite one. The accumulation of gold-sulfide mineralization was accompanied by the hy-drothermal-metasomatic alteration of the host skarns with the formation of actinolite, chlorite, and calcite near ore veins and nests. Magnetite ores are poorer in gold, and sulfide-free rocks(marbles and diorite-porphyry and granite-porphyry dikes)virtually lack it.Fig. 7. Variations in gold fineness in ores from the Sinyukhinskoe deposit.Fig. 8. Schematic geologic structure of the Choiskoe deposit (compiled by Gusev and Gusev (1998) and supplemented by our data). 1–5, rocks of the Ishpa (O 1is) andTandosha (C−2-3td) Formations: 1, conglomerates, 2, siltstones, 3, sandstones, 4, limestones, 5, felsic tuffs; 6–7, granitoids of the Yugala complex: 6, granites and granodiorites of the early phase (γδD 2-3), 7, leucocratic granites of the late phase (γD 2-3); 8, granite-porphyry, diorite, and lamprophyre dikes (γδD 2-3); 9, skarns;10, gold mineralization occurrences (1, occurrence of the Central skarn deposit, 2, Pikhtovyi, 3, Smorodinovyi); 11, faults.I.V. Gaskov et al. / Russian Geology and Geophysics 51 (2010) 1091–11011097Gold often occurs in ores as native segregations in the form of hooks, fine wires, lumps, and sheets intimately intergrown with bornite, chalcocite, and chalcopyrite. Sometimes, native gold segregations are observed as fine inclusions in cracks and interstices of skarn minerals, most often, wollastonite. These gold particles are mainly no larger than hundredths of millimeter. The gold of primary ores of the Sinyukhinskoe deposit is of high fineness varying over a narrow range of values (911–964) (Fig. 7). The fineness of gold decreases to 860–870 only in its parageneses with tellurides, selenides, and rare sulfide minerals (Roslyakova et al., 1999). The main impurities in gold are silver (up to 19%) and copper (up to 1.7%). The content of Hg does not exceed 0.1%. By the formation conditions, these ores are postskarn hydrothermal,with their deposition temperatures not exceeding 350 ºC (Roslyakova et al., 1999; Shcherbakov, 1972).The Choiskoe deposit is localized 20 km northeast of the Sinyukha ore field, in the zone of contact between the Upper Cambrian terrigenous-carbonate deposits of the Ishpa Forma-tion and the Choya granitoid massif referred to the Lower Devonian Yugala gabbro-diorite-granite complex (Fig. 8). The Choya granitoid massif is small at the surface (1 × 5 km) and extends from west to east, tracing the Choya fault (Gusev,2007). The deposit abounds in dikes of dolerite porphyrites,diorites, and granite-porphyry and in rocks of the lamprophyre series—kersantites, minette, and spessartites. The zone of contact between the granitoids of the Choya massif and the horizons of limestones and terrigenous-carbonate rocks is composed of skarns, which form linear zones extending in the NE direction, like the other rocks. Most bodies are of persistent thickness, ~100 m. By composition, the skarn bodies are divided into zones of garnet, garnet-pyroxene, pyroxene,garnet-wollastonite, and pyroxene-epidote skarns. In the skarn zones and near lamprophyre bodies, poor scheelite-molybde-nite mineralization in quartz veins was established (Gusev,1998).Gold mineralization at the deposit occurs in linear tectonic zones and is not spatially associated with skarns. It develops as quartz veins and quartz-carbonate and quartz-carbonate-chlorite veinlets and nests with gold-sulfide mineralization in crushing and brecciation zones in both the skarns and the granitoids of the Choya massif (Fig. 8).The mineral composition of these objects is nearly the same—gold-sulfide and gold-telluride parageneses. A numberof rare tellurides have been revealed among the Choya deposit ores: tetradymite (BiTe 2S), ingodite (Bi 2TeS), joseite (Bi 4TeS 2), hedleyite (Bi 2Te), tellurobismuthite (Bi 2Te 3), bis-muthine (Bi 2S 3), and native bismuth (Table 1). Magnetite,pyrite, and chalcopyrite, typical minerals of Cu-skarn deposits,are extremely scarce here. The total content of sulfides does not exceed few percent. They occur mainly as fine thin dissemination and do not form large accumulations and nests.Gold in the Choya deposit ores occurs as fine inclusions in sulfide and telluride minerals in quartz veinlets and as intergrowths with ore minerals. The gold particles are hun-dredths and tenths of millimeter in size. By chemical compo-sition, the gold is divided into two groups: medium-fineness (843–880) and high-fineness (940–959); the latter is probably of exogenous nature (Fig. 9). The gold contains Ag (3–12.5 wt.%) and Hg (0–0.48 wt.%) impurities and Cu traces.The thermometric studies showed that homogenization of primary gas-liquid inclusions into liquid proceeds at 126–150 ºC in quartz and at 105–128 ºC in calcite from ore-bear-ing veins.The sequence and duration of formation of gold mineralization and its correlation with magmatism As seen from the above data, gold mineralization at all considered Cu-skarn deposits has a complex multistage for-mation history. But the same stages at different deposits ran with different intensities. For example, at the Sinyukhinskoe deposit, mainly early high-temperature mineral assemblages are widespread, whereas at the Choiskoe deposit, low-tempera-ture ones. The Tardanskoe and Murzinskoe deposits bear both early and late minerals. To elucidate the peculiarities of gold-ore formation, establish the correlation between different types of gold mineralization and magmatic activity, and evaluate the duration of ore formation, we performed Ar-Ar and U-Pb dating of different mineralization and igneous rocks from the Tardanskoe and Murzinskoe deposits.Our investigations have shown that the formation of gold mineralization at the Tardanskoe deposit lasted for a longer time than it was supposed earlier. Skarn mineralization formed at the contact of diorites with carbonate rocks as a result of the intrusion of the Kopto-Baisyut massif. Ar-Ar biotite dating of the massif yielded an age of 485.7 ± 4.4 Ma corresponding to the Early Ordovician (Table 2). The skarns at the massif contact as well as magnetite ores and gold-sulfide mineraliza-tion (pyrite, chalcopyrite, pyrrhotite, bornite, gold) spatially and genetically associated with skarn-magnetite bodies are of similar age. Gold was deposited together with sulfides, as evidenced from the direct correlation between the contents of gold and sulfides (especially chalcopyrite) and from gold inclusions in the sulfides. The formation of skarn and aposkarn mineralization was followed (with some temporal gap) by the intrusion of dike and stock-like small granitoid bodies, which is indicated by their cutting of the sulfide-bearing skarn and magnetite bodies. Ar-Ar dating of these granite bodies yielded an age of 484.2 ±4.3 Ma (Table 2).Fig. 9. Variations in gold fineness in ores from the Choiskoe deposit.1098I.V. Gaskov et al. / Russian Geology and Geophysics 51 (2010) 1091–1101。

矽卡岩矿床

矽卡岩矿床

矽卡岩矿床Skarn Deposits1、定义:有使用“skarn”一词的许多定义。

矽卡岩可以形成于区域的或接触变质作用影响,也可以由各种交代作用形成,包括岩浆的、变质的、流星的或许有海洋成因的热液交代。

它们出现于深成岩体(pluton)邻近,沿断层和主要的剪切带(shear zones)内,在浅地热体系中,在海床(seafloor)底部,在深埋变质域的地壳深部。

连结近些不同环境和定义一种岩石为矽卡岩的是矿物学。

该矿物学上,包含钙质硅酸盐的广泛变种和伴生矿物,然而通常是石榴石(garnet)和辉石(pyroxene)佔优势。

根据若干标准矽卡岩可以细分。

外矽卡岩(exoskarn)和内矽卡岩(endoskarn)是用来特指沉积的或火成原岩(igneous- protolith)的术语。

镁质的和钙质的矽卡岩(magnesian and calcic skarn)可以用来描述原岩及其导致的矽卡岩矿物的主要成分。

这些术语可以结合使用,如在由白云岩形成橄榄石-透辉石(forsterite-diopside)矽卡岩时可以使用镁质外矽卡岩。

钙硅酸盐质角页岩(calc-silicate hornfels)是经常用于描述相关细粒钙硅酸盐的术语,这些岩石是不纯碳酸岩单元,像泥质(silty)灰岩和钙质页岩变质的结果。

反应矽卡岩(reaction skarn)可以由页岩和碳酸盐岩稀疏交互地层的等化学变质(isochernical metamorphism)。

在那里,邻近岩性间,成分的交代转移可能在小规模(也许几公分)尺度上发生。

类矽卡岩(skarnoid)是用于描述相对细粒贫铁的钙质硅酸盐岩石的术语,它起码是局部受原岩成分控制的反映。

类矽卡岩是纯变质角页岩与纯交代的粗粒矽卡岩间的过渡体。

对于所有先前这些术语来说,原岩的成分和结构趋向于控制形成矽卡岩的成分和结构。

比较而言,多数有经济价值的重要矽卡岩矿床是大规模交代迁移的结果。

常兆山、舒启海回答矽卡岩成矿的59条留言

常兆山、舒启海回答矽卡岩成矿的59条留言

常兆山、舒启海回答矽卡岩成矿的59条留言第九期青年矿床学家网络论坛答疑报告人:常兆山:美国科罗拉多矿业学院讲席教授。

先后在北京大学/美国华盛顿州立大学获得学士及双博士学位,曾在北京大学、华盛顿州立大学、澳大利亚塔斯马尼亚大学和詹姆斯库克大学工作。

长期致力于各种类型热液矿床的研究,在矿床成矿过程和控矿因素、岩浆成矿潜力评价及勘察找矿方法等方面取得了突出成果。

目前担任国际矿床学领域权威期刊Economic Geology和Mineralium Deposita副主编,近年来在Geology、Economic Geology等杂志上发表学术论文70余篇,并于2019年在SEG Special Publication上组织出版“Mineral Deposits of China”专辑一部。

舒启海:中国地质大学(北京)副教授,分别于2010年和2015年获得北京大学学士学位和北京大学/詹姆斯库克大学双博士学位。

目前主要从事与岩浆-热液相关的成矿作用研究,尤其关注矽卡岩矿床以及我国东北地区斑岩Mo矿床的成因机制和成矿规律。

近年来,相关研究成果主要发表在Economic Geology、Mineralium Deposita以及American Mineralogist等主流刊物上。

报告内容:常兆山:矽卡岩型矿床是全球范围内最重要的矿床类型之一,可以产出大多数的金属矿产,包括Fe、Au、Cu、Pb、Zn、Mo、W以及Sn等,同时也是最复杂的矿床类型之一,其复杂性表现为成矿金属的多样性和分带性。

为了更加深入地理解矽卡岩型矿床成矿组合,更加有效地指导矿产勘查工作,常兆山教授收集并整理了我国境内所有已报道的386个矽卡岩型矿床的相关数据,统计了这些矽卡岩型矿床的成矿金属组合特征以及成矿岩浆岩的岩石学和地球化学特征。

首先,常兆山教授将收集到的矽卡岩型矿床的金属储量进行标准化,发现Cu-Au,Cu-Mo以及W-Mo表现出很强的相关性,W-Cu 表现出中等程度的相关性,而Au、Sn和Mo这三种金属互相间的相关性则非常弱,Pb和Zn则在所有类型的矽卡岩矿床中均有产出。

沙棘果渣还田对水稻土性质、温室气体排放和微生物数量的影响

沙棘果渣还田对水稻土性质、温室气体排放和微生物数量的影响

浙江大学学报(农业与生命科学版)48(4):483~492,2022Journal of Zhejiang University (Agric.&Life Sci.)http :///agr E -mail :zdxbnsb @沙棘果渣还田对水稻土性质、温室气体排放和微生物数量的影响万清1,杨小渔1,吴丹2,张奇春1*(1.浙江大学环境与资源学院,污染环境修复与生态健康教育部重点实验室,杭州310058;2.浙江大学生物系统工程与食品科学学院,杭州310058)摘要采用28d 的土壤培养试验,选用沙棘果渣(R )、生物质炭(B )和生物陶粒(T )3组材料,以自然培养组作为对照(CK ),探讨沙棘果渣对土壤理化性质、温室气体(CO 2、CH 4和N 2O )排放和微生物数量等方面的影响。

结果表明:沙棘果渣能够显著提升土壤中全碳、全氮、速效钾等养分的含量,平均提升率分别为16.31%、14.99%、46.15%;对土壤pH 也存在一定的提升效果,提升范围为0.25~0.69。

沙棘果渣还田后土壤微生物丰度显著升高,其中前14d 微生物数量较对照平均增长335.6%。

对不同材料还田后的温室气体排放和全球增温潜势分析表明,与生物质炭和生物陶粒相比,沙棘果渣还田的CO 2排放量和全球增温潜势显著较高,但其CH 4排放量较小且可以显著降低N 2O 的排放量。

总体来看,沙棘果渣具有较高的还田价值,但需要考虑对温室气体排放的风险,本研究可为沙棘果渣的农业还田利用提供一定参考。

关键词沙棘果渣;生物质炭;生物陶粒;微生物数量;温室气体;土壤理化性质中图分类号X 172文献标志码A引用格式万清,杨小渔,吴丹,等.沙棘果渣还田对水稻土性质、温室气体排放和微生物数量的影响[J].浙江大学学报(农业与生命科学版),2022,48(4):483-492.DOI:10.3785/j.issn.1008-9209.2021.06.291WAN Qing,YANG Xiaoyu,WU Dan,et al.Effects of returning seabuckthorn fruit residue into field on paddy soil properties,greenhouse gas emissions and microbial numbers[J].Journal of Zhejiang University (Agriculture &Life Sciences),2022,48(4):483-492.Effects of returning seabuckthorn fruit residue into field on paddy soilproperties,greenhouse gas emissions and microbial numbersWAN Qing 1,YANG Xiaoyu 1,WU Dan 2,ZHANG Qichun 1*(1.Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health,College of Environmental and Resource Sciences,Zhejiang University,Hangzhou 310058,China;2.College of Biosystems Engineering and Food Science,Zhejiang University,Hangzhou 310058,China )AbstractTo explore the effects of seabuckthorn fruit residue on soil physicochemical properties,greenhousegas (CO 2,CH 4,N 2O)emissions,and the microbial numbers,a 28-day soil pot experiment was conducted.Three groups of materials were used,including seabuckthorn fruit residue (R),biochar (B),and biological ceramsite (T)in the experiment,and a natural culture was used as the control group (CK).The results showed that the seabuckthorn fruit residue significantly promoted the contents of soil nutrients such as total carbon,total nitrogen,and available potassium,and the average increase rates were 16.31%,14.99%,and 46.15%,respectively.Besides,the soil pHDOI :10.3785/j.issn.1008-9209.2021.06.291基金项目:国家重点研发计划课题(2021YFD1700803);浙江省重点研发计划项目(2021C04032)。

变质相-变质相系列

变质相-变质相系列

6. 角闪岩相(A或AM): 中温温度约500-700。C,压 力0.3-0.8GPa,普通角闪石和斜长石的共生是本相的 标志,可以有透辉石没有斜方辉石。泥质岩中除了石 英,白云母和黑云母外,低压相系含红柱石,堇青 石和夕线石,中压相系含十字石,蓝晶石和铁铝榴 石。高温部分夕线石,铁铝榴石开始与正长石稳定 共生。 7. 麻粒岩相(G): 高温温度700-900。C,压力0.31.2GPa,出现斜方辉石为标志岩石主要由无水矿物所 组成,少量黑云母和普通角闪石一般是富Ti的变种。 8. 榴辉岩相(E): 高压温度300-900。C,压力大于 1GPa,特征矿物组合:绿辉石+石榴子石不含长石。 一般呈不大的块体在其它岩石中作为包体。温度范 围很宽,压力极大。
A(K)FM Diagram
Biotite (from Ms): KMg2FeSi3AlO10(OH)2 A = 0.5 - 3 (0.5) = - 1 F =1 M =2 To normalize we multiply each by 1.0/(2 + 1 - 1) = 1.0/2 = 0.5 Thus A = -0.5 F = 0.5 M=1
共生分析、变质相与变质相系列
一、矿物相律 1. 共生分析的基本思路: 大多数变质岩在变质过程处于化学平 衡,因此,其形成的矿物组合(相)、 与化学成分(组分)和物理化学条件 (自由度)之间服从Gibbs相律:
P(相数)+f(自由度数)=C(组分数)+2
从研究变质岩矿物共生组合出发,应用 相律,以分析矿物组合、岩石化学成分 和物化条件的关系。这是变质岩石学研 究的基础,称为共生分析(Paragenesis analysis) 2. 封闭系统的Goldschmidt矿物相律 PC 3. 开放系统的Korzhenskii矿物相律 PCi;Ci为惰性组分

地壳俯冲与折返过程的变质作用演化:来自高压-超高压榴辉岩相平衡模拟的证据

地壳俯冲与折返过程的变质作用演化:来自高压-超高压榴辉岩相平衡模拟的证据

地壳俯冲与折返过程的变质作用演化:来自高压-超高压榴辉岩相平衡模拟的证据魏春景;崔莹【摘要】Based on coesite-bearing eclogites from Shuanghe of Dabieshan terrane, pseudosections including P-T、T-M ( H2O) and P-M ( H2O) were calculated in the NCKMnFMASHO system. Phase equilibria modeling predicts that the mineral assemblages in water-saturated metabasic rocks evolve via dehydration in cold crustal subduction zones (geothermal gradient of about 6° ? km-1 ). With increasing P-T conditions, chlorite is replaced by talc at about 2. 2GPa (80km), and then glaucophane, talc and lawsonite disappear at 2. 4GPa, 2. 5GPa and 2. 9GPa (105km), respectively. Accordingly, high-ultrahigh pressure (HP-UHP) mineral assemblages such as lawsonite-bearing blueschist, glaucophane-lawsonite eclogite, lawsonite eclogite and phengite eclogite are modeled to be presented. Phase equilibria modeling also suggests that even the subducted basic rocks contain quite small quantities of water ( such as 0. 3%~ 0. 5% ) , they can also be water-saturated under UHP lawsonite eclogite facies. Thus, lawsonite will be widely present in the metabasic rocks which have experienced the cold subduction. The exhumation of HP-UHP eclogites is controlled by the temperature and the peak mineral assemblage. When the peak eclogitic assemblage contain s lawsonite ( ± glaucophane ± talc) at T = 540 ~600℃ ), it will involve two stages of exhumation; The early-stage exhumation is modeled to proceed in the lawsonite stability field,controlled by dehydration reactions, and thus, it will be difficult to preserve the peak mineral assemblage. The late-stage exhumation proceeds in the epidote stability field where the rock is fluid-absent and the HP eclogitic assemblage after the lawsonite disappearance is prone to be preserved. When the peak mineral assemblage includes chlorite, lawsonite and glaucophane at T <540°., the decompression-driven dehydration reactions only occur in the narrow area with the coexistence of lawsonite and epidote, and will not be happened either in the early exhumation with lawsonite stability and the late exhumation with epidote stability, where the rocks are fluid-absent Under such conditions, although lawsonite formed in the peak stage is hard to be preserved during decompression, the other peak minerals may only suffer slight modification. After the disappearance of lawsonite at T >600℃ , the HP-UHP phengite eclogites contain very small amounts of water, which is modeled to be unchanged in a large range of pressure during the early exhumation stage. This favors the preservation of peak mineral assemblage. When HP-UHP eclogites are decompressed to pressures below 1. 5GPa, they will be partially hydrated duo to external fluid-infiltration, producing sodic-calc or calc amphibole-bearing eclogites, which are generally not in an equilibrium state. The amount of fluid released by the namely anhydrous minerals during eclogite decompression can cause the partial hydration of eclogite, but is not enough to form water-saturated amphibolite.%本文以大别山双河柯石英榴辉岩为基础,在NCKMnFMASHO体系中计算了P-T、T-M(H2O)和P-M(H2O)一系列相图.这些相图表明在地壳冷俯冲(地热梯度约为6℃·km-1)过程中饱和水的变质基性岩通过脱水反应导致矿物组合演化,随着P-T条件增加,约在2.2GPa(80ktn)处,绿泥石被滑石取代,在2.4GPa处,蓝闪石消失,在2.5GPa处,滑石消失,在2.9GPa(105km)处,硬柱石消失.相应地可出现硬柱石蓝片岩、蓝闪石-硬柱石榴辉岩、硬柱石榴辉岩和多硅白云母榴辉岩等高压-超高压组合.俯冲基性岩中即使含有很少量的水(如0.3%-0.5%),都会在超高压硬柱石榴辉岩相条件下达到饱和.因此硬柱石会广泛出现于经历冷俯冲地壳的变质基性岩中.高压-超高压榴辉岩的折返过程受折返温度及峰期矿物组合的控制.当峰期矿物组合中含有硬柱石(±蓝闪石±滑石,T = 540-600℃)时,其早期折返发生在硬柱石稳定城,受脱水反应控制,难以保存峰期矿物组合;晚期折返发生在绿帘石稳定域,岩石处于流体缺失状态,有利于保存硬柱石消失后的高压矿物组合.当峰期矿物组合中含有绿泥石、硬柱石和蓝闪石时(T < 540℃),其折返过程中的脱水作用仅发生在硬柱石与绿帘石共生的狭窄区城,在硬柱石稳定域的早期折返与绿帘石稳定域的晚期折返阶段,都不发生脱水作用,岩石处于流体缺失状态,因此,虽然峰期形成的硬柱石难以保存,但峰期形成的其他矿物可能仅受轻微改造.当硬柱石消失(T>600℃)后,多硅白云母高压-超高压榴辉岩中含有很少量水,在早期折返过程中的很大压力范围内,岩石保持水含量不变,更容易保留峰期矿物组合.高压-超高压榴辉岩在减压至1.5GPa以下时,由于外来流体注入,发生部分水化,形成含有钠钙质、钙质角闪石榴辉岩,它们一般不是平衡矿物组合.榴辉岩中名义上的无水矿物在减压过程中释放的水有助于榴辉岩部分水化,但不足以形成水饱和的斜长角闪岩.【期刊名称】《岩石学报》【年(卷),期】2011(027)004【总页数】8页(P1067-1074)【关键词】相平衡;变质流体;高压-超高压榴辉岩;地壳的俯冲与折返【作者】魏春景;崔莹【作者单位】北京大学地球与空间科学学院,造山带与地壳演化教育部重点实验室,北京,100871;北京大学地球与空间科学学院,造山带与地壳演化教育部重点实验室,北京,100871【正文语种】中文【中图分类】P588.34;P589.11 引言高压-超高压岩石俯冲与折返过程中矿物组合的演化与流体作用一直是研究焦点(Zheng et al.,2007)。

冲绳海槽中南部不同环境表层沉积物质来源

冲绳海槽中南部不同环境表层沉积物质来源

DOI: 10.16562/ki.0256-1492.2020082001冲绳海槽中南部不同环境表层沉积物质来源邹亮1,2,窦衍光1,2,陈晓辉1,2,胡邦琦1,2,林曦11. 国土资源部海洋油气资源与环境地质重点实验室,中国地质调查局青岛海洋地质研究所,青岛 2660712. 青岛海洋科学与技术国家实验室海洋矿产资源评价与探测技术功能实验室,青岛 266071摘要:对冲绳海槽中南部3种不同沉积环境(东海外陆架、东海陆坡和冲绳海槽)表层沉积物进行了稀土等元素地球化学分析,结果显示,冲绳海槽和陆坡表层沉积物具有与台湾物质来源类似的稀土元素配分模式,La/Sm-Gd/Yb 散点图也显示海槽和陆坡沉积物主要分布在台湾物源端元区,表明冲绳海槽中南部海槽和陆坡表层沉积物主要来源于台湾,而外陆架沉积物明显的重稀土亏损与大陆河流(特别是长江、黄河)沉积物来源较为一致。

为进一步判断外陆架表层沉积物来源,对外陆架沉积物重矿物进行分析鉴定,结果显示,外陆架沉积物重矿物以普通角闪石-绿帘石-石榴石-赤褐铁矿为组合特征,与长江沉积物重矿物组成特征类似,其明显缺乏台湾河流来源的典型重矿物锆石、黄河来源典型重矿物云母、浙闽沿岸来源典型重矿物磁铁矿,说明台湾、黄河和浙闽沿岸并非研究区外陆架表层沉积物主要物源。

根据以往测年等研究成果,研究区外陆架沉积物年代较老,应为古长江物质经东海现代环流体系不断改造而成。

关键词:物质来源;稀土元素;重矿物;表层沉积物;冲绳海槽中图分类号:P736.21 文献标识码:AProvenance analysis for surface sediments in different depositional environments of the middle-south Okinawa TroughZOU Liang 1,2, DOU Yanguang 1,2, CHEN Xiaohui 1,2, HU Bangqi 1,2, LIN Xi 11. Key Laboratory of Marine Hydrocarbon Resources and Environmental Geology, Ministry of Natural Resources, China Geology Survey, Qingdao Institute of Marine Geology, Qingdao 266071,China2. Laboratory for Marine Mineral Resources, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, ChinaAbstract: In this paper, surface sediments taken from three different depositional environments, i.e. the outer continental shelf, slope, and trough, of the middle-south Okinawa Trough were analyzed for rare earth elements (REE). The results suggest that the REE distribution patterns of the surface sediments from the continental slope and the Okinawa Trough are quite similar to those from Taiwan. The discrimination plot of La/Sm-Gd/Yb also shows that the surface sediments from continental slope and the Okinawa Trough are mainly located in the diagram close to the provenance end of Taiwan, further supporting the conclusion that the surface sediments of the continental slope and the Okinawa Trough are doubtlessly sourced from Taiwan. The obvious loss of heavy REE in the sediments of the outer continental shelf is consistent with the source of continental river sediments. In order to recognize the source of surface sediments in the outer shelf sedimentary area, the heavy mineral compositions of these sediments were analyzed. The results show that the heavy mineral assemblages of the outer continental shelf sediments are mainly composed of common hornblende, epidote, garnet, limonite, similar to the source composition of the Changjiang river. The outer continental shelf sediments are lack of zircon, mica, and magnetite, typical heavy minerals found in Taiwan, Huanghe river, and Minjiang river sediments respectively, which suggests that Taiwan, Yellow River, and the coast of Zhejiang and Fujian are not the main contributors to the outer continental shelf sediments. According to the results of previous dating data, the sediments of the outer shelf are relatively old, suggesting that the outer shelf sediments should be formed by the rework of the palaeo-Changjiang river materials by the modern circulation system of the East China Sea.Key words: provenance; rare earth elements; heavy minerals; surface sediments; Okinawa Trough资助项目:中国地质调查局地质调查项目“1:25万锦西、日照和霞浦县等图幅海洋区域地质调查”(DD20160139);国家自然科学基金项目“晚第四纪以来冲绳海槽中深层水源区演变的沉积记录及其古气候意义”(41776077),“菲律宾海盆底层水体性质对中更新世气候转型的响应机制”(41976192)作者简介:邹亮(1981—),男,博士,高级工程师,主要从事海洋地质与地球化学研究,E-mail :******************收稿日期:2020-08-20;改回日期:2020-12-15. 文凤英编辑ISSN 0256-1492海 洋 地 质 与 第 四 纪 地 质第 41 卷 第 1 期CN 37-1117/PMARINE GEOLOGY & QUATERNARY GEOLOGYVol.41, No.1冲绳海槽是一个具有过渡性地壳特征的大陆边缘盆地,西侧与宽广的东海外陆架相连,之间有东海陆坡作为东海陆架与冲绳海槽的折转带;东侧为琉球岛弧,将冲绳海槽与太平洋分隔。

动力变质岩鉴定特征

动力变质岩鉴定特征

Magmatic-hydrothermal
breccias
Stockwork veins
Magmatic Breccias
Igneous cement breccias
• This overlap means that genetic Phreatic breccias terminology is generally applied inconsistently
2. 动力变质岩类型 2.1 碎裂岩系列
以脆性变形为主,其显著特征是岩 石无定向或略具定向,具碎裂结 构或玻璃质碎屑结构,微破裂发 育,无或少有重结晶作用。按碎 基含量和性质划分为构造角砾岩、 碎裂岩及假玄武玻璃,反映随着 变形增强,粒度减小的趋势。
(1)构造角砾岩
具碎裂结构,角砾状构造。主要由较大 的( d > 2mm )的碎块(角砾)组成, 角砾碎块呈棱角状,大小混杂、排列 紊乱。基质由细小的破碎物(碎基) 和铁质、硅质、钙质胶结物组成。 构造角砾岩通常在断裂带,有时可宽 达数百米,延伸很长,可数百公里。
Structural control on breccia location
Fault breccias
Tectonic Breccias
Breccias in Magmatic-Hydrothermal Systems
1 - Magmatic-hydrothermal breccias
• Permeability enhancement through the formation of a subsurface breccia body allows for focussed fluid flow • Can precipitate abundant, well-mineralised cement which contains hypersaline & vapour-rich fluid inclusions • Rock flour matrix and clasts may be altered to high temperature mineral assemblages (e.g. biotite) • Containment and focussing of volatiles birth of a magmatichydrothermal ore deposit Volatile-saturated intrusion undergoes catastrophic brittle failure due to hydrostatic pressure exceeding lithostatic load and the tensile strength of the wallrocks

外文资料翻译

外文资料翻译

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xx本科毕业论文外文资料翻译系别: xxx专业: xxx姓名: xxx学号: xxx1 区域成矿背景概述塔木铅锌矿床位于阿克陶县塔木村北约5 km,大地构造位置为西昆仑造山带与塔里木板块的交接部位[1],属库斯拉甫-他龙铅锌(铜)成矿带的一部分。

本区前震旦纪末期陆壳裂解形成塔里木板块、西昆仑地体、帕米尔板块等。

加里东期塔里木板块沿库地北断裂(俯冲带)往南西向西昆仑地体俯冲,形成昆中岩浆弧;两者于志留纪末期拼贴为一体[2]。

加里东期花岗质岩浆侵入时代的变化趋势佐证了这一观点[3]。

晚古生代时受古特提斯裂解作用的影响,俯冲带迁移到康西瓦断裂带附近,板块俯冲方向由南西往北东,西昆仑中带成为晚古生代岩浆弧(即昆中多期岩浆弧)[4],库斯拉甫-他龙地区正处于弧后位置,在板块俯冲的影响下发展为晚古生代弧后裂谷(即奥依塔格-库尔良裂陷槽)。

随着古特提斯洋的消亡,库斯拉甫-他龙晚古生代裂谷盆地于二叠纪末期闭合。

三叠纪时期本区处于隆起剥蚀状态,缺失沉积。

侏罗纪为山间盆地相与间夹沼泽相沉积。

至白垩纪末与早第三纪早期,因受新特提斯裂谷化作用遭受一次海侵,形成一套浅海至湖相的沉积岩系。

在喜马拉雅期造山运动的作用下,新特提斯洋闭合,青藏高原崛起,盆山构造急剧分野,引起本区西昆仑前缘大规模的逆冲推覆和走滑,形成铁克力克推覆体等构造,奠定了现今的构造格局。

因此,库斯拉甫-他龙铅锌(铜)成矿带所处的大地构造位置为晚古生代弧后裂谷盆地)))具陆壳基底的奥依塔格-库尔良裂陷槽,晚古生代的裂谷沉积作用、海西末期和喜马拉雅期的强烈构造作用为本区大范围、高强度的铅锌(铜)成矿创造了有利的构造条件[5]。

塔木MVT型铅锌矿区及外围主要出露上泥盆统、石炭系、侏罗系与白垩系)第三系地层,褶皱构造为科克然达坂复式向斜东翼的塔木向斜,区域断裂有克孜勒陶-库斯拉甫北北西向走滑断裂系与北西向昆北逆冲推覆断裂系。

新疆西克尔萤石矿洞稀土元素地球化学特征及成因

新疆西克尔萤石矿洞稀土元素地球化学特征及成因

新疆西克尔萤石矿洞稀土元素地球化学特征及成因刘显凤;蔡忠贤;李树新;周成刚;王春阳;杨涛【摘要】A great number of fluorite ores occur in karst cavities of Yingshan formation of the Ordovician in Xiker outcrop in western Keping uplift of Tarim basin. In this paper, the mineral assemblages and occurrences and the geochemical features of fluorite and calcite as rare earth elements in the fluorite ore cavities are studied, and the fluorite ore evolution and ore-forming fluid source are discussed. It is recognized that the minerals found in the fluorite ore cavities are continuous products of the same hydrothermal fluid system in different evolutionary stages, and the magma thermal fluids of the Early Permian upwelling along the early formed faults have constructive modification effects on the reservoirs in this area.%在塔里木盆地柯坪隆起西部的西克尔地区奥陶系鹰山组可溶岩层中发育着大量的萤石矿洞。

五篇american mineralogist

五篇american mineralogist

五篇american mineralogistAmerican Mineralogist is a renowned scientific journal in the field of mineralogy. It publishes a wide range of research articles related to minerals, rocks, and mineralogy. In this response, I will provide five article summaries that cover various topics in American Mineralogist. Each summary will be at least 800 words long and will accurately meet the content requirements of the given task titles.1. Understanding the Formation and Evolution of Minerals in Hydrothermal SystemsThe article titled "Formation and Evolution of Minerals in Hydrothermal Systems" explores the processes involved in the creation and transformation of minerals in hydrothermal systems. The authors have conducted extensive research on the experimental synthesis and natural occurrences of minerals formed under hydrothermal conditions. They analyze the physical and chemical conditions necessary for the formation of different mineral assemblages and discuss the impact of fluid composition, temperature, and pressure on mineral stability. By studying the geological records and experimental results, the authors provide valuable insights into the evolution of hydrothermal systems and the formation of important ore deposits.2. Unraveling the Secrets of Gemstone Formation through Advanced Analytical TechniquesThis article delves into the fascinating world of gemstone formation, with a specific focus on how advanced analytical techniques are revolutionizing our understanding of these precious stones. The authors present a comprehensive review of the methods employed to study gemstone formation, including scanning electron microscopy, Raman spectroscopy, and X-ray diffraction. They discuss the role of various geological processes, such as partial melting, fluid-rock interactions, and metasomatism, in the formation of different gemstones. The article also highlights the importance of these analytical techniques in gemstone identification, which is crucial for gem trade, jewelry industry, and geoscience research.3. Investigating the Role of Minerals in Environmental GeochemistryThis article explores the role of minerals in environmental geochemistry, with a focus on their ability to influence chemical reactions and sequester pollutants. The authors examine various case studies and laboratory experiments to elucidate the interactions between minerals and contaminants, including heavy metals and organic pollutants. They discuss the mechanisms by which minerals adsorb, transform, or release pollutants in different environmental settings, such as soil, water, and air. The findings presented in this article have significant implications for understanding the fate and transport of contaminants in the environment, as well as designing effective remediation strategies.4. Advancements in Techniques for Studying Microscopic MineralsIn this article, the authors showcase the latest advancements in techniques for studying microscopic minerals, which are often challenging to analyze due to their small size and complex textures. They discuss the applications of advanced microscopy techniques, such as scanning electron microscopy coupled with energy dispersive X-ray spectroscopy (SEM-EDS), transmission electron microscopy (TEM), and atomic force microscopy (AFM), in characterizing the morphology, chemistry, and crystallography of microscopic minerals. The article also highlights the integration of these techniques with image processing and quantitative analysis methods, enabling scientists to gain deeper insights into the microscale properties and processes of minerals.5. Revisiting the Classification and Nomenclature of MineralsThe last article in this series focuses on the classification and nomenclature of minerals, providing a comprehensive overview of the current practices and recent developments in this field. The authors discuss the challenges and controversies in mineral classification, including the classification of synthetic minerals and mineraloids. They also review the International Mineralogical Association's (IMA) guidelines for mineral nomenclature and propose potential improvements. This article serves as a valuable resource for mineralogists, geologists, and curators in accurately categorizingand naming newly discovered minerals, maintaining an organized and standardized mineralogical database worldwide.In conclusion, this response provides five article summaries on various topics in American Mineralogist. Each summary accurately satisfies the corresponding content requirements and has a minimum length of 800 words. These articles cover the formation and evolution of minerals in hydrothermal systems, gemstone formation, the role of minerals in environmental geochemistry, techniques for studying microscopic minerals, and the classification and nomenclature of minerals.。

最新折射率表

最新折射率表
材料折射率表(MS. 2009版}
材料名称(分子式) Acanthite (Silver Sulphide) Ag2S 硫化银 Acetal乙缩醛 Acetone 丙酮 Adipic Acid (CH2.CH2.COOH)2 脂肪酸 Agate Si02 玛瑕 Albite Na20.A1203.6Si02 钠长石 Albite (Feldspar) NaAlSi308 钠长石 Almandine (Garnet)石樹石 Alumina A1203 三氧化二铝 Alumina tri hydrate A12033H20 氢氧化铝 Aluminiumhmite) A10(0H)勃姆石 Aluminium Oxide A1203 三氧化二铝 (Corundum)金刚砂 Aluminium Silicate A1203.Si02 氧化硅、氧化铝混合物 Aluminium Stearate A1(C18H3502)3 硬脂酸铅 Aluminum Sulphate AI2(S04)3 硫酸铝 Ammonium Chloride NH4CI 氯化铵 Ammonium Sulphate NH4S04 硫酸铵 Ammonium Dihydrogen Phosphate (NH4)H2P206 磷酸二氢铵 Anatase (Titanium Dioxide) Ti02 二氣化钛(锐钛) Andesine (Feldspar) ([NaSi]0.7-0.5 [CaAl]0.3-0.5)AlSi208 中长石 Anglesitte (Lead Sulphate) PbS04 铅矾(硫酸铅) Anhydrite (Calcium Sulphate) CaS04 无水石膏(硫酸钙) Anhydrite (Gypsum) CaS04.2H20 石膏 Anhydrous Borax Na20.2B203 硼砂 Anorthite (Feldspar) CaA12Si208 钙长石 Anorthoclase (Feldspar) (Na,K)AlSi308 钠微斜长石(长石) Antimony Trioxide Sb203 三氧化二锑 (Nat. Semamontite) (Nat. Valentine) Antimony Vermilion Sb2S3 三硫化二梯 Aragonite (Calcium Carbonate) CaC03 文石(碳酸钙) Arsenic Sulphur Glass 砷玻璃 Arsenous Oxide As203 三氧化二砷

桂林水磷铝铅矿与磷氯铅矿的矿物学特征及成因

桂林水磷铝铅矿与磷氯铅矿的矿物学特征及成因

中国宝玉石168期页2021年11月Nov. 2021CHINA GEMS & JADES桂林水磷铝铅矿与磷氯铅矿的矿物学特征及成因邓晴晴1,2, 于海燕2*,施光海1,洪路兵2,杨春丽3,黄金婷21.中国地质大学(北京)珠宝学院,北京 1000832.桂林理工大学珠宝学院,桂林 5410063.中国科学院大学地球与行星科学学院,北京 100049摘要:水磷铝铅矿与磷氯铅矿的矿物组合拥有独特外观,具有观赏性,在全球范围内罕见,有较高的经济潜力。

目前关于二者矿物组合的研究较少,开展这方面的工作有助于我们理解其形成过程,为对其进一步研究与其在矿标市场的发展打下基础。

本文对3件产自桂林海洋山的水磷铝铅矿与磷氯铅矿组合样品应用偏光显微镜观察、电子探针分析、激光—电感耦合等离子体质谱分析以及紫外—可见—近红外光谱分析。

研究结果表明桂林海洋山水磷铝铅矿与磷氯铅矿是从浅表氧化的流体中沉积形成的高Pb 同期矿物,来源具有相关性;流体析出磷氯铅矿前经历过Fe-Mn 氧化物的结晶;磷氯铅矿的Ca 和Sr 主要来源于砂岩 ; 水磷铝铅矿的致色成因与Cu 2+有关。

关键词:水磷铝铅矿;磷氯铅矿;矿物组合;地球化学;致色中图分类号: P578.968 文献标识码: A 文章编号: 1002-1442(2021)S0-0009-13Mineralogical Characteristics and Genesis of the Plumbogummite and Pyromorphite from GuilinDENG Qingqing 1, 2, YU Haiyan 2*, SHI Guanghai 1, Hong Lubing 2, YANG Chunli 3, 4, HUANG Jinting 21. School of Gemmology, China University of Geosciences (Beijing), Beijing 1000832. School of Gemmology, Guilin University of Technology, Guilin 5410063. College of Earth and Planetary Science, Univesity of Chinese Academy of Sciences, Beijing 100049ABSTRACT: The mineral assemblages of plumbogummite and pyromorphite have ornamental value and high economic potential because of their unique appearance and low output worldwide. Presently mineral assemblages of plumbogummite and pyromorphite are not well understood. Carrying out the research will improve our understanding收稿日期:2021-09-30,接受日期:2021-10-25作者简介:邓晴晴(1998-),女,硕士研究生,宝石学,Email :****************。

20243991_斑岩铜矿围岩蚀变绿帘石的光谱特征———以德兴铜矿富家坞矿区为例

20243991_斑岩铜矿围岩蚀变绿帘石的光谱特征———以德兴铜矿富家坞矿区为例

1000 0569/2019/035(12) 3811 24ActaPetrologicaSinica 岩石学报doi:10 18654/1000 0569/2019 12 15斑岩铜矿围岩蚀变绿帘石的光谱特征———以德兴铜矿富家坞矿区为例熊燕云1,2 李兵3 陈静1,2 周涛发1,2XIONGYanYun1,2,LIBing3,CHENJing1,2andZHOUTaoFa1,21 合肥工业大学资源与环境工程学院,合肥工业大学矿床成因与勘查技术研究中心(ODEC),合肥 2300092 安徽省矿产资源与矿山环境工程技术研究中心,合肥 2300093 江西铜业股份有限公司德兴铜矿,德兴 3342001 SchoolofResourcesandEnvironmentalEngineering,OreDepositandExplorationCentre(ODEC),HefeiUniversityofTechnology,Hefei230009,China2 AnhuiMineralResourcesandMineEnvironmentalEngineeringResearchCenter,Hefei230009,China3 DexingCopperMineofJiangxiCopperCompanyLimited,Dexing334200,China2019 08 01收稿,2019 11 06改回XiongYY,LiB,ChenJandZhouTF 2019 ThehyperspectrumcharacteristicsofepidoteinwallrockalterationinporphyryCudeposits:AnexamplefromFujiawudeposit,Dexingdistrict,JiangxiProvince ActaPetrologicaSinica,35(12):3811-3824,doi:10 18654/1000 0569/2019 12 15Abstract Porphyrydepositsalwayshavewidespreadanddistinctivehydrothermalalterationzones,astypicallyshownbyapotassicalterationzoneinthecentraldomainandpassingoutwardlaterallyintothepropyliticalterationzonewhichcanbefurthersubdividedintothreesubzones Epidote,asoneofthemostpervasivedistributedmineralsinthepropyliticalterationzone,haslimitedstudiesaboutitscharacteristicsinthesubzones Hyperspectraltechnology(Short WaveInfraredSpectroscopy,SWIR)hasbeenwidelyusedintheidentificationofhydrothermalalterationminerals However,SWIRcan tidentifymanykeyalterationmineralsintheporphyryenvironment,suchasorthoclase,albiteandanhydrite,becauseitisonlysensitivetocertainmoleculesandradicals X RayDiffraction(XRD)technologyinsteadcandiscernthemajoralterationminerals,whichisagoodsupplementaltoolforSWIR Inthisstudy,SWIRandXRDanalyseshavebeenconductedtoaidthealterationmappingoftheFujiawudepositinDexingdistrict,JiangxiProvince EpidotedevelopedintensivelyatFujiawu Accordingtomineralassemblagesandtheirspatialdistribution,weclassifiedthoseepidotesintothreetypes TypeIepidotemainlyassociatedwithalbite,quartzandcalcite,andhostedinveinswithinthepotassicalteredgranodioriteporphyry,alwayscrosscutingtheK feldsparphenocrysts TypeIIepidoteintergrownwithchlorite,minorcalciteandquartz,replacingearlymaficminerals,withtheprimaryrocktexturespreserved TypeIIIepidoteassociatedwithquartz,calcite,zeolite,andlocallykaoliniteinirregularveins,distributedintheoutsideofporphyry SystematicanalysesofthethreetypesofepidoteshavebeenconductedbySWIR TypeIepidotemostlyshowshighvaluesofFe OHabsorptionpeaks(Pos2252>2255),whereasthemajorityoftypeIIandtypeIIIepidotesshowlowervaluesofFe OHabsorptionpeaks(Pos2252<2255).Allthethreetypesofepidoteshowtheclusteredpeaksintheprimarycharacteristicdiffraction{113}intheXRDresults,whereasthesecondcharacteristicpeaks{022}havegoodvariations Thehalf heightwidthofthe2 40?peak(FWHM 2)showsthenegativecorrelationwithDep2334/Dep2252valueofepidote Therefore,thisstudyhasselectedthesecondarydiffractionpeak{022}anditsFWHM 2valuesasthemainparameters,whicharetheresponseofthecrystallinityofepidote ThedifferencesofthecrystallinityindexofthreetypesofepidotemaybecausedbythephysiochemicalconditionsandfluidchemistrysuchastemperaturereductionduringhydrothermalevolutionandthedistancefromthecenteroftheintrusionKeywords Porphyrycopperdeposit;Propyliticalteration;Short waveInfraredSpectrum;X rayDiffraction;Epidote;Fujiawudeposit;Dexingdistrict本文受国家重点研发计划项目(2016YFC0600206)、国家自然科学基金项目(41872081)和中央高校基本科研业务费专项资金(PA2019GDZC0093)联合资助.第一作者简介:熊燕云,男,1994年生,博士生,矿物学、岩石学、矿床学专业,E mail:295659970@qq.com通讯作者:周涛发,男,1964年生,教授,博导,矿物学、岩石学、矿床学专业,E mail:tfzhou@hfut.edu.cn摘 要 斑岩型矿床具有十分广泛和明显的热液蚀变带,青磐岩化通常位于中心钾化带外侧,可分为三个亚带,绿帘石是青磐岩化带最重要的蚀变矿物之一,但目前对青磐岩化带内各亚带之中的绿帘石的特征研究较为薄弱。

23242388_麻粒岩的研究进展与方法

23242388_麻粒岩的研究进展与方法

1000 0569/2021/037(01) 0052 64ActaPetrologicaSinica 岩石学报doi:10 18654/1000 0569/2021 01 04麻粒岩的研究进展与方法魏春景 张媛媛 董杰WEIChunJing,ZHANGYuanYuanandDONGJie造山带与地壳演化教育部重点实验室,北京大学地球与空间科学学院,北京 100871MOEKeyLaboratoryoftheOrogenicBeltandCrustalEvolution,SchoolofEarthandSpaceSciences,PekingUniversity,Beijing100871,China2020 09 03收稿,2020 11 15改回WeiCJ,ZhangYYandDongJ 2021 Someadvancesandresearchapproachesongranulite ActaPetrologicaSinica,37(1):52-64,doi:10 18654/1000 0569/2021 01 04Abstract Inrecentyears,theresearchongranulitehasmadegreatadvances Thisarticlediscussesfourrelatedissues:(1)ThegeotectonicenvironmentsandP Tpathsofgranulite Granulitecanbeformedinfourtypesoftectonicenvironments:(a)Collisionorogensarecharacterizedbytheformationofhigh pressure(HP)granuliteofmedium pressurefaciesseries TheHPgranulitesincludetwosub types Thefirstsub typereferstothatrocksoncelocatedinshallowcrustlevelsexperienceloadingandburialtoreachametamorphicpeak,andaresubsequentlyexhumed,constructingclockwiseP Tpaths Thesecondsub typeincludesthatHPandUHPeclogitefaciesrocksthathaveundergoneoceanicandcontinentalsubductionareexhumedtobeinvolvedinorogenswithgranuliteoverprinting,theP Tpathsofwhicharedominatedbydecompression (b)Crustalextensionzonesaremarkedbytheformationoflow pressuregranulite,generallyuptoUHTconditions TheP Tpathsincludedecompressionalheatingtotemperaturepeak,followedbyisobaricordecompressionalcooling (c)ThemagmaaccretionzonesinislandarcsorcontinentalmarginsgenerallyreachHPgranulitefaciesintheirlowercrust,whereintrusivegabbrosfirstundergoisobariccooling,andthenundergoprogressivemetamorphicevolutionwithincreasingbothtemperatureandpressure (d)InArcheancratons,supracrustalrocksofgranulitefaciesoccurasraftswitinthedomesofTTGgneisses,whichmostlyreachUHTconditions,andsharecounterclockwiseP Tpaths,indicatingArcheanuniqueverticaltectonicregimes (2)Theprogradeprocessesandfluidbehaviorofgranulite Accordingtothefluidbehavior,theprogradeprocessesofgranulitecanbedividedintothreetypes:(a)Theprogradeprocesswithfluid saturation,meansthatarockissaturatedwithfluidsundersubsolidusconditions,andthenmeltingonthewater saturationsolidusanddehydrationmeltingofhydrousmineralsoccursuccessivelywithheating Asstagedmeltlossoccursintherock,itswatercontentdecreasesbutthetemperatureofitsfluid absentsolidusincreases Duringthepost peakcoolingprocess,back reactionsorcrystallizationreactionsoccurtoformhydrousminerals,whichareterminatedatthefluid absentsolidus (b)Theprogradeprocesswithfluid unsaturationorfluid absence,meansthatarockisfluid absentduringthesubsolidusprogradeprocess,wherenometamorphicreactionsmayoccur Astheoriginalmineralassemblagesintherockcommonlyremainmetastabllyuntiltemperaturereachesthefluid absentsolidus,wheremetamorphicevolutionbegins,somedisequilibriumtexturesareoftendeveloped And(c)Theprogradeprocesswithfluidoversaturation,referstothatthemeltingprocessisinvolvedwithexcessivewater,alsoknownaswater fluxmelting,commonlyrelatedwithmeltinjectionorlocalsegregation Water fluxmeltingmayconsumemoreanhydrousmineralssuchasplagioclase,quartzandpyroxene,resultinginaresidualaccumulationofhydrousmineralssuchasamphiboleandbiotite (3)ThedeterminationofP Tconditionsofgranulitesusingpseudosection Todocumentametamorphicevolutionofgranuliteusingpseudosectionapproach,itisfirsttoidentifythepeakandthefinalassemblagesthroughpetrographicobservation;thentocalculatethewatercontentofthefinalassemblageusingaT M(H2O)pseudosection;andfinallytocalculateP Tpseudoectionsusingthedeterminedwatercontent ToanalyzethepeakP Tconditionofagranuliteusingapseudosection,itisfirsttomatchtheobservedpeakassemblagewiththepredictedoneinthepseudosection,andthentocombinetheusefulmineralcompositioncontoursforfurtherdeterminingtheP Tcondition Itisimportanttonotethatboththepetrographicallyobservedpeakandfinalassemblagesmaybecontrolledbylocaltexturaldomains,relatedtotheunevendistributionorin situsegregationofretainedmelts Atthiscase,thephaserelationscannotbesimplymodelledusingthebulk rockcomposition (4)Effectivebulk rockcompositionsarerequiredforphaseequilibriamodelling Usingameasuredbulk rockcompositionforphase本文受国家自然科学基金资助项目(41872057、42030304)资助.第一作者简介:魏春景,男,1962年生,教授,岩石学专业,E mail:cjwei@pku.edu.cnequilibriamodelling,itisfirsttocheckthevalidityofthecomposition,thatis,tocheckwhetherthemeasuredbulk rockcompositioncanrepresentthephaseequilibriaobservedinathinsection Themethodistocalculateaneffectivebulk rockcompositionandtocompareitwiththemeasuredone Formetamorphicrocksarecommonlyinhomogeneous,itrequiresaddressingthecompositionsoflocaltexturaldomains Therearethreesituationsasfollows:(a)macro scaletexturaldomainscanbesampledseparately;(b)micro scaletexturaldomainsneedtobeimagedinthinsections,andthus,tobemodelledseparately;and(c)forthetexturaldomainsformedbyoverprintingorretrogradereactions,itrequiresdeterminingthecorrespondingreactions,andtheeffectivebulk rockcompositioncanbedeterminedbybalancingthereaction Inaddition,thepaperalsointroducesthemethodsandprecautionsforcalculatingthewatercontent,OcontentandmineralmodalproportioninarockKeywords Granulite;Tectonics;P Tpath;Phaseequilibriamodelling;Effectivebulk rockcompsotion摘 要 近年来,有关麻粒岩的研究取得了长足进展,本文讨论了4个相关问题:(1)麻粒岩的大地构造环境与P T轨迹。

矿物单词缩写

矿物单词缩写

名称符号白云母 Mu白钨矿 Sh斑铜矿 Bn赤铁矿 Hm赤铜矿 Cpt磁铁矿 Mt雌黄铁矿Pyr雌黄 Orp单斜辉石 Mp(毒砂 Ars方解石 Cal方铅矿 Gn高岭石 Kl锆石 Zi铬铁矿 Chm硅灰石 Wl褐铁矿 Lm黑钨矿 Wf黑云母 Bit :红柱石 Ad黄铜矿 Cp黄铁矿 Py辉铜矿 Cc辉钼矿Mot辉锑矿Sti辉银矿Arg辉石Prx钾长石Kp尖晶石Sp :角闪石Hb金刚石Dm堇青石Cor绢云母 Ser蓝宝石Ind蓝晶石Ky蓝铜矿Az锂辉石 Spo锂云母Lpd铝土矿Bx )绿帘石Ep绿泥石Chl绿柱石 Ber镁铁榴石Mj镁铁闪石Cun明矾石 Aln钠长石 Ab闪锌矿Sph石英 Qz石榴石 Gr:石墨 Gph石膏 Gy铜蓝 Cov透石膏Sel透辉石Di透闪石 Tl透长石 San微斜长石 Mi斜方辉石 Opx斜长石 Pl }榍石 Sph雄黄 Rar阳起石Act黝帘石 Zo萤石 Fl黝铜矿Thr正长石Or序号%矿物符号矿物名称矿物英文名称1 Ab 钠长石Albite2 Act 阳起石| Actinolite3 Adr 钙铁闪石Andradite4 Aeg 霓石Aegirine5 (Afs碱性长石Alkalifeldspar6 Agt 霓辉石Aegirine-augite7 Ak 镁黄长石\ Akermanite8 Alm 铁铝榴石Almandine9 Aln 褐帘石Allanite10 ·Als铝硅酸盐Alumosilicate11 Am 闪石Amphibole12 An 钙长石? Anorthite13 And 红柱石Andalusite14 Anh 硬石膏Anhydrite15 !Ank铁白云母Ankerite16 Anl 方沸石Analcime17 Ann 铁云母\ Annite18 Ant 锐钛矿Anatase19 Ap 磷灰石Apatite20 ]Apo鱼眼石Apophyllite21 Apy 毒砂Arsenopyrite22 Arf 亚铁钠闪石| Arfvedsonite23 Arg 文石Aragonite24 Atg 叶蛇纹石Antigorite25 。

标准SIC编码

标准SIC编码

S​t a n d a r d I n d u s t r i a l C l a s s i f i c a t i o n(S I C)C o d e s 01AGRICULTURAL PRODUCTION - CROPS 011Cash Grains0111Wheat0112Rice0115Corn0116Soybeans0119Cash Grains, nec013Field Crops, Except Cash Grains0131Cotton0132Tobacco Growers0133Sugarcane And Sugar Beets0134Potato Growers0139Agricultural Products0139Field Crops, Except Cash Grains, nec016Vegetables & Melons0161Vegetable Growers0161Vegetables And Melons017Fruits & Tree Nuts0171Berry Crops0172Grapes/Vineyards0173Tree Nuts0174Citrus Fruits0175Deciduous Tree Fruits/Orchards0179Fruits & Tree Nuts, nec018Horticultural Specialties0181Ornamental Nursery Products0182Food Crops Grown Under Cover019General Farms, Primarily Crop0191General Farms, Primarily Crop02AGRICULTURAL PRODUCTION - LIVESTOCK 021Livestock, Except Dairy & Poultry0211Beef Cattle Feedlots0212Beef Cattle, Except Feedlots0213Hogs0214Sheep & Goats0219General Livestock, Except Dairy/Poultry 024Dairy Farms0241Dairy Farms025Poultry & Eggs0251Broiler, Fryer & Roaster Chickens0252Chicken Eggs0253Turkey Farms0254Poultry Farms0259Poultry & Eggs, nec027Animal Specialties0271Fur Bearing Animals & Rabbits0272Horses & Other Equines0273Aquaculture0279Animal Specialties, nec029General Farms, Primarily Animal0291General Farms, Primarily Animal07AGRICULTURAL SERVICES071Soil Preparation Services0711Soil Preparation Services072Crop Services0721Crop Planting & Protecting0722Crop Harvesting0723Crop Preparation Services For Market 0724Cotton Ginning074Veterinary Services0741Veterinary Services for Livestock0742Veterinary Services, Specialties075Animal Services, Except Veterinary 0751Livestock Services, Except Veterinary 0752Animal Specialty Services076Farm Labor & Management Services 0761Farm Labor Contractors0762Farm Management Services078Landscape & Horticultural Services 0781Landscape Counseling & Planning 0782Lawn & Garden Services0783Ornamental Shrub & Tree Services08FORESTRY081Timber Tracts0811Timber Tracts083Forest Products0831Forest Products085Forestry Services0851Forestry Services09FISHING, HUNTING & TRAPPING091Commercial Fishing0912Finfish0913Shellfish0919Miscellaneous Marine Products092Fish Hatcheries & Preserves0921Fish Hatcheries & Preserves097Hunting, Trapping & Game Propagation 0971Hunting, Trapping & Game Propagation 10METAL MINING101Iron Ores1011Iron Ores102Copper Ores1021Copper Ores103Lead & Zinc Ores1031Lead & Zinc Ores104Gold & Silver Ores1041Gold Ores1044Silver Ores106Ferroalloy Ores, Except Vanadium 1061Ferroalloy Ores, Except Vanadium108Metal Mining Services1081Metal Mining Services109Miscellaneous Metal Ores1094Uranium Radium Vanadium Ores1099Metal Ores, nec12COAL MINING122Bituminous Coal & Lignite Mining1221Bituminous Coal & Lignite - Surface 1222Bituminous Coal - Underground123Anthracite Mining1231Anthracite Mining124Coal Mining Services1241Coal Mining Services13OIL & GAS EXTRACTION131Crude Petroleum & Natural Gas1311Crude Petroleum & Natural Gas132Natural Gas Liquids1321Natural Gas Liquids138Oil & Gas Field Services1381Drilling Oil & Gas Wells1382Oil & Gas Exploration Services1389Oil & Gas Field Services, nec14NONMETALLIC MINERALS, EXCEPT FUELS 141Dimension Stone1411Dimension Stone142Crushed & Broken Stone1422Crushed & Broken Limestone1423Crushed & Broken Granite1429Crushed & Broken Stone, nec144Sand & Gravel1442Construction Sand & Gravel1446Industrial Sand145Clay, Ceramic & Refractory Minerals 1455Kaolin & Ball Clay1459Clay & Related Minerals, nec147Chemical & Fertilizer Minerals1474Potash, Soda & Borate Minerals1475Phosphate Rock1479Chemical & Fertilizer Mining nec148Nonmetallic Minerals Services1481Nonmetallic Minerals Services149Miscellaneous Nonmetallic Minerals1499Miscellaneous Nonmetallic Minerals15GENERAL BUILDING CONTRACTORS152Residential Building Construction1521Single-Family Housing Construction1522Residential Construction, nec153Operative Builders1531Operative Builders154Nonresidential Building Construction 1541Industrial Buildings & Warehouses1542Nonresidential Construction, nec16HEAVY CONSTRUCTION, EXCEPT BUILDING 161Highway & Street Construction1611Highway & Street Construction162Heavy Construction, Except Highway1622Bridge, Tunnel & Elevated Highway1623Water, Sewer & Utility Lines1629Heavy Construction, nec17SPECIAL TRADE CONTRACTORS171Plumbing, Heating, Air-Conditioning1711Plumbing, Heating, Air-Conditioning172Painting & Paper Hanging1721Painting & Paper Hanging173Electrical Work1731Electrical Work174Masonry, Stonework & Plastering1741Masonry & Other Stonework1742Plastering, Drywall & Insulation1743Terrazzo, Tile, Marble, Mosaic Work175Carpentry & Floor Work1751Carpentry Work1752Floor Laying & Floor Work, nec176Roofing, Siding & Sheet Metal Work1761Roofing, Siding & Sheet Metal Work177Concrete Work1771Concrete Work178Water Well Drilling1781Water Well Drilling179Miscellaneous Special Trade Contractors 1791Structural Steel Erection1793Glass & Glazing Work1794Excavation Work1795Wrecking & Demolition Work1796Installing Building Equipment, nec1799Special Trade Contractors, nec20FOOD & KINDRED PRODUCTS201Meat Products2011Meat Packing Plants2013Sausages & Other Prepared Meats2015Poultry Slaughtering & Processing202Dairy Products2021Creamery Butter2022Cheese, Natural & Processed2023Dry, Condensed & Evaporated Products 2024Ice Cream & Frozen Desserts2026Fluid Milk203Preserved Fruits & Vegetables2032Canned Specialties2033Canned Fruits & Vegetables2034Dehydrated Fruits, Vegetables & Soups 2035Pickles, Sauces & Salad Dressings2037Frozen Fruits & Vegetables2038Frozen Specialties, nec204Grain Mill Products2041Flour & Other Grain Mill Products 2043Cereal Breakfast Foods2044Rice Milling2045Prepared Flour Mixes & Doughs2046Wet Corn Milling2047Dog & Cat Food2048Prepared Feeds, nec205Bakery Products2051Bread, Cake & Related Products2052Cookies & Crackers2053Frozen Bakery Products, Except Bread 206Sugar & Confectionery Products2061Raw Cane Sugar2062Cane Sugar Refining2063Beet Sugar2064Candy & Other Confectionery Products 2066Chocolate & Cocoa Products2067Chewing Gum2068Salted & Roasted Nuts & Seeds207Fats & Oils2074Cottonseed Oil Mills2075Soybean Oil Mills2076Vegetable Oil Mills, nec2077Animal & Marine Fats & Oils2079Edible Fats & Oils, nec208Beverages2082Malt Beverages2083Malt2084Wines, Brandy & Brandy Spirits2085Distilled & Blended Liquors2086Bottled & Canned Soft Drinks2087Flavoring Extracts & Syrups, nec209Miscellaneous Food & Kindred Products 2091Canned & Cured Fish & Seafoods 2092Fresh or Frozen Prepared Fish2095Roasted Coffee2096Potato Chips & Similar Snacks2097Manufactured Ice2098Macaroni & Spaghetti2099Food Preparations, nec21TOBACCO PRODUCTS211Cigarettes2111Cigarettes212Cigars2121Cigars213Chewing & Smoking Tobacco2131Chewing & Smoking Tobacco214Tobacco Stemming & Redrying2141Tobacco Stemming & Redrying22TEXTILE MILL PRODUCTS221Broadwoven Fabric Mills, Cotton2211Broadwoven Fabric Mills, Cotton222Broadwoven Fabric Mills, Manmade 2221Broadwoven Fabric Mills, Manmade 223Broadwoven Fabric Mills, Wool2231Broadwoven Fabric Mills, Wool224Narrow Fabric Mills2241Narrow Fabric Mills225Knitting Mills2251Women's Hosiery, Except Socks2252Hosiery, nec2253Knit Outerwear Mills2254Knit Underwear Mills2257Weft Knit Fabric Mills2258Lace & Warp Knit Fabric Mills2259Knitting Mills, nec226Textile Finishing, Except Wool2261Finishing Plants, Cotton2262Finishing Plants, Manmade2269Finishing Plants, nec227Carpets & Rugs2273Carpets & Rugs228Yarn & Thread Mills2281Yarn Spinning Mills2282Throwing & Winding Mills2284Thread Mills229Miscellaneous Textile Goods2295Coated Fabrics, Not Rubberized2296Tire Cord & Fabrics2297Nonwoven Fabrics2298Cordage & Twine2299Textile Goods, nec23APPAREL & OTHER TEXTILE PRODUCTS 231Men's & Boys' Suits & Coats2311Men's & Boys' Suits & Coats232Men's & Boys' Furnishings2321Men's & Boys' Shirts2322Men's & Boys' Underwear & Nightwear 2323Men's & Boys' Neckwear2325Men's & Boys' Trousers & Slacks2326Men's & Boys' Work Clothing2329Men's & Boys' Clothing, nec233Women's & Misses' Outerwear2331Women's & Misses' Blouses & Shirts 2335Women's & Misses' & Junior's Dresses 2337Women's & Misses' Suits & Coats2339Women's & Misses' Outerwear, nec 234Women's & Children's Undergarments 2341Women's & Children's Underwear 2342Bras, Girdles & Allied Garments235Hats, Caps & Millinery2353Hats, Caps & Millinery236Girl's & Children's Outerwear2361Girls & Children's Dresses & Blouses 2369Girls & Children's Outerwear, nec237Fur Goods2371Fur Goods238Miscellaneous Apparel & Accessories 2381Fabric Dress & Work Gloves2384Robes & Dressing Gowns2385Waterproof Outerwear2386Leather & Sheep-Lined Clothing2387Apparel Belts2389Apparel & Accessories, nec239Miscellaneous Fabricated Textile Products 2391Curtains & Draperies2392House Furnishings, nec2393Textile Bags2394Canvas & Related Products2395Pleating & Stitching2396Automotive & Apparel Trimmings2397Schiffli Machine Embroideries2399Fabricated Textile Products, nec24LUMBER & WOOD PRODUCTS241Logging2411Logging242Sawmills & Planing Mills2421Sawmills & Planing Mills, General2426Hardwood Dimension & Flooring Mills 2429Special Product Sawmills, nec243Millwork, Plywood, & Structural Members 2431Millwork2434Wood Kitchen Cabinets2435Hardwood Veneer & Plywood2436Softwood Veneer & Plywood2439Structural Wood Members, nec244Wood Containers2441Nailed Wood Boxes & Shook2448Wood Pallets & Skids2449Wood Containers, nec245Wood Buildings & Mobile Homes2451Mobile Homes2452Prefabricated Wood Buildings249Miscellaneous Wood Products2491Wood Preserving2493Reconstituted Wood Products2499Wood Products, nec25FURNITURE & FIXTURES251Household Furniture2511Wood Household Furniture2512Upholstered Household Furniture2514Metal Household Furniture2515Mattresses & Bedsprings2517Wood TV & Radio Cabinets2519Household Furniture, nec252Office Furniture2522Office Furniture, Except Wood253Public Building & Related Furniture 2531Public Building & Related Furniture254Partitions & Fixtures2541Wood Partitions & Fixtures2542Partitions & Fixtures, Except Wood259Miscellaneous Furniture & Fixtures 2591Drapery Hardware & Blinds & Shades 2599Furniture & Fixtures, nec26PAPER & ALLIED PRODUCTS261Pulp Mills2611Pulp Mills262Paper Mills2621Paper Mills263Paperboard Mills2631Paperboard Mills265Paperboard Containers & Boxes2652Setup Paperboard Boxes2653Corrugated & Solid Fiber Boxes2655Fiber Cans, Drums & Similar Products 2656Sanitary Food Containers2657Folding Paperboard Boxes267Miscellaneous Converted Paper Products 2671Paper Coated & Laminated, Packaging 2672Paper Coated & Laminated, nec2673Bags: Plastic, Laminated & Coated 2674Bags: Uncoated Paper & Multiwall 2675Die-Cut Paper & Board2676Sanitary Paper Products2677Envelopes2678Stationery Products2679Converted Paper Products, nec27PRINTING & PUBLISHING271Newspapers2711Newspapers272Periodicals2721Periodicals273Books2731Book Publishing2732Book Printing274Miscellaneous Publishing2741Miscellaneous Publishing275Commercial Printing2752Commercial Printing, Lithographic 2754Commercial Printing, Gravure2759Commercial Printing, nec276Manifold Business Forms2761Manifold Business Forms277Greeting Cards2771Greeting Cards278Blankbooks & Bookbinding2782Blankbooks & Looseleaf Binders2789Bookbinding & Related Work279Printing Trade Services2791Typesetting2796Platemaking Services28CHEMICALS & ALLIED PRODUCTS281Industrial Inorganic Chemicals2812Alkalies & Chlorine2813Industrial Gases2816Inorganic Pigments2819Industrial Inorganic Chemicals, nec282Plastics Materials & Synthetics2821Plastics Materials & Resins2822Synthetic Rubber2823Cellulosic Manmade Fibers2824Organic Fibers, Noncellulosic283Drugs2833Medicinals & Botanicals2834Pharmaceutical Preparations2835Diagnostic Substances2836Biological Products, Except Diagnostic 284Soap, Cleaners & Toilet Goods2841Soap & Other Detergents2842Polishes & Sanitation Goods2843Surface Active Agents2844Perfumes & Cosmetics -Toilet Preparations 285Paints & Allied Products2851Paints & Allied Products286Industrial Organic Chemicals2861Chemicals Gum & Wood Manufacturers 2861Gum & Wood Chemicals2865Cyclic Crudes & Intermediates2869Industrial Organic Chemicals, nec287Agricultural Chemicals2873Nitrogenous Fertilizers2874Phosphatic Fertilizers2875Fertilizers, Mixing Only2879Agricultural Chemicals, nec289Miscellaneous Chemical Products2891Adhesives & Sealants2892Explosives2895Carbon Black2899Chemical Preparations, nec29PETROLEUM & COAL PRODUCTS291Petroleum Refining2911Petroleum Refining295Asphalt Paving & Roofing Materials2951Asphalt Paving Mixtures & Blocks2952Asphalt Felts & Coatings299Miscellaneous Petroleum & Coal Products2992Lubricating Oils & Greases2999Petroleum & Coal Products, nec30RUBBER & MISCELLANEOUS PLASTICS PRODUCTS 301Tires & Inner Tubes3011Tires & Inner Tubes302Rubber & Plastics Footwear3021Rubber & Plastics Footwear305Hose & Belting & Gaskets & Packing3052Rubber & Plastics Hose & Belting3053Gaskets, Packing & Sealing Devices306Fabricated Rubber Products, nec3061Mechanical Rubber Goods3069Fabricated Rubber Products, nec308Miscellaneous Plastics Products, nec3081Unsupported Plastics Film & Sheet3082Unsupported Plastics Profile Shapes3083Plastics-High Pressure Laminates3083Laminated Plastics Plate & Sheet3084Plastics Pipe3085Plastics Bottles3086Plastics Foam Products3087Custom Compound Purchased Resins3088Plastics Plumbing Fixtures3089Plastics Products, nec31LEATHER & ALLIED PRODUCTS311Leather Tanning & Finishing3111Leather Tanning & Finishing313Footwear Cut Stock3131Footwear Cut Stock314Footwear, Except Rubber3142House Slippers3143Men's Footwear, Except Athletic3144Women's Footwear, Except Athletic3149Footwear, Except Rubber, nec315Leather Gloves & Mittens3151Leather Gloves & Mittens316Luggage3161Luggage317Handbags & Personal Leather Goods3171Women's Handbags & Purses3172Personal Leather Goods, nec319Leather Goods, nec3199Leather Goods, nec32STONE, CLAY & GLASS PRODUCTS321Flat Glass3211Flat Glass322Glass & Glassware, Pressed or Blown3221Glass Containers3229Pressed & Blown Glass, nec323Products of Purchased Glass3231Products of Purchased Glass324Cement, Hydraulic3241Cement, Hydraulic325Structural Clay Products3251Brick & Structural Clay Tile3253Ceramic Wall & Floor Tile3255Clay Refectories3259Structural Clay Products, nec326Pottery & Related Products3261Vitreous Plumbing Fixtures3262Vitreous China Table & Kitchenware3263Semivitreous Table & Kitchenware3264Porcelain Electrical Supplies3269Pottery Products, nec327Concrete, Gypsum & Plaster Products 3271Concrete Block & Brick3272Concrete Products, nec3273Ready-Mixed Concrete3274Lime3275Gypsum Products328Cut Stone & Stone Products3281Cut Stone & Stone Products329Miscellaneous Nonmetallic Mineral Products 3291Abrasive Products3292Asbestos Products3295Minerals, Ground or Treated3296Mineral Wool3297Nonclay Refractories3299Nonmetallic Mineral Products, nec33PRIMARY METAL INDUSTRIES331Blast Furnace & Basic Steel Products 3312Blast Furnaces & Steel Mills3313Electrometallurgical Products3315Steel Wire & Related Products3316Cold Finishing of Steel Shapes3317Steel Pipe & Tubes332Iron & Steel Foundries3321Gray & Ductile Iron Foundries3322Malleable Iron Foundries3324Steel Investment Foundries3325Steel Foundries, nec333Primary Nonferrous Metals3331Primary Copper3334Primary Aluminum3339Primary Nonferrous Metals, nec334Secondary Nonferrous Metals3341Secondary Nonferrous Metals335Nonferrous Rolling & Drawing3351Copper Rolling & Drawing3353Aluminum Sheet, Plate & Foil3354Aluminum Extruded Products3355Aluminum Rolling & Drawing, nec3356Nonferrous Rolling & Drawing, nec3357Nonferrous Wiredrawing & Insulating336Nonferrous Foundries (Castings)3363Aluminum Die Castings3364Nonferrous Die Castings, Except Aluminum 3365Aluminum Foundries3366Copper Foundries3369Nonferrous Foundries, nec339Miscellaneous Primary Metal Industries 3398Metal Heat Treating3399Primary Metal Products, nec34FABRICATED METAL PRODUCTS341Metal Cans & Shipping Containers3411Metal Cans3412Metal Barrels, Drums & Pails342Cutlery, Handtools & Hardware3421Cutlery3423Hand & Edge Tools, nec3425Saw Blades & Handsaws3429Hardware, nec343Plumbing & Heating, Except Electric 3431Metal Sanitary Ware3432Plumbing Fixture Fittings & Trim3433Heating Equipment, Except Electric344Fabricated Structural Metal Products 3441Fabricated Structural Metal3442Metal Doors, Sash & Trim3443Fabricated Plate Work (Boiler Shops) 3444Sheet Metal Work3446Architectural Metal Work3448Prefabricated Metal Buildings3449Miscellaneous Metal Work345Screw Machine Products, Bolts, Etc.3451Screw Machine Products3452Bolts, Nuts, Rivets & Washers346Metal Forgings & Stampings3462Iron & Steel Forgings3463Nonferrous Forgings3465Automotive Stampings3466Crowns & Closures3469Metal Stampings, nec347Metal Services, nec3471Plating & Polishing3479Metal Coating & Allied Services348Ordnance & Accessories, nec3482Small Arms Ammunition3483Ammunition, Except for Small Arms, nec3484Small Arms3489Ordnance & Accessories, nec349Miscellaneous Fabricated Metal Products 3491Industrial Valves3492Fluid Power Valves & Hose Fittings 3493Steel Spring, Except Wire3494Valves & Pipe Fittings, nec3495Wire Springs3496Miscellaneous Fabricated Wire Products 3497Metal Foil & Leaf3498Fabricated Pipe & Fittings3499Fabricated Metal Products, nec35INDUSTRIAL MACHINERY & EQUIPMENT 351Engines & Turbines3511Turbines & Turbine Generator Sets 3519Internal Combustion Engines, nec352Farm & Garden Machinery3523Farm Machinery & Equipment3524Lawn & Garden Equipment353Construction & Related Machinery3531Construction Machinery3532Mining Machinery3533Oil & Gas Field Machinery3534Elevators & Moving Stairways3535Conveyors & Conveying Equipment 3536Hoists, Cranes & Monorails3537Industrial Trucks & Tractors354Metalworking Machinery3541Machine Tools, Metal Cutting Types 3542Machine Tools, Metal Forming Types 3543Industrial Patterns3544Special Dies, Tools, Jigs & Fixtures 3545Machine Tool Accessories3546Power-Driven Handtools3547Rolling Mill Machinery3548Welding Apparatus3549Metalworking Machinery, nec355Special Industry Machinery3552Textile Machinery3553Woodworking Machinery3554Paper Industries Machinery3555Printing Trades Machinery3556Food Products Machinery3559Special Industry Machinery, nec356General Industry Machinery3561Pumps & Pumping Equipment3562Ball & Roller Bearings3563Air & Gas Compressors3564Blowers & Fans3565Packaging Machinery3566Speed Changers, Drives & Gears3567Industrial Furnaces & Ovens3568Power Transmission Equipment, nec3569General Industrial Machinery, nec357Computer & Office Equipment3571Electronic Computers3572Computer Storage Devices3575Computer Terminals3577Computer Peripheral Equipment, nec3578Calculating & Accounting Equipment3579Office Machines, nec358Refrigeration & Service Industry3581Automatic Vending Machines3582Commercial Laundry Equipment3585Refrigeration & Heating Equipment3586Measuring & Dispensing Pumps3589Service Industry Machinery, nec359Industrial Machinery, nec3592Carburetors, Piston Rings & Valves3593Fluid Power Cylinders & Actuators3594Fluid Power Pumps & Motors3596Scales & Balances, Except Laboratory3599Industrial Machinery, nec36ELECTRONIC & OTHER ELECTRIC INDUSTRIES 361Electric Distribution Equipment3612Transformers, Except Electronic3613Switchgear & Switchboard Apparatus362Electrical Industrial Apparatus3621Motors & Generators3624Carbon & Graphite Products3625Relays & Industrial Controls3629Electrical Industrial Apparatus, nec363Household Appliances3631Household Cooking Equipment3632Household Refrigerators & Freezers3633Household Laundry Equipment3634Electric Housewares & Fans3635Household Vacuum Cleaners3639Household Appliances, nec364Electric Lighting & Wiring Equipment3641Electric Lamps3643Current-Carrying Wiring Devices3644Noncurrent-Carrying Wiring Devices3645Residential Lighting Fixtures3646Commercial Lighting Fixtures3647Vehicular Lighting Equipment3648Lighting Equipment, nec365Household Audio & Video Equipment3651Household Audio & Video Equipment3652Prerecorded Records & Tapes366Communications Equipment3661Telephone & Telegraph Apparatus3663Radio & TV Communications Equipment 3669Communications Equipment, nec367Electronic Components & Accessories3671Electron Tubes3672Printed Circuit Boards3674Semiconductors & Related Devices3675Electronic Capacitors3676Electronic Resistors3677Electronic Coils & Transformers3678Electronic Connectors3679Electronic Components, nec369Miscellaneous Electrical Equipment & Supplies 3691Storage Batteries3692Primary Batteries, Dry & Wet3694Engine Electrical Equipment3695Magnetic & Optical Recording Media3699Electrical Equipment & Supplies, nec37TRANSPORTATION EQUIPMENT371Motor Vehicles & Equipment3711Motor Vehicles & Car Bodies3713Truck & Bus Bodies3714Motor Vehicle Parts & Accessories3715Truck Trailers3716Motor Homes372Aircraft & Parts3721Aircraft3724Aircraft Engines & Engine Parts3728Aircraft Parts & Equipment, nec373Ship & Boat Building & Repairing3731Ship Building & Repairing3732Boat Building & Repairing374Railroad Equipment3743Railroad Equipment375Motorcycles, Bicycles & Parts3751Motorcycles, Bicycles & Parts376Guided Missiles, Space Vehicles, Parts3761Missile & Rocket Manufacturers3761Guided Missiles & Space Vehicles3764Space Propulsion Units & Parts3769Space Vehicle Equipment, nec379Miscellaneous Transportation Equipment 3792Travel Trailers & Campers3795Tanks & Tank Components3799Transportation Equipment, nec38INSTRUMENTS & RELATED PRODUCTS381Search & Navigation Equipment3812Search & Navigation Equipment382Measuring & Controlling Devices3821Laboratory Apparatus & Furniture3822Environmental Controls3823Process Control Instruments3824Fluid Meters & Counting Devices3825Instruments to Measure Electricity3826Analytical Instruments3827Optical Instruments & Lenses3829Measuring & Controlling Devices, nec384Medical Instruments & Supplies3841Surgical & Medical Instruments3842Surgical Appliances & Supplies3843Dental Equipment & Supplies3844X-Ray Apparatus & Tubes3845Electromedical Equipment385Ophthalmic Goods3851Ophthalmic Goods386Photographic Equipment & Supplies3861Photographic Equipment & Supplies387Watches, Clocks, Watchcases & Parts3873Watches, Clocks, Watchcases & Parts39MISCELLANEOUS MANUFACTURING INDUSTRIES 391Jewelry, Silverware & Plated Ware3911Jewelry, Precious Metal3914Silverware & Plated Ware3915Jewelers' Materials & Lapidary Work393Musical Instruments3931Musical Instruments394Toys & Sporting Goods3942Dolls & Stuffed Toys3944Games, Toys & Children's Vehicles3949Sporting & Athletic Goods, nec395Pens, Pencils, Office & Art Supplies3951Pens & Mechanical Pencils3952Lead Pencils & Art Goods3953Marking Devices3955Carbon Paper & Inked Ribbons396Costume Jewelry & Notions3961Costume Jewelry3965Fasteners, Buttons, Needles & Pins399Miscellaneous Manufacturers3991Brooms & Brushes3993Signs & Advertising Specialties3995Burial Caskets3996Hard Surface Floor Coverings, nec3999Manufacturing Industries, nec40RAILROAD TRANSPORTATION401Railroads4011Railroads Line-Haul Operating4013Switching & Terminal Devices41LOCAL & INTERURBAN PASSENGER TRANSIT 411Local & Suburban Transportation4111Local & Suburban Transit4119Local Passenger Transportation, nec412Taxicabs4121Taxicabs413Intercity & Rural Bus Transportation4131Intercity & Rural Bus Transportation414Bus Charter Service4141Local Bus Charter Service4142Bus Charter Service, Except Local415School Buses4151School Buses417Bus Terminal & Service Facilities4173Bus Terminal & Service Facilities42TRUCKING & WAREHOUSING421Trucking & Courier Services, Except Air4212Local Trucking, Without Storage4213Trucking, Except Local4214Local Trucking With Storage4215Courier Service, Except by Air422Public Warehousing & Storage4221Farm Product Warehousing & Storage4222Refrigerated Warehousing & Storage4225General Warehousing & Storage4226Special Warehousing & Storage, nec423Trucking Terminal Facilities4231Trucking Terminal Facilities43US POSTAL SERVICE431US Postal Service4311US Postal Service44WATER TRANSPORTATION441Deep Sea Foreign Transport of Freight4412Deep Sea Foreign Transport of Freight442Deep Sea Domestic Transport of Freight4424Deep Sea Domestic Transport of Freight443Freight Transport on The Great Lakes4432Freight Transport on The Great Lakes444Water Transportation of Freight, nec4449Water Transportation of Freight, nec448Water Transportation of Passengers4481Deep Sea Passenger Transportation, Except Ferry 4482Ferries4489Water Passenger Transportation, nec449Water Transportation Services4491Marine Cargo Handling4492Towing & Tugboat Service4493Marinas4499Water Transportation Services, nec45TRANSPORT BY AIR451Air Transportation, Scheduled4512Air Transportation, Scheduled4513Air Courier Services452Air Transportation, Nonscheduled4522Air Transportation, Nonscheduled458Airports, Flying Fields & Services。

温度计 文献阅读

温度计  文献阅读

矿物化学成分测试单位:中国科学院地质与地球物理研究所国家重点实验室电子探针室(吴倩怡,2011)中国地质大学地质过程与矿产资源国家重点实验室电子探针室(雷敏,2010)西安地质矿产研究所实验测试中心电子探针室(吴玉门,2012)中国科学院地球化学研究所(何德锋,2008)一.二辉石温度计1.吴玉门,2012,新疆地质.2. Kretz,R.J. Distribution of Magnesium and Iron between orthopyroxene and calcicpyroxene in natural mineral assemblages[J].Geology,1963, 71,773-785.二.二长石温度计1.吴玉门,2012,新疆地质.2.Powell R. Geothermometry and Oxygen barometry using coexistingIron-Titanium oxides:a reappraisal. Mineral.Mag,1977,41,257-263.T={-(K k Afs) × [6330+0.093P+2X k Afs×(1340+0.019P)]}/[1.9872×ln(X Na Afs/X Na PL)+( X k Af)2×(-4.63+1.54X Na Afs)]注:X K Afs为钾长K[AISi3O8]中K 的摩尔分数;X Na Afs为钾长石(K、Na)[AISi3O8]中Na 的摩尔分数;X Na PL为斜长石(100-n)Na[AISi3O8]·[Al2Si2O8]中Na 的摩尔分数;X Na PL=[Na/(Na+Ca+K+Fe+Mn+Mg+Ti)]PL三.角闪石-斜长石温度计应用实例:陆丽娜,2011,岩石学报雷敏,2010,岩石矿物学杂志(关于温度计说明较详细,但T3公式有错)参考文献:Blundy and Holland,1990T1Holland and Blundy,1994;T2T3Stein and dietl , 2001Ernst,2002四.辉石温压计应用实例:雷敏,2010,岩石矿物学杂志陶琰,2010,矿床地质Putirka,1996,提出Putirka,2003,改进五.石榴石-单斜辉石(斜方辉石)温度计石榴石-绿辉石-多硅白云母压力计用于研究超高压变质作用P-T条件.应用实例:赵令浩,2010,矿物学报吴春明,2009,岩石学报;地幔岩矿物压力计评述高天山,2006,岩石学报陈意,2005,岩石学报六.石榴石-黑云母温度计何德锋,2008,矿物学报从Perchuk[4]首次标定石榴石-黑云母地质温度计以来,经历了多次修正,至目前为止,已有30多个版本问世。

俯冲带变质过程中的含碳流体

俯冲带变质过程中的含碳流体

俯冲带变质过程中的含碳流体刘景波【摘要】俯冲带含碳岩石通过俯冲过程的变质反应生成了含碳水流体、富硅酸盐的超临界流体和含碳熔体.不同类型流体的形成与岩石成分和岩石经历的温压条件相关.岩石中碳酸盐矿物脱碳反应的温压条件取决于岩石起初的流体成分:有水存在时,反应发生在低温条件下.在高压条件下,碳酸盐矿物在水或含盐水流体的溶解是生成含碳流体重要的机制,其导致的碳迁移作用可能超过脱碳变质反应的作用.高温条件下,含碳岩石的部分熔融可以生成含碳的熔体,这在热俯冲环境和俯冲带岩石底辟到上覆地幔的情况下是碳迁移重要载体.富硅酸盐的超临界流体可能是在第二临界端点上形成的超临界流体,目前在超高压岩石中观察到的非花岗质成分的多相固体包裹体被认为是这种流体结晶的产物,然而对其理解尚存在很多问题,需要进一步的实验研究.地表含碳岩石在俯冲带被带到深部,俯冲带地温特征的不同导致了不同类型含碳流体的形成,这些流体运移至上覆地幔引起岩石部分熔融产生含碳的岛弧岩浆,岩浆喷出到地表释放了其中的碳,这构成了俯冲带-岛弧系统的碳循环.【期刊名称】《岩石学报》【年(卷),期】2019(035)001【总页数】10页(P89-98)【关键词】俯冲带;碳循环;含碳流体;多相包裹体;熔体包裹体【作者】刘景波【作者单位】中国科学院地质与地球物理研究所,岩石圈演化国家重点实验室,北京100029;中国科学院大学地球与行星科学学院,北京100049【正文语种】中文【中图分类】P542.5;P588.3俯冲带-岛弧系统的碳循环模式可以概括这样一种图景:含碳岩石通过俯冲过程的变质作用形成含碳流体,含碳流体运移至上覆地幔楔交代其中的岩石导致部分熔融产生含碳的岛弧岩浆,岩浆上升到地表将碳以CO2形式释放到地表的物质圈层中去。

岛弧火山作用释放的CO2在碳同位素组成上证明了这种过程的存在。

岛弧岩浆的δ13 C在-0.1‰~-11.6‰之间,这种成分的碳是俯冲带的碳酸盐(δ13 C=0‰)、蚀变大洋玄武岩及其下覆地慢岩的碳(δ13 C=-5‰)和俯冲岩石中的有机碳(δ13 C=-30‰)混合的结果(Sano and Marty,1995;Shaw et al.,2003;De Leeuw et al.,2007)。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

The Phase Rule in Metamorphic Systems
• Phase rule, as applied to systems at equilibrium: F=C-f+2 the phase rule (6-1) f is the number of phases in the system C is the number of components: the minimum

The Phase Rule in Metamorphic Systems
Cool to the temperature of the reaction curve, periclase reacts with water to form brucite: MgO + H2O Mg(OH)2
The rock probably represents an equilibrium mineral assemblage from within a metamorphic zone

The Phase Rule in Metamorphic Systems
b)

f<C
Common with mineral systems that exhibit solid solution
Chapter 24. Stable Mineral Assemblages in Metamorphic Rocks
• Equilibrium Mineral Assemblages
• At equilibrium, the mineralogy (and the composition of each mineral) is determined by T, P, and X • “Mineral paragenesis” refers to such an equilibrium mineral assemblage • Relict minerals or later alteration products are thereby excluded from consideration unless specifically stated
The Phase Rule in Metamorphic Systems
2) Equilibrium has not been attained

The phase rule applies only to systems at equilibrium, and there could be any number of minerals coexisting if equilibrium is not attained
Liquid
Plagioclase
plus
Liquid
Plagioclase
The Phase Rule in Metamorphic Systems
c)

f>C
A more interesting situation, and at least one of three situations must be responsible: 1) F < 2 The sample is collected from a location right on a univariant reaction curve (isograd) or invariant point
The Phase Rule in Metamorphic Systems
• A typical sample from a metamorphic terrane Likely select a sample from within a zone, and not from right on an isograd • Alternatively, pick a random point anywhere on a phase diagram Likely point will be within a divariant field and not on a univariant curve or invariant point • The most common situation is divariant (F = 2), meaning that P and T are independently variable without affecting the mineral assemblage
The Phase Rule in Metamorphic Systems
3) We didn’t choose the # of components correctly
b) Components that substitute for other components



Adding a component such as NaAlSi3O8 (albite) to the 1-C anorthite system would dissolve in the anorthite structure, resulting in a single solid-solution mineral (plagioclase) below the solidus Fe and Mn commonly substitute for Mg Al may substitute for Si Na may substitute for K
The System MgO-H2O
Figure 24-1. P-T phase diagram illustrating the reaction brucite = periclase + water, calculated using the program TWQ of Berman (1988, 1990, 1991). From Winter (2001). An Introduction to Igneous and Metamorphic Petrology. Prentice Hall.
The Phase Rule in Metamorphic Systems
Reaction: periclase coexists with brucite: f=C+1 F = 1 (#2 reason to violate the mineralogical phase rule) To leave the curve, all the periclase must be consumed by the reaction, and brucite is the solitary remaining phase f = 1 and C = 1 again
The Phase Rule in Metamorphic Systems
Suppose we have determined ee scenarios: a)

f=C
The standard divariant situation in metamorphic rocks
The Phase Rule in Metamorphic Systems
If F 2 is the most common situation, then the phase rule may be adjusted accordingly: F=C-f+2 2 f C (24-1)
• Goldschmidt’s mineralogical phase rule, or simply the mineralogical phase rule
Figure 21-9. The P-T phase diagram for the system Al2SiO5 calculated using the program TWQ (Berman, 1988, 1990, 1991). Winter (2001) An Introduction to Igneous and Metamorphic Petrology. Prentice Hall.
The Phase Rule in Metamorphic Systems
3) We didn’t choose the # of components correctly
• Some guidelines for an appropriate choice of C

Begin with a 1-component system, such as CaAl2Si2O8 (anorthite), there are 3 common types of major/minor components that we can add a) Components that generate a new phase Adding a component such as CaMgSi2O6 (diopside), results in an additional phase: in the binary Di-An system diopside coexists with anorthite below the solidus
The Phase Rule in Metamorphic Systems
Consider the following three scenarios: C=1 f = 1 common f = 2 rare f = 3 only at the specific P-T conditions of the invariant point (~ 0.37 GPa and 500oC)
The Phase Rule in Metamorphic Systems
3) We didn’t choose the # of components correctly
相关文档
最新文档