外国语学校2017_2018学年高二数学上学期期末测试习题

合集下载

2017-2018学年高二上期末数学文科试卷(1)含答案解析

2017-2018学年高二上期末数学文科试卷(1)含答案解析

2017-2018学年高二(上)期末数学试卷(文科)一、选择题:(每小题5分,共60分)1.(5分)圆O1:x2+y2﹣2x=0和圆O2:x2+y2﹣4y=0的位置关系是()A.相离B.相交C.外切D.内切2.(5分)已知直线l、m,平面α、β且l⊥α,m⊂β,给出下列四个命题:①若α∥β,则l⊥m;②若l⊥m,则α∥β;③若α⊥β,则l∥m;④若l∥m,则α⊥β.其中正确的命题个数为()A.1 B.2 C.3 D.43.(5分)已知条件p:k=;条件q:直线y=kx+2与圆x2+y2=1相切,则¬p 是¬q的()A.充分必要条件B.必要不充分条件C.必要不充分条件 D.既不充分也不必要条件4.(5分)设A为圆周上一点,在圆周上等可能取点,与A连结,则弦长不超过半径的概率为()A.B.C.D.5.(5分)在对两个变量x,y进行线性回归分析时,有下列步骤:①对所求出的回归直线方程作出解释;②收集数据(x i,y i),i=1,2,…,n;③求线性回归方程;④求相关系数;⑤根据所搜集的数据绘制散点图.如果根据可形性要求能够作出变量x,y具有线性相关结论,则在下列操作顺序中正确的是()A.①②⑤③④B.③②④⑤①C.②④③①⑤D.②⑤④③①6.(5分)若直线3x+y+a=0过圆x2+y2+2x﹣4y=0的圆心,则a的值为()A.﹣1 B.1 C.3 D.﹣37.(5分)设m∈R,命题“若m>0,则方程x2+x﹣m=0 有实根”的逆否命题是()A.若方程x2+x﹣m=0 有实根,则m>0B.若方程x2+x﹣m=0有实根,则m≤0C.若方程x2+x﹣m=0 没有实根,则m>0D.若方程x2+x﹣m=0 没有实根,则m≤08.(5分)命题“存在x0∈R,2x0≤0”的否定是()A.不存在x0∈R,2x0>0 B.存在x0∈R,2x0≥0C.对任意的x∈R,2x≤0 D.对任意的x∈R,2x>09.(5分)若直线x﹣y+1=0与圆(x﹣a)2+y2=2有公共点,则实数a取值范围是()A.[﹣3,﹣1]B.[﹣1,3]C.[﹣3,1]D.(﹣∞,﹣3]∪[1,+∞)10.(5分)若椭圆的对称轴为坐标轴,长轴长与短轴长的和为18,一个焦点的坐标是(3,0),则椭圆的标准方程为()A.=1 B.=1C.=1 D.=111.(5分)已知过点P(2,2)的直线与圆(x﹣1)2+y2=5相切,且与直线ax ﹣y+1=0垂直,则a=()A.B.1 C.2 D.12.(5分)对一个作直线运动的质点的运动过程观测了8次,第i次观测得到的数据为a i,具体如下表所示:在对上述统计数据的分析中,一部分计算见如图所示的算法流程图(其中是这8个数据的平均数),则输出的S的值是()A.6 B.7 C.8 D.9二、填空题:(每小题5分,共20分)13.(5分)程所表示的曲线是.(椭圆的一部分,圆的一部分,椭圆,直线的)14.(5分)直线x﹣2y+5=0与圆x2+y2=8相交于A、B两点,则|AB|=.15.(5分)命题“∃x∈R,2x2﹣3ax+9<0”为假命题,则实数a的取值范围为.16.(5分)已知P为椭圆上一点,F1,F2是椭圆的两个焦点,∠F1PF2=60°,则△F1PF2的面积S=.三、解答题:17.(10分)给定两个命题,P:对任意的实数x都有ax2+ax+1>0恒成立;Q:关于x的方程x2﹣x+a=0有实数根;如果p∨q为真,p∧q为假,求实数a的取值范围.18.(12分)某校高二年级有男生105人,女生126人,教师42人,用分层抽样的方法从中抽取13人,进行问卷调查,设其中某项问题的选择支为“同意”,“不同意”两种,且每人都做了一种选择,下面表格中提供了被调查人答卷情况的部分信息.(1)请完成此统计表;(2)试估计高二年级学生“同意”的人数;(3)从被调查的女生中选取2人进行访谈,求选到的两名学生中,恰有一人“同意”一人“不同意”的概率.19.(12分)设锐角三角形的内角A、B、C的对边分别为a、b、c,且a=2bsinA.(1)求B的大小;(2)求cosA+sinC的取值范围.20.(12分)设p:实数x满足x2﹣4ax+3a2<0,其中a>0,命题q:实数x满足.(1)若a=1,且p∧q为真,求实数x的取值范围;(2)若p是q的必要不充分条件,求实数a的取值范围.21.(12分)如图,在四棱锥P﹣ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,∠APD=90°,且四棱锥P﹣ABCD的体积为,求该四棱锥的侧面积.22.(12分)已知直线l:(2m+1)x+(m+1)y﹣7m﹣4=0,m∈R,圆C:(x﹣1)2+(y﹣2)2=25.(Ⅰ)证明:直线l恒过一定点P;(Ⅱ)证明:直线l与圆C相交;(Ⅲ)当直线l被圆C截得的弦长最短时,求m的值.参考答案与试题解析一、选择题:(每小题5分,共60分)1.(5分)圆O1:x2+y2﹣2x=0和圆O2:x2+y2﹣4y=0的位置关系是()A.相离B.相交C.外切D.内切【解答】解:圆O1:x2+y2﹣2x=0,即(x﹣1)2+y2=1,圆心是O1(1,0),半径是r1=1圆O2:x2+y2﹣4y=0,即x2+(y﹣2)2=4,圆心是O2(0,2),半径是r2=2∵|O1O2|=,故|r1﹣r2|<|O1O2|<|r1+r2|∴两圆的位置关系是相交.故选B2.(5分)已知直线l、m,平面α、β且l⊥α,m⊂β,给出下列四个命题:①若α∥β,则l⊥m;②若l⊥m,则α∥β;③若α⊥β,则l∥m;④若l∥m,则α⊥β.其中正确的命题个数为()A.1 B.2 C.3 D.4【解答】解;①∵l⊥α,α∥β,∴l⊥β,又∵m⊂β,∴l⊥m,①正确.②由l⊥m推不出l⊥β,②错误.③当l⊥α,α⊥β时,l可能平行β,也可能在β内,∴l与m的位置关系不能判断,③错误.④∵l⊥α,l∥m,∴m∥α,又∵m⊂β,∴α⊥β,正确;故选:B.3.(5分)已知条件p:k=;条件q:直线y=kx+2与圆x2+y2=1相切,则¬p 是¬q的()A.充分必要条件B.必要不充分条件C.必要不充分条件 D.既不充分也不必要条件【解答】解:条件q:直线y=kx+2与圆x2+y2=1相切,可得:=1,解得k=.∴p是q的充分不必要条件.则¬p是¬q的必要不充分条件.故选:B.4.(5分)设A为圆周上一点,在圆周上等可能取点,与A连结,则弦长不超过半径的概率为()A.B.C.D.【解答】解:在圆上其他位置任取一点B,设圆半径为R,则B点位置所有情况对应的弧长为圆的周长2πR,其中满足条件AB的长度不超过半径长度的对应的弧长为•2πR,则AB弦的长度不超过半径长度的概率P=.故选:C.5.(5分)在对两个变量x,y进行线性回归分析时,有下列步骤:①对所求出的回归直线方程作出解释;②收集数据(x i,y i),i=1,2,…,n;③求线性回归方程;④求相关系数;⑤根据所搜集的数据绘制散点图.如果根据可形性要求能够作出变量x,y具有线性相关结论,则在下列操作顺序中正确的是()A.①②⑤③④B.③②④⑤①C.②④③①⑤D.②⑤④③①【解答】解:对两个变量进行回归分析时,首先收集数据(x i,y i),i=1,2,…,n;根据所搜集的数据绘制散点图.观察散点图的形状,判断线性关系的强弱,求相关系数,写出线性回归方程,最后对所求出的回归直线方程作出解释;故正确顺序是②⑤④③①故选D.6.(5分)若直线3x+y+a=0过圆x2+y2+2x﹣4y=0的圆心,则a的值为()A.﹣1 B.1 C.3 D.﹣3【解答】解:圆x2+y2+2x﹣4y=0的圆心为(﹣1,2),代入直线3x+y+a=0得:﹣3+2+a=0,∴a=1,故选B.7.(5分)设m∈R,命题“若m>0,则方程x2+x﹣m=0 有实根”的逆否命题是()A.若方程x2+x﹣m=0 有实根,则m>0B.若方程x2+x﹣m=0有实根,则m≤0C.若方程x2+x﹣m=0 没有实根,则m>0D.若方程x2+x﹣m=0 没有实根,则m≤0【解答】解:命题的逆否命题为,若方程x2+x﹣m=0 没有实根,则m≤0,故选:D.8.(5分)命题“存在x0∈R,2x0≤0”的否定是()A.不存在x0∈R,2x0>0 B.存在x0∈R,2x0≥0C.对任意的x∈R,2x≤0 D.对任意的x∈R,2x>0【解答】解:命题“存在x0∈R,2x0≤0”的否定是对任意的x∈R,2x>0,故选:D.9.(5分)若直线x﹣y+1=0与圆(x﹣a)2+y2=2有公共点,则实数a取值范围是()A.[﹣3,﹣1]B.[﹣1,3]C.[﹣3,1]D.(﹣∞,﹣3]∪[1,+∞)【解答】解:∵直线x﹣y+1=0与圆(x﹣a)2+y2=2有公共点∴圆心到直线x﹣y+1=0的距离为∴|a+1|≤2∴﹣3≤a≤1故选C.10.(5分)若椭圆的对称轴为坐标轴,长轴长与短轴长的和为18,一个焦点的坐标是(3,0),则椭圆的标准方程为()A.=1 B.=1C.=1 D.=1【解答】解:设椭圆的短轴为2b(b>0),长轴为2a,则2a+2b=18又∵个焦点的坐标是(3,0),∴椭圆在x轴上,c=3∵c2=a2﹣b2∴a2=25 b2=16所以椭圆的标准方程为故选B.11.(5分)已知过点P(2,2)的直线与圆(x﹣1)2+y2=5相切,且与直线ax ﹣y+1=0垂直,则a=()A.B.1 C.2 D.【解答】解:因为点P(2,2)满足圆(x﹣1)2+y2=5的方程,所以P在圆上,又过点P(2,2)的直线与圆(x﹣1)2+y2=5相切,且与直线ax﹣y+1=0垂直,所以切点与圆心连线与直线ax﹣y+1=0平行,所以直线ax﹣y+1=0的斜率为:a==2.故选C.12.(5分)对一个作直线运动的质点的运动过程观测了8次,第i次观测得到的数据为a i,具体如下表所示:在对上述统计数据的分析中,一部分计算见如图所示的算法流程图(其中是这8个数据的平均数),则输出的S的值是()A.6 B.7 C.8 D.9【解答】解:本题在算法与统计的交汇处命题,考查了同学们的识图能力以及计算能力.本题计算的是这8个数的方差,因为所以故选B二、填空题:(每小题5分,共20分)13.(5分)程所表示的曲线是椭圆的一部分.(椭圆的一部分,圆的一部分,椭圆,直线的)【解答】解:方程,可得x≥0,方程化为:x2+4y2=1,(x≥0),方程表示焦点坐标在x轴,y轴右侧的一部分.故答案为:椭圆的一部分;14.(5分)直线x﹣2y+5=0与圆x2+y2=8相交于A、B两点,则|AB|=2.【解答】解:圆心为(0,0),半径为2,圆心到直线x﹣2y+5=0的距离为d=,故,得|AB|=2.故答案为:2.15.(5分)命题“∃x∈R,2x2﹣3ax+9<0”为假命题,则实数a的取值范围为[﹣2,2] .【解答】解:原命题的否定为“∀x∈R,2x2﹣3ax+9≥0”,且为真命题,则开口向上的二次函数值要想大于等于0恒成立,只需△=9a2﹣4×2×9≤0,解得:﹣2≤a≤2.故答案为:[﹣2,2]16.(5分)已知P为椭圆上一点,F1,F2是椭圆的两个焦点,∠F1PF2=60°,则△F1PF2的面积S=.【解答】解:由椭圆的标准方程可得:a=5,b=3,∴c=4,设|PF1|=t1,|PF2|=t2,所以根据椭圆的定义可得:t1+t2=10①,在△F1PF2中,∠F1PF2=60°,所以根据余弦定理可得:|PF1|2+|PF2|2﹣2|PF1||PF2|cos60°=|F1F2|2=(2c)2=64,整理可得:t12+t22﹣t1t2=64,②把①两边平方得t12+t22+2t1•t2=100,③所以③﹣②得t1t2=12,∴∠F1PF2=3.故答案为:3.三、解答题:17.(10分)给定两个命题,P:对任意的实数x都有ax2+ax+1>0恒成立;Q:关于x的方程x2﹣x+a=0有实数根;如果p∨q为真,p∧q为假,求实数a的取值范围.【解答】解:当P为真时,a=0,或,解得:a∈[0,4)﹣﹣(3分)当Q为真时,△=1﹣4a≥0.解得:a∈(﹣∞,]﹣﹣(6分)如果p∨q为真,p∧q为假,即p和q有且仅有一个为真,﹣﹣(8分)当p真q假时,a∈(,4)当p假q真时,a∈(﹣∞,0)a的取值范围即为:(﹣∞,0)∪(,4)﹣﹣(12分)18.(12分)某校高二年级有男生105人,女生126人,教师42人,用分层抽样的方法从中抽取13人,进行问卷调查,设其中某项问题的选择支为“同意”,“不同意”两种,且每人都做了一种选择,下面表格中提供了被调查人答卷情况的部分信息.(1)请完成此统计表;(2)试估计高二年级学生“同意”的人数;(3)从被调查的女生中选取2人进行访谈,求选到的两名学生中,恰有一人“同意”一人“不同意”的概率.【解答】解:(1)根据题意,填写被调查人答卷情况统计表如下:男生105人,女生126人,教师42人,用分层抽样的方法从中抽取13人,进行问卷调查,设其中某项问题的选择支为“同意”,“不同意”两种,且每人都做了一种选择,下面表格中提供了被调查人答卷情况的部分信息.(2)由表格可以看出女生同意的概率是,男生同意的概率是;用男女生同意的概率乘以人数,得到同意的结果数为105×+126×=105,估计高二年级学生“同意”的人数为105人;(3)设“同意”的两名学生编号为1,2,“不同意”的四名学生分别编号为3,4,5,6,选出两人则有(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)共15种方法;其中(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),共8种满足题意;则恰有一人“同意”一人“不同意”的概率为P=.19.(12分)设锐角三角形的内角A、B、C的对边分别为a、b、c,且a=2bsinA.(1)求B的大小;(2)求cosA+sinC的取值范围.【解答】解:(1)由a=2bsinA.根据正弦定理,得sinA=2sinBsinA,sinA≠0.故sinB=.因△ABC为锐角三角形,故B=.(2)cosA+sinC=cosA+sin=cosA+sin=cosA+cosA+sinA=sin.由△ABC为锐角三角形,知=﹣B<A<,∴<A+<,故<sin<,<<.故cosA+sinC的取值范围是.20.(12分)设p:实数x满足x2﹣4ax+3a2<0,其中a>0,命题q:实数x满足.(1)若a=1,且p∧q为真,求实数x的取值范围;(2)若p是q的必要不充分条件,求实数a的取值范围.【解答】解:p:实数x满足x2﹣4ax+3a2<0,其中a>0,解得a<x<3a.命题q:实数x满足.化为,解得,即2<x≤3.(1)a=1时,p:1<x<3.p∧q为真,可得p与q都为真命题,则,解得2<x<3.实数x的取值范围是(2,3).(2)∵p是q的必要不充分条件,∴,a>0,解得1<a≤2.∴实数a的取值范围是(1,2].21.(12分)如图,在四棱锥P﹣ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,∠APD=90°,且四棱锥P﹣ABCD的体积为,求该四棱锥的侧面积.【解答】证明:(1)∵在四棱锥P﹣ABCD中,∠BAP=∠CDP=90°,∴AB⊥PA,CD⊥PD,又AB∥CD,∴AB⊥PD,∵PA∩PD=P,∴AB⊥平面PAD,∵AB⊂平面PAB,∴平面PAB⊥平面PAD.解:(2)设PA=PD=AB=DC=a,取AD中点O,连结PO,∵PA=PD=AB=DC,∠APD=90°,平面PAB⊥平面PAD,∴PO⊥底面ABCD,且AD==,PO=,∵四棱锥P﹣ABCD的体积为,由AB⊥平面PAD,得AB⊥AD,=∴V P﹣ABCD====,解得a=2,∴PA=PD=AB=DC=2,AD=BC=2,PO=,∴PB=PC==2,∴该四棱锥的侧面积:S侧=S△PAD+S△PAB+S△PDC+S△PBC=+++==6+2.22.(12分)已知直线l:(2m+1)x+(m+1)y﹣7m﹣4=0,m∈R,圆C:(x﹣1)2+(y﹣2)2=25.(Ⅰ)证明:直线l恒过一定点P;(Ⅱ)证明:直线l与圆C相交;(Ⅲ)当直线l被圆C截得的弦长最短时,求m的值.【解答】(本题满分12分)解:证明:(Ⅰ)直线l方程变形为(2x+y﹣7)m+(x+y﹣4)=0,由,得,∴直线l恒过定点P(3,1).…(4分)(Ⅱ)∵P(3,1),圆C:(x﹣1)2+(y﹣2)2=25的圆心C(1,2),半径r=5,∴,∴P点在圆C内部,∴直线l与圆C相交.…(8分)解:(Ⅲ)当l⊥PC时,所截得的弦长最短,此时有k l•k PC=﹣1,而,k PC=﹣,∴=﹣1,解得m=﹣.…(12分)。

四川省成都外国语学校高二数学上学期期末考试试题 理

四川省成都外国语学校高二数学上学期期末考试试题 理

成都外国语学校2016-2017学年上期高2015级(高二)期末考试数学试题(理科)满分150分,时间:120分钟.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知命题:p x ∃∈R ,sin 1x >,则( )A .:p x ⌝∃∈R ,sin 1x ≤B . :p x ⌝∃∈R ,sin 1x ≤C .:p x ⌝∀∈R ,sin 1x ≤D .:p x ⌝∀∈R ,sin 1x >2.若10件产品中有7件正品,3件次品,从中任取2件,则恰好取到1件次品的概率是( )A.37 B. 715 C. 815 D. 473. “35m -<<”是“方程22153x y m m +=-+表示椭圆”的( )A.充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件4.执行如图所示的程序框图,若输出的88S =,则判断框内应填入的条件是( )A .7?k >B .6?k >C .5?k >D .4?k >5.过抛物线2(0)y ax a =>的焦点F 作一直线交抛物线于,P Q 两点,若线段PF 和线段FQ 的长分别是,p q ,则11p q+等于( ) A .14a B . 12aC .2aD .4a6.如图,一竖立在地面上的圆锥形物体的母线长为4,一只小虫从圆锥的底面圆上的点P 出发,绕圆锥爬行一周后回到点P 处,若该小虫爬行的最短路程为)7.已知a ∈R ,若方程222(2)4850a x a y x y a +++++=表示圆,则此圆心坐标( )A. (2,4)--B. 1(,1)2--C. (2,4)--或1(,1)2-- D. 不确定 8.样本(12,,,n x x x )的平均数为x ,样本(12,,m y y y )的平均数为()y x y ≠,若样本(12,,,n x x x ,12,,m y y y )的平均数(1)z a x a y =-+,其中102a <<,则,m n 的大小关系为( )A .n m <B .n m >C .n m =D .不能确定9.某农户计划种植黄瓜和冬瓜,种植面积不超过50亩,投入资金不超过54万元,假设种植黄瓜与冬瓜的产量、成本和售价如下表:为使一年的种植总利润(总利润=总销售收入-总种植成本)最大,那么黄瓜与冬瓜的种植面积(单位:亩)分别为( )A. 50,0B. 30,20C. 20,30D. 0, 5010.已知椭圆2212221(0),x y a b F F a b+=>>、为椭圆的左.右焦点,M 是椭圆上任一点,若12MF MF ⋅的取值范围为[3,3]-,则椭圆方程为( )A .22193x y +=B .22163x y +=C .221124x y +=D .2214x y +=11.在等腰直角三角形ABC 中,=4AB AC =,点P 是边AB 上异于,A B 的一点,光线从点P 出发,经,BC CA 发射后又回到原点P (如图11).若光线QR 经过ABC ∆的重心,则BP 等于( )A .2B .1C .83D .4312.如图12,F 1,F 2分别是双曲线C :22221x y a b-=(,0a b >)的左、右焦点,B 是虚轴的端点,直线F 1B 与C 的两条渐近线分别交于P,Q 两点,线段PQ 的垂直平分线与x 轴交于点M ,若|MF 2|=|F 1F 2|,则双曲线C 的渐近线方程是( )A.y x =±B.y =C. 12y x =±D. y x = 二、填空题(本大概题共4小题,每小题5分.) 13.根据下列算法语句, 当输入x 为60时, 输出y 的值为________.14.若,x y 满足约束条件1020220x y x y x y -+≥⎧⎪-≤⎨⎪+-≤⎩则z x y =-的最小值为_____________.15.如果双曲线22221(0,0)x y a b a b-=>>的一个焦点到渐近线的距离为3,且离心率为2则此双曲线的方程___________.16.设点00(,2)M x x -,设在圆22:1O x y +=上存在点N ,使得030OMN ∠=,则实数0x 的取值范围为_______.三、解答题(应写出文字说明过程或演算步骤)17. (本小题满分10分)某校高二某班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的破坏,其可见部分如下:据此解答如下问题: (Ⅰ)计算频率分布直方图中[80,90)间的矩形的高; (Ⅱ)根据频率分布直方图估计这次测试的平均分.18. (本小题满分12分)命题p :“关于x 的不等式22(1)0,(0)x a x a a +-+≤>的解集为∅”,命题q :“在区间[2,4]-上随机地取一个数x ,若x 满足||(0)x a a ≤>的概率56P ≥”,当""p q ⌝⌝∧与""p q ⌝⌝∨一真一假时,求实数a 的取值范围.19.(本小题满分12分)在如图所示的几何体中,四边形ABCD 为矩形,平面ABEF ⊥平面ABCD ,EF//AB ,90BAF ∠=,AD=2,AB= AF=2EF=l ,点P 在棱DF 上. (Ⅰ)若P 为DF 的中点,求证:BF//平面ACP (Ⅱ)若直线PC 与平面FAD 所成角的正弦值为23, 求PF 的长度.20. (本小题满分12分)某农场所对冬季昼夜温差大小与某反季大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了2016年12月1日至12月5日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如下表:该农科所确定的研究方案是:先从这五组数据中选取2组,用剩下的3组数据求线性回归方程,再对被选取的两组数据进行检验。

吉林省长春外国语学校2018学年高二上学期期末数学试卷

吉林省长春外国语学校2018学年高二上学期期末数学试卷

吉林省长春外国语学校2018-2018学年高二(上)期末数学试卷(解析版)一、选择题:本题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.抛物线y=4x2的焦点坐标是()A.(0,1)B.(1,0)C.D.2.双曲线:x2﹣=1的渐近线方程和离心率分别是()A.B.C.D.3.如果A(1,3)关于直线l的对称点为B(﹣5,1),则直线l的方程是()A.x﹣3y+8=0 B.3x+y+4=0 C.x+3y﹣4=0 D.3x﹣y+8=04.将甲,乙两名同学5次数学测验的成绩用茎叶图表示如图,若甲,乙两人成绩的中位数分别是x甲,x乙,则下列说法正确的是()A.x甲<x乙,乙比甲成绩稳定B.x甲>x乙;甲比乙成绩稳定C.x甲>x乙;乙比甲成绩稳定D.x甲<x乙;甲比乙成绩稳定5.在5件产品中,有3件一等品和2件二等品,从中任取2件,那么以为概率的事件是()A.都不是一等品B.恰有一件一等品C.至少有一件一等品D.至多一件一等品6.给出计算的值的一个程序框图如图,其中判断框内应填入的条件是()A.i>10 B.i<10 C.i>20 D.i<207.曲线=1与曲线=1(k<9)的()A.长轴长相等B.短轴长相等C.离心率相等D.焦距相等8.已知a>0,b>0,a+b=1,则y=的最小值是()A.B.4 C.9 D.59.已知点P是抛物线y2=2x上的一个动点,则点P到点(0,2)的距离与P到该抛物线准线的距离之和的最小值为()A.B.3 C.D.10.已知圆的方程为x2+y2﹣6x﹣8y=0,设该圆过点(3,5)的最长弦和最短弦分别为AC和BD,则四边形ABCD的面积为()A.10B.20C.30D.4011.若椭圆+=1的弦被点(4,2)平分,则此弦所在直线的斜率为()A.B.C.2 D.﹣212.若直线y=x+b与曲线有公共点,则b的取值范围是()A.[,]B.[,3]C.[﹣1,]D.[,3]二、填空题:本题共4小题,每小题5分.13.如图所示程序,若输入8时,则下列程序执行后输出的结果是.14.如图的矩形,长为5,宽为2,在矩形内随机地撒300颗黄豆,数得落在阴影部分的黄豆数为138颗,则我们可以估计出阴影部分的面积为.15.已知x、y的取值如表所示:从散点图分析,y与x线性相关,且=0.95x+a,则a=.16.双曲线的离心率为,且与椭圆=1有公共焦点,则该双曲线的方程为.三、解答题:共6小题,共70分.解答应写出必要证明过程或演算步骤. 17.(10分)已知圆C的方程是(x﹣1)2+(y﹣1)2=4,直线l的方程为y=x+m,求:当m为何值时(1)直线平分圆;(2)直线与圆相切;(3)直线与圆有两个公共点.18.(12分)一个容量为M的样本数据,其频率分布表如表.(Ⅰ)完成频率分布表;(Ⅱ)画出频率分布直方图;(Ⅲ)利用频率分布直方图,估计总体的众数、中位数及平均数.19.(12分)已知抛物线C:y2=4x与直线y=2x﹣4交于A,B两点.(1)求弦AB的长度;(2)若点P在抛物线C上,且△ABP的面积为12,求点P的坐标.20.(12分)设实数x、y满足(1)求的取值范围;(2)求z=x2+y2的取值范围.21.(12分)已知关于x的一元二次方程x2﹣2(a﹣2)x﹣b2+16=0.(1)若a,b是一枚骰子掷两次所得到的点数,求方程有实根的概率;(2)若a∈[2,6],b∈[0,4],求方程没有实根的概率.22.(12分)已知椭圆C:的离心率,焦距为2(1)求椭圆C的方程;(2)已知椭圆C与直线x﹣y+m=0相交于不同的两点M、N,且线段MN的中点不在圆x2+y2=1内,求实数m的取值范围.2018-2018学年吉林省长春外国语学校高二(上)期末数学试卷参考答案与试题解析一、选择题:本题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.抛物线y=4x2的焦点坐标是()A.(0,1)B.(1,0)C.D.【考点】抛物线的简单性质.【分析】把抛物线y=4x2的方程化为标准形式,确定开口方向和p值,即可得到焦点坐标.【解答】解:抛物线y=4x2的标准方程为x2=y,p=,开口向上,焦点在y轴的正半轴上,故焦点坐标为(0,),故选C.【点评】本题考查抛物线的标准方程,以及简单性质的应用;把抛物线y=4x2的方程化为标准形式,是解题的关键.2.双曲线:x2﹣=1的渐近线方程和离心率分别是()A.B.C.D.【考点】双曲线的简单性质.【分析】先根据双曲线的标准方程,求得其特征参数a、b、c的值,再利用双曲线渐近线方程公式和离心率定义分别计算即可【解答】解:双曲线:的a=1,b=2,c==∴双曲线的渐近线方程为y=±x=±2x;离心率e==故选D【点评】本题考查了双曲线的标准方程,双曲线特征参数a、b、c的几何意义,双曲线几何性质:渐近线方程、离心率的求法,属基础题3.如果A(1,3)关于直线l的对称点为B(﹣5,1),则直线l的方程是()A.x﹣3y+8=0 B.3x+y+4=0 C.x+3y﹣4=0 D.3x﹣y+8=0【考点】与直线关于点、直线对称的直线方程.【分析】由题意可得直线l为线段AB的中垂线,求得AB的中点为(﹣2,2),求出AB的斜率可得直线l的斜率,由点斜式求得直线l的方程,化简可得结果.【解答】解:∵已知点A(1,3)关于直线l的对称点为B(﹣5,1),故直线l为线段AB的中垂线.求得AB的中点为(﹣2,2),AB的斜率为=,故直线l的斜率为﹣3,故直线l的方程为y﹣2=﹣3(x+2),化简可得3x+y+4=0.故选:B.【点评】本题主要考查两条直线垂直的性质,斜率公式的应用,用点斜式求直线的方程,属于中档题.4.将甲,乙两名同学5次数学测验的成绩用茎叶图表示如图,若甲,乙两人成绩的中位数分别是x甲,x乙,则下列说法正确的是()A.x甲<x乙,乙比甲成绩稳定B.x甲>x乙;甲比乙成绩稳定C.x甲>x乙;乙比甲成绩稳定D.x甲<x乙;甲比乙成绩稳定【考点】茎叶图.【分析】利用茎叶图中的数据和中位数的定义即可得出结论.【解答】解:根据茎叶图中的数据,得甲、乙二人的中位数分别是x甲=79,x乙=82,且在茎叶图中,乙的数据更集中,∴x甲<x乙,乙比甲成绩稳定.故选:A.【点评】本题考查了中位数的求法与方差的判断问题,是基础题.解题时要注意茎叶图的性质的灵活运用.5.在5件产品中,有3件一等品和2件二等品,从中任取2件,那么以为概率的事件是()A.都不是一等品B.恰有一件一等品C.至少有一件一等品D.至多一件一等品【考点】古典概型及其概率计算公式.【分析】从5件产品中任取2件,有C52种结果,通过所给的条件可以做出都不是一等品有1种结果,恰有一件一等品有C31C21种结果,至少有一件一等品有C31C21+C32种结果,至多有一件一等品有C31C21+1种结果,做比值得到概率.【解答】解:5件产品中,有3件一等品和2件二等品,从中任取2件,从5件产品中任取2件,有C52=10种结果,∵都不是一等品有1种结果,概率是,恰有一件一等品有C31C21种结果,概率是,至少有一件一等品有C31C21+C32种结果,概率是,至多有一件一等品有C31C21+1种结果,概率是,∴是至多有一件一等品的概率,故选D.【点评】本题考查古典概型,是一个由概率来对应事件的问题,需要把选项中的所有事件都作出概率,解题过程比较麻烦.6.给出计算的值的一个程序框图如图,其中判断框内应填入的条件是()A.i>10 B.i<10 C.i>20 D.i<20【考点】循环结构.【分析】结合框图得到i表示的实际意义,要求出所需要的和,只要循环10次即可,得到输出结果时“i”的值,得到判断框中的条件.【解答】解:根据框图,i﹣1表示加的项数当加到时,总共经过了10次运算,则不能超过10次,i﹣1=10执行“是”所以判断框中的条件是“i>10”故选A【点评】本题考查求程序框图中循环结构中的判断框中的条件:关键是判断出有关字母的实际意义,要达到目的,需要对字母有什么限制.7.曲线=1与曲线=1(k<9)的()A.长轴长相等B.短轴长相等C.离心率相等D.焦距相等【考点】椭圆的简单性质.【分析】分别求出两椭圆的长轴长、短轴长、离心率、焦距,即可判断.【解答】解:曲线=1表示焦点在x轴上,长轴长为10,短轴长为6,离心率为,焦距为8.曲线=1(k<9)表示焦点在x轴上,长轴长为2,短轴长为2,离心率为,焦距为8.对照选项,则D正确.故选D.【点评】本题考查椭圆的方程和性质,考查运算能力,属于基础题.8.已知a>0,b>0,a+b=1,则y=的最小值是()A.B.4 C.9 D.5【考点】基本不等式.【分析】利用题设中的等式,把y的表达式转化成(a+b)()展开后,利用基本不等式求得y的最小值.【解答】解:∵a+b=1,∴y=(a+b)()=5+≥5+2=9,当且仅当,即b=2a时等号成立.故选:C.【点评】本题主要考查了基本不等式求最值.注意把握好一定,二正,三相等的原则.9.已知点P是抛物线y2=2x上的一个动点,则点P到点(0,2)的距离与P到该抛物线准线的距离之和的最小值为()A.B.3 C.D.【考点】抛物线的简单性质.【分析】先求出抛物线的焦点坐标,再由抛物线的定义可得d=|PF|+|PA|≥|AF|,再求出|AF|的值即可.【解答】解:依题设P在抛物线准线的投影为P',抛物线的焦点为F,则,依抛物线的定义知P到该抛物线准线的距离为|PP'|=|PF|,则点P到点A(0,2)的距离与P到该抛物线准线的距离之和.故选A.【点评】本小题主要考查抛物线的定义解题.10.已知圆的方程为x2+y2﹣6x﹣8y=0,设该圆过点(3,5)的最长弦和最短弦分别为AC和BD,则四边形ABCD的面积为()A.10B.20C.30D.40【考点】直线与圆相交的性质.【分析】根据题意可知,过(3,5)的最长弦为直径,最短弦为过(3,5)且垂直于该直径的弦,分别求出两个量,然后利用对角线垂直的四边形的面积等于对角线乘积的一半求出即可.【解答】解:圆的标准方程为(x﹣3)2+(y﹣4)2=52,由题意得最长的弦|AC|=2×5=10,根据勾股定理得最短的弦|BD|=2=4,且AC⊥BD,四边形ABCD的面积S=|AC|•|BD|=×10×4=20.故选B【点评】考查学生灵活运用垂径定理解决数学问题的能力,掌握对角线垂直的四边形的面积计算方法为对角线乘积的一半.11.若椭圆+=1的弦被点(4,2)平分,则此弦所在直线的斜率为()A.B.C.2 D.﹣2【考点】直线与圆锥曲线的关系;直线的斜率.【分析】利用平方差法:设弦的端点为A(x1,y1),B(x2,y2),将A、B坐标代入椭圆方程,两式作差变形,根据斜率公式、中点坐标公式即可求得答案.【解答】解:设弦的端点为A(x1,y1),B(x2,y2),则x1+x2=8,y1+y2=4,将A、B坐标代入椭圆方程,得①,②,①﹣②得,,即=﹣,所以此弦所在直线的斜率为﹣.故选A.【点评】本题考查直线与圆锥曲线的位置关系及直线的斜率,属中档题,涉及弦中点问题往往考虑平方差法解决,即设弦端点坐标,代入圆锥曲线方程,作差变形,借助斜率公式、中点坐标公式可得弦的斜率与中点坐标间的关系.12.若直线y=x+b与曲线有公共点,则b的取值范围是()A.[,]B.[,3]C.[﹣1,]D.[,3]【考点】函数与方程的综合运用.【分析】本题要借助图形来求参数b的取值范围,曲线方程可化简为(x﹣2)2+(y﹣3)2=4(1≤y≤3),即表示圆心为(2,3)半径为2的半圆,画出图形即可得出参数b的范围.【解答】解:曲线方程可化简为(x﹣2)2+(y﹣3)2=4(1≤y≤3),即表示圆心为(2,3)半径为2的半圆,如图依据数形结合,当直线y=x+b与此半圆相切时须满足圆心(2,3)到直线y=x+b距离等于2,即解得或,因为是下半圆故可知(舍),故当直线过(0,3)时,解得b=3,故,故选D.【点评】考查方程转化为标准形式的能力,及借助图形解决问题的能力.本题是线与圆的位置关系中求参数的一类常见题型.二、填空题:本题共4小题,每小题5分.13.如图所示程序,若输入8时,则下列程序执行后输出的结果是0.7.【考点】选择结构.【分析】t=8,不满足条件t≤4,则执行Else后的循环体,从而求出最后的y值即可.【解答】解:t=8,不满足条件t≤4执行Else后循环体,c=0.2+0.1(8﹣3)=0.7故输出0.7.故答案为:0.7【点评】本题主要考查了选择结构,属于基础题.14.如图的矩形,长为5,宽为2,在矩形内随机地撒300颗黄豆,数得落在阴影部分的黄豆数为138颗,则我们可以估计出阴影部分的面积为.【考点】几何概型.【分析】先由黄豆试验估计,黄豆落在阴影部分的概率,再转化为几何概型的面积类型求解.【解答】解:根据题意:黄豆落在阴影部分的概率是矩形的面积为10,设阴影部分的面积为s则有∴s=故答案为:【点评】本题主要考查实验法求概率以及几何概型中面积类型,将两者建立关系,引入方程思想.15.已知x、y的取值如表所示:从散点图分析,y与x线性相关,且=0.95x+a,则a= 2.6.【考点】线性回归方程.【分析】根据表中的数据可以分别求出变量x,y的算术平均值,而根据回归方程知道直线的斜率为0.95,然后带入求截距的公式即可求出a.【解答】解:根据表中数据得:;又由回归方程知回归方程的斜率为0.95;∴.故答案为:2.6.【点评】考查线性相关的概念,回归方程中直线的斜率和截距的计算公式,以及变量的算术平均值的计算.16.双曲线的离心率为,且与椭圆=1有公共焦点,则该双曲线的方程为.【考点】双曲线的标准方程.【分析】设双曲线的标准方程为,(a>0,b>0),由已知得,由此能求出双曲线的方程.【解答】解:∵双曲线的离心率为,且与椭圆=1有公共焦点,∴双曲线的焦点坐标为,,设双曲线的标准方程为,(a>0,b>0),∴,解得a=2,c=,b=1,∴该双曲线的方程为.故答案为:.【点评】本题考查双曲线方程的求法,是中档题,解题时发认真审题,注意双曲线性质的合理运用.三、解答题:共6小题,共70分.解答应写出必要证明过程或演算步骤. 17.(10分)(2018秋•安康期末)已知圆C的方程是(x﹣1)2+(y﹣1)2=4,直线l的方程为y=x+m,求:当m为何值时(1)直线平分圆;(2)直线与圆相切;(3)直线与圆有两个公共点.【考点】直线与圆的位置关系.【分析】(1)根据题意,由圆的方程找出圆心坐标和圆的半径r,直线平分圆即直线过圆心,所以把圆心坐标代入直线方程中即可求出m的值;(2)直线与圆相切时,圆心到直线的距离等于半径,所以利用点到直线的距离公式表示出圆心到已知直线的距离d,让d等于圆的半径列出关于m的方程,求出方程的解即可得到符合题意m的值;(3)直线与圆有两公共点即直线与圆相交,即圆心到直线的距离公式小于圆的半径,所以利用点到直线的距离公式表示出圆心到直线的距离d,让d小于圆的半径列出关于m的不等式,求出不等式的解集即可得到满足题意的m的范围.【解答】解:由圆的方程(x﹣1)2+(y﹣1)2=4,得到圆心坐标为(1,1),圆的半径r=2,(1)当直线平分圆时,即直线过圆的直径,把(1,1)代入y=x+m中,解得m=0;(2)当直线与圆相切时,圆心(1,1)到直线y=x+m的距离d==r=2,解得m=±2;(3)当直线与圆有两个公共点即直线与圆相交时,圆心(1,1)到直线的距离d=<r=2,解得:﹣2<m<2.所以,当m=0时,直线平分圆;当m=±2时,直线与圆相切;当﹣2<m<2时,直线与圆有两个公共点.【点评】此题考查学生掌握直线与圆相切及相交时所满足的条件,是一道综合题.18.(12分)(2018秋•南关区校级期末)一个容量为M的样本数据,其频率分布表如表.(Ⅰ)完成频率分布表; (Ⅱ)画出频率分布直方图;(Ⅲ)利用频率分布直方图,估计总体的众数、中位数及平均数. 【考点】频率分布表;频率分布直方图;众数、中位数、平均数.【分析】(1)根据小组(10,20]的频数与频率,求出样本容量,再求出各小组对应的数据,补充完整频率分布表;(2)根据频率分布表,画出频率分布直方图;(3)根据频率分布直方图,求出众数、平均数与中位数.【解答】解:(1)在小组(10,20]中,频数是2,频率是0.10,∴样本数据为=20;∴小组(20,30]的频率为=0.15;小组(40,50]的频数为20﹣2﹣3﹣4﹣4﹣2=5,频率为=0.25;频数合计为20;由此补充频率分布表如下:(2)根据频率分布表,画出频率分布直方图如下:(3)根据频率分布直方图,得;图中最高的小矩形的底边中点坐标是=45,∴众数为45;平均数为=15×0.1+25×0.15+35×0.20+45×0.25+55×0.20+65×0.10=41;∵0.10+0.15+0.20=0.45<0.5,0.45+0.25=0.70>0.5,令0.45+0.25×x=0.5,解得x=2,∴中位数为40+2=42.【点评】本题考查了频率分布直方图的应用问题,解题时应利用分布直方图进行有关的运算,是基础题目.19.(12分)(2018秋•南关区校级期末)已知抛物线C:y2=4x与直线y=2x﹣4交于A,B两点.(1)求弦AB的长度;(2)若点P在抛物线C上,且△ABP的面积为12,求点P的坐标.【考点】直线与圆锥曲线的关系;三角形的面积公式;两点间的距离公式.【分析】(1)利用弦长公式即可求得弦AB的长度;(2)设点,利用点到直线的距离公式可表示出点P到AB的距离d,S△PAB=••d=12,解出即可;【解答】解:(1)设A(x1,y1)、B(x2,y2),由得x2﹣5x+4=0,△>0.由韦达定理有x1+x2=5,x1x2=4,∴|AB|==,所以弦AB的长度为3.(2)设点,设点P到AB的距离为d,则,=••=12,即.∴S△PAB∴,解得y o=6或y o=﹣4∴P点为(9,6)或(4,﹣4).【点评】本题考查直线与圆锥曲线的位置关系、点到直线的距离公式及三角形的面积公式,考查学生的计算能力,属中档题.20.(12分)(2018秋•南关区校级期末)设实数x、y满足(1)求的取值范围;(2)求z=x2+y2的取值范围.【考点】简单线性规划.【分析】(1)先根据约束条件画出可行域,根据的几何意义求最值,(2)根据z=x2+y2的几何意义是可行域上的点到原点距离的平方,即可求出最值.【解答】解:(1)满足y满足约束条件的平面区域如图所示,A(1,2),B(4,2),C(3,1),(1)的几何意义可行域上的点是到原点的斜率;当直线为OA时,u有最大值为2;当直线为OC时,u有最小值为;所以,(2)z=x2+y2的几何意义是可行域上的点到原点距离的平方;z=x2+y2的最大值为|OB|2=20,最小值为O到直线AC的距离的平方,为5;所以,z∈[5,20]【点评】本题主要考查了用平面区域二元一次不等式组,以及简单的转化思想和数形结合的思想,属中档题.目标函数有唯一最优解是我们最常见的问题,这类问题一般要分三步:画出可行域、求出关键点、定出最优解.21.(12分)(2018秋•南关区校级期末)已知关于x的一元二次方程x2﹣2(a ﹣2)x﹣b2+16=0.(1)若a,b是一枚骰子掷两次所得到的点数,求方程有实根的概率;(2)若a∈[2,6],b∈[0,4],求方程没有实根的概率.【考点】几何概型.【分析】(1)本题是一个古典概型,用(a,b)表示一枚骰子投掷两次所得到的点数的事件,基本事件(a,b)的总数有36个满足条件的事件是二次方程x2﹣2(a﹣2)x﹣b2+16=0有实根,根据实根与系数的关系式,得到概率.(2)本题是一个几何概型,试验的全部结果构成区域Ω={(a,b)|2≤a≤6,0≤b≤4},满足条件的事件为:B={(a,b)|2≤a≤6,0≤b≤4,(a﹣2)2+b2<16},做出两者的面积,得到概率【解答】解:(1)由题意知本题是一个古典概型用(a,b)表示一枚骰子投掷两次所得到的点数的事件依题意知,基本事件(a,b)的总数有36个二次方程x2﹣2(a﹣2)x﹣b2+16=0有实根,等价于△=4(a﹣2)2+4(b2﹣16)≥0,即(a﹣2)2+b2≥16,“方程有两个根”的事件为A,则事件A包含的基本事件为(1,6),(1,5).(1,4),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,4),(4,5),(4,6),(5,3),(5,4),(5,5),(5,6),(6,1)、(6,2)、(6,3)、(6,4),(6,5),(6,6),共22个∴所求的概率为P(A)=;(2)由题意知本题是一个几何概型,;试验的全部结果构成区域Ω={(a,b)|2≤a≤6,0≤b≤4},其面积为S(Ω)=16满足条件的事件为:B={(a,b)|2≤a≤6,0≤b≤4,(a﹣2)2+b2<16}其面积为S(B)=×π×42=4π∴所求的概率P(B)=;【点评】本题考查古典概型和几何概型,几何概型和古典概型是高中必修中学习的,高考时常以选择和填空出现,有时文科会考这种类型的解答题目22.(12分)(2018秋•南关区校级期末)已知椭圆C:的离心率,焦距为2(1)求椭圆C 的方程;(2)已知椭圆C 与直线x ﹣y +m=0相交于不同的两点M 、N ,且线段MN 的中点不在圆x 2+y 2=1内,求实数m 的取值范围.【考点】直线与圆锥曲线的综合问题;椭圆的标准方程.【分析】(1)利用离心率与焦距,求出a 2=2,b 2=1,即可得到椭圆的方程. (2)联立方程,消去y ,利用判别式求出m 的范围,设M (x 1,y 1),N (x 2,y 2),利用韦达定理求出MN 中点坐标,通过MN 的中点不在圆x 2+y 2内,得到不等式,求解即可.【解答】解:(1)由题意知,2c=2,又a 2﹣b 2=c 2,解得,c=1,∴a 2=2,b 2=1故椭圆的方程为…(2分) (2)联立方程,消去y 可得3x 2+4mx +2m 2﹣2=0则… 设M (x 1,y 1),N (x 2,y 2),则,∴MN 中点坐标为…(8分) 因为MN 的中点不在圆x 2+y 2内,所以或…(10分) 综上,可知或…(12分) 注:用点差法酌情给分【点评】本题考查椭圆的方程的求法,在下雨椭圆的位置关系的综合应用,圆的方程的综合应用,考查计算能力.。

山东省济南外国语学校2017-2018学年高二上学期期末考试数学(理)试卷(扫描版)

山东省济南外国语学校2017-2018学年高二上学期期末考试数学(理)试卷(扫描版)

高二数学(理科)期末考试试题答案201802一、选择题(共12题,每题5分,共60分,给出的四个选项中,只有一个正确答案) 1.C 2.C 3.B 4. B 5.B 6.A 7.A 8.C 9.A 10.C 11.C 12.A二、填空题(共4题,每题5分,共2013. a n =⎩⎪⎨⎪⎧2 n =16n -5 n ≥2 14.2x -y -15=0 1516. (23,3)三、解答题(共6题,共70分,解答写出文字说明、证明过程、计算步骤) 17. 解 ┐p :⎪⎪⎪⎪⎪⎪1-x -13>2,解得x <-2,或x >10,A ={x |x <-2,或x >10}.┐q :x 2-2x +1-m 2>0,m >0,解得x <1-m ,或x >1+m ,B ={x |x <1-m ,或x >1+m }. ∵┐p 是┐q 的必要非充分条件,∴BA ,即⎩⎪⎨⎪⎧1-m <-21+m >10⇒m >9,∴m >9.18. (1)∵AB →·BC →=-21,BA →·BC →=21.BA →·BC →=|BA →|·|BC →|·cos B =ac cos B =21.∴ac =35,∵cos B =35,∴sin B =45.∴S △ABC =12ac sin B =12×35×45=14.(2)ac =35,a =7,∴c =5. 由余弦定理得,b 2=a 2+c 2-2ac cos B =32,∴b =4 2.由正弦定理:c sin C =b sin B .∴sin C =c b sin B =542×45=22.∵c <b 且B 为锐角,∴C 一定是锐角.∴C =45°.19. (1)由2x+8y -xy=0,得821x y +=,又x >0,y >0,故1=82x y +=≥,故xy ≥64,当且仅当821,82,x y x y ⎧+=⎪⎪⎨⎪=⎪⎩即16,4x y =⎧⎨=⎩时等号成立,∴(xy )min=64. (2)由2x+8y -xy=0,得821x y +=,则x+y=82()x+y x y ⎛⎫+⋅ ⎪⎝⎭=10+2810x y y x ++≥=18.当且仅当821,28,x y x y y x ⎧+=⎪⎪⎨⎪=⎪⎩即12,6x y =⎧⎨=⎩时等号成立.∴(x+y)min=18. 20. 解:(1)由已知得S n =2a n -3n ,则S n +1=2a n +1-3(n +1),两式相减并整理得:a n +1=2a n +3,所以3+a n +1=2 (3+a n ).又a 1=S 1=2a 1-3,所以a 1=3,所以3+a 1=6≠0,所以a n +3≠0,所以133n na a +++ =2, 故数列{3+a n }是首项为6,公比为2的等比数列,所以3+a n =6×2n -1,即a n =3(2n -1).(2)b n =n (2n -1)=n 2n -n .设T n =1×2+2×22+3×23+…+n ×2n ,① 则2T n =1×22+2×23+…+(n -1)2n +n ×2n +1,②②-①,得T n =-(2+22+23+…+2n )+n 2n +1=12212n +--+-n 2n +1=2+(n -1)2n +1. ∴B n =T n -(1+2+3+…+n )=2+(n -1)2n +1-(1)2n n +. 21. (1)由f (x )≤3,得|x -a |≤3,解得a -3≤x ≤a +3.又不等式f (x )≤3的解集为{x |-1≤x ≤5},所以⎩⎨⎧a -3=-1,a +3=5,解得a =2.(2)由(1)知a =2,此时f (x )=|x -2|,设g (x )=f (x )+f (x +5)=|x -2|+|x +3|,于是g (x )=⎩⎨⎧-2x -1,x <-3,5,-3≤x ≤2,2x +1,x >2.利用g (x )单调性,易知g (x )的最小值为5.因此,若g (x )=f (x )+f (x +5)≥m 对x ∈R 恒成立, m 的取值范围 (-∞,5].22.[解析] (1)设双曲线方程为x 2a 2-y 2b2=1(a >0,b >0).由已知得a =3,c =2,再由a 2+b 2=22,得b 2=1.所以双曲线C 的方程为x 23-y 2=1.(2)将y =kx +2代入x 23-y 2=1得(1-3k 2)x 2-62kx -9=0.由直线l 与双曲线交于不同的两点得⎩⎨⎧1-3k 2≠0Δ=(-62k )2+36(1-3k 2)=36(1-k 2)>0,即k 2≠13且k 2<1.①由OA →·OB →>2得x A x B +y A y B >2,而 x A x B +y A y B =x A x B +(kx A +2)(kx B +2)=(k 2+1)x A x B +2k (x A +x B )+2=(k 2+1)·-91-3k 2+2k ·62k 1-3k 2+2=3k 2+73k 2-1.于是3k 2+73k 2-1>2,即-3k 2+93k 2-1>0.解此不等式得13<k 2<3.②由①②得13<k 2<1.故k 的取值范围为(-1,-33)∪(33,1).。

普通高中2017_2018学年高二数学上学期期末模拟试题07Word版 含答案

普通高中2017_2018学年高二数学上学期期末模拟试题07Word版 含答案

上学期高二数学期末模拟试题07第Ⅰ卷(选择题 共60分)一.选择题:本大题共12个小题. 每小题5分;共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.x>2是24x >的 A. 充分不必要条件 B.必要不充分条件 C. 既充分也必要条件 D.既不充分也不必要条件2.(理)在平行六面体ABCD -A 1B 1C 1D 1中,用向量1,,AB AD AA 来表示向量1ACA. 11AC AB AD AA =-+B. 11AC AB AD AA =++C. 11AC AB AD AA =+-D. 11AC AB AD AA =--(文)若曲线4y x =的一条切线l 与直线480x y +-=垂直,则l 的方程 A.450x y +-= B.430x y --= C.430x y -+= D.430x y ++= 3.已知“220a b +≠”,则下列命题正确的是 A .a 、b 都不为0 B .a 、b 至少有一个为0 C .a 、b 至少有一个不为0 D .a 不为0且b 为0,或b 不为0且a 为04.若不等式022>++bx ax 的解集为⎭⎬⎫⎩⎨⎧<<-3121|x x ,则a -b 的值是A.-10B.-14C.10D.145.(理)四面体ABCD 中,设M 是CD 的中点,则1()2AB BD BC ++化简的结果是A .AMB .BMC .CMD .DM(文)若()x x f 1=,则()=2'f ( ) A.4 B.41 C.4- D.41- 6.在3和9之间插入两个正数,使前三个数成等比数列,后三个数成等差数列,则插入的这两个正数之和为AC 1第2题图A.227 B. 445 C. 225 D. 447 7.若01a <<,01b <<,b a ≠,则a b +,2ab ,22a b +,2ab 中最大的一个是 A .a b + B . 2ab C .22ab + D . 2ab8.在双曲线822=-y x 的右支上过右焦点F 2有一条弦PQ ,|PQ|=7,F 1是左焦点,那么 △F 1PQ 的周长为A . 28B .2814-C . 2814+D . 28 9.等比数列{}n a 的各项均为正数,且965=a a ,则1032313log log log a a a +++ 的值为A . 12B . 10C . 8D .5log 23+10.在同一坐标系中,方程12222=+y b x a 与02=+by ax )0(>>b a 的图象大致是11.在△ABC 中1,60==∠b A ,其面积为3,则角A 的对边的长为 A.57 B.37 C.21 D.1312.一艘船向正北方向航行,看见正西方有两个灯塔恰好与它在一条直线上,两塔相距10海里,继续航行半小时后,看见一塔在船的南偏西60°,另一塔在船的南偏西45°,则船速(海里/小时)是A .5B .53C .10D .103+10第Ⅱ卷(非选择题 共90分)二.填空题:本大题共4个小题. 每小题4分;共16分.将答案填 在题中横线上.13. (理)已知向量()1,2,k OA =,()1,5,4=OB 5=则k= . (文)曲线2)(3-+=x x x f 在点P 0处的切线平行于直线14-=x y ,则P 0点的坐标为 .14.已知⎪⎩⎪⎨⎧≤--≤+-≥022011y x y x x 求22y x +的最小值_____________.15.过抛物线px y 22=(p >0)的焦点F 作一直线l 与抛物线交于P 、Q 两点,作PP 1、QQ 1垂直于抛物线的准线,垂足分别是P 1、Q 1,已知线段PF 、QF 的长度分别是4,9,那么|P 1Q 1|= .16.把正整数按上小下大、左小右大的原则排成如图三角形数表(每行比上一行多一个数):设,i j a (i 、j ∈*N )是位于这个三角形数表中从上往下数第i 行、从左往右数第j 个数,如4,2a =8.则4,11a为 .三.解答题:本大题共6个小题. 共74分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)已知102:≤≤-x p ;22:210(0)q x x m m -+-≤> ,若p ⌝是q ⌝的必要非充分条件,求实数m 的取值范围。

2017-2018学年高二上期末数学试卷(含答案解析)

2017-2018学年高二上期末数学试卷(含答案解析)

2017-2018学年高二(上)期末数学试卷一、选择题(本大题共12小题,每小题5分,共60分.在每小题的4个选项中,只有一项是符合题目要求的)1.(5分)在等差数列51、47、43,…中,第一个负数项为()A.第13项 B.第14项 C.第15项 D.第16项2.(5分)在△ABC中,已知a2=b2+c2+bc,则角A为()A.B.C. D.或3.(5分)已知命题p:??{0},q:{1}∈{1,2},由它们组成的“p∨q”,“p∧q”形式的复合命题中,真命题有()个.和“?p”A.0 B.1 C.2 D.34.(5分)双曲线=﹣1的渐近线方程是()A.y=±x B.y=±x C.y=±x D.y=±x5.(5分)在△ABC中,a=8,B=60°,C=75°,则b=()A.B.C.D.6.(5分)设a>0,b>0.若是3a与3b的等比中项,则的最小值为()A.8 B.4 C.1 D.7.(5分)如果等差数列{a n}中,a3+a4+a5=12,那么a1+a2+…+a7=()A.14 B.21 C.28 D.358.(5分)准线方程为x=1的抛物线的标准方程是()A.y2=﹣2x B.y2=﹣4x C.y2=2x D.y2=4x9.(5分)若抛物线y2=2px的焦点与椭圆+=1的右焦点重合,则p的值为()A.﹣2 B.2 C.﹣4 D.410.(5分)”m>n>0”是”方程mx2+ny2=1表示焦点在y轴上的椭圆”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件11.(5分)已知函数f(x)的导函数f′(x)的图象如图所示,那么函数f(x)的图象最有可能的是()A.B.C.D.12.(5分)设变量x,y满足约束条件,则目标函数z=4x+2y的最大值为()A.12 B.10 C.8 D.2二、填空题(每题5分,共20分)13.(5分)数列{a n}的通项公式是a n=(n∈N*),则a3=.14.(5分)求y=x3+3x2+6x﹣10的导数y′=.15.(5分)若在△ABC中,∠A=60°,b=1,S△ABC=,则=.﹣sinx;③()16.(5分)有下列命题:①(log a x);②(cosx)′=;其中是真命题的有:.(把你认为正确命题的序号都填上)三、解答题(本大题共7小题,满分70分.解答应写出文字说明.证明过程或演算步骤)17.(10分)在△ABC中,角A,B,C的对边分别是.(1)求sinC的值;(2)求△ABC的面积.18.(12分)命题p:方程x2+mx+1=0有两个不等的正实数根;命题q:方程4x2+4(m+2)x+1=0无实数根,若“p或q”为真命题,求m的取值范围.19.(12分)已知函数f(x)=ax3﹣3x2+x+b,其中a,b∈R,a≠0,又y=f(x)在x=1处的切线方程为2x+y+1=0,求函数f(x)的解析式.20.(12分)已知函数f(x)=x3﹣3x,求函数f(x)在[﹣3,]上的最大值和最小值.21.(12分)设数列{a n}的前n项和为S n,满足S n=2a n﹣2n(n∈N+),令b n=.(1)求证:数列{b n}为等差数列;(2)求数列{a n}的通项公式.22.(12分)已知椭圆+=1(a>b>0)的左、右焦点分别为F1,F2,点P 在此椭圆上,且PF1⊥F1F2,|PF1|=,|PF2|=.(1)求椭圆的方程;(2)若直线l过圆x2+y2+4x﹣2y=0的圆心M且交椭圆于A,B两点,且A,B关于点M对称,求直线l的方程.23.(理科)如图,在三棱锥A﹣BCD中,侧面ABD、ACD是全等的直角三角形,AD是公共的斜边,且AD=,BD=CD=1,另一个侧面ABC是正三角形.(1)求证:AD⊥BC;(2)求二面角B﹣AC﹣D的余弦值.2017-2018学年甘肃省白银市高二(上)期末数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分.在每小题的4个选项中,只有一项是符合题目要求的)1.(5分)在等差数列51、47、43,…中,第一个负数项为()A.第13项 B.第14项 C.第15项 D.第16项【解答】解:因为数列51、47、43,…为等差数列,所以公差d=47﹣51=﹣4,首项为51,所以通项a n=51+(n﹣1)×(﹣4)=55﹣4n所以令55﹣4n<0解得n>,因为n为正整数,所以最小的正整数解为14,所以第一个负数项为第14项故选B2.(5分)在△ABC中,已知a2=b2+c2+bc,则角A为()A.B.C. D.或【解答】解:由a2=b2+c2+bc,则根据余弦定理得:cosA===﹣,因为A∈(0,π),所以A=.故选C3.(5分)已知命题p:??{0},q:{1}∈{1,2},由它们组成的“p∨q”,“p∧q”和“?p”形式的复合命题中,真命题有()个.A.0 B.1 C.2 D.3【解答】解:因为??{0},所以命题p为真.因为:{1}?{1,2},所以命题q为假.所以p∨q为真,p∧q为假,?p为假.故真命题的个数为1个.故选B.4.(5分)双曲线=﹣1的渐近线方程是()A.y=±x B.y=±x C.y=±x D.y=±x【解答】解:化已知双曲线的方程为标准方程,可知焦点在y轴,且a=3,b=2,故渐近线方程为y==故选A5.(5分)在△ABC中,a=8,B=60°,C=75°,则b=()A.B.C.D.【解答】解:由内角和定理得:A=180°﹣60°﹣75°=45°,根据正弦定理得:=,又a=8,sinA=,sinB=,则b===4.故选C6.(5分)设a>0,b>0.若是3a与3b的等比中项,则的最小值为()A.8 B.4 C.1 D.【解答】解:因为3a?3b=3,所以a+b=1,,当且仅当即时“=”成立,故选择B.7.(5分)如果等差数列{a n}中,a3+a4+a5=12,那么a1+a2+…+a7=()A.14 B.21 C.28 D.35【解答】解:a3+a4+a5=3a4=12,a4=4,∴a1+a2+…+a7==7a4=28故选C8.(5分)准线方程为x=1的抛物线的标准方程是()A.y2=﹣2x B.y2=﹣4x C.y2=2x D.y2=4x【解答】解:由题意可知:=1,∴p=2且抛物线的标准方程的焦点在x轴的负半轴上故可设抛物线的标准方程为:y2=﹣2px将p代入可得y2=﹣4x.故选:B.9.(5分)若抛物线y2=2px的焦点与椭圆+=1的右焦点重合,则p的值为()A.﹣2 B.2 C.﹣4 D.4【解答】解:由椭圆a=,b=,c2=a2﹣c2=4,则椭圆的焦点右焦点F(2,0),由抛物线y2=2px的焦点,则=2,则p=4,故选:D.10.(5分)”m>n>0”是”方程mx2+ny2=1表示焦点在y轴上的椭圆”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【解答】解:将方程mx2+ny2=1转化为,根据椭圆的定义,要使焦点在y轴上必须满足,且,即m>n>0反之,当m>n>0,可得出>0,此时方程对应的轨迹是椭圆综上证之,”m>n>0”是”方程mx2+ny2=1表示焦点在y轴上的椭圆”的充要条件故选C.11.(5分)已知函数f(x)的导函数f′(x)的图象如图所示,那么函数f(x)的图象最有可能的是()A.B.C.D.【解答】解:由导函数图象可知,f(x)在(﹣∞,﹣2),(0,+∞)上单调递减,在(﹣2,0)上单调递增,故选A.12.(5分)设变量x,y满足约束条件,则目标函数z=4x+2y的最大值为()A.12 B.10 C.8 D.2【解答】解:作出不等式组对应的平面区域如图:(阴影部分).由z=4x+2y得y=﹣2x+z,平移直线y=﹣2x+z,由图象可知当直线y=﹣2x+z经过点C时,直线y=﹣2x+的截距最大,此时z最大.由,解得,即C(2,1),代入目标函数z=4x+2y得z=4×2+2×1=10.即目标函数z=4x+2y的最大值为10.故选:B二、填空题(每题5分,共20分)13.(5分)数列{a n}的通项公式是a n=(n∈N*),则a3=.【解答】解:∵a n=(n∈N*),∴a3==,故答案为:.14.(5分)求y=x3+3x2+6x﹣10的导数y′=3x2+6x+6,.【解答】解:函数的导数为y′=3x2+6x+6,故答案为:3x2+6x+6,15.(5分)若在△ABC中,∠A=60°,b=1,S△ABC=,则=.【解答】解:由∠A=60°,得到sinA=,cosA=,又b=1,S△ABC=,∴bcsinA=×1×c×=,解得c=4,根据余弦定理得:a2=b2+c2﹣2bccosA=1+16﹣4=13,解得a=,根据正弦定理====,则=.故答案为:﹣sinx;③()16.(5分)有下列命题:①(log a x);②(cosx)′=;其中是真命题的有:②.(把你认为正确命题的序号都填上)【解答】解:①(log a x)′=;故①错误,﹣sinx;故②正确,②(cosx)′=③()′=,故③错误,故真命题为②,故答案为:②三、解答题(本大题共7小题,满分70分.解答应写出文字说明.证明过程或演算步骤)17.(10分)在△ABC中,角A,B,C的对边分别是.(1)求sinC的值;(2)求△ABC的面积.【解答】解:(1)在△ABC中,cosA=.B=则:sinA=,所以:sinC=sin(A+B)=sinAcosB+cosAsinB,=.(2)利用正弦定理得:,由于:B=,b=,sinA=,解得:a=,所以:,=.18.(12分)命题p:方程x2+mx+1=0有两个不等的正实数根;命题q:方程4x2+4(m+2)x+1=0无实数根,若“p或q”为真命题,求m的取值范围.【解答】解:∵“p或q”为真命题,则p,q中至少有一个为真命题,当p为真命题时,则,解得m<﹣2,当q为真命题时,则△=16(m+2)2﹣16<0,得﹣3<m<﹣1.当p真q假时,得m≤﹣3.当q真p假时,得﹣2≤m<﹣1.当p真q真时,﹣3<m<﹣2综上,m<﹣1.∴m的取值范围是(﹣∞,﹣1).19.(12分)已知函数f(x)=ax3﹣3x2+x+b,其中a,b∈R,a≠0,又y=f(x)在x=1处的切线方程为2x+y+1=0,求函数f(x)的解析式.【解答】解:函数f(x)=ax3﹣3x2+x+b,则:f′(x)=3ax2﹣6x+1,由于:y=f(x)在x=1处的切线方程为2x+y+1=0,则:f′(1)=﹣2,即:3a﹣6+1=﹣2,解得:a=1.又:当x=1时,y=﹣3,则(1,﹣3)满足函数f(x)=x3﹣3x2+x+b,解得:b=﹣2.故函数的解析式为:f(x)=x3﹣3x2+x﹣2.20.(12分)已知函数f(x)=x3﹣3x,求函数f(x)在[﹣3,]上的最大值和最小值.【解答】解:f′(x)=3x2﹣3=3(x+1)(x﹣1),令f′(x)>0,解得:x>1或x<﹣1,令f′(x)<0,解得:﹣1<x<1,故f(x)在[﹣3,﹣1)递增,在(﹣1,1)递减,在(1,]递增,而f(﹣3)=﹣27+9=﹣18,f(﹣1)=2,f(1)=﹣2,f()=﹣,故函数的最大值是2,最小值是﹣18.21.(12分)设数列{a n}的前n项和为S n,满足S n=2a n﹣2n(n∈N+),令b n=.(1)求证:数列{b n}为等差数列;(2)求数列{a n}的通项公式.【解答】(1)证明:由S n=2a n﹣2n(n∈N+),n=1时,a1=S1=2a1﹣2,解得a1=2.n≥2时,a n=S n﹣S n﹣1=2a n﹣2n﹣(),化为:a n﹣2a n﹣1=2n﹣1,化为:﹣=.令b n=.则b n﹣b n﹣1=,b1==1.∴数列{b n}为等差数列,首项为1,公差为.(2)解:由(1)可得:b n=1+(n﹣1)==.∴a n=(n+1)?2n﹣1.22.(12分)已知椭圆+=1(a>b>0)的左、右焦点分别为F1,F2,点P 在此椭圆上,且PF1⊥F1F2,|PF1|=,|PF2|=.(1)求椭圆的方程;(2)若直线l过圆x2+y2+4x﹣2y=0的圆心M且交椭圆于A,B两点,且A,B关于点M对称,求直线l的方程.【解答】解:(Ⅰ)因为点P在椭圆C上,所以2a=|PF1|+|PF2|=6,a=3.在Rt△PF1F2中,,故椭圆的半焦距c=,从而b2=a2﹣c2=4,所以椭圆C的方程为=1.(Ⅱ)解法一:设A,B的坐标分别为(x1,y1)、(x2,y2).已知圆的方程为(x+2)2+(y﹣1)2=5,所以圆心M的坐标为(﹣2,1).从而可设直线l的方程为y=k(x+2)+1,代入椭圆C的方程得(4+9k2)x2+(36k2+18k)x+36k2+36k﹣27=0.因为A,B关于点M对称.所以.解得,所以直线l的方程为,即8x﹣9y+25=0.(经检验,所求直线方程符合题意)(Ⅱ)解法二:已知圆的方程为(x+2)2+(y﹣1)2=5,所以圆心M的坐标为(﹣2,1).设A,B的坐标分别为(x1,y1),(x2,y2).由题意x1≠x2且,①,②由①﹣②得.③因为A、B关于点M对称,所以x1+x2=﹣4,y1+y2=2,代入③得=,即直线l的斜率为,所以直线l的方程为y﹣1=(x+2),即8x﹣9y+25=0.(经检验,所求直线方程符合题意.)23.(理科)如图,在三棱锥A﹣BCD中,侧面ABD、ACD是全等的直角三角形,AD是公共的斜边,且AD=,BD=CD=1,另一个侧面ABC是正三角形.(1)求证:AD⊥BC;(2)求二面角B﹣AC﹣D的余弦值.【解答】证明:(1)方法一:作AH⊥面BCD于H,连DH.AB⊥BD,HB⊥BD,又AD=,BD=1,∴AB==BC=AC,∴BD⊥DC,又BD=CD,则BHCD是正方形,则DH⊥BC,∴AD⊥BC.方法二:取BC的中点O,连AO、DO,则有AO⊥BC,DO⊥BC,∴BC⊥面AOD,∴BC⊥AD(2)作BM⊥AC于M,作MN⊥AC交AD于N,则∠BMN就是二面角B﹣AC﹣D的平面角,因为AB=AC=BC=,∵M是AC的中点,则BM=,MN=CD=,BN=AD=,由余弦定理可求得cos∠BMN=,∴二面角B﹣AC﹣D的余弦值为.。

2017_2018学年高二数学上学期期末考试试题理

2017_2018学年高二数学上学期期末考试试题理

内蒙古包头市第四中学2017-2018学年高二数学上学期期末考试试题理本试卷分为选择题和非选择题两部分。

总分150分,考试时间120分钟。

第Ⅰ卷选择题(共60分)一、选择题:(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.命题“使得”的否定是()A.,均有B.,均有C.使得D.,均有2.与向量平行的一个向量的坐标是()A.(,1,1)B.(-1,-3,2)C.(-,,-1)D.(,-3,-2)3.下列说法中正确的是()A.一个命题的逆命题为真,则它的逆否命题一定为真B.“”与“”不等价C.“,则全为0”的逆否命题是“若全不为0,则”D.一个命题的否命题为真,则它的逆命题一定为真4.已知命题:,;命题:,,则下列说法中正确的是()A.命题是假命题B.命题是真命题C.命题是真命题D.命题是假命题5.设为实数,则“是”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.设抛物线上一点到轴的距离是4,则点到该抛物线焦点的距离是A.12 B.8C.6D.47.若抛物线的焦点与双曲线的右焦点重合,则=()A.B.8 C.4 D.28.已知空间四边形中,,点在上,且,为的中点,则=()A. B.C. D.9.若椭圆的对称轴为坐标轴,长轴长与短轴长的和为,焦距为,则椭圆的标准方程为()A.B.C.或D.以上都不对10.已知是椭圆+=1的两个焦点,经过点的直线交椭圆于点,若,则等于( )A.11 B.10C.9D.811.设是椭圆上一点,是椭圆的两个焦点,且()A.B. C. D.12.双曲线与抛物线有一个公共焦点,双曲线上过点且垂直于实轴的弦长为,则双曲线的离心率等于()A.B. C. D.第Ⅱ卷非选择题(共90分)二、填空题:(本题共4小题,每小题5分,共20分.把答案填在题中横线上)13.双曲线的顶点到其渐近线的距离等于14.已知的三个顶点,,,则边上的中线长为15.已知向量是两两垂直的单位向量,且,,则16.若椭圆的弦被点(4,2)平分,则这条弦所在的直线方程是三、解答题:(本题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本题满分10分)给定两个命题,:对任意实数都有恒成立;:.如果∨为真命题,∧为假命题,求实数的取值范围. 18.(本题满分12分)设双曲线与椭圆+=1有公共的焦点,且与椭圆相交,它们的交点中一个交点的纵坐标是4,求双曲线的标准方程. 19.(本题满分12分)如图,四边形是正方形,平面,,,、、分别为、、的中点.H PGFED CB20.(本题满分12分)已知焦距为的双曲线的焦点在轴上,且过点.(Ⅰ)求该双曲线的标准方程;(Ⅱ)若直线经过该双曲线的右焦点且斜率为1,求直线被双曲线截得的弦长. 21.(本题满分12分)已知椭圆E :的离心率,并且经过定点.(Ⅰ)求椭圆E 的方程; (Ⅱ)是否存在直线,使直线与椭圆交于两点,且满足,若存在求的值,若不存在请说明理由.22.(本题满分12分)已知过抛物线的焦高二年级理科数学试题答案三、 选择题:(本题共12小题,每小题5分,共60分)二、填空题:(本题共4小题,每小题5分,共20分)13.14.3 15.3 16.三、解答题:(本题共6小题,共70分) 17.解:命题:恒成立当时,不等式恒成立,满足题意(Ⅰ)求证:平面;(Ⅱ)求平面与平面所成锐二面当时,,解得∴命题:解得∵∨为真命题,∧为假命题∴,有且只有一个为真或18.解:因为椭圆+=1的焦点为F1(0,-3),F2(0,3)故可设双曲线方程为 (a>0,b>0),且c=3,a2+b2=9.由题设可知双曲线与椭圆的一个交点的纵坐标为4,将y=4代入椭圆方程得双曲线与椭圆的交点为(,4),(-,4)因为点(,4)[或(-,4)]在双曲线上,所以有可知a2=4, b2=5故所求方程为:-=119.解:(1)证明:,分别为,的中点,又平面,平面,平面(2)平面,平面平面,.四边形是正方形,.以为原点,分别以直线为轴,轴,轴建立如图所示的空间直角坐标系,设,,,,,,,,,.,,分别为,,的中点,,,,,,设为平面的一个法向量,则,即,令,得.设为平面的一个法向量,则,即,令,得.所以. 所以平面与平面所成锐二面角的大小为(或)20.解:(1)设双曲线方程为(a,b>0)左右焦点F1、F2的坐标分别为(-2,0)(2,0)则|PF1|-|PF2|=2=2,所以=1又c=2,b=所以方程为(2)直线m 方程为y=x -2联立双曲线及直线方程消y 得2x 2+4x-7=0设两交点,韦达定理得:x 1+x 2=-2, x 1x 2=-3.5由弦长公式得|AB|=621.解:(1)由题意:且,又解得:即:椭圆E 的方程为:(2)设(*)所以由得又方程(*)要有两个不等实根,m 的值符合上面条件,所以22.解:(1)由题意知,直线AB 的方程为y =22⎝ ⎛⎭⎪⎫x -p 2 与y 2=2px 联立,消去y 并整理,得4x 2-5px +p 2=0 ∴|AB |=x 1+x 2+p =5p4+p =9,解得p =4∴抛物线方程为y 2=8x(2)由于p =4,则4x 2-5px +p 2=0为4x 2-20x +16=0,即x 2-5x +4=0. 解得x 1=1,x 2=4 于是y 1=-22,y 2=4 2 从而A (1,-22),B (4,42) 设C 的坐标为(x 3,y 3),则OC →=(x 3,y 3)=(1,-22)+λ(4,42) =(4λ+1,42λ-22)又y 23=8x 3∴(42λ-22)2=8(4λ+1) 即(2λ-1)2=4λ+1 解得λ=0或λ=2。

高中数学 专题02 频率分布直方图及其应用分项汇编(含解析)新人教A版必修3

高中数学 专题02 频率分布直方图及其应用分项汇编(含解析)新人教A版必修3

专题02 频率分布直方图及其应用一、选择题1.【2017-2018年北京市首都师大附中高二期末】对高速公路某段上汽车行驶速度进行抽样调查,画出如下频率分布直方图.根据直方图估计在此路段上汽车行驶速度的众数和行驶速度超过80km/h的概率A. 75,0.25B. 80,0.35C. 77.5,0.25D. 77.5,0.35【答案】D故选D.2.【人教B版高中数学必修三同步测试】根据某水文观测点的历史统计数据,得到某条河流水位的频率分布直方图(如图),从图中可以看出,该水文观测点平均至少100年才遇到一次的洪水的最低水位是()A. 48 mB. 49 mC. 50 mD. 51 m【答案】C【解析】由频率分布直方图知水位为50 m的频率组距为0.00520.01⨯=,即水文观测点平均至少一百年才遇到一次的洪水的最低水位是50 m. 本题选择C选项.3.【福建省三明市A片区高中联盟校2017-2018学年高二上学期阶段性考试】为了解某地区名高三男生的身体发育情况,抽查了该地区名年龄为~岁的高三男生体重(),得到频率分布直方图如图.根据图示,估计该地区高三男生中体重在kg的学生人数是( )A . B. C. D.【答案】C点睛:此题主要考查了频率分布直方图在实际问题中的应用,属于中低档题型,也是常考考点.在解决此类问题中,充分利用频率分布直方图的纵坐标的实际意义,其纵坐标值为:频率/组距,由此各组数据的频率=其纵坐标组距,各组频数=频率×总体,从而可估计出所求数据段的频数(即人数).4.【广东省中山一中、仲元中学等七校2017-2018学年高二3月联考】某商场在国庆黄金周的促销活动中,对10月1日9时至14时的销售额进行统计,其频率分布直方图如图所示.已知9时至10时的销售额为3万元,则9时至14时的销售总额为A. 10万元B. 12万元C. 15万元D. 30万元【答案】D【解析】9时至10时的销售额频率为0.1,因此所有销售总额为万元,故选D .5.【四川省成都外国语学校2017-2018学年高二上学期期末考试】容量为100的样本,其数据分布在[]2,18,将样本数据分为4组: [)2,6, [)6,10, [)10,14, []14,18,得到频率分布直方图如图所示.则下列说法不正确的是A . 样本数据分布在[)6,10的频率为0.32B . 样本数据分布在[)10,14的频数为40C . 样本数据分布在[)2,10的频数为40D . 估计总体数据大约有10%分布在[)10,14【答案】DD 不正确.故选D .6.【四川省雅安市2017-2018学年高二上学期期末考试】某高校进行自主招生,先从报名者中筛选出400人参加笔试,再按笔试成绩择优选出100人参加面试,现随机调查了24名笔试者的成绩,如下表所示:据此估计允许参加面试的分数线大约是( )A . 75B . 80C . 85D . 90【答案】B故选B7.【四川省成都市2017-2018学年高二上学期期末调研考试】容量为100的样本,其数据分布在[]2,18,将样本数据分为4组: [)[)[)[]2,6,6,10,10,14,14,18,得到频率分布直方图如图所示,则下列说法不正确的是( )A . 样本数据分布在[)6,10的频率为0.32B . 样本数据分布在[)10,14的频数为40C . 样本数据分布在[)2,10的频数为40D . 估计总体数据大约有10%分布在[)10,14【答案】D【解析】总体数据分布在[)10,14的概率为0.140%0.020.080.10.05=+++故选D8.【广西南宁市第二中学(曲靖一中、柳州高中)2017-2018学年高二上学期末期考试】2014年5月,国家统计局公布了《2013年农民工监测调查报告》,报告显示:我国农民工收入持续快速增长.某地区农民工人均月收入增长率如图1,并将人均月收入绘制成如图2的不完整的条形统计图.根据以上统计图来判断以下说法错误的是( )A. 2013年农民工人均月收入的增长率是.B. 2011年农民工人均月收入是元.C. 小明看了统计图后说:“农民工2012年的人均月收入比2011年的少了”.D. 2009年到2013年这五年中2013年农民工人均月收入最高.【答案】C9.【四川省遂宁市2017-2018学年高二上学期期末考试】供电部门对某社区位居民2017年12月份人均用电情况进行统计后,按人均用电量分为,,,,五组,整理得到如下的频率分布直方图,则下列说法错误的是A . 月份人均用电量人数最多的一组有人B . 月份人均用电量不低于度的有人C . 月份人均用电量为度D . 在这位居民中任选位协助收费,选到的居民用电量在一组的概率为【答案】C点睛:统计中利用频率分布直方图计算样本均值时,可利用组中值进行计算.10.【内蒙古赤峰市宁城县2017-2018学年高二上学期期末考试】有关部门从甲、乙两个城市所有的自动售货机是随机抽取了16台,记录上午8:00~11:00间各自的销售情况(单位:元),用茎叶图表示:设甲、乙的平均数分别为12,x x ,标准差分别为12,s s ,则( )A . 12x x >, 12s s >B . 12x x >, 12s s <C . 12x x <, 12s s <D . 12x x <, 12s s >【答案】D【解析】根据公式得到1x =()13078652014362225276041431616+++++++++++= ()2147710121820224627313268384243481616x =+++++++++++++=故12x x <,再将以上均值代入方差的公式得到12s s >.或者观察茎叶图,得到乙的数据更集中一些,故得到12s s >.故答案为:D .11.【陕西省黄陵中学2017-2018学年高二(重点班)上学期期末考试】某篮球运动员在一个赛季的40场比赛中的得分的茎叶图如右下图所示:则中位数与众数分别为()A. 3与3B. 23与23C. 3与23D. 23与3【答案】B点睛:茎叶图的问题需注意:(1)“叶”的位置只有一个数字,而“茎”的位置的数字位数一般不需要统一;(2)重复出现的数据要重复记录,不能遗漏,特别是“叶”的位置的数据.12.【内蒙古鄂尔多斯市第一中学2017-2018学年高二上学期第三次月考】如图是某次拉丁舞比赛七位评委为甲、乙两名选手打出的分数的茎叶图(其中m为数字0~9中的一个),去掉一个最高分和一个最低分后,甲、乙两名选手得分的平均数分别为a1、a2,则a1、a2的大小关系是()A. a1=a2B. a1>a2C. a2>a1D. 无法确定【答案】C【解析】由茎叶图,得甲、乙两名选手得分的平均数分别为18584858581845a++++==,28484868487855a++++==,即21a a>;故选C.填空题13.【吉林省辽源市田家炳高级中学2017-2018学年高二下学期3月月考】上方右图是一个容量为200的样本的频率分布直方图,请根据图形中的数据填空:(1)样本数据落在范围[5,9)的可能性为__________;(2)样本数据落在范围[9,13)的频数为__________.【答案】 0.32 72点睛:本题主要考查的知识点是频率分布直方图的意义以及应用图形解题的能力,属于基础题.对于()1根据频率=⨯频率组距组距即可求出结果,对于()2根据频数=频率⨯样本容量即可求出结果.14.【山西省临汾第一中学等五校2017-2018学年高二上学期期末联考】目前北方空气污染越来越严重,某大学组织学生参加环保知识竞赛,从参加学生中抽取40名,将其成绩(均为整数)整理后画出的频率分布直方图如图,若从成绩是80分以上(包括80分)的学生中选两人,则他们在同一分数段的概率为_______.【答案】∵前三组的累积频率为:0.10+0.15+0.25=0.50,故这次环保知识竞赛成绩的中位数为70;成绩在[80,90)段的人数有10×0.010×40=4人,成绩在[90,100]段的人数有10×0.005×40=2人,从成绩是80分以上(包括80分)的学生中任选两人共有15种不同的基本事件,其中他们在同一分数段的基本事件有:7,故他们在同一分数段的概率为故答案为:.15.【黑龙江省大庆中学2017-2018学年高二上学期期末考试】某高校在今年的自主招生考试成绩中随机抽取100名考生的笔试成绩,分为5组制出频率分布直方图如图所示.则a=__________,d=__________.【答案】 30 0.2点睛:利用频率分布直方图求众数、中位数与平均数时,易出错,应注意区分这三者.在频率分布直方图中:(1)最高的小长方形底边中点的横坐标即是众数;(2)中位数左边和右边的小长方形的面积和是相等的;(3)平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.16.【辽宁省六校协作体2017-2018学年高二上学期期初联考】从某小学随机抽取100名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如图).若要从身高在[ 120 , 130),[130 ,140) , [140 , 150]三组内的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在[140 ,150]内的学生中选取的人数应为【答案】3人【解析】试题分析:∵直方图中各个矩形的面积之和为1,∴10×(0.005+0.035+a+0.02+0.01)=1,解得a=0.03.由直方图可知三个区域内的学生总数为100×10×(0.03+0.02+0.01)=60人.其中身高在[140,150]内的学生人数为10人,所以身高在[140,150]范围内抽取的学生人数为人.考点:频率分布直方图.点评:本题考查频率分布直方图的相关知识.直方图中的各个矩形的面积代表了频率,所以各个矩形面积之和为1.同时也考查了分层抽样的特点,即每个层次中抽取的个体的概率都是相等的.解答题17.【2017-2018学年人教A版数学必修三同步测试】我校对高二600名学生进行了一次知识测试,并从中抽取了部分学生的成绩(满分100分)作为样本,绘制了下面尚未完成的频率分布表和频率分布直方图.分组频数频率[50,60) 2 0.04[60,70) 8 0.16[70,80) 10[80,90)[90,100] 14 0.28合计1.00(1)填写频率分布表中的空格,补全频率分布直方图,并标出每个小矩形对应的纵轴数据;(2)请你估算该年级学生成绩的中位数;(3)如果用分层抽样的方法从样本分数在[60,70)和[80,90)的人中共抽取6人,再从6人中选2人,求2人分数都在[80,90)的概率.【答案】(1)答案见解析;(2)83.125;(3) 2 5【解析】试题分析:试题解析:(1)填写频率分布表中的空格,如下表:分组频数频率[50,60) 2 0.04[60,70) 8 0.16[70,80) 10 0.2[80,90) 16 0.32[90,100] 14 0.28合计50 1.00补全频率分布直方图,如下图:(2)设中位数为x,依题意得0.04+0.16+0.2+0.032×(x-80)=0.5,解得x=83.125,所以中位数约为83.125.(3)由题意知样本分数在[60,70)有8人,样本分数在[80,90)有16人,用分层抽样的方法从样本分数在[60,70)和[80,90)的人中共抽取6人,则抽取的分数在[60,70)和[80,90)的人数分别为2人和4人.记分数在[60,70)的为a1,a2,在[80,90)的为b1,b2,b3,b4.从已抽取的6人中任选两人的所有可能结果有15种,分别为{a1,a2},{a1,b1},{a1,b2},{a1,b3},{a1,b4},{a2,b1},{a2,b2},{a2,b3},{a2,b4},{b1,b2},{b1,b3},{b1,b4},{b2,b3},{ b2,b4},{b3,b4},设“2人分数都在[80,90)”为事件A,则事件A包括{b1,b2},{b1,b3},{b1,b4},{b2,b3},{b2,b4},{b3,b4}共6种,所以P(A)=62 155.点睛:利用频率分布直方图求众数、中位数和平均数时,应注意三点:①最高的小长方形底边中点的横坐标即是众数;②中位数左边和右边的小长方形的面积和是相等的;③平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.18.【内蒙古自治区北方重工业集团有限公司第三中学2017-2018学年高二3月月考】节能减排以来,兰州市100户居民的月平均用电量单位:度,以分组的频率分布直方图如图.求直方图中x的值;求月平均用电量的众数和中位数;估计用电量落在中的概率是多少?【答案】(1)5;(2)众数为,中位数为224;(3).月平均用电量在中的概率是.试题解析:的频率之和为,的频率之和为,∴中位数在设中位数为y ,则解得故中位数为224.由频率分布直方图可知,月平均用电量在中的概率是.点睛:利用频率分布直方图估计样本的数字特征(1)中位数:在频率分布直方图中,中位数左边和右边的直方图的面积相等,由此可以估计中位数值. (2)平均数:平均数的估计值等于每个小矩形的面积乘以矩形底边中点横坐标之和. (3)众数:最高的矩形的中点的横坐标.19.【河南师范大学附属中学2017-2018学年高二4月月考】某重点中学100位学生在市统考中的理科综合分数,以[)160,180, [)180,200, [)200,220, [)220,240, [)240,260, [)260,280, []280,300分组的频率分布直方图如图.(1)求直方图中x 的值;(2)求理科综合分数的众数和中位数;(3)在理科综合分数为[)220,240, [)240,260, [)260,280, []280,300的四组学生中,用分层抽样的方法抽取11名学生,则理科综合分数在[)220,240的学生中应抽取多少人? 【答案】(1) 0.0075 (2)230, 224(3)5人 【解析】试题分析:(1)根据直方图求出x 的值即可;(2)根据直方图求出众数,设中位数为a,得到关于a的方程,解出即可;(3)分别求出[220,240),[240,260),[260,280),[280,300]的用户数,根据分层抽样求出满足条件的概率即可.(2)理科综合分数的众数是2202402302+=,∵()0.0020.00950.011200.450.5++⨯=<,∴理科综合分数的中位数在[)220,240内,设中位数为a,则()()0.0020.00950.011200.01252200.5a++⨯+⨯-=,解得224a=,即中位数为224.(3)理科综合分数在[)220,240的学生有0.01252010025⨯⨯=(位),同理可求理科综合分数为[)240,260,[)260,280,[]280,300的用户分别有15位、10位、5位,故抽取比为111 25151055=+++,∴从理科综合分数在[)220,240的学生中应抽取12555⨯=人.点睛:利用频率分布直方图求众数、中位数与平均数时,易出错,应注意区分这三者.在频率分布直方图中:(1)最高的小长方形底边中点的横坐标即是众数;(2)中位数左边和右边的小长方形的面积和是相等的;(3)平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.20.【河北省阜城中学 2017-2018学年高二上学期期末考试】某校高一年级某次数学竞赛随机抽取100名学生的成绩,分组为[50,60),[60,70),[70,80),[80,90),[90,100],统计后得到频率分布直方图如图所示:(1)试估计这组样本数据的众数和中位数(结果精确到0.1);(2)年级决定在成绩[70,100]中用分层抽样抽取6人组成一个调研小组,对高一年级学生课外学习数学的情况做一个调查,则在[70,80),[80,90),[90,100]这三组分别抽取了多少人?(3)现在要从(2)中抽取的6人中选出正副2个小组长,求成绩在[80,90)中至少有1人当选为正、副小组长的概率.【答案】(1)65,73.3;(2)3,2,1;(3)【解析】试题分析:(1)由频率分布直方图中面积最大的矩形中点可得众数、左右面积各为0.5的分界处为中位数.(2)先求出成绩为[70,80)、[80,90)、[90,100]这三组的频率,由此能求出[70,80)、[80,90)、[90,100]这三组抽取的人数.(3)由(2)知成绩在[70,80)有3人,分别记为a,b,c;成绩在[80,90)有2人,分别记为d,e;成绩在[90,100]有1人,记为f.由此利用列举法能求出成绩在[80,90)中至少有1人当选为正、副小组长的概率.(2)成绩为[70,80)、[80,90)、[90,100]这三组的频率分别为0.3,0.2,0.1,∴[70,80)、[80,90)、[90,100]这三组抽取的人数分别为3人,2人,1人.(3)由(2)知成绩在[70,80)有3人,分别记为a,b,c;成绩在[80,90)有2人,分别记为d,e;成绩在[90,100]有1人,记为f.∴从(2)中抽取的6人中选出正副2个小组长包含的基本事件有种,分别为:ab,ba,ac,ca,ad,da,ae,ea,af,fa,bc,cb,bd,db,be,eb,bf,fb,cd,dc,ce,ec,cf,fc,de,ed,df,fd,ef,fe,记“成绩在[80,90)中至少有1人当选为正、副小组长”为事件Q,则事件Q包含的基本事件有18种,∴成绩在[80,90)中至少有1人当选为正、副小组长的概率P(Q)=.点睛:利用频率分布直方图求众数、中位数与平均数时,易出错,应注意区分这三者.在频率分布直方图中:(1)最高的小长方形底边中点的横坐标即是众数;(2)中位数左边和右边的小长方形的面积和是相等的;(3)平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.21.【黑龙江省哈尔滨市第六中学2017-2018学年高二3月月考】从某学校高三年级共800名男生中随机抽取50名测量身高,测量发现被测学生身高全部介于155cm和195cm之间,将测量结果按如下方式分成八组:第一组[155,160);第二组[160,165)、…、第八组[190,195],下图是按上述分组方法得到的频率分布直方图的一部分,已知第一组与第八组人数相同,第六组、第七组、第八组人数依次构成等差数列.(1)估计这所学校高三年级全体男生身高180cm以上(含180cm)的人数;(2)求第六组、第七组的频率并补充完整频率分布直方图(如需增加刻度请在纵轴上标记出数据,并用直尺作图);(3)由直方图估计男生身高的中位数.【答案】(1);(2)详见解析;(3).试题解析:(1)由直方图,前五组频率为(0.008+0.016+0.04+0.04+0.06)×5=0.82,后三组频率为1-0.82=0.18.这所学校高三男生身高在180cm以上(含180cm)的人数为800×0.18=144人.(2)由频率分布直方图得第八组频率为0.008×5=0.04,人数为0.04×50=2人,设第六组人数为m,则第七组人数为0.18×50-2-m=7-m,又m+2=2(7-m),所以m=4,即第六组人数为4人,第七组人数为3人,频率分别为0.08,0.06.频率除以组距分别等于0.016,0.012,见图.(3)设中位数为,由频率为,所以,,解得=174.5 22.【广东省中山一中、仲元中学等七校2017-2018学年高二3月联考】某企业员工500人参加“学雷锋”志愿活动,按年龄分组:第1组[25,30),第2组[30,35),第3组[35,40),第4组[40,45),第5组[45,50],得到的频率分布直方图如图所示.(1)上表是年龄的频数分布表,求正整数的值;(2)现在要从年龄较小的第1,2,3组中用分层抽样的方法抽取6人,年龄在第1,2,3组的人数分别是多少?(3)在(2)的前提下,从这6人中随机抽取2人参加社区宣传交流活动,求至少有1人年龄在第3组的概率.【答案】(1);(2) 第1,2,3组分别抽取1人,1人,4人;(3).【解析】试题分析:(1))由题设可知,,;(2)由第1,2,3组的比例关系为1:1:4,则分别抽取1人,1人,4人;(3)设第1组的1位同学为,第2组的1位同学为,第3组的4位同学为,由穷举法,求得至少有1人年龄在第3组的概率为.(3)设第1组的1位同学为,第2组的1位同学为,第3组的4位同学为,则从6位同学中抽两位同学有:共种可能.其中2人年龄都不在第3组的有:共1种可能,所以至少有1人年龄在第3组的概率为.。

2017_2018学年高二数学上学期期末考试试题文

2017_2018学年高二数学上学期期末考试试题文

内蒙古包头市第四中学2017-2018学年高二数学上学期期末考试试题文本试卷分为选择题和非选择题两部分。

总分150分,考试时间120分钟。

第Ⅰ卷选择题(共60分)一、选择题:(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若,则下列不等式成立的是()A.B.C.D.2.命题“使得”的否定是()A.,均有B.,均有C.使得D.,均有3.下列说法中正确的是()A.一个命题的逆命题为真,则它的逆否命题一定为真B.“”与“”不等价C.“,则全为0”的逆否命题是“若全不为0,则”D.一个命题的否命题为真,则它的逆命题一定为真4.已知命题:,;命题:,,则下列说法中正确的是()A.命题是假命题B.命题是真命题C.命题是真命题D.命题是假命题5.设为实数,则“是”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.设抛物线上一点到轴的距离是4,则点到该抛物线焦点的距离是()A.12 B.8C.6D.47.若抛物线的焦点与双曲线的右焦点重合,则的值为()A.B.8 C.4 D.28.若,则的最小值为()A.1B.2C.3D.49.若椭圆的对称轴为坐标轴,长轴长与短轴长的和为,焦距为,则椭圆的标准方程为()A.B.C.或D.以上都不对10.已知是椭圆+=1的两个焦点,经过点的直线交椭圆于点,若,则等于( )A.11 B.10C.9D.811.设是椭圆上一点,是椭圆的两个焦点,且()A.B. C. D.12.双曲线与抛物线有一个公共焦点,双曲线上过点且垂直于实轴的弦长为,则双曲线的离心率等于()A.B. C. D.第Ⅱ卷非选择题(共90分)二、填空题:(本题共4小题,每小题5分,共20分.把答案填在题中横线上)13.不等式的解集为14.双曲线的顶点到其渐近线的距离等于15.若实数满足,则的最大值为16.若椭圆的弦被点(4,2)平分,则这条弦所在的直线方程是三、解答题:(本题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本题满分10分)已知关于的不等式的解集为.(Ⅰ)求实数的值;(Ⅱ)解关于的不等式:.18.(本题满分12分)给定两个命题,:对任意实数都有恒成立;:.如果∨为真命题,∧为假命题,求实数的取值范围.19.(本题满分12分)设双曲线与椭圆+=1有公共的焦点,且与椭圆相交,它们的交点中一个交点的纵坐标是4,求双曲线的标准方程.20.(本题满分12分)已知焦距为的双曲线的焦点在轴上,且过点.(Ⅰ)求该双曲线的标准方程;(Ⅱ)若直线经过该双曲线的右焦点且斜率为1,求直线被双曲线截得的弦长.21.(本题满分12分)已知椭圆E:的离心率,并且经过定点. (Ⅰ)求椭圆E的方程;(Ⅱ)是否存在直线,使直线与椭圆交于两点,且满足,若存在求的值,若不存在请说明理由.22.(本题满分12分)已知过抛物线的焦点,斜率为的直线交抛物线于两点,且.(Ⅰ)求抛物线的方程;(Ⅱ)为坐标原点,为抛物线上的一点,若,求的值.高二年级文科数学试题答案三、选择题:(本题共12小题,每小题5分,共60分)二、填空题:(本题共4小题,每小题5分,共20分)13.14. 15.-1 16.三、解答题:(本题共6小题,共70分)17.解:(1)由题知为关于的方程的两根,即∴.(2)不等式等价于,所以:解集为。

吉林省长春外国语学校2017-2018学年高二上学期期末数学试卷(文科) Word版含解析

吉林省长春外国语学校2017-2018学年高二上学期期末数学试卷(文科) Word版含解析

2017-2018学年吉林省长春外国语学校高二(上)期末数学试卷(文科)一、选择题(共12小题,每小题5分,满分60分)1.复数=()A.1+2iB.1﹣2iC.2+iD.2﹣i2.抛物线y2=4x的准线方程为()A.x=2B.x=﹣2C.x=1D.x=﹣13.双曲线的离心率为,则正数a的值为()A.B.2C.D.14.已知椭圆()上一动点P到其两焦点F1,F2的距离之和为4,则实数a的值是()A.1B.2C.3D.45.若函数y=ax2+1的图象与双曲线的渐近线相切,则实数a的值为()A.1B.2C.3D.46.已知函数f(x)=e x+3,则f(x)在x=0处切线的方程是()A.x﹣y+4=0B.x+y﹣4=0C.4x﹣y+4=0D.4x+y﹣4=07.若抛物线y2=4x与直线x﹣y﹣1=0交于A,B两点,则|AB|=()A.2B.4C.6D.88.若函数f(x)=ax﹣lnx在(2,+∞)上单调递增,则实数a的取值范围是()A.(﹣∞,2)B.(﹣∞,2]C.D.9.函数的零点的个数是()A.0B.1C.2D.310.函数f(x)=e x﹣2x+1在[0,1)上的最小值是()A.2B.e﹣1C.3﹣2ln2D.2﹣2ln211.函数f(x)=xlnx的单调递减区间是()A.(0,e)B.(e,+∞)C.D.12.若椭圆(a>b>0)的离心率为,则双曲线的离心率是()A.2B.C.D.3二、选择题(本大题包括4个小题,每小题5分,共20分,把正确答案填在答题卡的指定位置)13.复数z=(1+i)(a﹣i)表示的点在第四象限,则实数a的取值范围是.14.若点P(1,m)为抛物线y2=2px(p>0)上一点,F是抛物线的焦点,若|PF|=2,则m=.15.函数f(x)=ax3+bx+1在x=1处有极大值2,则b﹣a=.16.若A,B是双曲线x2﹣=1上两个动点,且•=0,则△AOB面积的最小值是.三、解答题(本大题包括6个小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.若函数f(x)=ax3+2bx2﹣4x在x=﹣2与处取得极值.(1)求函数f(x)的解析式;(2)求函数f(x)的单调递增区间.18.已知椭圆+=1(a>b>0)经过点(0,1),且离心率e=(1)求椭圆的标准方程(2)若直线y=(x﹣1)与椭圆交于A,B两点,证明•=0.19.已知函数,a∈R.(1)当a=4时,求函数f(x)的极值;(2)若函数在x=1处的切线平行于x轴,求a的值.20.已知椭圆+=1,A,B分别为其左右顶点,P是椭圆上异于A,B的一个动点,设k1,k2分别是直线P A,P B的斜率.(1)求k1•k2的值;(2)若M(1,1)是椭圆内一定点,过M的直线l交椭圆于C,D两点,若=(+),求直线l的方程.21.若点P(1,2),A(x1,y1),B(x2,y2)是抛物线y2=2px(p>0)上的不同的三个点,直线AP,BP的斜率分别是k1,k2,若k1+k2=0.(1)求抛物线的方程;(2)求y1+y2的值及直线AB的斜率k.22.已知函数f(x)=lnx﹣x+1.(1)求函数f(x)的单调区间.(2)求证:当x>0时,1﹣≤lnx≤x﹣1.2017-2018学年吉林省长春外国语学校高二(上)期末数学试卷(文科)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.复数=()A.1+2iB.1﹣2iC.2+iD.2﹣i【考点】复数代数形式的乘除运算.【分析】利用复数的运算法则即可得出.【解答】解:复数===1+2i,故选:A.2.抛物线y2=4x的准线方程为()A.x=2B.x=﹣2C.x=1D.x=﹣1【考点】抛物线的简单性质.【分析】利用抛物线的标准方程,有2p=4,,可求抛物线的准线方程.【解答】解:抛物线y2=4x的焦点在x轴上,且,∴抛物线的准线方程是x=﹣1.故选D.3.双曲线的离心率为,则正数a的值为()A.B.2C.D.1【考点】双曲线的简单性质.【分析】利用双曲线的性质求解即可.【解答】解:∵双曲线的离心率为,∴=,解得a=1.故选:D.4.已知椭圆()上一动点P到其两焦点F1,F2的距离之和为4,则实数a的值是()A.1B.2C.3D.4【考点】椭圆的简单性质.【分析】利用椭圆的定义即可得出.【解答】解:∵椭圆()上一动点P到其两焦点F1,F2的距离之和为4,∴4=2a,解得a=2.故选:B.5.若函数y=ax2+1的图象与双曲线的渐近线相切,则实数a的值为()A.1B.2C.3D.4【考点】双曲线的简单性质.【分析】双曲线的渐近线方程为y=±2x.函数y=ax2+1,y′=2ax,利用函数y=ax2+1的图象与双曲线的渐近线相切,可得实数a的值.【解答】解:双曲线的渐近线方程为y=±2x.∵函数y=ax2+1,∴y′=2ax,∵函数y=ax2+1的图象与双曲线的渐近线相切,∴2a=2,∴a=1.故选:A.6.已知函数f(x)=e x+3,则f(x)在x=0处切线的方程是()A.x﹣y+4=0B.x+y﹣4=0C.4x﹣y+4=0D.4x+y﹣4=0【考点】利用导数研究曲线上某点切线方程.【分析】求出函数的导数,求得切线的斜率和切点,由斜截式方程可得切线的方程.【解答】解:函数f(x)=e x+3的导数为f′(x)=e x,即有f(x)在x=0处切线的斜率为k=e0=1,切点为(0,4),则f(x)在x=0处切线的方程为y=x+4,故选:A .7.若抛物线y 2=4x 与直线x ﹣y ﹣1=0交于 A ,B 两点,则|AB|=( ) A .2B .4C .6D .8【考点】直线与圆锥曲线的综合问题;直线与圆锥曲线的关系.【分析】联立方程组,消去y ,利用韦达定理以及抛物线的性质能求出|AB|的值. 【解答】解:抛物线的焦点坐标(1,0),直线x ﹣y ﹣1=0经过抛物线的焦点.联立方程组,得x 2﹣6x+1=0, 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=6,x 1•x 2=﹣1,k=1, ∴|AB|=x 1+x 2+p=8. 故选:D .8.若函数f (x )=ax ﹣lnx 在(2,+∞)上单调递增,则实数a 的取值范围是( )A .(﹣∞,2)B .(﹣∞,2]C .D .【考点】导数在最大值、最小值问题中的应用;利用导数研究函数的单调性.【分析】求导函数,利用函数f (x )=ax ﹣lnx 在(2,+∞)上单调递增,可得f ′(x )≥0在(2,+∞)上恒成立,分离参数,求出函数的最大值,即可求得实数a 的取值范围.【解答】解:求导函数可得:f ′(x )=a ﹣, ∵函数f (x )=ax ﹣lnx 在(2,+∞)上单调递增, ∴f ′(x )=a ﹣≥0在(2,+∞)上恒成立∴a ≥函数y=,在(2,+∞)上单调减,∴x=2时,函数y 取得最大值∴a ≥实数a 的取值范围是:.故选:C .9.函数的零点的个数是( ) A .0B .1C .2D .3【考点】利用导数研究函数的极值;根的存在性及根的个数判断;利用导数研究函数的单调性.【分析】先利用导数判断函数的单调性,求解函数的极值,然后说明f(x)存在零点,由此即可得到答案.【解答】解:函数,可得f′(x)=x2﹣2x﹣3,令x2﹣2x﹣3=0可得x=﹣1,x=3,x<﹣1,x>3时,f′(x)>0,函数是增函数,x∈(﹣1,3)时,f′(x)<0,函数是减函数,所以f(x)的极大值为f(﹣1)=7﹣,函数的极小值为f(3)=﹣4<0.所以f(x)的零点个数为3.故选:D.10.函数f(x)=e x﹣2x+1在[0,1)上的最小值是()A.2B.e﹣1C.3﹣2ln2D.2﹣2ln2【考点】利用导数求闭区间上函数的最值.【分析】利用导数求得函数的极值,根据单调性可判断也为最值.【解答】解:f′(x)=e x﹣2,令f′(x)=0,得x=ln2<1,当x∈[0,ln2)时,f′(x)<0,f(x)递减;当x∈(ln2,1)时,f′(x)>0,f(x)递增.∴x=ln2时f(x)取得极小值也为最小值,f(ln2)=3﹣2ln2,故选:C.11.函数f(x)=xlnx的单调递减区间是()A.(0,e)B.(e,+∞)C.D.【考点】利用导数研究函数的单调性.【分析】求出函数的导函数,定义域内使导函数小于0的区间即为原函数的单调递减区间.【解答】解:函数f(x)=xlnx的定义域为(0,+∞).f′(x)=(xlnx)′=lnx+1.当x∈,.所以,函数f(x)=xlnx在上为减函数.即函数的减区间为.故答案为C.12.若椭圆(a>b>0)的离心率为,则双曲线的离心率是()A.2B.C.D.3【考点】椭圆的简单性质;圆锥曲线的综合.【分析】利用椭圆的离心率求出ab关系式,然后求解双曲线的离心率即可.【解答】解:椭圆(a>b>0)的离心率为,可得,即:,可得,在则双曲线中,由,即,可得,∴e=.故选:C.二、选择题(本大题包括4个小题,每小题5分,共20分,把正确答案填在答题卡的指定位置)13.复数z=(1+i)(a﹣i)表示的点在第四象限,则实数a的取值范围是﹣1<a<1.【考点】复数的代数表示法及其几何意义.【分析】利用复数代数形式的乘法运算化简,然后由实部大于0且虚部小于0联立不等式组得答案.【解答】解:∵z=(1+i)(a﹣i)=(a+1)+(a﹣1)i表示的点在第四象限,∴,解得:﹣1<a<1.故答案为:﹣1<a<1.14.若点P(1,m)为抛物线y2=2px(p>0)上一点,F是抛物线的焦点,若|PF|=2,则m=±2.【考点】抛物线的简单性质.【分析】根据抛物线上的点到焦点和准线的距离相等,可得p值,进而可得m值.【解答】解:∵点P(1,m)为抛物线y2=2px(p>0)上一点,F是抛物线的焦点,若|PF|=2,则1+=2,解得:p=2,故抛物线的方程为:y2=4x,将x=1代入可得:m=±2,故答案为:±215.函数f(x)=ax3+bx+1在x=1处有极大值2,则b﹣a=4.【考点】利用导数研究函数的极值.【分析】由已知得f′(x)=3ax2+b,且,求出a,b,即可得到结果.【解答】解:∵函数f(x)=ax3+bx+1,∴f′(x)=3ax2+b,∵f(x)=ax3+bx+1在x=1处有极大值2,∴,解得a=﹣1,b=3,解得b﹣a=4.故答案为:4.16.若A,B是双曲线x2﹣=1上两个动点,且•=0,则△AOB面积的最小值是\frac{3}{2}.【考点】双曲线的简单性质.【分析】设直线OA的方程为y=kx,则直线OB的方程为y=﹣x,设点A(x1,y1),y=kx与双曲线方程联立,可得x12=,y12=,可求得|OA|2,|OB|2,|OA|2•|OB|2,利用二次函数的最值求法,即可求得最小值.【解答】解:设直线OA的方程为y=kx,由•=0,即OA⊥OB,则直线OB的方程为y=﹣x,设点A(x1,y1),y=kx与双曲线方程联立,可得x12=,y12=,∴|OA|2=x12+y12=,同理|OB|2=,故|OA|2•|OB|2=,令1+k2=t(t>1),即k2=t﹣1,可得====,由t>1可得0<<1,即有t=2即k=±1时,取得最小值9.即有|OA|•|OB|≥3,故S△AOB=|OA|•|OB|的最小值为.故答案为:.三、解答题(本大题包括6个小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.若函数f(x)=ax3+2bx2﹣4x在x=﹣2与处取得极值.(1)求函数f(x)的解析式;(2)求函数f(x)的单调递增区间.【考点】利用导数研究函数的单调性;利用导数研究函数的极值.【分析】(1)已求出函数的导函数,根据f(x)在x=﹣2与处取得极值,得导函数值为0,从而求出a,b的值;(2)利用导数求函数f(x)的单调区间,首先求出极值点,再进行求解;【解答】解:(1)∵函数f(x)=ax3+2bx2﹣4x,可得f′(x)=3ax2+4bx﹣4.而f(x)在x=﹣2与处取得极值,∴,∴,∴,函数f(x)的解析式f(x)=x3+2x2﹣4x.(2)由(1)知f(x)=x3+2x2﹣4x,f′(x)=3x2+4x﹣4=(3x﹣2)(x+2)∴f(x)的单增区间分别是(﹣∞,﹣2),(,+∞),单减区间是(﹣2,).所求函数的单调增区间为:(﹣∞,﹣2),(,+∞).18.已知椭圆+=1(a>b>0)经过点(0,1),且离心率e=(1)求椭圆的标准方程(2)若直线y=(x﹣1)与椭圆交于A,B两点,证明•=0.【考点】椭圆的简单性质.【分析】(1)由题意可得b=1,运用离心率公式和a,b,c的关系,解得a,进而得到椭圆方程;(2)将直线y=(x﹣1),代入椭圆方程,运用韦达定理,以及向量的坐标表示,即可得证.【解答】解:(1)由题意可得b=1,e==,a2﹣c2=1,解得a=,c=1,即有椭圆的方程为+y2=1;(2)证明:将直线y=(x﹣1),代入椭圆方程,可得:5x2﹣8x+2=0,设A(x1,y1),B(x2,y2),即有x1+x2=,x1x2=,y1y2=2(x1﹣1)(x2﹣1)=2(x1x2+1﹣x1﹣x2)=2×(+1﹣)=﹣,则•=﹣=0.19.已知函数,a∈R.(1)当a=4时,求函数f(x)的极值;(2)若函数在x=1处的切线平行于x轴,求a的值.【考点】利用导数研究函数的极值;利用导数研究曲线上某点切线方程.【分析】(1)求出函数的导数,解关于导函数的不等式,求出函数的单调区间,从而求出函数的极值;(2)求出函数的导数,得到f′(1)=0,解出即可.【解答】解:(1)a=4时,f(x)=x+﹣2,f′(x)=1﹣=,令f′(x)>0,解得:x>2或x<﹣2,令f′(x)<0,解得:﹣2<x<0或0<x<2,∴f(x)在(﹣∞,﹣2)递增,在(﹣2,0)递减,在(0,2)递减,在(2,+∞)递增,∴f(x)极大值=f(﹣2)=﹣6,f(x)极小值=f(2)=2;(2)f′(x)=1﹣,若函数在x=1处的切线平行于x轴,则f′(1)=1﹣a=0,解得:a=1.20.已知椭圆+=1,A,B分别为其左右顶点,P是椭圆上异于A,B的一个动点,设k1,k2分别是直线P A,P B的斜率.(1)求k1•k2的值;(2)若M(1,1)是椭圆内一定点,过M的直线l交椭圆于C,D两点,若=(+),求直线l的方程.【考点】直线与圆锥曲线的关系;椭圆的简单性质.【分析】(1)由已知得A(﹣2,0),B(2,0),设P(2cosθ,),θ∈(0,2π),且θ≠π,由此能求出k1•k2的值.(2)当直线l的斜率不存在时,直线l的方程为x=1,不成立;当直线l的斜率存在时,设直线l的方程为y=k(x﹣1)+1,联立,得(3+4k2)x2﹣8k2x+8kx+4k2﹣8k+4=0,由此利用根的判别式、韦达定理、向量知识,结合已知条件能求出直线l的方程.【解答】解:(1)∵椭圆+=1,A,B分别为其左右顶点,P是椭圆上异于A,B的一个动点,∴A(﹣2,0),B(2,0),设P(2cosθ,),θ∈(0,2π),且θ≠π,∵设k1,k2分别是直线P A,P B的斜率,∴k1•k2====﹣.(2)当直线l的斜率不存在时,直线l的方程为x=1,把x=1代入椭圆+=1,得C(1,﹣),D(1,),=(1,0)≠(+)=(1,0),不成立;当直线l的斜率存在时,设直线l的方程为y=k(x﹣1)+1,联立,得(3+4k2)x2﹣8k2x+8kx+4k2﹣8k+4=0,∵过M的直线l交椭圆于C,D两点,∴△>0,设C(),D(x2,y2),则x1+x2=,,y1+y2=k(x1+x2)﹣2k+2=﹣2k+2,∵=(+),∴(1,1)==(,﹣k+1),∴,解得k=﹣,∴直线l的方程为y=﹣(x﹣1)+1,即3x+4y﹣4=0.21.若点P(1,2),A(x1,y1),B(x2,y2)是抛物线y2=2px(p>0)上的不同的三个点,直线AP,BP的斜率分别是k1,k2,若k1+k2=0.(1)求抛物线的方程;(2)求y1+y2的值及直线AB的斜率k.【考点】抛物线的标准方程;直线与圆锥曲线的关系.【分析】(1)把P的坐标代入抛物线方程求得p,则抛物线方程可求;(2)分别设出直线PA、PB的方程,和抛物线方程联立,利用根与系数的关系求出A,B 的纵坐标,作和得答案;再由斜率公式求出AB的斜率,整体代入y1+y2的值求得直线AB 的斜率k.【解答】解:(1)∵P(1,2)在抛物线y2=2px(p>0)上,∴22=2p,即p=2,∴抛物线方程为y2=4x;(2)由题意设PA所在直线方程为y﹣2=k(x﹣1),联立,得ky2﹣4y﹣4k+8=0.∴,得.设PB所在直线方程为y﹣2=﹣k(x﹣1),联立,得ky2+4y﹣4k﹣8=0.∴,得.∴y1+y2=﹣4;.22.已知函数f(x)=lnx﹣x+1.(1)求函数f(x)的单调区间.(2)求证:当x>0时,1﹣≤lnx≤x﹣1.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性.【分析】(1)求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可;(2)根据(1)证明lnx≤x﹣1,构造函数g(x)=lnx+,根据函数的单调性求出g(x)的最小值,证明1﹣≤lnx;【解答】解:(1)由已知得x>0,f′(x)=﹣1,由f′(x)>0,得﹣1>0,>1,x<1,由f′(x)<0,得﹣1<0,<1,x>1,∴f(x)在(1,+∞)上为减函数,在(0,1)为增函数;(2)由(1)知:当x=1时,f(x)max=﹣1+1=0,对任意x>0,有f(x)≤0,即lnx﹣x+1≤0,即lnx≤x﹣1①,令g(x)=lnx+,g′(x)=,令g′(x)>0,解得:x>1,令g′(x)<0,解得:0<x<1,∴g(x)在(0,1)递减,在(1,+∞)递增,∴g(x)min=g(1)=1,故lnx+≥1,即1﹣≤lnx②,由①②得:当x>0时,1﹣≤lnx≤x﹣1.2018年7月14日。

2017-2018高二数学上学期期末试卷

2017-2018高二数学上学期期末试卷

2017--2018高二上学期期末数学试卷(必修五——选修1-1 ,2-1)一、单选题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.命题“∀x∈R,x2≥0”的否定为()A.∃x∈R,x2<0B.∃x∈R,x2≥0C.∀x∈R,x2<0D.∀x∈R,x2≤02.双曲线的实轴长为()A.4B.3C.2D.13.已知P为椭圆上一点,F1,F2为椭圆的两个焦点,且|PF1|=3,则|PF2|=()A.2B.5C.7D.84.若抛物线的准线方程为x=﹣7,则抛物线的标准方程为()A.x2=﹣28y B.x2=28y C.y2=﹣28x D.y2=28x5.“”是“”的()A. 充分而不必要B. 充分必要条件.C. 必要而不充分条件D. 既不充分也不必要条件6.已知等差数列{a n}满足a2+a4=4,a3+a5=10,则它的前10项的和S10=()A.138B.135C.95D.237.在△ABC中,若sinC+sin(B﹣A)=sin2A,则△ABC的形状为()A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形8.已知数列{a n}的前n项和为S n,若S n=3n+2n+1,则a n=()A.a n=B.a n=2×3n﹣1C.a n=2×3n﹣1+2D.a n=9.设椭圆C:(a>b>0)的左、右焦点分别为F1,F2,P是C上的点,PF2⊥F1F2,∠PF1F2=30°,则C的离心率为()A. B. C. D.10.若不等式(x﹣a)(1﹣x﹣a)<1对任意实数x成立,则()A.﹣1<a<1B.0<a<2C.D.11.已知,是直线,是平面,给出下列命题:①若,,,则或.②若,,,则.③若m,n,m∥,n∥,则∥.④若,且,,则.其中正确的命题是()A. ①,②B. ②.③C. ②.④D. ③, ④12.设e1,e2分别为具有公共焦点F1与F2的椭圆和双曲线的离心率,P为两曲线的一个公共点,且满足,则的值为()A.1B.C.4D.2二、填空题:本题共4小题,每小题5分,共20分.13.命题“∀x∈R,使得x2+mx+m>0”为真命题,则实数m的取值范围为.14.已知两个单位向量a,b的夹角为60°,c=t a+(1-t)b.若b·c=0,则t=________.15.已知椭圆x2a2+y2b2=1(a>b>0)的右焦点为F(3,0),过点F的直线交椭圆于A、B两点.若AB的中点坐标为(1,-1),则椭圆的方程为16.等差数列{a n}的前n项和为S n,已知S10=0,S15=25,则nS n的最小值为________.三、解答题:(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(10分)已知命题p关于x的方程x2+mx+1=0有两个不相等的负实数根,命题q关于x的不等式4x2+4(m-2)+1>0的解集为R,若“p或q”为真命题,“p且q”为假命题,求实数m的取值范围.18.(12分)△ABC中内角A,B,C的对边分别为a,b,c,已知a=b cos C+c sin B.(1)求B;(2)若b=2,求△ABC面积的最大值.(理)19.(12分)如图,三棱柱ABC-A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.(1)证明:AB⊥A1C;(2)若平面ABC⊥平面AA1B1B,AB=CB=2,求直线A1C与平面BB1C1C所成角的正弦值.(文)19.(12分)已知函数f(x)=ax+xlnx(a为常数,e为自然对数的底数),曲线y=f(x)在点(e,f(e))处的切线方程为y=3x﹣e.(1)求f(x)的单调区间;(2)若k∈Z,且k<对任意x>1都成立,求k的最大值.20.(12分)在数列{a n}中,a1=1,a n+1=2a n+2n.(Ⅰ)设b n=.证明:数列{b n}是等差数列;(Ⅱ)求数列{a n}的前n项和S n.21.(12分)已知椭圆C的中心在原点,焦点在x轴上,左右焦点分别为F1,F2,且|F1F2|=2,点(1,)在椭圆C上.(Ⅰ)求椭圆C的方程;(Ⅱ)过F1的直线l与椭圆C相交于A,B两点,且△AF2B的面积为,求以F2为圆心且与直线l相切的圆的方程.22.(12分)已知函数f(x)=x2﹣alnx(a∈R).(1)求f(x)的单调区间;(2)当x>1时,x2+lnx<x3是否恒成立,并说明理由.原阳一中高二期末数学试卷参考答案一、单选题:本大题共12小题,每小题5分,共60分.1.【解答】解:全称命题的否定是特称命题,所以命题“∀x∈R,x2≥0”的否定为:∃x∈R,x2<0.故选:A.2.【解答】解:双曲线中,a2=1,∴a=1,∴2a=2,即双曲线的实轴长2.故选:C.3.【解答】解:∵椭圆的方程为,∴a=5,∴|PF1|+|PF2|=2a=10,∵|PF1|=3,∴|PF2|=7.故选:C.4.【解答】解:∵准线方程为x=﹣7∴﹣=﹣7, ∴p=14∴抛物线方程为y2=28x故选:D.5.【解答】由条件得x≠0,则x值可以小于0可以大于0,故推不出x>0;反之,当x>0时,一定有x≠0。

普通高中2017_2018学年高二数学上学期期末模拟试题02Word版 含答案

普通高中2017_2018学年高二数学上学期期末模拟试题02Word版 含答案

上学期高二数学期末模拟试题02第Ⅰ卷一、选择题(本大题共12小题,每小题4分,共48分,在每小题给出的四个选项中,只有一项是符合要求的)1.抛物线y x -=2准线方程是( )A .41=xB .41-=xC .41=yD .41-=y 2.若命题2:,210p x R x ∀∈+>,则p ⌝是( )A .2,210x R x ∀∈+≤B .2,210x R x ∃∈+>C .2,210x R x ∃∈+<D .2,210x R x ∃∈+≤ 3.等于,则三角形面积中,已知A S c b ABC 23,3,2===∆( )A. 030B. 060C. 0015030或D. 0012060或4.下列命题是真命题的是( )A.“若0=x ,则0=xy ”的逆命题;B.“若0=x ,则0=xy ”的否命题;C.“若1>x ,则2>x ”的逆否命题;D.若2=x ,则0)1)(2(=--x x ”的逆否命题5.等差数列{}n a 中,等于,则项和其前n S n a a a n 100,14,1531==+= ( )A. 9B. 10C. 11D. 126.等比数列{}n a 中,3154321=++++a a a a a ,6265432=++++a a a a a ,则n a 等于( )A.12-nB. n 2C. 12+nD. 22-n7.已知的值为取最大值时则x x x x )1(,10-<<( ) A. 41 B.31 C. 21 D. 32 8.原点和点()的取值范围是两侧,则在直线a a y x =+1,1( )A.20><a a 或B. 20<<aC. 02==a a 或D. 20≤≤a9.若双曲线22221(0,0)x y a b a b-=>>的一个焦点到一条渐近线的距离等于焦距的14,则该双曲线的渐近线方程是( )A 、20x y ±=B 、20x y ±=C 、0x =D 0y ±=10.抛物线2x y =到直线42=-y x 距离最近的点的坐标是 ( )A .)45,23(B .(1,1)C .)49,23( D .(2,4) 11.过抛物线)0(22>=p px y 的焦点作直线交抛物线于1(x P ,)1y 、2(x Q ,)2y 两点,若p x x 321=+,则||PQ 等于( )A .4pB .5pC .6pD .8p12.已知上一点,为椭圆192522=+y x M F 1为椭圆的一个焦点且MF 1=2,N 为MF 1中点,O 为坐标原点,ON 长为( )A .2B .4C .6D .8第II 卷二、填空题(本大题共4小题,每小题4分,共16分.把正确答案填在题中横线上)13.在数列{}n a 中,511,12,1a a a a n n 则+==+=____________.14. “0a b >>”是“22a b >”的 条件.15. 已知当抛物线型拱桥的顶点距水面2米时,量得水面宽8米。

吉林省长外国语学校高二数学上学期期末考试试题

吉林省长外国语学校高二数学上学期期末考试试题

第4题7 8 99 8 27 911 2 5 6 甲 乙 长春外国语学校2016-2017学年第一学期期末考试高二年级数学试卷第Ⅰ卷一、选择题:本题共12小题,每小题5分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 抛物线24y x =的焦点坐标是( )A .(0,1)B .(1,0)C .1(0,)16 D .1(,0)162. 双曲线1422=-y x 的渐近线方程和离心率分别是( ) A.5;2=±=e x y B.5;21=±=e x y C.3;21=±=e x y D.2;3y x e =±=3. 如果(1,3)A 关于直线l 的对称点为(5,1)B -,则直线l 的方程是( )A .380x y -+= B. 340x y ++= C .340x y +-= D .380x y -+= 4. 将甲、乙两名同学5次物理测验的成绩用茎叶图表示如图, 若甲、乙两人成绩的中位数分别为乙甲、x x ,则下列说法正确 的是( )A .乙甲x x <;乙比甲成绩稳定 B.乙甲x x >;甲比乙成绩稳定 C.乙甲x x >;乙比甲成绩稳定 D.乙甲x x <;甲比乙成绩稳定5. 在5件产品中,有3件一等品和2件二等品,从中任取2件,以710为概率的事件( )A .恰有1件一等品B .至少有一件一等品C .至多有一件一等品D .都不是一等品6.以下给出的是计算201614121+⋅⋅⋅+++ 的值的一个程序框图(如图所示),其中 判断框内应填入的条件是( ) A . i>10 B. i<10C. i<20D.i>20(第6题图)7.曲线192522=+y x 与曲线192522=-+-k y k x )9(<k 的( ) A.长轴长相等 B.短轴长相等 C.离心率相等 D.焦距相等 8. 已知0,0,1a b a b >>+=,则ba y 41+=的最小值是( ) A. 7 B .8 C. 9 D .109. 已知点P 是抛物线22y x =上的一个动点,则点P 到点(0,2)的距离与到该抛物线准线的距离之和的最小值为( ) A.17 B. 3 C.5 D.9210.已知圆的方程为22680x y x y +--=,设该圆过点(3,5)的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面积为( )A .106B .206C .306D .40611. 若椭圆221369x y +=的弦被点(4,2)平分,则此弦所在直线的斜率为( ) A. 2 B. 2- C.13 D.12- 12.若直线y x b =+与曲线234y x x =-b 的取值范围是( )A .[12,122]-+B .[12,3]C .[1,12]-+D .[122,3]-第Ⅱ卷二、填空题:本题共4小题,每小题5分。

2017-2018年吉林省长春外国语学校高二(上)期末数学试卷及答案

2017-2018年吉林省长春外国语学校高二(上)期末数学试卷及答案

2017-2018学年吉林省长春外国语学校高二(上)期末数学试卷一、选择题:本题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)中心在原点的椭圆的右焦点为F(1,0),离心率等于,则该椭圆的方程是()A.=1B.=1C.=1D.=12.(5分)在直角坐标系xOy中,点A(﹣2,2).以坐标原点为极点,x轴正半轴为极轴建立极坐标系,点A的极坐标为()A.B.(2)C.D.3.(5分)运行如图所示的程序框图,输出A,B,C的一组数据为,﹣1,2,则在两个判断框内的横线上分别应填()A.垂直、相切B.平行、相交C.垂直、相离D.平行、相切4.(5分)已知双曲线中心在原点且一个焦点为F(,0),直线y=x﹣1与其相交于M、N两点,MN中点的横坐标为﹣,则此双曲线的方程是()A.﹣=1B.﹣=1C.﹣=1D.﹣=15.(5分)根据如图所示的框图,对大于2的整数N,输出的数列的通项公式是()A.a n=2n B.a n=2(n﹣1)C.a n=2n D.a n=2n﹣16.(5分)在面积为S的△ABC的边AB上任取一点P,则△PBC的面积大于的概率是()A.B.C.D.7.(5分)在极坐标系中,点(2,)到直线ρ(cosθ+sinθ)=6的距离为()A.4B.3C.2D.18.(5分)下列说法中正确的是()①相关系数r用来衡量两个变量之间线性关系的强弱,|r|越接近于1,相关性越弱;②回归直线y=bx+a一定经过样本点的中心();③随机误差e满足E(e)=0,其方差D(e)的大小用来衡量预报的精确度;④相关指数R2用来刻画回归的效果,R越小,说明模型的拟合效果越好.A.①②B.③④C.①④D.②③9.(5分)下列程序执行后输出的结果是()A.600B.880C.990D.110010.(5分)已知双曲线的右焦点为F(c,0),直线x=a与双曲线C的渐近线在第一象限的交点为A,O为坐标原点,若△OAF的面积为,则双曲线C的离心率为()A.B.C.D.11.(5分)设不等式组,表示的平面区域为D,在区域D内随机取一个点,则此点到坐标原点的距离大于2的概率是()A.B.C.D.12.(5分)已知直线l:(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=2cosθ,设点M的直角坐标为(5,),直线l与曲线C的交点为A,B,|MA|•|MB|的值为()A.16B.18C.8D.10二、填空题:本题共4小题,每小题5分.13.(5分)直线l:mx﹣y+1﹣m=0与⊙C:x2+(y﹣1)2=5的位置关系是.14.(5分)过抛物线方程为y2=4x的焦点作直线l交于P(x1,y1),Q(x2,y2)两点,若x1+x2=6,则|PQ|=.15.(5分)曲线C的参数方程为(θ为参数),曲线C的直角坐标方程为.16.(5分)一圆形纸片的半径为10cm,圆心为O,F为圆内一定点,OF=6cm,M为圆周上任意一点,把圆纸片折叠,使M与F重合,然后抹平纸片,这样就得到一条折痕CD,设CD与OM交于P点(如图),以FO所在直线为x轴,线段FO的中线为y轴,建立直角坐标系,则点P的轨迹方程为.三、解答题:本题共70分,其中17题10分,18至22题每题12分. 17.(10分)如表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x (吨)与相应的生产能耗y (吨标准煤)的几组对照数据.(1)请根据上表提供的数据,用最小二乘法求出y 关于x 的回归直线方程=a+bx;(2)已知该厂技改前生产100吨甲产品的生产能耗为90吨标准煤,由(1)求出的回归直线方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?18.(12分)如图茎叶图记录了甲、乙两组四名同学的植树棵数,乙组记录中有一个数据模糊,无法确认,在图中以X表示.(1)如果X=8,求乙组同学植树棵数的平均数和标准差;(2)如果X=9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数为19的概率.19.(12分)已知曲线C的极坐标方程是ρ=1,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直线l 的参数方程是(t 为参数),求直线l与曲线C相交所截的弦长.20.(12分)4月23日是“世界读书日”,某中学在此期间开展了一系列的读书教育活动,为了解本校学生课外阅读情况,学校随机抽取了100名学生对其课外阅读时间进行调查,下面是根据调查结果绘制的学生日均课外阅读时间(单位:min)的频率分布直方图,若将日均课外阅读时间不低于60min的学生称为“书虫”,低于60min的学生称为“懒虫”,(1)求x的值并估计全校3 000名学生中“书虫”大概有多少名学生?(将频率视为概率)(2)根据已知条件完成下面2×2的列联表,并判断能否在犯错误的概率不超过0.01的前提下认为“书虫”与性别有关:21.(12分)在平面直角坐标系xOy中,以坐标原点O为极点x轴的正半轴为极轴建立极坐标系,曲线C1的极坐标方程为:3ρ2=12ρcosθ﹣10(ρ>0).(1)求曲线C1的普通方程(2)曲线C2的方程为,设P、Q分别为曲线C1与曲线C2上的任意一点,求|PQ|的最小值.22.(12分)已知椭圆C:+=1(a>b>0)的离心率e=,且椭圆C上一点M与椭圆左右两个焦点构成的三角形周长为4+2.(1)求椭圆C的方程;(2)如图,设点D为椭圆上任意一点,直线y=m和椭圆C交于A、B两点,直线DA、DB与y轴的交点分别为P、Q,求证:∠PF1F2+∠QF1F2=90°.2017-2018学年吉林省长春外国语学校高二(上)期末数学试卷参考答案与试题解析一、选择题:本题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)中心在原点的椭圆的右焦点为F(1,0),离心率等于,则该椭圆的方程是()A.=1B.=1C.=1D.=1【解答】解:根据题意,椭圆的一个焦点为F(1,0),则椭圆的焦点在x轴上,且c=1,又由椭圆的离心率为,则e==,则a=3,则b2=a2﹣c2=8,则椭圆的标准方程为+=1;故选:B.2.(5分)在直角坐标系xOy中,点A(﹣2,2).以坐标原点为极点,x轴正半轴为极轴建立极坐标系,点A的极坐标为()A.B.(2)C.D.【解答】解:根据题意,设极坐标系下,点A的极坐标为(ρ,θ),则有ρ==2,tanθ=﹣1,则有θ=,分析可得:点A的极坐标为(2,);故选:B.3.(5分)运行如图所示的程序框图,输出A,B,C的一组数据为,﹣1,2,则在两个判断框内的横线上分别应填()A.垂直、相切B.平行、相交C.垂直、相离D.平行、相切【解答】解:当输出A,B,C的一组数据为,﹣1,2时,直线Ax+By+c=0为x﹣y+2=0,此时与直线x+y﹣1=0满足A1A2+B1B2=0,故两直线垂直,此时原点到直线的距离d==1,故与单位圆x2+y2=1相切,故选:A.4.(5分)已知双曲线中心在原点且一个焦点为F(,0),直线y=x﹣1与其相交于M、N两点,MN中点的横坐标为﹣,则此双曲线的方程是()A.﹣=1B.﹣=1C.﹣=1D.﹣=1【解答】解:设双曲线方程为﹣=1.将y=x﹣1代入﹣=1,整理得(b2﹣a2)x2+2a2x﹣a2﹣a2b2=0.由韦达定理得x1+x2=,则==﹣.又c2=a2+b2=7,解得a2=2,b2=5,所以双曲线的方程是.故选:D.5.(5分)根据如图所示的框图,对大于2的整数N,输出的数列的通项公式是()A.a n=2n B.a n=2(n﹣1)C.a n=2n D.a n=2n﹣1=2a i,a1=2,【解答】解:由程序框图知:a i+1∴数列为公比为2的等比数列,∴a n=2n.故选:C.6.(5分)在面积为S的△ABC的边AB上任取一点P,则△PBC的面积大于的概率是()A.B.C.D.【解答】解:记事件A={△PBC的面积超过},基本事件空间是三角形ABC的面积,(如图)事件A的几何度量为图中阴影部分的面积(DE是三角形的中位线),因为阴影部分的面积是整个三角形面积的,所以P(A)=1﹣=.故选:D.7.(5分)在极坐标系中,点(2,)到直线ρ(cosθ+sinθ)=6的距离为()A.4B.3C.2D.1【解答】解:点P(2,)化为:P,即P.直线ρ(cosθ+sinθ)=6化为直角坐标方程:x+y﹣6=0,∴点P到直线的距离d===1.故选:D.8.(5分)下列说法中正确的是()①相关系数r用来衡量两个变量之间线性关系的强弱,|r|越接近于1,相关性越弱;②回归直线y=bx+a一定经过样本点的中心();③随机误差e满足E(e)=0,其方差D(e)的大小用来衡量预报的精确度;④相关指数R2用来刻画回归的效果,R越小,说明模型的拟合效果越好.A.①②B.③④C.①④D.②③【解答】解:对于①,相关系数r用来衡量两个变量之间线性关系的强弱,|r|越接近于1,相关性越强,∴①错误;对于②,回归直线y=bx+a一定经过样本点的中心(),②正确;对于③,随机误差e满足E(e)=0,其方差D(e)的大小用来衡量预报的精确度,③正确;对于④,相关指数R2用来刻画回归的效果,R越大,说明模型的拟合效果越好,∴④错误.综上,正确的命题是②③.故选:D.9.(5分)下列程序执行后输出的结果是()A.600B.880C.990D.1100【解答】解:分析程序中各变量、各语句的作用,根据流程图所示的顺序,可知:该程序的作用是累乘并输出S=11×10×9的值;计算S=11×10×9=990.故选:C.10.(5分)已知双曲线的右焦点为F(c,0),直线x=a与双曲线C的渐近线在第一象限的交点为A,O为坐标原点,若△OAF的面积为,则双曲线C的离心率为()A.B.C.D.【解答】解:由题意,A(a,b),∵△OAF的面积为,∴bc=,∴3c2﹣8bc﹣3b2=0,∴c=3b或c=﹣b(舍去),∴a==2b,∴e===.故选:B.11.(5分)设不等式组,表示的平面区域为D,在区域D内随机取一个点,则此点到坐标原点的距离大于2的概率是()A.B.C.D.【解答】解:其构成的区域D如图所示的边长为2的正方形,面积为S1=4,满足到原点的距离大于2所表示的平面区域是以原点为圆心,以2为半径的圆外部,面积为=4﹣π,∴在区域D内随机取一个点,则此点到坐标原点的距离大于2的概率P=故选:D.12.(5分)已知直线l:(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=2cosθ,设点M的直角坐标为(5,),直线l与曲线C的交点为A,B,|MA|•|MB|的值为()A.16B.18C.8D.10【解答】解:曲线C的极坐标方程为ρ=2cosθ,转化为:ρ2=2ρcosθ,则直角坐标方程为:x2+y2﹣2x=0,把直线的参数方程:(t为参数),代入x2+y2﹣2x=0,得到:,(t1和t2为A和B对应的参数)所以:,t 1t2=18所以:,|MA|•|MB|=|t1t2|=18.故选:B.二、填空题:本题共4小题,每小题5分.13.(5分)直线l:mx﹣y+1﹣m=0与⊙C:x2+(y﹣1)2=5的位置关系是相交.【解答】解:直线l:mx﹣y+1﹣m=0,经过(1,1)定点.因为12+(1﹣1)2=1<5,所以定点在圆⊙C:x2+(y﹣1)2=5的内部,所以直线与圆的位置关系是相交.故答案为:相交.14.(5分)过抛物线方程为y2=4x的焦点作直线l交于P(x1,y1),Q(x2,y2)两点,若x1+x2=6,则|PQ|=8.【解答】解:抛物线y2=4x(p>0)中p=2,∵x1+x2=6,∴由抛物线的定义可知,|PQ|=|PF|+|QF|=x1++x2 +=(x1+x2)+p=6+2=8,故答案为:8.15.(5分)曲线C的参数方程为(θ为参数),曲线C的直角坐标方程为y=2x2+1(﹣1≤x≤1).【解答】解:根据题意,曲线C的参数方程为(θ为参数),则有﹣1≤x≤1,y=2cos2θ﹣1+2=2cos2θ+1,又由x=cosθ,则有y=2x2+1(﹣1≤x≤1).故答案为:y=2x2+1(﹣1≤x≤1).16.(5分)一圆形纸片的半径为10cm,圆心为O,F为圆内一定点,OF=6cm,M为圆周上任意一点,把圆纸片折叠,使M与F重合,然后抹平纸片,这样就得到一条折痕CD,设CD与OM交于P点(如图),以FO所在直线为x轴,线段FO的中线为y轴,建立直角坐标系,则点P的轨迹方程为.【解答】解:以FO所在直线为x轴,线段FO的中垂线为y轴,建立直角坐标系.由题设,得:CD垂直平分线段MF,则有:|PO|+|PF|=|PO|+|PM|=|OM|=10即|PO|+|PF|=10>|OF|,所以点P的轨迹是以F,O为焦点的椭圆.方程为:,2a=10,2c=6,b2=16.点P的轨迹方程为:;故答案为:.三、解答题:本题共70分,其中17题10分,18至22题每题12分. 17.(10分)如表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x (吨)与相应的生产能耗y (吨标准煤)的几组对照数据.(1)请根据上表提供的数据,用最小二乘法求出y 关于x 的回归直线方程=a+bx;(2)已知该厂技改前生产100吨甲产品的生产能耗为90吨标准煤,由(1)求出的回归直线方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?【解答】解:(1)由题意可得:,则:.(2)由(1)的回归直线方程及技改前生产100吨甲产品的生产能耗,得降低的生产能耗为90﹣(0.7×100+0.35)=19.65(吨标准煤)18.(12分)如图茎叶图记录了甲、乙两组四名同学的植树棵数,乙组记录中有一个数据模糊,无法确认,在图中以X表示.(1)如果X=8,求乙组同学植树棵数的平均数和标准差;(2)如果X=9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数为19的概率.【解答】解:(1)当X=8时,由茎叶图可知,乙组同学的植树棵数是:8,8,9,10,所以平均数为,(2分)方差为,(5分)∴标准差.(6分)(2)当X=9时,由茎叶图可知,甲组同学的植树棵数是:9,9,11,11,乙组同学的植树棵数是:9,8,9,10.分别从甲、乙两组中随机选取一名同学,共有4×4=16种可能,其中满足这两名同学的植树总棵数为19的情况有2+2=4种,这两名同学的植树总棵数为19的概率等于=.(12分)19.(12分)已知曲线C的极坐标方程是ρ=1,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直线l的参数方程是(t 为参数),求直线l与曲线C相交所截的弦长.【解答】解:曲线C的极坐标方程是ρ=1,转化为:x2+y2=1.直线l的参数方程是(t为参数),转化为:3x﹣4y+3=0,则:点(0,0)到直线的距离为d=,所以:2l=.即弦长为:20.(12分)4月23日是“世界读书日”,某中学在此期间开展了一系列的读书教育活动,为了解本校学生课外阅读情况,学校随机抽取了100名学生对其课外阅读时间进行调查,下面是根据调查结果绘制的学生日均课外阅读时间(单位:min)的频率分布直方图,若将日均课外阅读时间不低于60min的学生称为“书虫”,低于60min的学生称为“懒虫”,(1)求x的值并估计全校3 000名学生中“书虫”大概有多少名学生?(将频率视为概率)(2)根据已知条件完成下面2×2的列联表,并判断能否在犯错误的概率不超过0.01的前提下认为“书虫”与性别有关:【解答】解:(1)由已知可得:(0.01+0.02+0.03+x+0.015)×10=1,解得x=0.025;…(2分)因为(0.025+0.015)×10=0.4,将频率视为概率,由此可以估算出全校3000名学生中“书虫”大概有1200人;…(4分)(2)完成下面的2×2列联表如下:…(7分)根据表中数据,计算K2=≈8.249;…(10分)由8.249>6.635知,在犯错误的概率不超过0.01的前提下认为“读书迷”与性别有关…(12分)21.(12分)在平面直角坐标系xOy中,以坐标原点O为极点x轴的正半轴为极轴建立极坐标系,曲线C1的极坐标方程为:3ρ2=12ρcosθ﹣10(ρ>0).(1)求曲线C1的普通方程(2)曲线C2的方程为,设P、Q分别为曲线C1与曲线C2上的任意一点,求|PQ|的最小值.【解答】解:(1)由3ρ2=12ρcosθ﹣10(ρ>0),得3x2+3y2=12x﹣10,即.∴曲线C1的普通方程为:;(2)依题意可设Q(4cosθ,2sinθ),由(1)知圆C1的圆心坐标为(2,0),则==.∴当cosθ=时,.∴.22.(12分)已知椭圆C:+=1(a>b>0)的离心率e=,且椭圆C上一点M与椭圆左右两个焦点构成的三角形周长为4+2.(1)求椭圆C的方程;(2)如图,设点D为椭圆上任意一点,直线y=m和椭圆C交于A、B两点,直线DA、DB与y轴的交点分别为P、Q,求证:∠PF1F2+∠QF1F2=90°.【解答】(1)解:由题意可得:e==,2a+2c=4+2,又a2=b2+c2.联立解得:a=2,b=c=.∴椭圆C的方程为:=1.(2)证明:F1.设D(x0,y0),则+=1.把y=m代入椭圆方程可得:+=1,解得x=±.取A(﹣,m),B(,m).直线DA的方程为:y﹣y0=(x﹣x0),可得P.同理可得:直线DB的方程为:y﹣y0=(x﹣x0),可得第21页(共21页) Q . ∴=,=. 又=2﹣.∴•=•===1.∴∠PF 1F 2+∠QF 1F 2=90°.。

2017-2018学年高二数学上学期期末考试试题理

2017-2018学年高二数学上学期期末考试试题理

内蒙古××市第四中学2017-2018学年高二数学上学期期末考试试题理本试卷分为选择题和非选择题两部分。

总分150分,考试时间120分钟。

第Ⅰ卷选择题(共60分)一、 选择题:(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.命题“,R x ∈∃使得012<++x x ”的否定是()A .R x ∈∀,均有012<++x xB .R x ∈∀,均有012≥++x xC .,R x ∈∃使得012≥++x xD .R x ∈∀,均有012>++x x2.与向量(1,3,2)a =-平行的一个向量的坐标是()A .(31,1,1)B .(-1,-3,2)C .(-21,23,-1)D .(,-3,-2) 3.下列说法中正确的是()A.一个命题的逆命题为真,则它的逆否命题一定为真B.“a b >”与“a c b c +>+”不等价C.“220a b +=,则a b ,全为0”的逆否命题是“若a b ,全不为0,则220a b ≠+”D.一个命题的否命题为真,则它的逆命题一定为真4.已知命题:x R ∃∈,20x ->;命题:x R ∀∈x <,则下列说法中正确的是()A.命题p q ∨是假命题B.命题p q ∧是真命题C.命题()p q ∧⌝是真命题D.命题()p q ∨⌝是假命题5.设,a b 为实数,则“0a b >>是11a b<”的() A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件6.设抛物线28y x =上一点到轴的距离是4,则点到该抛物线焦点的距离是A .12B .8C .6D .47.若抛物线22y px =()0p >的焦点与双曲线221124x y -=的右焦点重合,则=()A ..8 C .4 D .28.已知空间四边形ABCD 中,,,OA a OB b OC c ===,点在上,且2OM MA =,为BC 的中点,则=()A .213221+- B .213232-+ C .212121-+ D .212132++- 9.若椭圆的对称轴为坐标轴,长轴长与短轴长的和为,焦距为,则椭圆的标准方程为()A .116922=+y xB .1162522=+y xC .1162522=+y x 或1251622=+y x D .以上都不对10.已知12,F F 是椭圆162x +92y =1的两个焦点,经过点的直线交椭圆于点,A B ,若5AB =,则11AF BF +等于( )A .11B .10C .9D .811.设是椭圆221255x y +=上一点,12,F F 是椭圆的两个焦点,且120,PF PF ⋅=12F PF ∆则的面积是()A.B. C. D.12.双曲线12222=-b x a y ()0,0a b >>与抛物线y x 82=有一个公共焦点,双曲线上过点且垂直于实轴的弦长为332,则双曲线的离心率等于() A.B.332 C.223 D. 第Ⅱ卷非选择题(共90分)二、 填空题:(本题共4小题,每小题5分,共20分.把答案填在题中横线上)13.双曲线122=-y x 的顶点到其渐近线的距离等于14.已知ABC ∆的三个顶点()3,3,2A ,()4,3,7B -,()0,5,1C ,则BC 边上的中线长为15.已知向量123,,e e e 是两两垂直的单位向量,且12332a e e e =+-,132b e e =+,则()162a b ⎛⎫⋅= ⎪⎝⎭16.若椭圆193622=+y x 的弦被点(4,2)平分,则这条弦所在的直线方程是 三、解答题:(本题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本题满分10分)给定两个命题,:对任意实数都有012>++ax ax 恒成立;:28200a a +-<.如果∨为真命题,∧为假命题,求实数的取值范围.18.(本题满分12分)设双曲线与椭圆227x +236y =1有公共的焦点,且与椭圆相交,它们的交点中一个交点的纵坐标是4,求双曲线的标准方程.19.(本题满分12分)如图,四边形ABCD 是正方形,EA ⊥平面ABCD ,//EA PD ,2AD PD EA ==,、、分别为、、PC 的中点.HPGFE DC B 20.(本题满分12分)已知焦距为的双曲线的焦点在轴上,且过点(2,3)P .(Ⅰ)求该双曲线的标准方程;(Ⅱ)若直线经过该双曲线的右焦点且斜率为1,求直线被双曲线截得的弦长.21.(本题满分12分)已知椭圆E :()22221 0xy a b a b +=>>的离心率 2e =点1)2P . (Ⅰ)求椭圆E 的方程;(Ⅱ)是否存在直线y x m =-+,使直线与椭圆交于,A B 两点,且满足OA OB ⊥,若存在求的值,若不存在请说明理由. (Ⅰ)求证:平面;(Ⅱ)求平面与平面所成锐二面。

2016-2017年吉林省长春外国语学校高二(上)期末数学试卷及答案

2016-2017年吉林省长春外国语学校高二(上)期末数学试卷及答案

2016-2017学年吉林省长春外国语学校高二(上)期末数学试卷一、选择题:本题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)抛物线y=4x2的焦点坐标是()A.(0,1)B.(1,0)C.D.2.(5分)双曲线:x2﹣=1的渐近线方程和离心率分别是()A.B.C.D.3.(5分)如果A(1,3)关于直线l的对称点为B(﹣5,1),则直线l的方程是()A.x﹣3y+8=0B.3x+y+4=0C.x+3y﹣4=0D.3x﹣y+8=0 4.(5分)将甲,乙两名同学5次数学测验的成绩用茎叶图表示如图,若甲,乙两人成绩的中位数分别是x甲,x乙,则下列说法正确的是()A.x甲<x乙,乙比甲成绩稳定B.x甲>x乙;甲比乙成绩稳定C.x甲>x乙;乙比甲成绩稳定D.x甲<x乙;甲比乙成绩稳定5.(5分)在5件产品中,有3件一等品和2件二等品,从中任取2件,那么以为概率的事件是()A.都不是一等品B.恰有一件一等品C.至少有一件一等品D.至多一件一等品6.(5分)给出计算的值的一个程序框图如图,其中判断框内应填入的条件是()A.i>10B.i<10C.i>20D.i<207.(5分)曲线=1与曲线=1(k<9)的()A.长轴长相等B.短轴长相等C.离心率相等D.焦距相等8.(5分)已知a>0,b>0,a+b=1,则y=的最小值是()A.B.4C.9D.59.(5分)已知点P是抛物线y2=2x上的一个动点,则点P到点(0,2)的距离与P到该抛物线准线的距离之和的最小值为()A.B.3C.D.10.(5分)已知圆的方程为x2+y2﹣6x﹣8y=0,设该圆过点(3,5)的最长弦和最短弦分别为AC和BD,则四边形ABCD的面积为()A.10B.20C.30D.4011.(5分)若椭圆+=1的弦被点(4,2)平分,则此弦所在直线的斜率为()A.B.C.2D.﹣212.(5分)若直线y=x+b与曲线有公共点,则b的取值范围是()A.[,]B.[,3]C.[﹣1,]D.[,3]二、填空题:本题共4小题,每小题5分.13.(5分)如图所示程序,若输入8时,则下列程序执行后输出的结果是.14.(5分)如图的矩形,长为5,宽为2,在矩形内随机地撒300颗黄豆,数得落在阴影部分的黄豆数为138颗,则我们可以估计出阴影部分的面积为.15.(5分)已知x、y的取值如表所示:从散点图分析,y与x线性相关,且=0.95x+a,则a=.16.(5分)双曲线的离心率为,且与椭圆=1有公共焦点,则该双曲线的方程为.三、解答题:共6小题,共70分.解答应写出必要证明过程或演算步骤. 17.(10分)已知圆C的方程是(x﹣1)2+(y﹣1)2=4,直线l的方程为y=x+m,求:当m为何值时(1)直线平分圆;(2)直线与圆相切;(3)直线与圆有两个公共点.18.(12分)一个容量为M的样本数据,其频率分布表如表.(Ⅰ)完成频率分布表;(Ⅱ)画出频率分布直方图;(Ⅲ)利用频率分布直方图,估计总体的众数、中位数及平均数.19.(12分)已知抛物线C:y2=4x与直线y=2x﹣4交于A,B两点.(1)求弦AB的长度;(2)若点P在抛物线C上,且△ABP的面积为12,求点P的坐标.20.(12分)设实数x、y满足(1)求的取值范围;(2)求z=x2+y2的取值范围.21.(12分)已知关于x的一元二次方程x2﹣2(a﹣2)x﹣b2+16=0.(1)若a,b是一枚骰子掷两次所得到的点数,求方程有实根的概率;(2)若a∈[2,6],b∈[0,4],求方程没有实根的概率.22.(12分)已知椭圆C:的离心率,焦距为2(1)求椭圆C的方程;(2)已知椭圆C与直线x﹣y+m=0相交于不同的两点M、N,且线段MN的中点不在圆x2+y2=1内,求实数m的取值范围.2016-2017学年吉林省长春外国语学校高二(上)期末数学试卷参考答案与试题解析一、选择题:本题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)抛物线y=4x2的焦点坐标是()A.(0,1)B.(1,0)C.D.【解答】解:抛物线y=4x2的标准方程为x2=y,p=,开口向上,焦点在y 轴的正半轴上,故焦点坐标为(0,),故选:C.2.(5分)双曲线:x2﹣=1的渐近线方程和离心率分别是()A.B.C.D.【解答】解:双曲线:的a=1,b=2,c==∴双曲线的渐近线方程为y=±x=±2x;离心率e==故选:D.3.(5分)如果A(1,3)关于直线l的对称点为B(﹣5,1),则直线l的方程是()A.x﹣3y+8=0B.3x+y+4=0C.x+3y﹣4=0D.3x﹣y+8=0【解答】解:∵已知点A(1,3)关于直线l的对称点为B(﹣5,1),故直线l 为线段AB的中垂线.求得AB的中点为(﹣2,2),AB的斜率为=,故直线l的斜率为﹣3,故直线l的方程为y﹣2=﹣3(x+2),化简可得3x+y+4=0.故选:B.4.(5分)将甲,乙两名同学5次数学测验的成绩用茎叶图表示如图,若甲,乙两人成绩的中位数分别是x甲,x乙,则下列说法正确的是()A.x甲<x乙,乙比甲成绩稳定B.x甲>x乙;甲比乙成绩稳定C.x甲>x乙;乙比甲成绩稳定D.x甲<x乙;甲比乙成绩稳定【解答】解:根据茎叶图中的数据,得甲、乙二人的中位数分别是x甲=79,x乙=82,且在茎叶图中,乙的数据更集中,∴x甲<x乙,乙比甲成绩稳定.故选:A.5.(5分)在5件产品中,有3件一等品和2件二等品,从中任取2件,那么以为概率的事件是()A.都不是一等品B.恰有一件一等品C.至少有一件一等品D.至多一件一等品【解答】解:5件产品中,有3件一等品和2件二等品,从中任取2件,从5件产品中任取2件,有C52=10种结果,∵都不是一等品有1种结果,概率是,恰有一件一等品有C31C21种结果,概率是,至少有一件一等品有C31C21+C32种结果,概率是,至多有一件一等品有C31C21+1种结果,概率是,∴是至多有一件一等品的概率,故选:D.6.(5分)给出计算的值的一个程序框图如图,其中判断框内应填入的条件是()A.i>10B.i<10C.i>20D.i<20【解答】解:根据框图,i﹣1表示加的项数当加到时,总共经过了10次运算,则不能超过10次,i﹣1=10执行“是”所以判断框中的条件是“i>10”故选:A.7.(5分)曲线=1与曲线=1(k<9)的()A.长轴长相等B.短轴长相等C.离心率相等D.焦距相等【解答】解:曲线=1表示焦点在x轴上,长轴长为10,短轴长为6,离心率为,焦距为8.曲线=1(k<9)表示焦点在x轴上,长轴长为2,短轴长为2,离心率为,焦距为8.对照选项,则D正确.故选:D.8.(5分)已知a>0,b>0,a+b=1,则y=的最小值是()A.B.4C.9D.5【解答】解:∵a+b=1,∴y=(a+b)()=5+≥5+2=9,当且仅当,即b=2a时等号成立.故选:C.9.(5分)已知点P是抛物线y2=2x上的一个动点,则点P到点(0,2)的距离与P到该抛物线准线的距离之和的最小值为()A.B.3C.D.【解答】解:依题设P在抛物线准线的投影为P',抛物线的焦点为F,则,依抛物线的定义知P到该抛物线准线的距离为|PP'|=|PF|,则点P到点A(0,2)的距离与P到该抛物线准线的距离之和.故选:A.10.(5分)已知圆的方程为x2+y2﹣6x﹣8y=0,设该圆过点(3,5)的最长弦和最短弦分别为AC和BD,则四边形ABCD的面积为()A.10B.20C.30D.40【解答】解:圆的标准方程为(x﹣3)2+(y﹣4)2=52,由题意得最长的弦|AC|=2×5=10,根据勾股定理得最短的弦|BD|=2=4,且AC⊥BD,四边形ABCD的面积S=|AC|•|BD|=×10×4=20.故选:B.11.(5分)若椭圆+=1的弦被点(4,2)平分,则此弦所在直线的斜率为()A.B.C.2D.﹣2【解答】解:设弦的端点为A(x1,y1),B(x2,y2),则x1+x2=8,y1+y2=4,将A、B坐标代入椭圆方程,得①,②,①﹣②得,,即=﹣,所以此弦所在直线的斜率为﹣.故选:A.12.(5分)若直线y=x+b与曲线有公共点,则b的取值范围是()A.[,]B.[,3]C.[﹣1,]D.[,3]【解答】解:曲线方程可化简为(x﹣2)2+(y﹣3)2=4(1≤y≤3),即表示圆心为(2,3)半径为2的半圆,如图依据数形结合,当直线y=x+b与此半圆相切时须满足圆心(2,3)到直线y=x+b 距离等于2,即解得或,因为是下半圆故可知(舍),故当直线过(0,3)时,解得b=3,故,故选:D.二、填空题:本题共4小题,每小题5分.13.(5分)如图所示程序,若输入8时,则下列程序执行后输出的结果是0.7.【解答】解:t=8,不满足条件t≤4执行Else后循环体,c=0.2+0.1(8﹣3)=0.7故输出0.7.故答案为:0.714.(5分)如图的矩形,长为5,宽为2,在矩形内随机地撒300颗黄豆,数得落在阴影部分的黄豆数为138颗,则我们可以估计出阴影部分的面积为.【解答】解:根据题意:黄豆落在阴影部分的概率是矩形的面积为10,设阴影部分的面积为s则有∴s=故答案为:15.(5分)已知x、y的取值如表所示:从散点图分析,y与x线性相关,且=0.95x+a,则a= 2.6.【解答】解:根据表中数据得:;又由回归方程知回归方程的斜率为0.95;∴.故答案为:2.6.16.(5分)双曲线的离心率为,且与椭圆=1有公共焦点,则该双曲线的方程为.【解答】解:∵双曲线的离心率为,且与椭圆=1有公共焦点,∴双曲线的焦点坐标为,,设双曲线的标准方程为,(a>0,b>0),∴,解得a=2,c=,b=1,∴该双曲线的方程为.故答案为:.三、解答题:共6小题,共70分.解答应写出必要证明过程或演算步骤. 17.(10分)已知圆C的方程是(x﹣1)2+(y﹣1)2=4,直线l的方程为y=x+m,求:当m为何值时(1)直线平分圆;(2)直线与圆相切;(3)直线与圆有两个公共点.【解答】解:由圆的方程(x﹣1)2+(y﹣1)2=4,得到圆心坐标为(1,1),圆的半径r=2,(1)当直线平分圆时,即直线过圆的直径,把(1,1)代入y=x+m中,解得m=0;(2)当直线与圆相切时,圆心(1,1)到直线y=x+m的距离d==r=2,解得m=±2;(3)当直线与圆有两个公共点即直线与圆相交时,圆心(1,1)到直线的距离d=<r=2,解得:﹣2<m<2.所以,当m=0时,直线平分圆;当m=±2时,直线与圆相切;当﹣2<m <2时,直线与圆有两个公共点.18.(12分)一个容量为M的样本数据,其频率分布表如表.(Ⅰ)完成频率分布表;(Ⅱ)画出频率分布直方图;(Ⅲ)利用频率分布直方图,估计总体的众数、中位数及平均数.【解答】解:(1)在小组(10,20]中,频数是2,频率是0.10,∴样本数据为=20;∴小组(20,30]的频率为=0.15;小组(40,50]的频数为20﹣2﹣3﹣4﹣4﹣2=5,频率为=0.25;频数合计为20;由此补充频率分布表如下:(2)根据频率分布表,画出频率分布直方图如下:(3)根据频率分布直方图,得;图中最高的小矩形的底边中点坐标是=45,∴众数为45;平均数为=15×0.1+25×0.15+35×0.20+45×0.25+55×0.20+65×0.10=41;∵0.10+0.15+0.20=0.45<0.5,0.45+0.25=0.70>0.5,令0.45+0.25×x=0.5,解得x=2,∴中位数为40+2=42.19.(12分)已知抛物线C:y2=4x与直线y=2x﹣4交于A,B两点.(1)求弦AB的长度;(2)若点P在抛物线C上,且△ABP的面积为12,求点P的坐标.【解答】解:(1)设A(x1,y1)、B(x2,y2),由得x2﹣5x+4=0,△>0.由韦达定理有x1+x2=5,x1x2=4,∴|AB|==,所以弦AB的长度为3.(2)设点,设点P到AB的距离为d,则,=••=12,即.∴S△PAB∴,解得y o=6或y o=﹣4∴P点为(9,6)或(4,﹣4).20.(12分)设实数x、y满足(1)求的取值范围;(2)求z=x2+y2的取值范围.【解答】解:(1)满足y满足约束条件的平面区域如图所示,A(1,2),B(4,2),C(3,1),(1)的几何意义可行域上的点是到原点的斜率;当直线为OA时,u有最大值为2;当直线为OC时,u有最小值为;所以,(2)z=x2+y2的几何意义是可行域上的点到原点距离的平方;z=x2+y2的最大值为|OB|2=20,最小值为O到直线AC的距离的平方,为5;所以,z∈[5,20]21.(12分)已知关于x的一元二次方程x2﹣2(a﹣2)x﹣b2+16=0.(1)若a,b是一枚骰子掷两次所得到的点数,求方程有实根的概率;(2)若a∈[2,6],b∈[0,4],求方程没有实根的概率.【解答】解:(1)由题意知本题是一个古典概型用(a,b)表示一枚骰子投掷两次所得到的点数的事件依题意知,基本事件(a,b)的总数有36个二次方程x2﹣2(a﹣2)x﹣b2+16=0有实根,等价于△=4(a﹣2)2+4(b2﹣16)≥0,即(a﹣2)2+b2≥16,“方程有两个根”的事件为A,则事件A包含的基本事件为(1,6),(1,5).(1,4),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,4),(4,5),(4,6),(5,3),(5,4),(5,5),(5,6),(6,1)、(6,2)、(6,3)、(6,4),(6,5),(6,6),共22个∴所求的概率为P(A)=;(2)由题意知本题是一个几何概型,;试验的全部结果构成区域Ω={(a,b)|2≤a≤6,0≤b≤4},其面积为S(Ω)=16满足条件的事件为:B={(a,b)|2≤a≤6,0≤b≤4,(a﹣2)2+b2<16}其面积为S(B)=×π×42=4π∴所求的概率P(B)=;22.(12分)已知椭圆C:的离心率,焦距为2(1)求椭圆C的方程;(2)已知椭圆C与直线x﹣y+m=0相交于不同的两点M、N,且线段MN的中点不在圆x2+y2=1内,求实数m的取值范围.【解答】解:(1)由题意知,2c=2,又a2﹣b2=c2,解得,c=1,∴a2=2,b2=1故椭圆的方程为…(2分)(2)联立方程,消去y可得3x2+4mx+2m2﹣2=0则…(5分)设M(x1,y1),N(x2,y2),则,∴MN中点坐标为…(8分)因为MN的中点不在圆x2+y2内,所以或…(10分)综上,可知或…(12分)注:用点差法酌情给分。

湖北省武汉外国语学校2017-2018学年高二上学期期末数学(理)试题

湖北省武汉外国语学校2017-2018学年高二上学期期末数学(理)试题

武汉外国语学校2017—2018学年度上学期期末考试高二数学试题(理科)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设抛物线的顶点在原点,准线方程为x=﹣2,则抛物线的方程是()A.y 2=﹣8xB.y 2=8xC.y 2=﹣4xD.y 2=4x2.若R k ∈,则“3k >”是“方程22133x y k k -=-+表示双曲线”的()A.必要不充分条件B.充分不必要条件C.充分必要条件D.既不充分也不必要条件3.从一批产品中取出三件产品,设A=“三件产品全不是次品”,B=“三件产品全是次品”,C=“三件产品至少有一件是次品”,则下列结论正确的是()A.A 与C 互斥 B.任何两个均互斥C.B 与C 互斥D.任何两个均不互斥4.从2004名学生中选取50名组成参观团,若采用下面的方法选取:先用简单随机抽样从2004人中剔除4人,剩下的2000人再按系统抽样的方法进行,则每人入选的概率()A.不全相等B.均不相等C.都相等,且为251002D.都相等,且为1405.某程序框图如图所示,则该程序运行后输出的值是()A.3- B.32-C.3D.326.(2018·安徽淮南一模)《九章算术》是我国古代数学名著,也是古代东方数学的代表作.书中有如下问题:“今有勾八步,股一十五步,问勾中容圆,径几何?”其意思为:“已知直角三角形两直角边长分别为8步和15步,问其内切圆的直径为多少步?”现若向此三角形内投豆子,则豆子落在其内切圆内的概率是()A.320π B.20πC.310π D.10π7.甲、乙两位歌手在“中国好声音”选拔赛中,5位评委评分情况如茎叶图所示,记甲、乙两人的平均得分分别为x x 甲乙、,则下列判断正确的是()A.x x <甲乙,甲比乙成绩稳定B.x x <甲乙,乙比甲成绩稳定C.x x >甲乙,甲比乙成绩稳定D.x x >甲乙,乙比甲成绩稳定8.四个人围坐在一张圆桌旁,每个人面前放着完全相同的硬币,所有人同时翻转自己的硬币.若硬币正面朝上,则这个人站起来;若硬币正面朝下,则这个人继续坐着.那么,没有相邻的两个人站起来的概率为().A.14B.716C.12D.9169.在平面直角坐标系xOy 中,F 是椭圆()222210x y a b a b+=>>的一个焦点,直线2b y =与椭圆交于B ,C 两点,0FB FC ⋅=,则椭圆的离心率为()A.32B.33C.66D.6310.与正方体ABCD—A 1B 1C 1D 1的三条棱AB 、CC 1、A 1D 1所在直线的距离相等的点()A.有且只有1个 B.有且只有2个C.有且只有3个D.有无数个11.过抛物线y 2=x 上一点A (4,2)作倾斜角互补的两条直线AB ,AC 交抛物线于B ,C 两点,则直线BC 的斜率为()A.14 B.14-C.12D.12-12.设双曲线2222:1x y C a b-=(0,0a b >>)的左右焦点分别为12,F F ,以12,F F 为直径的圆与双曲线左支的一个交点为P ,若以1OF (O 为坐标原点)为直径的圆与2PF 相切,则双曲线C 的离心率为()A.2B.3624-+ C.3D.3627+二、填空题(每小题5分,共20分)13.已知某一段公路限速60公里/小时,现抽取200辆通过这一段公路的汽车的时速,其频率分布直方图如图所示,则这200辆汽车中在该路段没有超速的有辆.14.将4034与10085的最大公约数化成五进制数,结果为________.15.在△ABC 中,()0AB CA CB ⋅+= ,点H 在线段BC 上,0AH BC ⋅= ,33cosB =,则过点C ,以A 、H 为两焦点的双曲线的离心率为_____16.如图所示,已知抛物线y 2=82x 的焦点为F ,直线l 过点F 且依次交抛物线及圆22(22)x y -+=2于A ,B ,C ,D 四点,则|AB |+4|CD |的最小值为_____.三、解答题(6小题,共70分)17.设不等式组0606x y ≤≤⎧⎨≤≤⎩表示的区域为A ,不等式组060x x y ≤≤⎧⎨-≥⎩表示的区域为B .(1)在区域A 中任取一点(x ,y ),求点(x ,y )∈B 的概率;(2)若x 、y 分别表示甲、乙两人各掷一次骰子所得的点数,求点(x ,y )在区域B 中的概率.18.已知双曲线过点(3,-2)且与椭圆4x 2+9y 2=36有相同的焦点.(1)求双曲线的标准方程;(2)若点M 在双曲线上,F 1,F 2为左、右焦点,且|MF 1|+|MF 2|=63,试判别△MF 1F 2的形状.19.某校在2013年的自主招生考试成绩中随机抽取40名学生的笔试成绩,按成绩共分成五组:第1组[75,80),第2组[80,85),第3组[85,90),第4组[90,95),第5组[95,100],得到的频率分布直方图如图所示,同时规定成绩在85分以上的学生为“优秀”,成绩小于85分的学生为“良好”,且只有成绩为“优秀”的学生才能获得面试资格.(1)求出第4组的频率,并补全频率分布直方图;(2)根据样本频率分布直方图估计样本的中位数与平均数;(3)如果用分层抽样的方法从“优秀”和“良好”的学生中共选出5人,再从这5人中选2人,那么至少有一人是“优秀”的概率是多少?20.如图,在四棱锥P﹣ABCD中,底面ABCD是边长为1的正方形,PB⊥BC,PD⊥DC,且PC3=.(1)求证:PA⊥平面ABCD;(2)求异面直线AC与PD所成角的余弦值;(3)求二面角B﹣PD﹣C的余弦值.21.已知一条曲线C在y轴右边,C上每一点到点F(1,0)的距离减去它到y轴距离的差都是1(1)求曲线C的方程.(2)是否存在正数m,对于过点M(m,0)且与曲线C有两个交点A,B的任一直线,都有?若存在,求出m的取值范围,若不存在,请说明理由.22.平面直角坐标系xOy中,已知椭圆C:2222x ya b+=1(a>b>0)的离心率为12,左右焦点分别是F1,F2,以F1为圆心,以3为半径的圆与以F2为圆心,以1为半径的圆相交,且交点M在椭圆C上.(1)求椭圆C的方程;(2)设椭圆E:222244x ya b+=1,P为椭圆C上任意一点,过点P的直线y=kx+m交椭圆E于A,B两点.射线PO交椭圆E于点Q.(i)求OQOP的值,(ii)求△ABQ面积的最大值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绍外2017-2018学年第一学期期末测验高二数学卷
注意事项:1. 本卷考试时间为90分钟,满分为100分;
2. 本卷分试题卷和答题卷两部分,请考生一律在答题卷上答题。

一、选择题(本大题共18小题,每小题3分,共54分,每小题列出的四个选项中只有一个是符合题目要求的,不选、多选、错选均不得分) 1.已知集合{1,2,3,4,5}A =,{2018}B a =+,若{2}A B =,则a =( )
A . 2015
B .2016-
C .2017
D .2018-
2.函数)2lg()(-=x x f 的定义域是( )
A.),2(+∞
B. )2,(-∞
C. ]2,(-∞
D. ),2[+∞ 3.与-π
6
角终边相同的角是( )
A. π6
B. π3
C. 11π6
D. 4π3 4.已知圆C 的圆心坐标为(2,1)-,半径长是4,则圆C 的标准方程为( ) A .22(1)(2)4x y ++-=
B .22(2)(1)4x y -+-=
C .22(2)(1)16x y ++-=
D .22(2)(1)16x y -++=
5
.直线0x y +=的倾斜角是( ) A .
4
π B .
2π C .34
π D .
56
π
6.下列函数中,在R 上的减函数是 ( )
A. y = x 2
B.y = x 1
C. y = lg x
D. y = x
⎪⎭
⎫ ⎝⎛21
7.下列直线中,与直线2x —y+1=0平行的是( )
A. x —2y —3=0
B. 2x —y+3=0
C. x+2y+5=0
D.2 x+y+5=0 8.已知sin 3cos 0αα-=,则3cos 4sin sin cos αα
αα-=+( )
A .94
-
B .49
C .3
4
D .3-
9.在空间中,下列说法正确的是( )
A .不相交的两条直线是异面直线
B .在空间中,m ,n 是两条不同的直线,α是平面,若m α∥,n α∥,则m n ∥
C .底面为多边形且有相邻两个侧面与底面垂直的棱柱是正棱柱
D .梯形可以确定一个平面
班级___________________ 姓名___________________ 学号_________________ 流水号_______
………………………………密……………………………………封…………………………………线……………………………………
10.“1
2
m =
”是“直线450x y ++=与直线230x m y -+=垂直”的 ( ) A .充分不必要条件 B .必要不充分条件
C .充要条件
D .既不充分也不必要条件
11.已知实数x ,y 满足2102201x y x y x -+≤⎧⎪
+-≤⎨⎪≥-⎩
,则3z x y =+的最大值是( )
A .3
B .
13
5
C .2
D .
513
12.如图,网格中小正方形的边长为1,则原几何体的体积为
( )
A .48
B .
64
3
C .16
D .64
13.已知直线n m l ,,及平面α,下列命题中的假命题是 ( ) A. 若l ∥m m ,∥n,则 l ∥n B. 若l ⊥α, n ∥α,则 l ⊥n C. 若l ∥α,n ∥α,则 l ∥n D. 若l ⊥m ,m ∥n ,则 l ⊥n
14.已知双曲线C :)0,0(122
22>>=-b a b y a x ,其左、右焦点分别为1F ,2F ,M 是右顶点,
(0,2)N b -,若214MNF MNF S S =△△,则双曲线C 的离心率为( )
A .
45 B .5
3
C .2421-
D .
5
5
2 15.如图,已知直三棱柱111ABC A B C -,所有棱长均为2,则二面角1A BC A --的余弦值为( )
A .
13
B .7
D .
2
3
16.已知定义在R 上的奇函数()f x 满足(1)(1
)f x f x -=+.若当01x <≤时,()l g f x x =,则直线1
2
y =-
与函数()f x 的图象在[1,6]-内的交点的横坐标之和为( )
A .8
B .12
C .16
D .18
17.若0a b <<,则下列命题正确的是( )
A .
b a 1
1>和|
|1||1b a >均不能成立
B .a b a 1
1>-和|
|1||1b a >均不能成立
C .不等式
a
b a 11>-和2211
()()a b b a +>+均不能成立
D .不等式
|
|1||1b a >和22
11()()a b a b +>+均不能成立
18.利用一个球体毛坯切削后得到一个四棱锥P ABCD -,其中底面四边形ABCD 是边长
为2的正方形,4PA =,且PA ⊥平面ABCD ,则球体毛坯体积的最小值应为( )
A .64
B .32π
C .
D .二、填空题(本大题共4小题,每空3分,共15分)
19.抛物线2
1
2
y x =-
的焦点F 的坐标________,准线方程________.
20.已知cos α=﹣,且α是钝角,则tan α等于________.
21.已知函数2log ,0,
()2,0.x x x f x x >⎧=⎨≤⎩
,则()()1f f -= .
22.如图,在棱长为1的正方体1111ABCD A B C D -中,若G 、E 分别是1BB 、11C D 的中点,点F 是正方形11ADD A 的中心,则四边形BGEF 在正方体的侧面及底面共6个面内的射影
图形面积的最大值是________________.
三、解答题(本大题共3小题,共31分) 23.(本题满分10分) 已知函数x x x f cos sin 2)(⋅=.求:
(1))12
(
π
f 的值;
(2))(x f 的单调递增区间.
(3))(x f 在]3
,6[π
π-∈x 上的值域 24.(本题满分10分)
已知椭圆22:163
x y C += (1)求椭圆C 的焦点坐标;
(2)设O 为坐标原点,过圆22:2O x y +=上任意一点P 作圆O 的切线l ,若直线l 与椭圆
C 相交于A ,B 两点.求证:OA OB ⋅恒为定值.
25.(本题满分11分)
已知二次函数2()f ax x x b c =++.
(1)若对任意1x ,2x ∈R ,且12x x <,都有12()()f f x x ≠,求证:关于x 的方程
11
()[()2
f f x x =+2()]f x 有两个不相等的实数根且必有一个根属于12(,)x x ;
(2)设函数()f x 的图象的对称轴方程为0x x =,若关于x 的方程
211
()[()()]2f f x f x x =+在12(,)x x 上的根为m ,且1221x x m +=-,求证:2
0x m <
绍外17学年第一学期期末测验高二数学答题卷
命题:金燕梁 审稿:何关保
一、选择题:本大题共18小题,每小题3分,共54分。

每小题只有一项是符合题目要求。

二、填空题:本大题共4小题,每小题3分,共15分。

19____________________ ____________________ 20____________________
21____________________ 22____________________
三、解答题:本大题共3小题,共31分。

解答应写出文字说明、证明过程或演算步骤。

23、(本小题10分) (1)
(2)
(3)
班级___________________ 姓名___________________ 学号_________________ 流水号_______
………………………………密……………………………………封…………………………………线……………………………………
24、(本小题10分)(1)
(2)
25、(本小题11分)(1)
(2)。

相关文档
最新文档