2019届高考数学二轮复习仿真冲刺卷三理

合集下载

2019届全国高考仿真试卷(三)数学卷(理科)

2019届全国高考仿真试卷(三)数学卷(理科)

2019届全国高考仿真试卷(三)数学(理科)本试题卷共8页,23题(含选考题)。

全卷满分150分。

考试用时120分钟。

★祝考试顺利★注意事项:1、考试范围:高考范围。

2、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

用2B铅笔将答题卡上试卷类型A后的方框涂黑。

3、选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

5、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B铅笔涂黑。

答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

6、考试结束后,请将本试题卷、答题卡、草稿纸一并上交。

第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设复数,在复平面内的对应点关于实轴对称,,则()A. B. C. D.【答案】B【解析】因为,在复平面内的对应点关于实轴对称,所以,所以,故选B.2. 设全集,函数的定义域为,集合,则的子集个数为()A. 7B. 3C. 8D. 9【答案】C【解析】:由|x+1|-1>0,得|x+1|>1,即x<-2或x>0,∴A={x|x<-2或x>0}.则C U A={x|-2≤x≤0};由sinπx=0,得πx=kπ,k∈Z,∴x=k,k∈Z.则B={x|sinπx=0}={x|x=k,k∈Z},则(C U A)∩B={x|-2≤x≤0}∩{x|x=k,k∈Z}={-2,-1,0},∴(C U A)∩B中元素个数为3.故选C.3. 函数(,)的图象中相邻对称轴的距离为,若角的终边经过点,则的值为()A. B. C. D.【答案】A【解析】根据题意可得函数的最小正周期为,,角的终边经过点, ,,,,.故选A.4. 如图所示的茎叶图(图一)为高三某班50名学生的化学考试成绩,图(二)的算法框图中输入的为茎叶图中的学生成绩,则输出的,分别是()A. ,B. ,C. ,D. ,【答案】B【解析】试题分析:分析程序框图可知,为50名学生中成绩在的人数,为50名学生中成绩在的人数,而分析茎叶图即可知,,故选B.考点:1.统计的运用;2.程序框图.5. 设不等式组表示的平面区域为,不等式表示的平面区域为,对于中的任意一点和中的任意一点,的最小值为()A. B. C. D.【答案】C【解析】做出题目中所示的区域,由图可以看出的最小值为圆心到原点O的长度减去圆的半径,圆心为(-2,2),到原点的距离为,圆的半径为.所以.点睛:线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一、准确无误地作出可行域;二、画标准函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三、一般情况下,目标函数的最大或最小会在可行域的端点或边界上取得.6. 若函数的图象如图所示,则的范围为()A. B. C. D.【答案】D【解析】试题分析:由图可知,定义域为,∴,又∵时,,∴,又∵是奇函数,∴时,,∴在上单调递增,上单调递减,∴,综上,实数的范围是,故选D.考点:函数性质的综合运用.7. 某多面体的三视图如图所示,则该多面体各面的面积中最大的是()A. 1B.C.D.【答案】C【解析】试题分析:分析题意可知,该几何体为如下图所示的四棱锥,其中底面是正方形,平面平面,故平面,∴,∴,∴,故选C.........................考点:1.三视图;2.空间几何体的表面积.8. 设等差数列的前项和为,且满足,,对任意正整数,都有,则的值为()A. 1006B. 1007C. 1008D. 1009【答案】C【解析】试题分析:,所以,,且数列为等差数列,所以且,所以是数列中的最小值,故选C.考点:等差数列的定义与性质.【方法点睛】本题主要考查等差数列的性质与求和问题.解题时可以用等差数列的求和公式表示成二次函数形式,由二次函数的知识求解,得到与的关系,求出数列的最小值,但运算量软大,本题的解法则是利用等差数列的性质得到与,进一步得到,,从而求出数列的最小值.9. 已知非零向量,,满足,,若对每个确定的,的最大值和最小值分别为,,则的值()A. 随增大而增大B. 随增大而减小C. 是2D. 是4【答案】D【解析】试题分析:∵,∴,即,∵,∴,解得,(),故,,∴,故选D.考点:平面向量数量积.10. 已知如图所示的三棱锥的四个顶点均在球的球面上,和所在的平面互相垂直,,,,则球的表面积为()A. B. C. D.【答案】C【解析】如图所示,∵,∴为直角,即过△ABC的小圆面的圆心为BC的中点,和所在的平面互相垂直,则圆心在过的圆面上,即的外接圆为球的大圆,由等边三角形的重心和外心重合易得球半径R=2,球的表面积为,故选C.11. 已知双曲线:(,)的右顶点为,为坐标原点,以为圆心的圆与双曲线的某渐近线交于两点,,若,且,则双曲线的离心率为()A. B. C. D.【答案】C【解析】试题分析:因为且,所以为等边三角形,设,则,渐近线方程为,,取的中点,则,由勾股定理可得,所以①,在中,,所以②,①②结合,可得.故选:A.考点:双曲线的简单性质.12. 已知为自然对数的底数,若对任意的,总存在唯一的,使得成立,则实数的取值范围是()A. B. C. D.【答案】B【解析】由成立,计算得出,∴对任意的,总存在唯一的,使得成立,∴,且,计算得出,其中时,y存在两个不同的实数,因此舍去,a的取值范围是.故选B.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 已知,展开式的常数项为15,__________.【答案】【解析】试题分析:由的展开式的通项公式为,令,求得r=2,故常数项为,可得a=1,因此原式为考点:二项式定理;微积分基本定理14. 设,,关于,的不等式和无公共解,则的取值范围是__________.【答案】【解析】试题分析:如下图所示,不等式所表示的平面区域如下图所示,要保证不等式无公共解,只需,∴的取值范围是,故填:.考点:线性规划.15. 正项数列的前项和为,且(),设,则数列的前2016项的和为__________.【答案】【解析】,,∴当时, ,解得.当时, ,可化为: ,,∴数列是等差数列,公差为1,首项为1.,.,则数列的前2016项的和.16. 已知是椭圆:的右焦点,是上一点,,当周长最小时,其面积为__________.【答案】4【解析】由题设可设左焦点为,则的周长为,由于(当且仅当三点共线时取等号),此时,直线方程为,代入椭圆中化简可得,解得。

2019年高考(理科)数学仿真模拟冲刺卷 (仿真考三)

2019年高考(理科)数学仿真模拟冲刺卷 (仿真考三)

执行如图所示的程序框图,当输入的.抛掷一枚质地均匀的骰子两次,记4},则P(B|A).如图是某几何体的三视图,则该几何体的体积为.423是函数f(x)(x ∈R )的导函数,(x )的解集是( )⎭⎪⎫ln2,+∞18.(本小题满分12分)已知从A地到B地共有两条路径L1和L2,据统计,经过两条路径所用的时间互不影响,且经过L1与L2所用时间落在各时间段内的频率分布直方图分别如图1和图2.现甲、乙两人分别有40分钟和50分钟时间用于从A地到B地.(1)为了尽最大可能在各自允许的时间内赶到B地,甲和乙应如何选择各自的路径?(2)用X表示甲、乙两人中在允许的时间内能赶到B地的人数,针对(1)的选择方案,求X的分布列和数学期望.19.(本小题满分12分)如图,在四棱锥P-ABCD中,PD⊥平面ABCD,AB∥DC,AB ⊥AD,DC=6,AD=8,BC=10,∠P AD=45°,E为P A的中点.(1)求证:DE∥平面PBC;(2)线段AB上是否存在一点F,满足CF⊥DB?若存在,试求出二面角F-PC-D的余弦值;若不存在,请说明理由.323本题的突破点是由三视图得几何体的直观图.本题考查导数在函数中的应用.设为3f(x)=f′(x),N(-2,0),则∠NFM -1,直线MN的方程为本题的突破点是特殊值法的应用.本题考查函数的图象与性质、数形结合思想的应用.方程有两个不同实根等价于函数f(象有两个不同的交点.在平面直角坐标系内画出函数=kx+1恒过定点考虑构造空间直角坐标系,利用空间向量进行计算.的中点M,连接EM,∴CN∥DA,CDAN为平行四边形,AN=6,在Rt△BNC。

2019届高三下学期高三第二次模拟联考数学(理)试题—含答案

2019届高三下学期高三第二次模拟联考数学(理)试题—含答案

《2019届高三下学期高三第二次模拟联考数学(理)试题—含答案》摘要:数学(理科)试卷年级班级姓名学号注意事项: 1.答题前,考生先将自己的姓名、准考证号填写在答题卡,将条形码准确粘贴在条形码区域内,解:(1)设等比数列{an}的公比为,由题意可得:即:,即:,所以(2) 18. 解:(1)连接,平面,又,,故点在线段的垂直平分线上.为等腰三角形,由等腰三角形的三线合一可知线段的垂直平分线即为直线,故点在直线上.(2)为二面角的平面角.,,.过作平行于的直线,并将其作为轴,建立如图所示的空间直角坐标系则,.设与所成的角为,则. 19. 解(1)由统计数据得2×2列联表:甲班乙班总计成绩优良 9 16 25 成绩不优良 11 4 15 总计 20 20 40 根据2×2列联表中的数据,得K2的观测值为k=≈5.2275.024,∴能在犯错概率不超过0.025的前提下认为“成绩优良与教学方式有关”. X 0 1 2 3 P (2)由表可知在8人中成绩不优良的人数为×8=3,则X的可能取值为0,1,2,3.P(X=0)==,∴E(X)=0×+1×+2×+3×=. 20. 解(1)设F(c,0),由条件知,=,得c=.又=,所以a=2,b2=a2-c2=1.故E的方程为+y2=1. (2)当l⊥x轴时不合题意,故设l:y =kx-2,P(x1,y1),Q(x2,y2).将y=kx-2代入+y2=1,得(1+4k2)x2-16kx+12=0.当Δ=16(4k2-3)0,即k2时,x1,2=.从而|PQ|=|x1-x2|=.又点O到直线PQ的距离d=.所以△OPQ的面积S△OPQ=d·|PQ|=.设=t,则t0,S△OPQ==.因为t+≥4,当且仅当t=2,即k=±时等号成立,且满足Δ0.所以当△OPQ的面积最大时,l的方程为y=x-2或y=-x-2. 21. 解(1)函数的定义域为,. 若,,则在区间内为增函数2019学年度第二学期高三第二次模拟联考数学(理科)试卷年级班级姓名学号注意事项: 1.答题前,考生先将自己的姓名、准考证号填写在答题卡,将条形码准确粘贴在条形码区域内。

2019-2020年高三高考仿真(三)数学(理)

2019-2020年高三高考仿真(三)数学(理)

2019-2020年高三高考仿真(三)数学(理)本试卷分第I 卷和第Ⅱ卷两部分,共4页.满分150分.考试用时120分钟.考试结束后,将本试卷和答题卡一并交回.注意事项:1.答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、准考证号、县区和科类填写在答题卡和试卷规定的位置上.2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案不能答在试卷上.3.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.4.填空题请直接填写答案,解答题应写出文字说明、演算步骤或推证过程.第I 卷(共60分)一、选择题:本大题共12小题。

每小题5分,共60分.在每小题给出的四个选项中。

只有一项是符合题目要求的.1.已知集合{}{},,A x x B x x a B ==⋂≠∅<2>且A ,那么a 的值可以是A.3B.0C.4D.22.复数在复平面内所对应的点在实轴上,那么实数a=A.—2B.0C.1D.23.某几何体的正视图与侧视频如图所示,则该几何体的俯视图不可能是4.下列四类函数中,具有性质“对任意的x >0,y >0,函数”的是A.幂函数B.余弦函数C.指数函数D.对数函数5.命题“任意”的否定是A.存在B.C. D.6.已知变量x,y 满足A.0B.C.4D.57.在平行四边形ABCD 中,AC 为一条对角线,A.(2,4)B.(3,5)C.(—2,—4)D.(—1,—1)8.已知椭圆的左焦点为F ,右顶点为A ,点B 在椭圆上,且轴,直线AB 交y 轴于点P ,若,由椭圆的离心率是A. B. C. D.9.在空间,下列命题正确的是A.若三条直线两两相交,则这三条直线确定一个平面B.若直线m 与平面a 内的一条直线平行,则m//aC.若平面,,P a a l a l βββ⊥⋂=且则过内一点与垂直的直线于平面D.若直线a//b ,且直线10.如图所示为函数()()2sin 0,2f x x πωϕωϕπ⎛⎫=+≤≤ ⎪⎝⎭>的部分图象,其中A 、B 两点之间的距离为5,那么A.—1B.C. D.111.已知P 是直线3x+4y+8=0上的动点,PA 、PB 是圆的两条切线,A 、B 是切点,C 是圆心,则四边形PACB 面积的最小值是A. B. C. D.12.已知定义在R 上的函数()()()()311,11y f x f x f x x f x x =+=--≤=满足当<时,,若函数恰好有6个零点,则a 有取值范围是A. B.C. D.第II 卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分.13.阅读右边程序框图,若输入n=5,则输出k 的值是______.14.已知数列的前n 项和29158n k S n n k a =-+,若它的第项满足<<,则k=______ 15.已知不等式221+10x bx -+<的解集与不等式ax <的解集相等,则a+b 的值为______.16.定义:若存在常数k ,使得对定义域D 内的任意两个()()1,212121(),x x x x f x kx kx f x +≤+<均有成立,则称函数在定义域D 上满足K 条件.若函数满足K 条件,则常数的最大值为__________.三、解答题:本大题共6小题,共74分.17.(本不题满分12分)已知等差数列{}315,5,225.n n a a S ==的前n 项和为S 且 (I )求数列的通项;(II )设.18.(本小题满分12分)在△ABC 中,角A ,B ,C 的对边分别为a,b,c,且A ,B ,C 成等差数列.(I)若,求c的值及△ABC的面积;(II)设.19.(本小题满分12分)如图,AC是圆O的直径,点B在圆O上,∠⊥⊥,交于点,平面,FC//EA,AC=4,EA=3,FC=1.B A C=30B M AC A C M E A(I)证明:EM;(II)求平面BEF与平面ABC所成的锐二面角的余弦值.20.(本小题满分12分)在某体育项目的选拔比赛中,A、B两个代表队进行对抗赛,每队三名队员,A队队员是,B队队员是。

【高考押题】2019年高考数学仿真押题试卷(三)含答案解析

【高考押题】2019年高考数学仿真押题试卷(三)含答案解析

2019年高考数学仿真押题试卷(三)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.集合,,则=B A ( )A .)1,(--∞B .]1,(--∞C .),1(+∞D .),1[+∞2.已知复数,则||z z +=( )A .12-B .12-+ C .12 D .12 3.若,(0,)2απ∈,则sin α的值为( )A .624- B .624+ C .187 D .32 4.如图,在矩形区域ABCD 的A ,C 两点处各有一个通信基站,假设其信号覆盖范围分别是扇形区域ADE 和扇形区域CBF (该矩形区域内无其他信号来源,基站工作正常),若在该矩形区域内随机地选一地点,则该地点无信号的概率是( )A .14π-B .12π- C .22π-D .4π 5.已知一几何体的三视图如图所示,则该几何体的体积为( )A .163π+ B .112π+ C .1123π+ D .143π+6.若A ,B 是锐角△ABC 的两个内角,则点P (cos B -sin A ,sin B -cos A )在( )A .第一象限B .第二象限C .第三象限D .第四象限7.已知函数的部分图象如图所示,则函数图象的一个对称中心可能为( )A .)0,2(-B .)0,1(C .)0,10(D .)0,14(8.函数的大致图象为( )A .B .C .D .9.已知点A ,B ,C ,D 在同一个球的球面上,,2=AC ,若四面体ABCD 的体积为332,球心O 恰好在棱DA 上,则这个球的表面积为( ) A .254πB .4πC .8πD .16π10.F 为双曲线22221x y a b-=右焦点,M ,N 为双曲线上的点,四边形OFMN 为平行四边形,且四边形OFMN 的面积为bc ,则双曲线的离心率为( ) A .2B .22C .2D .311.已知不等式组表示的平面区域恰好被圆所覆盖,则实数k 的值是( ) A .3B .4C .5D .612.已知0x 是方程的实根,则关于实数0x 的判断正确的是( )A .0ln 2x ≥B .01ex < C .D .第Ⅱ卷二、填空题:本大题共4小题,每小题5分. 13.展开式中含3x 项的系数为 .(用数字表示)14.已知(1,)a λ=,(2,1)b =,若向量2a b +与(8,6)c =共线,则a 在b 方向上的投影为 . 15.在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,,且8=a ,ABC △的面积为34,则c b +的值为 .16.如图所示,点F 是抛物线x y 82=的焦点,点A ,B 分别在抛物线x y 82=及圆的实线部分上运动,且AB 总是平行于x 轴,则FAB △的周长的取值范围是 .三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.设n S 为数列}{n a 的前n 项和,且11=a ,,*n ∈N .(1)证明:数列}1{+nS n为等比数列; (2)求.(2)若参与班级宣传的志愿者中有12名男生,8名女生,从中选出2名志愿者,用X 表示所选志愿者中的女生人数,写出随机变量X 的分布列及其数学期望.20.已知椭圆的长轴长为6,且椭圆C 与圆的公共弦长为3104. (1)求椭圆C 的方程;(2)过点)2,0(P 作斜率为)0(>k k 的直线l 与椭圆C 交于两点A ,B ,试判断在x 轴上是否存在点D ,使得ADB △为以AB 为底边的等腰三角形,若存在,求出点D 的横坐标的取值范围;若不存在,请说明理由.21.已知函数.(1)当0a ≤时,试求)(x f 的单调区间;(2)若)(x f 在)1,0(内有极值,试求a 的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.选修4-4:坐标系与参数方程已知曲线C :,直线(t 为参数,0α<π≤).(1)求曲线C 的直角坐标方程;(2)设直线l 与曲线C 交于B A ,两点(A 在第一象限),当时,求a 的值.23.选修4-5:不等式选讲 已知函数.(1)求不等式()3f x ≤的解集;(2)若函数)(x f y =的最小值记为m ,设a ,b ∈R ,且有m b a =+22,试证明:.【答案解析】第Ⅰ卷一、选择题 1.【答案】C【解析】,,,选C .2.【答案】C【解析】,1z =,.故选C .3.【答案】A【解析】,,,故选A . 4.【答案】A【解析】几何概型,由面积比例可以得出答案. 5.【答案】C【解析】由三视图可知:该几何体是由一个三棱锥和一个圆锥的14组成的,故选C . 6.【答案】B7.【答案】C【解析】由题知A =,8ωπ=,再把点(2,-代入可得34ϕπ=-,,故选C .8.【答案】D 【解析】由函数不是偶函数,排除A 、C ,当时,sin y x =为单调递增函数,而外层函数e x y =也是增函数,所以在上为增函数.故选D .11.【答案】D【解析】由于圆心(3,3)在直线上,又由于直线与直线互相垂直其交点为,直线与的交点为(0,6)-.由于可行域恰好被圆所覆盖,及三角形为圆的内接三角形圆的半径为,解得6k =或6k =-(舍去).故选D .12.【答案】C 【解析】方程即为,即,令()e xf x x =,,则,函数()f x 在定义域内单调递增,结合函数的单调性有:,故选C .二、填空题13.【答案】0【解析】5(1)x -展开式中含3x 项的系数为3510C =,含2x 项的系数为3510C -=-,所以展开式中含3x 项的系数为10-10=0.14.【答案】【解析】由题知1λ=.15.【答案】【解析】,∴由正弦定理1cos 2A =-,23A π=, 8a =,由余弦定理可得:,又因为ABC △面积12=,16bc =,b c +=三、解答题 17.【答案】(1)数列{1}nS n+是首项为2,公比为2的等比数列.(2).【解析】 (1)因为,所以,即,则,所以,又1121S +=, 故数列{1}nS n+是首项为2,公比为2的等比数列. (2)由(1)知,所以,故.设,则,所以,所以,所以.18.【答案】二面角E AC F --. 【解析】(1)因为底面ABCD 为菱形,所以AC BD ⊥, 又平面BDEF ⊥底面ABCD ,平面BDEF 平面,因此AC ⊥平面BDEF ,从而AC EF ⊥. 又BD DE ⊥,所以DE ⊥平面ABCD , 由2AB a =,,, 可知,2BD a =,,, 从而,故EF AF ⊥. 又,所以EF ⊥平面AFC .又EF ⊂平面AEF ,所以平面AEF ⊥平面AFC .(2)取EF 中点G ,由题可知OG DE ∥,所以OG ⊥平面ABCD ,又在菱形ABCD 中,OA OB ⊥,所以分别以OA ,OB ,OG 的方向为x ,y ,z 轴正方向建立空间直角坐标系O xyz -(如图所示),则(0,0,0)O,,0,0)A ,,,,所以,,.由(1)可知EF ⊥平面AFC ,所以平面AFC 的法向量可取为.设平面AEC 的法向量为(,,)n x y z =,则0,0,n AE n AC ⎧⋅=⎪⎨⋅=⎪⎩,即,即,0,y x ⎧=⎪⎨=⎪⎩,令z =,得4y =,所以.从而.故所求的二面角E AC F --. 19.【答案】(1) (2)【解析】(1)用分层抽样的方法,每个人被抽中的概率是515010=, 所以,参与到班级宣传的志愿者被抽中的有120210⋅=人,参与整理、打包衣物的志愿者被抽中的有130310⋅=人,故“至少有1人是参与班级宣传的志愿者”的概率是.(2)女生志愿者人数0,1,2X =,则,,.∴X 的分布列为∴X 的数学期望为.(2)直线l 的解析式为2y kx =+,设11(,)A x y ,22(,)B x y ,AB 的中点为00(,)E x y .假设存在点(,0)D m ,使得ADB △为以AB 为底边的等腰三角形,则DE AB ⊥.由得,故,所以,.因为DE AB ⊥,所以1DE k k=-,即,所以.当0k >时,,所以.综上所述,在x 轴上存在满足题目条件的点D ,且点D 的横坐标的取值范围为.(2)若()f x 在(0,1)内有极值,则()f x '在(0,1)x ∈内有解.令,e 0xax -=,e xa x=.设e ()xg x x=(0,1)x ∈,所以,当(0,1)x ∈时,()0g x '<恒成立,所以()g x 单调递减.又因为(1)e g =,又当0x →时,()g x →+∞, 即()g x 在(0,1)x ∈上的值域为(e,)+∞,所以当e a >时,有解.设,则(0,1)x ∈,所以()H x 在(0,1)x ∈单调递减. 因为,,所以在(0,1)x ∈有唯一解0x .所以有:所以当e a >时,()f x 在(0,1)内有极值且唯一.当e a ≤时,当(0,1)x ∈时,()0f x '≥恒成立,()f x 单调递增,不成立. 综上,a 的取值范围为(e,)+∞.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.选修4—4:坐标系与参数方程 【答案】(1) 244x y =+;(2) ∴6απ=. 【解析】(2)证明:由图可知函数()y f x =的最小值为32,即32m =. 所以2232a b +=,从而,从而.当且仅当时,等号成立,即21 6a=,24 3b=时,有最小值,所以得证。

最新高考数学二轮复习仿真冲刺卷三理(含解析答案)

最新高考数学二轮复习仿真冲刺卷三理(含解析答案)

高考二轮复习仿真冲刺试卷(三)数学(理科)(时间:120分钟满分:150分)第Ⅰ卷一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知i是虚数单位,若a+bi=-(a,b∈R),则a+b的值是( )(A)0 (B)-i (C)- (D)2.设集合A={-1,0,1,2,3},B={x||x|≤2},则A∩B等于( )(A){-1,0,1,2} (B){-2,-1,0,1,2} (C){0,1,2} (D){1,2}3.已知a=log35,b=log30.6,c=0.21.2,则( )(A)b<c<a (B)a<c<b (C)c<b<a (D)a<b<c4.如图是近三年某市生产总值增速(累计,%)的折线统计图,据该市统计局初步核算,2018年一季度全区生产总值为1 552.38亿元,与去年同一时期相比增长12.9%(如图,折线图中其他数据类同).根据统计图得出正确判断是( )第4题图(A)近三年该市生产总值为负增长(B)近三年该市生产总值为正增长(C)该市生产总值2016年到2017年为负增长,2017年到2018年为正增长(D)以上判断都不正确5.甲、乙、丙三人站到共有7级的台阶上,若每级台阶最多站2人,同一级台阶上的人不区分站的位置,则不同的站法种数是( )(A)258 (B)306 (C)336 (D)2966.设α∈(0,),β∈(0,),且tan β=,则( )(A)2β-α=(B)α-2β=(C)α+2β=(D)2α+β=7.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,俯视图中的两条曲线均为圆弧,则该几何体的体积为( )第7题图(A)64- (B)64-8π (C)64- (D)64-8.已知函数f(x)=2x-1,g(x)=1-x2,规定:当|f(x)|≥g(x)时,h(x)= |f(x)|;当|f(x)|<g(x)时,h(x)=-g(x),则h(x)( )(A)有最小值-1,最大值1 (B)有最大值1,无最小值(C)有最小值-1,无最大值(D)有最大值-1,无最小值9.如果实数x,y满足关系又≥λ恒成立,则λ的取值范围为( )(A)(-∞,] (B)(-∞,3](C)[,+∞) (D)(3,+∞)10.定义[x]表示不超过x的最大整数,(x)=x-[x],例如[2.1]=2,(2.1) =0.1,执行如图所示的程序框图,若输入的x=5.8,则输出的z等于( )第10题图(A)-1.4 (B)-2.6(C)-4.6 (D)-2.811.已知双曲线-=1(a>0,b>0)与抛物线y2=2px(p>0)有相同的焦点F,且双曲线的一条渐近线与抛物线的准线交于点M(-3,t),|MF|=,则双曲线的离心率为( )(A)(B)(C)(D)12.(2018·湖南联考)已知函数f(x)是定义在R上的奇函数,其导函数为f′(x),若对任意的正实数x,都有xf′(x)+2f(x)>0恒成立,且f()=1,则使x2f(x)<2成立的实数x的集合为( )(A)(-∞,-)∪(,+∞) (B)(-,)(C)(-∞,) (D)(,+∞)第Ⅱ卷本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生必须作答.第22,23题为选考题,考生根据要求作答.二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)13.以抛物线y2=4x的焦点为圆心,与该抛物线的准线相切的圆的标准方程为.14.在三棱锥P ABC中,侧棱PA,PB,PC两两垂直,PA=1,PB=2,PC=3,则三棱锥的外接球的表面积为.15.在△ABC中,a,b,c分别是内角A,B,C的对边,且B为锐角,若=,sin B=,S△ABC=,则b的值为.16.(2018·北京东城区二模)已知函数f(x)=若关于x的方程f(x+T)=f(x)有且仅有3个不同的实根,则实数T的取值范围是.三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分12分)已知数列{a n}的前n项和为S n,a1=2,且满足a n+1=S n+2n+1(n∈N*).(1)证明数列{}为等差数列;(2)求S1+S2+…+S n.18.(本小题满分12分)如图,在直角梯形ABCD中,AD∥BC,∠ADC=90°,AE⊥平面ABCD,EF∥CD,BC=CD=AE=EF=AD=1.(1)求证:CE∥平面ABF;(2)在直线BC上是否存在点M,使二面角E MD A的大小为?若存在,求出CM的长;若不存在,请说明理由.19.(本小题满分12分)(2018·孝义模拟)某餐厅通过查阅了最近5次食品交易会参会人数x(万人)与餐厅所用原材料数量y(袋),得到如下统计表:(1)根据所给5组数据,求出y关于x的线性回归方程y=x+;(2)已知购买原材料的费用C(元)与数量t(袋)的关系为C= 投入使用的每袋原材料相应的销售收入为700元,多余的原材料只能无偿返还,据悉本次交易大会大约有15万人参加,根据(1)中求出的线性回归方程,预测餐厅应购买多少袋原材料,才能获得最大利润,最大利润是多少?(注:利润L=销售收入-原材料费用)参考公式:==,=-.参考数据:x i y i=1 343,=558,=3 237.20.(本小题满分12分)(2018·安庆一中模拟)已知椭圆C:+=1(a>b>0)的左、右焦点分别是E,F,离心率e=,过点F的直线交椭圆C于A,B两点,△ABE的周长为16.(1)求椭圆C的方程;(2)已知O为原点,圆D:(x-3)2+y2=r2(r>0)与椭圆C交于M,N两点,点P为椭圆C上一动点,若直线PM,PN与x轴分别交于G,H两点,求证: |OG|·|OH|为定值.21.(本小题满分12分)已知函数f(x)=ln x-ax2-2x(a<0).(1)若函数f(x)存在单调递减区间,求a的取值范围;(2)若a=-且关于x的方程f(x)=-x+b在[1,4]上恰有两个不相等的实数根,求实数b的取值范围.请考生在第22,23题中任选一题作答,如果多做,则按所做的第一题计分.22.(本小题满分10分)选修44:坐标系与参数方程(2018·宜昌调研)在极坐标系中,已知圆C的极坐标方程为ρ=4cos θ,以极点为原点,极轴方向为x轴正半轴方向,利用相同单位长度建立平面直角坐标系,直线l的参数方程为(t为参数).(1)写出圆C的直角坐标方程和直线l的普通方程;(2)已知点M(,0),直线l与圆C交于A,B两点,求||MA|-|MB||的值.23.(本小题满分10分)选修45:不等式选讲设函数f(x)=|2x-1|-|x+2|.(1)解不等式f(x)>0;(2)若∃x0∈R,使得f(x0)+2m2<4m,求实数m的取值范围.参考答案1.D 因为a+bi=-==,所以a=,b=0,a+b=.2.A 因为集合A={-1,0,1,2,3},B={x||x|≤2}={x|-2≤x≤2},所以A∩B={-1,0,1,2}.故选A.3.A 由题意得a=log35>1,b=log30.6<0,0<c=0.21.2<1,所以b<c<a.选A.4.B 由折线统计图可知,增长率都是大于0的,故近三年该市生产总值为正增长,故选B.5.C 若7级台阶上每一级至多站1人,有种不同的站法;若1级台阶站2人,另一级站1人,共有种不同的站法.所以共有不同的站法种数是+=336.故选C.6.C 因为tan β==,所以cos αcos β=sin β+sin αsin β,所以cos αcos β-sin αsin β=sin β,即cos(α+β)=sin β=cos(-β).因为α,β∈(0,),所以α+β=-β,所以α+2β=.7.C 根据三视图画出该几何体的直观图.该几何体是一个棱长为4的正方体切去一个圆柱和一个圆锥.圆锥、圆柱底面半径为2,高为4.所以V=43-(4×22π+×22π×4)=64-π.故选C.8.C 作出函数g(x)=1-x2和函数|f(x)|=|2x-1|的图象如图1所示,得到函数h(x)的图象如图2所示,由图象得出函数h(x)有最小值-1,无最大值.9.A 设z==2+,z的几何意义是区域内的点到D(3,1)的斜率值加2,作出实数x,y满足关系对应的平面区域如图:由图形,可得C(,),由图象可知,直线CD的斜率最小值为=-,所以z的最小值为,所以λ的取值范围是(-∞,].故选A.10.C 模拟程序的运行,可得x=5.8,y=5-1.6=3.4,x=5-1=4;满足条件x≥0,执行循环体,x=1.7,y=1-1.4=-0.4,x=1-1=0;满足条件x≥0,执行循环体,x=-0.2,y=-1-1.6=-2.6,x=-1-1=-2;不满足条件x≥0,退出循环,z=-2+(-2.6)=-4.6.输出z的值为-4.6.故选C.11.C 由题意可知,抛物线y2=2px(p>0)的焦点坐标为F(,0),准线方程为x=-,由M在抛物线的准线上,则-=-3,则p=6,则焦点坐标为F(3,0),所以|MF|==,则t2=,解得t=±,双曲线的渐近线方程是y=±x,将M代入渐近线的方程=3×,即=,则双曲线的离心率为e===,故选C.12.C 构造函数g(x)=x2f(x),当x>0时,依题意有g′(x)=x[xf′(x)+2f(x)]>0,所以函数g(x)在x>0上是增函数,由f(x)是奇函数,可知g(x)也是R上的奇函数,故g(x)在x<0时,也为增函数,且g(0) =0,g()=2f()=2,所以不等式x2f(x)<2⇔g(x)<g(),根据单调性有x<,故选C.13.解析:抛物线y2=4x的焦点为(1,0),准线为x=-1,故所求圆的圆心为(1,0),半径为2,所以该圆的标准方程为(x-1)2+y2=4.答案:(x-1)2+y2=414.解析:由题知,三棱锥P ABC的外接球的直径为=,则球的表面积为4π()2=14π.答案:14π15.解析:由正弦定理知==.所以a= c.又sin B=,则由S△ABC=acsin B=×c×c×==.故c2=4,则c=2.此时a=5.由sin B=及B为锐角知cos B=.由余弦定理得b2=a2+c2-2accos B=14.故b=.答案:16.解析:化简函数f(x)的表达式,得f(x)=作出f(x)的图象如图所示.因为关于x的方程f(x+T)=f(x)有且仅有3个不同的实根,所以将f(x)的图象向左或向右平移|T|个单位后与原图象有3个交点,所以2<|T|<4,即-4<T<-2或2<T<4.答案:(-4,-2)∪(2,4)17.(1)证明:由条件可知,S n+1-S n=S n+2n+1,即S n+1-2S n=2n+1,整理得-=1,所以数列{}是以1为首项,1为公差的等差数列.(2)解:由(1)可知,=1+n-1=n,即S n=n·2n,令T n=S1+S2+…+S n=1·2+2·22+…+n·2n, ①2T n=1·22+…+(n-1)·2n+n·2n+1, ②①-②得-T n=2+22+…+2n-n·2n+1,整理得T n=2+(n-1)·2n+1.18.(1)证明:如图(1),作FG∥EA,AG∥EF,连接EG交AF于点H,连接BH,BG.因为EF∥CD且EF=CD,所以AG∥CD,即点G在平面ABCD内. 由AE⊥平面ABCD,知AE⊥AG,所以四边形AEFG为正方形,四边形CDAG为矩形,所以H为EG的中点,B为CG的中点,所以BH∥CE.因为BH⊂平面ABF,CE⊄平面ABF,所以CE∥平面ABF. (2)解:存在.求解过程如下:如图(2),以A为原点,AG为x轴,AD为y轴,AE为z轴,建立空间直角坐标系,则A(0,0,0),E(0,0,1),D(0,2,0).设M(1,y0,0),所以=(0,2,-1),=(1,y0-2,0).设平面EMD的法向量为n=(x,y,z),则令y=1,得z=2,x=2-y0,所以n=(2-y0,1,2).又因为AE⊥平面AMD,所以=(0,0,1)为平面AMD的一个法向量,所以|cos<n,>|==cos =,解得y0=2±.故在直线BC上存在点M,使二面角E MD A的大小为,且CM=|2-(2±)|=.19.解:(1)由所给数据可得==10.4,==25,===2.5,=-=25-2.5×10.4=-1,则y关于x的线性回归方程为y=2.5x-1.(2)由(1)中求出的线性回归方程知,当x=15时,y=36.5,即预计需要原材料36.5袋,因为C=当t=35时,利润L=700×35-(400×35-20)=10 520;当t=36时,利润L=700×36-380×36=11 520,当t=37时,利润L=700×36.5-380×37=11 490.综上所述,餐厅应该购买36袋原材料,才能使利润获得最大,最大利润为11 520元.20.(1)解:由题意得4a=16,则a=4,由=,解得c=,则b2=a2-c2=9,所以椭圆C的方程为+=1.(2)证明:由条件可知,M,N两点关于x轴对称,设M(x1,y1),P(x0,y0),则N(x1,-y1),由题可知,+=1,+=1,所以=(9-),=(9-).又直线PM的方程为y-y0=(x-x0),令y=0得点G的横坐标x G =,同理可得H点的横坐标x H =.所以|OG|·|OH|=16,即|OG|·|OH|为定值.21.解:(1)对函数求导数,得f′(x)=-(x>0),依题意,得f′(x)<0在(0,+∞)上有解,即ax2+2x-1>0在x>0时有解.所以Δ=4+4a>0且方程ax2+2x-1=0至少有一个正根.再结合a<0,得-1<a<0.(2)a=-时,f(x)=-x+b,即x2-x+ln x-b=0.设g(x)=x2-x+ln x-b,则g′(x)=,所以当x∈(0,1)时,g′(x)>0;当x∈(1,2)时,g′(x)<0;当x∈(2,4)时,g′(x)>0.得函数g(x)在(0,1)和(2,4)上是增函数,在(1,2)上是减函数,所以g(x)的极小值为g(2)=ln 2-b-2;g(x)的极大值为g(1)=-b-, g(4)=-b-2+2ln 2; 因为方程g(x)=0在[1,4]上恰有两个不相等的实数根,所以解之得ln 2-2<b≤-.22.解:(1)由ρ=4cos θ得ρ2=4ρcos θ,化为直角坐标方程为x2+y2=4x,所以圆C的直角坐标方程为x2+y2-4x=0.由消去t得x-y-=0,所以直线l的普通方程为2x-2y-1=0.(2)显然直线l过点M(,0),将11 / 12代入圆C的直角坐标方程x2+y2-4x=0得t2-t-=0,则t1+t2=,t1t2=-<0,根据直线参数方程中参数的几何意义知||MA|-|MB||=||t1|-|t2||=|t1+t2|=.23.解:(1)不等式f(x)>0,即|2x-1|>|x+2|,即4x2-4x+1>x2+4x+4,3x2-8x-3>0,解得x<-或x>3.所以不等式f(x)>0的解集为{x|x<-或x>3}.(2)f(x)=|2x-1|-|x+2|=故f(x)的最小值为f()=-,因为∃x0∈R,使得f(x0)+2m2<4m,所以4m-2m2>-,解得-<m<.即m的取值范围为(-,).12 / 12。

高考数学二轮复习专题检测(三)不等式理解析版

高考数学二轮复习专题检测(三)不等式理解析版

专题检测(三) 不等式一、选择题1.已知不等式x 2-2x -3<0的解集为A ,不等式x 2+x -6<0的解集为B ,不等式 x 2+ax +b <0的解集为A ∩B ,则a +b =( )A .1B .0C .-1D .-3解析:选D 由题意得,不等式x 2-2x -3<0的解集A =(-1,3),不等式x 2+x -6<0的解集B =(-3,2),所以A ∩B =(-1,2),即不等式x 2+ax +b <0的解集为(-1,2),所以a =-1,b =-2,所以a +b =-3.2.若x >y >0,m >n ,则下列不等式正确的是( ) A .xm >ym B .x -m ≥y -n C.x n >y mD .x >xy解析:选D A 不正确,因为同向同正不等式相乘,不等号方向不变,m 可能为0或负数;B 不正确,因为同向不等式相减,不等号方向不确定;C 不正确,因为m ,n 的正负不确定.故选D.3.已知a ∈R ,不等式x -3x +a≥1的解集为p ,且-2∉p ,则a 的取值范围为( ) A .(-3,+∞)B .(-3,2)C .(-∞,2)∪(3,+∞)D .(-∞,-3)∪[2,+∞)解析:选D ∵-2 ∉ p ,∴-2-3-2+a<1或-2+a =0,解得a ≥2或a <-3. 4.(2018·成都一诊)若关于x 的不等式x 2+2ax +1≥0在[0,+∞)上恒成立,则实数a 的取值范围为( )A .(0,+∞)B .[-1,+∞)C .[-1,1]D .[0,+∞)解析:选B 法一:当x =0时,不等式为1≥0恒成立;当x >0时,x 2+2ax +1≥0⇒2ax ≥-(x 2+1)⇒2a ≥-⎝⎛⎭⎪⎫x +1x ,又-⎝ ⎛⎭⎪⎫x +1x ≤-2,当且仅当x =1时取等号,所以2a ≥-2⇒a ≥-1,所以实数a 的取值范围为[-1,+∞).法二:设f (x )=x 2+2ax +1,函数图象的对称轴为直线x =-a .当-a ≤0,即a ≥0时,f (0)=1>0,所以当x ∈[0,+∞)时,f (x )≥0恒成立;当-a >0,即a <0时,要使f (x )≥0在[0,+∞)上恒成立,需f (-a )=a 2-2a 2+1= -a 2+1≥0,得-1≤a <0.综上,实数a 的取值范围为[-1,+∞).5.已知函数f (x )=⎩⎪⎨⎪⎧x 2-ax ,x >0,2x-1,x ≤0,若不等式f (x )+1≥0在R 上恒成立,则实数a的取值范围为( )A .(-∞,0)B .[-2,2]C .(-∞,2]D .[0,2]解析:选C 由f (x )≥-1在R 上恒成立,可得当x ≤0时,2x-1≥-1,即2x≥0,显然成立;又x >0时,x 2-ax ≥-1,即为a ≤x 2+1x =x +1x ,由x +1x≥2x ·1x=2,当且仅当x =1时,取得最小值2,可得a ≤2,综上可得实数a 的取值范围为(-∞,2].6.若1a <1b <0,给出下列不等式:①1a +b <1ab ;②|a |+b >0;③a -1a >b -1b ;④ln a 2>ln b 2.其中正确的不等式的序号是( )A .①④B .②③C .①③D .②④解析:选C 法一:因为1a <1b<0,故可取a =-1,b =-2.显然|a |+b =1-2=-1<0,所以②错误;因为ln a 2=ln(-1)2=0,ln b 2=ln(-2)2=ln 4>0,所以④错误,综上所述,可排除A 、B 、D ,故选C.法二:由1a <1b<0,可知b <a <0.①中,因为a +b <0,ab >0,所以1a +b <1ab,故①正确; ②中,因为b <a <0,所以-b >-a >0,故-b >|a |,即|a |+b <0,故②错误; ③中,因为b <a <0,又1a <1b <0,则-1a >-1b >0,所以a -1a >b -1b,故③正确;④中,因为b <a <0,根据y =x 2在(-∞,0)上为减函数,可得b 2>a 2>0,而y =ln x 在定义域(0,+∞)上为增函数,所以ln b 2>ln a 2,故④错误.由以上分析,知①③正确.7.(2018·长春质检)已知x >0,y >0,且4x +y =xy ,则x +y 的最小值为( ) A .8 B .9 C .12D .16解析:选B 由4x +y =xy ,得4y +1x=1,则x +y =(x +y )⎝ ⎛⎭⎪⎫ 4y +1x =4x y +yx+1+4≥24+5=9,当且仅当4x y =yx,即x =3,y =6时取“=”,故选B.8.如果实数x ,y 满足不等式组⎩⎪⎨⎪⎧x +y -3≤0, x -2y -3≤0,x ≥1,目标函数z =kx -y 的最大值为6,最小值为0,则实数k 的值为( )A .1B .2C .3D .4解析:选B 作出不等式组所表示的平面区域如图中阴影部分所示. 则A (1,2),B (1,-1),C (3,0), 因为目标函数z =kx -y 的最小值为0,所以目标函数z =kx -y 的最小值可能在A 或B 处取得,所以若在A 处取得,则k -2=0,得k =2,此时,z =2x -y 在C 点有最大值,z =2×3-0=6,成立;若在B 处取得,则k +1=0,得k =-1,此时,z =-x -y , 在B 点取得最大值,故不成立,故选B.9.(2019届高三·湖北五校联考)某企业生产甲、乙两种产品均需用A ,B 两种原料,已知生产1吨每种产品所需原料及每天原料的可用限额如表所示.如果生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得的最大利润为( )A .15万元B .16万元C .17万元D .18万元解析:选D 设生产甲产品x 吨,乙产品y 吨,获利润z 万元,由题意可知⎩⎪⎨⎪⎧ 3x +2y ≤12,x +2y ≤8,x ≥0, y ≥0,z =3x +4y ,作出不等式组所表示的可行域如图中阴影部分所示,直线z =3x +4y 过点M 时取得最大值,由⎩⎪⎨⎪⎧3x +2y =12,x +2y =8,得⎩⎪⎨⎪⎧x =2,y =3,∴M (2,3),故z =3x +4y 的最大值为18,故选D.10.已知实数x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +5≥0, x +y ≥0,x ≤3,若y ≥kx -3恒成立,则实数k的取值范围是( )A.⎣⎢⎡⎦⎥⎤-115,0 B.⎣⎢⎡⎦⎥⎤0,113C .(-∞,0]∪⎣⎢⎡⎭⎪⎫115,+∞D.⎝⎛⎦⎥⎤-∞,-115∪[0,+∞)解析:选A 由约束条件⎩⎪⎨⎪⎧x -y +5≥0, x +y ≥0,x ≤3,作出可行域如图中阴影分部所示,则A ⎝ ⎛⎭⎪⎫-52,52,B (3,-3),C (3,8),由题意得⎩⎪⎨⎪⎧-3≥3k -3, 52≥- 52k -3,解得-115≤k ≤0.所以实数k 的取值范围是⎣⎢⎡⎦⎥⎤-115,0. 11.若两个正实数x ,y 满足13x +3y =1,且不等式x +y 4-n 2-13n12<0有解,则实数n 的取值范围是( )A.⎝ ⎛⎭⎪⎫-2512,1B.⎝ ⎛⎭⎪⎫-∞,-2512∪(1,+∞) C .(1,+∞)D.⎝⎛⎭⎪⎫-∞,-2512 解析:选B 因为不等式x +y 4-n 2-13n12<0有解,所以⎝ ⎛⎭⎪⎫x +y 4min <n 2+13n 12,因为x >0,y >0,且13x +3y=1,所以x +y 4=⎝⎛⎭⎪⎫x +y 4⎝ ⎛⎭⎪⎫13x +3y =1312+3x y +y 12x ≥1312+23xy ·y 12x =2512, 当且仅当3x y =y 12x ,即x =56,y =5时取等号,所以⎝ ⎛⎭⎪⎫x +y 4min =2512,故n 2+13n 12-2512>0,解得n <-2512或n >1,所以实数n 的取值范围是⎝⎛⎭⎪⎫-∞,-2512∪(1,+∞).12.(2019届高三·福州四校联考)设x ,y 满足约束条件⎩⎪⎨⎪⎧2x +y -3≤0,2x -2y -1≤0,x -a ≥0,其中a>0,若x -yx +y的最大值为2,则a 的值为( ) A.12 B.14C.38D.59解析:选C 设z =x -y x +y ,则y =1-z 1+z x ,当z =2时,y =-13x ,作出x ,y 满足的约束条件⎩⎪⎨⎪⎧2x +y -3≤0,2x -2y -1≤0,x -a ≥0,所表示的平面区域如图中阴影部分所示,作出直线y =-13x ,易知此直线与区域的边界线2x -2y -1=0的交点为⎝ ⎛⎭⎪⎫38,-18,当直线x =a 过点⎝ ⎛⎭⎪⎫38,-18时,a =38,又此时直线y =1-z 1+z x 的斜率1-z 1+z 的最小值为-13,即-1+2z +1的最小值为-13,即z 的最大值为2,符合题意,所以a 的值为38,故选C.二、填空题13.(2018·岳阳模拟)不等式3x -12-x ≥1的解集为________.解析:不等式3x -12-x ≥1可转化成3x -12-x -1≥0,即4x -32-x ≥0,等价于⎩⎪⎨⎪⎧4x -3x -2≤0,2-x ≠0,解得34≤x <2,故不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪34≤x <2.答案:⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪34≤x <214.(2018·全国卷Ⅱ)若x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y -5≥0,x -2y +3≥0,x -5≤0,则z =x +y 的最大值为________.解析:作出不等式组所表示的可行域如图中阴影部分所示.由图可知当直线x +y =z 过点A 时z 取得最大值.由⎩⎪⎨⎪⎧x =5,x -2y +3=0得点A (5,4),∴z max =5+4=9.答案:915.已知关于x 的不等式ax 2+bx +c <0的解集为xx <-1或x >12,则关于x 的不等式c (lg x )2+lg x b +a <0的解集为________.解析:由题意知-1,12是方程ax 2+bx +c =0的两根,所以⎩⎪⎨⎪⎧ -12=-b a ,-12=ca ,且a <0,所以⎩⎪⎨⎪⎧b =12a ,c =-12a .所以不等式c (lg x )2+lg x b+a <0化为 -12a (lg x )2+b lg x +a <0, 即-12a (lg x )2+12a lg x +a <0.所以(lg x )2-lg x -2<0,所以-1<lg x <2,所以110<x <100.答案:⎩⎨⎧⎭⎬⎫x|110<x <10016.设x >0,y >0,且⎝ ⎛⎭⎪⎫x -1y 2=16y x ,则当x +1y 取最小值时,x 2+1y2=________.解析:∵x >0,y >0,∴当x +1y取最小值时,⎝ ⎛⎭⎪⎫x +1y 2取得最小值,∵⎝⎛⎭⎪⎫x +1y 2=x 2+1y2+2x y,⎝ ⎛⎭⎪⎫x -1y 2=16y x, ∴x 2+1y 2=2x y +16y x,⎝ ⎛⎭⎪⎫x +1y 2=4x y +16y x≥24x y ·16yx=16,∴x +1y ≥4,当且仅当4x y =16yx,即x =2y 时取等号,∴当x +1y 取最小值时,x =2y ,x 2+1y 2+2x y =16,即x 2+1y 2+2×2y y=16,∴x 2+1y2=16-4=12.答案:12。

2019年高考理科数学模拟仿真卷3含答案

2019年高考理科数学模拟仿真卷3含答案

2019年高考模拟仿真卷理科数学(3)注意事项:1、本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答题前,考生务必将自己的姓名、考生号填写在答题卡上。

2、回答第Ⅰ卷时,选出每小题的答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在试卷上无效。

3、回答第Ⅱ卷时,将答案填写在答题卡上,写在试卷上无效。

4、考试结束,将本试卷和答题卡一并交回。

第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.12i 2i +=-+( )A .41i 5-+B .4i 5-+C .i -D .i 2.已知集合(){}ln 10M x x =+>,{}22N x x =-≤≤,则M N =( )A .()0,2B .[)0,2C .(]0,2D .[]0,23.函数2ln y x x =+的图象大致为( )A .B .C .D .4.已知向量(),3m =a ,()3,n =-b ,若()27,1+=a b ,则mn =( ) A .1-B .0C .1D .25.2018年,国际权威机构IDC 发布的全球手机销售报告显示:华为突破2亿台出货量超越苹果的出货量,首次成为全球第二,华为无愧于中国最强的高科技企业。

华为业务CEO 余承东明确表示,华为的目标,就是在2021年前,成为全球最大的手机厂商.为了解华为手机和苹果手机使用的情况是否和消费者的性别有关,对100名华为手机使用者和苹果手机使用者进行统计,统计结果如下表:根据表格判断是否有95%的把握认为使用哪种品牌手机与性别有关系,则下列结论正确的是( ) 附:()()()()()22n ad bc K a b c d a c b d -=++++.A .没有95%把握认为使用哪款手机与性别有关B .有95%把握认为使用哪款手机与性别有关C .有95%把握认为使用哪款手机与性别无关D .以上都不对6.已知双曲线()2222:10,0x y C a b a b-=>>的右焦点到渐近线的距离等于实轴长,则此双曲线的离心率为( )A B C D7.在ABC △中,角A 、B 、C 的对边分别为a 、b 、c ,若b =,3c =,2B C =,则cos 2C 的值为( )A B .59C .49D 8.根据某校10位高一同学的身高(单位:cm)画出的茎叶图(图1),其中左边的数字从左到右分别表示学生身高的百位数字和十位数字,右边的数字表示学生身高的个位数字,设计一个程序框图(图2),用()1,2,,10i A i =⋅⋅⋅表示第i 个同学的身高,计算这些同学身高的方差,则程序框图①中要补充的语句是( )A .iB B A =+B .2i B B A =+C .()2i B B A A =+-D .22i B B A =+9.在空间四边形ABCD 中,若AB BC CD DA AC BD =====,且E 、F 分别是AB 、CD 的中点,则异面直线AC 与EF 所成角为( ) A .30︒B .45︒C .60︒D .90︒10.函数()()πsin 04f x x ωω⎛⎫=+> ⎪⎝⎭的图象在π0,4⎡⎤⎢⎥⎣⎦内有且仅有一条对称轴,则实数ω的取值范围是( ) A .()1,5B .()1,+∞C .[)1,5D .[)1,+∞11.设点1F ,2F 分别为椭圆22:195x y C +=的左、右焦点,点P 是椭圆C 上任意一点,若使得12PF PF m ⋅=成立的点恰好是4个,则实数m 的值可以是( ) A .12B .3C .5D .812.设()221x f x x =+,()()520g x ax a a =+->,若对于任意[]10,1x ∈,总存在[]00,1x ∈,使得()()01g x f x =成立,则a 的取值范围是( ) A .[)4,+∞B .50,2⎛⎤ ⎥⎝⎦C .5,42⎡⎤⎢⎥⎣⎦D .5,2∞⎡⎫+⎪⎢⎣⎭第Ⅱ卷二、填空题:本大题共4小题,每小题5分.13.设x ,y 满足约束条件10202x y x y x -+≤⎧⎪-≥⎨⎪≤⎩,则23z x y =+的最小值为_______.14.过点()0,1且与曲线11x y x +=-在点()3,2处的切线垂直的直线的方程为______. 15.已知2sin cos 1413cos ααα⋅=+,且()1tan 3αβ+=,则tan β的值为______. 16.在三棱锥D ABC -中,CD ⊥底面ABC ,AC BC ⊥,5AB BD ==,4BC =,则此三棱锥的外接球的表面积为______.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(12分)已知在等比数列{}n a 中,12a =,且1a ,2a ,32a -成等差数列. (1)求数列{}n a 的通项公式; (2)若数列{}n b 满足:212log 1n n nb a a =+-,求数列{}n b 的前n 项和n S . 18.(12分)我市南澳县是广东唯一的海岛县,海区面积广阔,发展太平洋牡蛎养殖业具有得天独厚的优势,所产的“南澳牡蛎”是中国国家地理标志产品,产量高、肉质肥、营养好,素有“海洋牛奶精品”的美誉.根据养殖规模与以往的养殖经验,产自某南澳牡蛎养殖基地的单个“南澳牡蛎”质量(克)在正常环境下服从正态分布()32,16N .(1)购买10只该基地的“南澳牡蛎”,会买到质量小于20g 的牡蛎的可能性有多大? (2)2019年该基地考虑增加人工投入,现有以往的人工投入增量x (人)与年收益增量y (万元)的数据如下:该基地为了预测人工投入增量为16人时的年收益增量,建立了y 与x 的两个回归模型:模型①:由最小二乘公式可求得y 与x 的线性回归方程: 4.1118ˆ.yx =+;模型②:由散点图的样本点分布,可以认为样本点集中在曲线:y a =的附近,对人工投入增量x 做变换,令t =,则y b t a =⋅+,且有2.5t =,38.9y =,()()7181.0i i i t t y y =--=∑,()7213.8i i t t =-=∑.(i )根据所给的统计量,求模型②中y 关于x 的回归方程(精确到0.1);(ii )根据下列表格中的数据,比较两种模型的相关指数2R ,并选择拟合精度更高、更可靠的模型,预测人工投入增量为16人时的年收益增量.附:若随机变量()2,Z N μσ~,则()330.9974P Z μσμσ-<<+=,100.99870.9871≈;样本()()1,,2,,i i t y i n =⋯的最小二乘估计公式为:()()()121ˆn i i i n i i t t y y bt t ==--=-∑∑,ˆˆay bt =-, 另,刻画回归效果的相关指数()()22121ˆ1nii i n i i y y R y y ==-=--∑∑.19.(12分如图所示,在四棱台1111ABCD A B C D -中,1AA ⊥底面ABCD ,四边形ABCD 为菱形,120BAD ∠=︒,11122AB AA A B ===. (1)若M 为CD 中点,求证:AM ⊥平面11AA B B ;(2)求直线1DD 与平面1A BD 所成角的正弦值.20.(12分)已知直线2x =-上有一动点Q ,过点Q 作直线1l 垂直于y 轴,动点P 在1l 上,且满足0OP OQ ⋅=(O 为坐标原点),记点P 的轨迹为曲线C . (1)求曲线C 的方程;(2)已知定点1,02M ⎛⎫- ⎪⎝⎭,1,02N ⎛⎫ ⎪⎝⎭,A 为曲线C 上一点,直线AM 交曲线C 于另一点B ,且点A 在线段MB 上,直线AN 交曲线C 于另一点D ,求MBD △的内切圆半径r 的取值范围.21.(12分)设()2e x f x x ax =-,()2eln 1g x x x x a=+-+-. (1)求()g x 的单调区间; (2)讨论()f x 零点的个数;(3)当0a >时,设()()()0h x f x ag x =-≥恒成立,求实数a 的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.(10分)【选修4-4:坐标系与参数方程】在平面直角坐标系中,直线l 的参数方程为cos sin x t y t αα=⎧⎨=⎩(t 为参数,0πα≤<).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为244cos 2sin ρρθρθ-=-. (1)写出曲线C 的直角坐标方程;(2)若直线l 与曲线C 交于A ,B 两点,且AB 的长度为,求直线l 的普通方程. 23.(10分)【选修4-5:不等式选讲】已知函数()21f x x m x =-+-,m ∈R . (1)当1m =时,解不等式()2f x <;(2)若不等式()3f x x <-对任意[]0,1x ∈恒成立,求实数m 的取值范围.理科数学答案(3)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.【答案】C 【解析】()()()()12i 2i 12i 5ii 2i 2i 2i 5+--+-===--+-+--,故选C . 2.【答案】C【解析】∵()ln 10x +>,解得0x >,∴{}0M x x =>, 又∵{}22N x x =-≤≤,∴(]0,2M N =.故选C .3.【答案】A【解析】函数2ln y x x =+是偶函数,排除选项B 、C ,当1e x =时,2110ey =-<,0x >时,函数是增函数,排除D .故选A .4.【答案】C【解析】∵()27,1+=a b ,∴67321m n +=⎧⎨-=⎩,得1m n ==,∴1mn =.故选C .5.【答案】A【解析】由表可知:30a =,15b =,45c =,10d =,100n =, 则()2210030101545 3.030 3.84144557525K ⨯⨯-⨯=≈≤⨯⨯⨯,故没有95%把握认为使用哪款手机与性别有关,故选A . 6.【答案】C【解析】由题意可设双曲线C 的右焦点(),0F c ,渐进线的方程为by x a=±,可得2d b a ==,可得c =,可得离心率ce a==C . 7.【答案】B【解析】由正弦定理可得:sin sin b cB C=,即sin sin 22sin cos 2cos cos sin sin sin b B C C C C C c C C C =====⇒=, ∴275cos22cos 12199C C =-=⨯-=,故选B .8.【答案】B 【解析】由()()()222122n x x x x x x s n-+-+⋅⋅⋅+-=()222212122n n x x x x x x x nx n++⋅⋅⋅+-++⋅⋅⋅++=22222222212122n n x x x nx nx x x x x n n++⋅⋅⋅+-+++⋅⋅⋅+==-,循环退出时11i =,知221A x i ⎛⎫= ⎪-⎝⎭.∴2221210B AA A =++⋅⋅⋅+, 故程序框图①中要补充的语句是2iB B A =+.故选B . 9.【答案】B【解析】在图1中连接DE ,EC ,∵AB BC CD DA AC BD =====,得DEC △为等腰三角形,设空间四边形ABCD 的边长为2,即2AB BC CD DA AC BD ======,在DEC △中,DE EC =1CF =,得EF图1图2在图2取AD 的中点M ,连接MF 、EM ,∵E 、F 分别是AB 、CD 的中点, ∴1MF =,1EM =,EFM ∠是异面直线AC 与EF 所成的角.在EMF △中可由余弦定理得222211cos 2FE MF MEEFM FE MF+-+-∠==⋅, ∴45EFM ∠=︒,即异面直线所成的角为45︒.故选B . 10.【答案】C 【解析】当π4x =时,πππ444wx w +=+,当0x =,ππ44wx +=,∵在π0,4⎡⎤⎢⎥⎣⎦只有一条对称轴,可知πππ3π2442w ≤+<,解得[)1,5w ∈,故选C .11.【答案】B【解析】∵点1F ,2F 分别为椭圆22:195x y C +=的左、右焦点; 即()12,0F -,()22,0F ,29a =,25b =,24c =,2c =, 设()00,P x y ,()100,2PF x y =---,()200,2PF x y =--, 由12PF PF m ⋅=可得22004x y m +=+,又∵P 在椭圆上,即2200195x y +=,∴20994m x -=, 要使得12PF PF m ⋅=成立的点恰好是4个,则99094m -<<,解得15m <<, ∴m 的值可以是3.故选B . 12.【答案】C【解析】∵()221x f x x =+,∴当0x =时,()0f x =,当0x ≠时,()2211124f x x =⎛⎫+- ⎪⎝⎭, 由01x <≤,∴()01f x <≤,故()01f x ≤≤,又∵()()520g x ax a a =+->,且()052g a =-,()15g a =-.故()525a g x a -≤≤-. ∵对于任意[]10,1x ∈,总存在[]00,1x ∈,使得()()01g x f x =成立, ∴()f x 在[]0,1的值域是()g x 在[]0,1的值域的子集,∴须满足52051a a -≤⎧⎨-≥⎩,∴542a ≤≤,a 的取值范围是5,42⎡⎤⎢⎥⎣⎦,故选C .第Ⅱ卷二、填空题:本大题共4小题,每小题5分. 13.【答案】8【解析】画出不等式组10202x y x y x -+≤⎧⎪-≥⎨⎪≤⎩表示的平面区域,如图阴影部分所示,由图形知,当目标函数23z x y =+过点A 时,z 取得最小值;由1020x y x y -+=⎧⎨-=⎩,求得()1,2A ;∴23z x y =+的最小值是21328⨯+⨯=.故答案为8.14.【答案】210x y -+= 【解析】∵11x y x +=-,∴()221y x '=--, 当3x =时,1'2y =-,即曲线11x y x +=-在点()3,2处的切线斜率为12-,∴与曲线11x y x +=-在点()3,2处的切线垂直的直线的斜率为2, ∵直线过点()0,1,∴所求直线方程为12y x -=,即210x y -+=.故答案为210x y -+=. 15.【答案】1-【解析】∵2222sin cos sin cos tan 1413cos sin 4cos tan 4ααααααααα⋅⋅===+++,∴tan 2α=, 又()tan tan 2tan 1tan 1tan tan 12tan 3αββαβαββ+++===--,解得tan 1β=-.故答案为1-. 16.【答案】34π【解析】由题意,在三棱锥D ABC -中,CD ⊥底面ABC ,AC BC ⊥,5AB BD ==,4BC =,可得3AD CD ==,故三棱锥D ABC -的外接球的半径R ==,则其表面积为24π34π⨯=⎝⎭.三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.【答案】(1)()*2nn a n =∈N;(2)2112nn S n ⎛⎫=-+ ⎪⎝⎭.【解析】(1)设等比数列{}n a 的公比为q ,∵1a ,2a ,32a -成等差数列,∴()()213332222a a a a a =+-=+-=, ∴()1*31222n n n a q a a q n a -==⇒==∈N . (2)∵221112log 12log 212122n nn n n n b a n a ⎛⎫⎛⎫=+-=+-=+- ⎪ ⎪⎝⎭⎝⎭,∴()231111135212222n n S n ⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=++++++⋅⋅⋅++-⎢⎥⎢⎥⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦()2321111135212222n ⎡⎤⎛⎫⎛⎫⎛⎫=+++⋅⋅⋅+++++⋅⋅⋅+-⎡⎤⎢⎥ ⎪ ⎪ ⎪⎣⎦⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦()()2*111221*********n nn n n n ⎡⎤⎛⎫-⎢⎥ ⎪⋅+-⎡⎤⎝⎭⎢⎥⎛⎫⎣⎦⎣⎦=+=-+∈ ⎪⎝⎭-N .18.【答案】(1)1.29%;(2)(i)14ˆ 4.y =,(ii )见解析.【解析】(1)由已知,单个“南澳牡蛎”质量()32,16N ξ~,则32μ=,4σ=, 由正态分布的对称性可知,()()()()111201204413310.99740.0013222P P P ξξμσξμσ<=-<<=--<<+=-=⎡⎤⎡⎤⎣⎦⎣⎦, 设购买10只该基地的“南澳牡蛎”,其中质量小于20g 的牡蛎为X 只,故()10,0.0013X B ~,故()()()10110110.001310.98710.0129P X P X ≥=-==--=-=,∴这10只“南澳牡蛎”中,会买到质量小于20g 的牡蛎的可能性仅为1.29%. (2)(i )由 2.5t =,38.9y =,()()7181.0i i i t t y y =--=∑,()7213.8i i t t =-=∑,有()()()7172181.021.33.8ˆi i i ii t t y y bt t ==--==≈-∑∑,且38.921.3ˆˆ 2.514.4ay bx =-=-⨯≈-, ∴模型②中y 关于x的回归方程为14ˆ 4.y=. (ii )由表格中的数据,有182.479.2>,即()()772211182.479.2i i i i y y y y ==>--∑∑模型①的2R 小于模型②,说明回归模型②刻画的拟合效果更好.当16x =时,模型②的收益增量的预测值为21.314.421.3414ˆ.470.8y ==⨯-=(万元),这个结果比模型①的预测精度更高、更可靠. 19.【答案】(1)见解析;(2)15.【解析】(1)∵四边形ABCD 为菱形,120BAD ∠=︒,连结AC ,则ACD △为等边三角形, 又∵M 为CD 中点,∴AM CD ⊥,由CD AB ∥,∴AM AB ⊥, ∵1AA ⊥底面ABCD ,AM ⊂底面ABCD ,∴1AM AA ⊥, 又∵1ABAA A =,∴AM ⊥平面11AA B B .(2)∵四边形ABCD 为菱形,120BAD ∠=︒,11122AB AA A B ===, ∴1DM =,AM =90AMD BAM ∠=∠=︒, 又∵1AA ⊥底面ABCD ,分别以AB ,AM ,1AA 为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系A xyz -,()10,0,2A 、()2,0,0B、()D -、112D ⎛⎫-⎪ ⎪⎝⎭,∴11,2DD ⎛⎫= ⎪ ⎪⎝⎭,()BD =-,()12,0,2A B =-, 设平面1A BD 的一个法向量(),,x y z =n ,则有10302200BD x y x z A B ⎧⋅=-=⎪⇒⇒=⎨-=⋅=⎪⎩⎧⎪⎨⎪⎩n n ,令1x =,则()=n ,∴直线1DD 与平面1A BD 所成角θ的正弦值1111sin cos ,5DD DD DD θ⋅===⋅n n n.20.【答案】(1)22y x =;(2))1,+∞.【解析】(1)设点(),P x y ,则()2,Q y -,∴(),OP x y =,()2,OQ y =-. ∵0OP OQ ⋅=,∴220OP OQ x y ⋅=-+=,即22y x =.(2)设()11,A x y ,()22,B x y ,()33,D x y ,直线BD 与x 轴交点为E ,直线AB 与内切圆的切点为T .设直线AM 的方程为12y k x ⎛⎫=+ ⎪⎝⎭,则联立方程组2122y k x y x⎧⎛⎫=+⎪ ⎪⎝⎭⎨⎪=⎩得()2222204k k x k x +-+=, ∴1214x x =且120x x <<,∴1212x x <<,∴直线AN 的方程为111122y y x x ⎛⎫=- ⎪⎝⎭-, 与方程22y x =联立得22222111111122024y x y x x x y ⎛⎫-+-++= ⎪⎝⎭,化简得221111122022x x x x x ⎛⎫-++= ⎪⎝⎭,解得114x x =或1x x =.∵32114x x x ==,∴BD x ⊥轴, 设MBD △的内切圆圆心为H ,则点H 在x 轴上且HT AB ⊥. ∴2211222MBDS x y ⎛⎫=⋅+ ⎪⎝⎭△,且MBD △的周长22y ,∴22211122222MBDS y r x y ⎡⎤⎛⎫⎢⎥=⋅=⋅+⋅ ⎪⎢⎥⎝⎭⎣⎦△,∴221x y r ⎛⎫+ ⎪==令212t x =+,则1t >,∴r =()1,+∞上单调递增,则1r ,即r的取值范围为)1,+∞.21.【答案】(1)()g x 的单调递增区间为()0,1,单调递减区间为()1,+∞;(2)见解析;(3)0e a <≤.【解析】(1)()()()211112x x g x x x x-+-=+-=', 当()0,1x ∈时,()0g x '>,()g x 递增,当()1,x ∈+∞时,()0g x '<,()g x 递减, 故()g x 的单调递增区间为()0,1,单调递减区间为()1,+∞.(2)0x =是()f x 的一个零点,当0x ≠时,由()0f x =得,()e xa F x x ==,()()2e 1x x F x x ='-,当(),0x ∈-∞时,()F x 递减且()0F x <,当0x >时,()0F x >,且()0,1x ∈时,()F x 递减, 当()1,x ∈+∞时,()F x 递增,故()()min 1e F x F ==, 大致图像如图,∴当0e a ≤<时,()f x 有1个零点;当e a =或0a <时,()f x 有2个零点; 当e a >时,()f x 有3个零点.(3)()()()ln e x h x f x ag x xe a x ax a =-=---+,()()()()11e 1e x x a x a h x x x xx +⎛⎫=+-=+- ⎝'⎪⎭,0a >,设()0h x '=的根为0x ,即有00e x ax =,可得00ln ln x a x =-, 当()00,x x ∈时,()0h x '<,()h x 递减,当()0,x x ∈+∞时,()0h x '>,()h x 递增,()()()00000000min 0e ln e ln e x ah x h x x a x ax a x a x a ax a x ==---+=+---+e ln 0a a =-≥,∴0e a <≤.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.【答案】(1)()()22219x y -++=;(2)34y x =和0x =. 【解析】(1)将cos sin x y ρθρθ=⎧⎨=⎩代入曲线C 极坐标方程得:曲线C 的直角坐标方程为22442x y x y +-=-,即()()22219x y -++=. (2)将直线l 的参数方程代入曲线方程:()()22cos 2sin 19t t αα-++=, 整理得()24cos 2sin 40t t αα---=,设点A ,B 对应的参数为1t ,2t ,解得124cos 2sin t t αα+=-,124t t =-, 则12AB t t =-=23cos 4sin cos 0ααα⇒-=,∵0πα≤<,∴π2α=和3tan 4α=,∴直线l 的普通方程为34y x =和0x =. 23.【答案】(1)403x x ⎧⎫<<⎨⎬⎩⎭;(2){}02m m <<. 【解析】(1)当1m =时,()121f x x x =-+-,∴()123,21,1232,1x x f x x x x x ⎧-<⎪⎪⎪=≤≤⎨⎪->⎪⎪⎩,()2f x <即求不同区间对应解集,∴()2f x <的解集为403x x ⎧⎫<<⎨⎬⎩⎭.(2)由题意,()3f x x <-对任意的[]0,1x ∈恒成立, 即321x m x x -<---对任意的[]0,1x ∈恒成立, 令()12,02321143,12x x g x x x x x ⎧+≤<⎪⎪=---=⎨⎪-≤≤⎪⎩, ∴函数y x m =-的图象应该恒在()g x 的下方,数形结合可得02m <<.。

2019年高三第二次模拟考试数学理试题 含答案

2019年高三第二次模拟考试数学理试题 含答案

2019年高三第二次模拟考试数学理试题含答案本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共1 50分.考生注意:1.答题前,考生务必将自己的准考证号、姓名填写在答题卡上,考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目"与考生本人准考证号、姓名是否一致.2.第1卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.第1I卷j_}=I O.5毫米的黑色墨水签字笔在答题卡上作答.若在试题卷上作答,答案无效.3.考试结束,监考员将试题卷、答题卡一并收同.第Ⅰ卷一、选择题:本大题共1 O小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数(其中i为虚数单位),则复数z在坐标平面内对应的点在A.第一象限B.第二象限C.第三象限D.第四象限2.已知,则a,b ,c的大小关系是A.c<a<b B.c<b<a C.a<b<c D.b<a<c3.将函数图像上所有的点向左平行移动个单位长度,再把图像上各点的横坐标扩大到原来的2倍(纵坐标不变),则所得到的图象的解析式为A.B.c.D.4.“m<0”是“函数存在零点"的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件5.若空间几何体的三视图如图所示,则该几何体体积为A.B.C.D.86.下列四个判断:①某校高三(1)班和高三(2)班的人数分别是m,n,某次测试教学平均分别是a,b,则这两个班的数学平均分别为;②从总体抽取的样本(1,2,5),(2,3,1),(3,3,6),(4,3,9),(5,4,4),则回归直线必过点(3,3,6);③已知服从正态分布N (1,22),且=0.3,则其中正确的个数有A.0个B.1个C.2个D.3个7.将5名学生分到A,B,C三个宿舍,每个宿舍至少1人至多2人,其中学生甲不到A宿舍的不同分法有A.18种B.36种C.48种D.60种8.已知点M(a,b)(a>0,b>0)是圆C:x2+y2=1内任意一点,点P(x,y)是圆上任意一点,则实数ax+by一1A .一定是负数B .一定等于0C .一定是正数D .可能为正数也可能为负数9.等差数列的前n 项和为,公差为d ,已知,则下列结论正确的是A .B .C .D .10.如图,在等腰梯形ABCD 中,AB//CD ,且AB=2CD ,设∠DAB=,∈(0,),以A ,B 为焦点且过点D 的双曲线的离心率为e 1,以C ,D 为焦点且过点A 的椭圆的离心率为e 2,设的大致图像是第Ⅱ卷注意事项:第Ⅱ卷须用黑色墨水签字笔在答题卡上书写作答,若在试题上作答,答案无效.二、填空题:本大题共4小题,每小题5分,共20分.11.曲线与坐标轴所围成押科形面积是 .12.已知集合}032|{},22,2|{22≤-+=≤≤-+==x x x B x x x y y A ,在集合A 中任意取一个元素a ,则a ∈B 的概率是 .13.执行如图所示的程序框图,若输入a 的值为2,则输出的p 值是 .14.观察下面两个推理过程及结论:(1)若锐角A ,B ,C 满足A+B+C=,以角A ,B ,C 分别为内角构造一个三角形,依据正弦定理和余弦定理可得到等式:A CBC B A cos sin sin 2sin sin sin 222-+= (2)若锐角A ,B ,C 满足A+B+C=,则=,以角分别为内角构造一个三角形,依据正弦定理和余弦定理可以得到的等式:2s i 2c o 2c o s 22c o s 2c o s 2c o s 222A C B C B A -+= 则:若锐角A ,B ,C 满足A+B+C=,类比上面推理方法,可以得到一个等式是 .三、选做题:请考生在下列两题中任选一题作答,若两题都做,则按做的第一题评阅计分,本题共5分。

2019年高考理科数学仿真冲刺卷及答案(三)

2019年高考理科数学仿真冲刺卷及答案(三)

2019年高考理科数学仿真冲刺卷及答案(三)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分.考试用时120分钟.第Ⅰ卷一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.集合A={x|2x2-3x≤0,x∈Z},B={x|1≤2x<32,x∈Z},集合C满足A⊂C⊆B,则C的个数为( )(A)3 (B)4 (C)7 (D)82.欧拉是一位杰出的数学家,他发明的公式e ix=cos x+isin x(i为虚数单位),将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,这个公式在复变函数理论中占有非常重要的地位,被誉为“数学中的天桥”.根据此公式可知,e-4i表示的复数在复平面中位于( )(A)第一象限 (B)第二象限(C)第三象限 (D)第四象限3.随着人民生活水平的提高,对城市空气质量的关注度也逐步增大,如图是某城市2016年1月至8月的空气质量检测情况,图中一、二、三、四级是空气质量等级,一级空气质量最好,一级和二级都是质量合格天气,下面叙述不正确的是( )(A)1月至8月空气合格天数超过20天的月份有5个(B)第二季度与第一季度相比,空气达标天数的比重下降了(C)8月是空气质量最好的一个月(D)6月份的空气质量最差4.若a=(-cos x)dx,则(ax+)9展开式中x3项的系数为( )(A)-(B)-(C) (D)5.若圆(x-3)2+y2=1上只有一点到双曲线-=1的一条渐近线的距离为1,则该双曲线离心率为( )(A)(B)(C) (D)6.某三棱锥的三视图如图所示,该三棱锥的表面积是( )(A)28+6 (B)30+6(C)56+12(D)60+127.我国南宋时期的数学家秦九韶在他的著作《数书九章》中提出了计算多项式f(x)=a n x n+a n-1x n-1+…+a1x+a0的值的秦九韶算法,即将f(x)改写成如下形式:f(x)=(…((a n x+a n-1)x+a n-2)x+…+a1)x+a0,首先计算最内层一次多项式的值,然后由内向外逐层计算一次多项式的值.这种算法至今仍是比较先进的算法.将秦九韶算法用程序框图表示如图,则在空白的执行框内应填入( )(A)v=vx+a i(B)v=v(x+a i)(C)v=a i x+v (D)v=a i(x+v)8.在△ABC中,角A,B,C的对边分别为a,b,c,且=-,则角A的最大值是( )(A)(B)(C)(D)9. 如图,圆锥的高PO=,底面☉O的直径AB=2,C是圆上一点,且∠CAB=30°,D为AC的中点,则直线OC和平面PAC所成角的正弦值为( )(A) (B) (C) (D)10.中心为原点O 的椭圆焦点在x 轴上,A 为该椭圆右顶点,P 为椭圆上一点,∠OPA=90°,则该椭圆的离心率e 的取值范围是 ( )(A)[,1) (B)(,1) (C)[,) (D)(0,)11.在Rt △ABC 中,∠A=90°,点D 是边BC 上的动点,且||=3,||=4,=λ+μ(λ>0,μ>0),则当λμ取得最大值时,||的值为( )(A) (B)3 (C) (D)12.对于三次函数f(x)=ax 3+bx 2+cx+d(a ≠0),给出定义:设f ′(x)是函数y=f(x)的导数,f ″(x)是f ′(x)的导数,若方程f ″(x)=0有实数解x 0,则称点(x 0,f(x 0))为函数y=f(x)的“拐点”.经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.设函数g(x)=2x 3-3x 2+,则g()+g()+…+g()等于( )(A)100 (B)50(C) (D)0第Ⅱ卷本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生必须作答.第22、23题为选考题,考生根据要求作答.二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.已知实数x,y满足条件则z=y-()x的最大值为.14.已知0<x<,且sin(2x-)=-,则sin x+cos x= .15.已知f(x)为奇函数,函数f(x)与g(x)的图象关于直线y=x+1对称,若g(1)=4,则f(-3)= .16. 如图,正三棱柱ABC A1B1C1的各棱长均相等,D为AA1的中点,M,N 分别是线段BB1和线段CC1上的动点(含端点),且满足BM=C1N,当M,N 运动时,下列结论中正确的序号为.①△DMN可能是直角三角形;②三棱锥A1DMN的体积为定值;③平面DMN⊥平面BCC1B1;④平面DMN与平面ABC所成的锐二面角范围为(0,].三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分12分)已知数列{a n}的各项都是正数,它的前n项和为S n,满足2S n=+a n,记b n=(-1)n.(1)求数列{a n}的通项公式;(2)求数列{b n}的前2 016项的和.18.(本小题满分12分)如图,平面ABCD⊥平面BCF,四边形ABCD是菱形,∠BCF=90°.(1)求证:BF=DF;(2)若∠BCD=60°,且直线DF与平面BCF所成角为45°,求二面角B AF C的平面角的余弦值.19.(本小题满分12分)某工厂生产甲、乙两种芯片,其质量按测试指标划分为:指标大于或等于82为合格品,小于82为次品.现随机抽取这两种芯片各100件进行检测,检测结果统计如表:(1)试分别估计芯片甲、芯片乙为合格品的概率;(2)生产一件芯片甲,若是合格品可盈利40元,若是次品则亏损5元;生产一件芯片乙,若是合格品可盈利50元,若是次品则亏损10元.在(1)的前提下,①记X为生产1件芯片甲和1件芯片乙所得的总利润,求随机变量X 的分布列和数学期望;②求生产5件芯片乙所获得的利润不少于140元的概率.20.(本小题满分12分)已知椭圆C1:+=1(b>0)的左、右焦点分别为F1,F2,点F2也为抛物线C2:y2=8x的焦点,过点F2的直线l交抛物线C2于A,B两点.(1)若点P(8,0)满足|PA|=|PB|,求直线l的方程;(2)T为直线x=-3上任意一点,过点F1作TF1的垂线,交椭圆C1于M,N 两点,求的最小值.21.(本小题满分12分)已知函数f(x)=e x(sin x-ax2+2a-e),其中a∈R,e=2.718 18…为自然对数的底数.(1)当a=0时,讨论函数f(x)的单调性;(2)当≤a≤1时,求证:对任意的x∈[0,+∞),f(x)<0.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.(本小题满分10分)选修4-4:坐标系与参数方程在平面直角坐标系xOy中,已知曲线C的参数方程为(α为参数),以直角坐标系原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标轴方程为ρcos(θ-)=2.(1)求曲线C的普通方程与直线l的直角坐标方程;(2)设点P为曲线C上的动点,求点P到直线l距离的最大值及其对应的点P的直角坐标.23.(本小题满分10分)选修4-5:不等式选讲已知函数f(x)=|2x-1|.(1)若不等式f(x+)≤2m+1(m>0)的解集为[-,],求实数m的值;(2)若不等式f(x)≤|y|+|a-y|+|2x|,对任意的实数x,y都成立,求正实数a的最小值.仿真冲刺卷(三)1.C 由2x2-3x≤0,解得0≤x≤,所以A={0,1}.由1≤2x<32可得0≤x<5.所以B={0,1,2,3,4}.因为集合C满足A⊂C⊆B,所以C={0,1,2},{0,1,3},{0,1,4},{0,1,2,3},{0,1,2,4},{0,1,3,4},{0, 1,2,3,4}.则C的个数为7.故选C.2.B e-4i=cos(-4)+isin(-4),因为cos(-4)=cos[π+(4-π)]=-cos(4-π)<0,sin(-4)=-sin [π+(4-π)]=sin(4-π)>0,所以e-4i表示的复数在复平面中位于第二象限.故选B.3.D 对于A,1月至8月空气合格天数超过20天的月份有1月、2月、6月、7月、8月,共5个,故A正确;对于B,第一季度合格天数的比重为≈0.736 3,第二季度合格天数的比重为≈0.626 4,所以第二季度与第一季度相比,空气达标天数的比重下降了,故B正确;对于C,8月空气质量合格的天数达到30天,是空气质量最好的一个月,故C正确;对于D,5月空气质量合格天数只有13天,5月份的空气质量最差,故D 错误.故选D.4.A a=(-cos x)dx=-sin x|=-1,则(ax+)9=(-x-)9=-(x+)9,(x+)9的通项公式T r+1=x9-r()r=()r x9-2r,令9-2r=3,得r=3,所以x3项的系数为-()3=-,故选A.5.A 依题意知圆心到渐近线bx+ay=0的距离d==2,所以b2=a2,所以c2=a2,所以e==,故选A.6.B 由三视图知此三棱锥的直观图如图所示,∠ACB=90°,AC=5,BC=4,PD⊥平面ABC于D,且D在AC上,AD=2,DC=3,PD=4.从而可得PC⊥BC,所以PC=5,AP=2,PB=AB=.所以S△ABC=S△APC=S△PBC=×5×4=10.所以S△APB=×2×=6,所以此三棱锥的表面积为S=30+6.故选B.7.A 秦九韶算法的过程是(k=1,2,…,n),这个过程用循环结构来实现,应在题图中的空白执行框内填入v=vx+a i,选A. 8.A 因为=-,由余弦定理可得=-3×, 化简得2a2+b2=c2,所以cos A===≥=,当且仅当c=b时取等号,因为A∈(0,π),所以角A的最大值是.故选A.9.C 因为OA=OC,D是AC的中点,所以AC⊥OD,又PO⊥底面☉O,AC⊂底面☉O,所以AC⊥PO,而OD,PO是平面POD内的两条相交直线,所以AC⊥平面POD,又AC⊂平面PAC,所以平面POD⊥平面PAC.在平面POD中,过O作OH⊥PD于H,则OH⊥平面PAC.连接CH,则CH是OC在平面POD上的射影,所以∠OCH是直线OC和平面PAC所成的角,在Rt△ODA中,OD=OA·sin 30°=,在Rt△POD中,OH==,在Rt△OHC中,sin∠OCH==,故直线OC和平面PAC所成角的正弦值为.故选C.10.B 设椭圆标准方程为+=1(a>b>0),设P(x,y),点P在以OA为直径的圆上.圆的方程为(x-)2+y2=()2,化简为x2-ax+y2=0,由消去y并整理得(b2-a2)x2+a3x-a2b2=0.则x=,因为0<x<a,所以0<<a,可得<e<1,故选B.11.C将Rt△ABC放入坐标系中(如图),则C(0,4),B(3,0),因为=λ+μ(λ>0,μ>0),所以λ+μ=1.则1=λ+μ≥2,即λμ≤,当且仅当λ=μ=时取等号,此时=λ+μ=+=(3,0)+(0,4)=(,2),则||==,故选C.12.D 因为g(x)=2x3-3x2+,所以g′(x)=6x2-6x,g″(x)=12x-6,由g″(x)=0,得x=,又g()=2×()3-3×()2+=0,所以函数g(x)的图象关于点(,0)对称,所以g(x)+g(1-x)=0,所以g()+g()+…+g()=49×0+g()=g()=0.故选D. 13.解析:画出不等式组对应的平面区域,如图所示,z=y-()x,即y=()x+z,由图象可知当曲线y=()x+z经过点A(1,1)时,z取得最大值,即z=y-()x=1-=.答案:14.解析:因为0<x<,且sin(2x-)=-,所以-<2x-<0,cos(2x-)==,则sin2x=sin[(2x-)+]=[sin(2x-)+cos(2x-)]=×(-+)=, 则sin x+cos x====.答案:15.解析:因为函数f(x)与g(x)的图象关于直线y=x+1对称, (1,4)点与(3,2)点关于直线y=x+1对称,所以若g(1)=4,则f(3)=2,因为f(x)为奇函数,所以f(-3)=-f(3)=-2.答案:-216.解析: 如图,对于①,若△DMN为直角三角形,则∠MDN为直角,但MN的最大值为BC1,而此时DM,DN的长大于BB1,则DM2+DN2>2B=B.即∠MDN为锐角,所以△DMN不可能为直角三角形,故错误;对于②,当M,N分别在BB1,CC1上运动时,△A1DM的面积不变,N到平面A1DM的距离不变,所以三棱锥N A1DM的体积不变,即三棱锥A1DMN的体积为定值,故正确;对于③,当M,N分别在BB1,CC1上运动时,若满足BM=C1N,则线段MN必过正方形BCC1B1的中心O,而DO⊥平面BCC1B1,所以平面DMN⊥平面BCC1B1,故正确;对于④,当M,N分别为BB1,CC1中点时,平面DMN与平面ABC所成的角为0,当M与B重合,N与C1重合时,平面DMN与平面ABC所成的锐二面角最大,为∠C1BC=.因此平面DMN与平面ABC所成的锐二面角范围为(0,],故正确,所以正确的是②③④.答案:②③④17.解:(1)因为2S n=+a n,所以2S n+1=+a n+1,所以2S n+1-2S n=(+a n+1)-(+a n),即(a n+1+a n)(a n+1-a n-1)=0.因为a n>0,所以a n+1+a n>0,所以a n+1-a n=1.令n=1,则2S1=+a1,所以a1=1或a1=0(舍去).所以数列{a n}是以1为首项,以1为公差的等差数列,所以a n=a1+(n-1)d=n,n∈N*,即a n=n.(2)由(1)知,b n=(-1)n=(-1)n(+),所以数列{b n}的前2 016项的和为T n=b1+b2+…+b2 016=-(1+)+(+)-(+)+…-(+)+(+)=-1-++--+…--++=-1+=-.18.(1)证明:连接AC,设AC∩BD=O,连接OF,因为平面ABCD⊥平面BCF,且交线为BC,∠BCF=90°,所以CF⊥平面ABCD,CF⊥BD,又BD⊥AC,则BD⊥平面OCF,所以BD⊥OF,又BO=DO,所以BF=DF.(2)解:过点D作DG⊥BC于点G,连接GF,因为平面ABCD⊥平面BCF,即直线DF与平面BCF所成角为∠DFG=45°,不妨设BC=2,则DG=,过点G在BCF内作CF的平行线GH,则GH⊥平面ABCD,以点G为原点,分别以GH,GC,GD所在直线为x,y,z轴,建立空间直角坐标系,因为∠DFG=45°,所以GF=,CF=,则A(0,-2,),B(0,-1,0),C(0,1,0),F(,1,0),所以=(,3,-),=(,2,0),=(,0,0).设平面ABF的法向量为m=(x,y,z),则即取y=-1,得m=(,-1,-),同理可得平面AFC的法向量为n=(0,1,),所以cos<m,n>===-,由图可知二面角B AF C是锐角,因此其余弦值为.19.解:(1)芯片甲为合格品的概率约为=, 芯片乙为合格品的概率约为=.(2)①随机变量X的所有取值为90,45,30,-15.则P(X=90)=×=;P(X=45)=×=;P(X=30)=×=;P(X=-15)=×=.所以,随机变量X的分布列为E(X)=90×+45×+30×+(-15)×=66.②设生产的5件芯片乙中合格品n件,则次品有5-n件.依题意,得 50n-10(5-n)≥140,解得n≥.所以 n=4或n=5.设“生产5件芯片乙所获得的利润不少于140元”为事件A, 则P(A)=()4×+()5=.20.解:(1)由抛物线C2:y2=8x得F2(2,0),当直线l斜率不存在时,x=2,满足题意.当直线l斜率存在时,设l:y=k(x-2)(k≠0),A(x1,y1),B(x2,y2), 由得k2x2-(4k2+8)x+4k2=0,所以x1+x2=,y1+y2=k(x1+x2)-4k=.设AB的中点为G,则G(,),因为|PA|=|PB|,所以PG⊥l,k PG·k=-1,所以×k=-1,解得k=±,则y=±(x-2),所以直线l的方程为y=±(x-2)或x=2.(2)因为F2(2,0),所以F1(-2,0),b2=6-4=2,C1:+=1,设T点的坐标为(-3,m),则直线TF1的斜率==-m,当m≠0时,直线MN的斜率k MN=,直线MN的方程是x=my-2,当m=0时,直线MN的方程是x=-2,也符合x=my-2的形式,所以直线MN的方程是x=my-2.设M(x3,y3),N(x4,y4),由得(m2+3)y2-4my-2=0,所以y3+y4=,y3y4=-,|TF1|=,|MN|===,所以==≥,当且仅当m2+1=,即m=±1时,等号成立,此时取得最小值.21.(1)解:当a=0时,f(x)=e x(sin x-e),则f′(x)=e x(sin x-e)+e x cos x=e x(sin x-e+cos x),因为sin x+cos x=sin(x+)≤<e,所以sin x+cos x-e<0 ,故f′(x)<0 ,则f(x)在R上单调递减.(2)证明:当x≥0时,y=e x≥1,要证明对任意的x∈[0,+∞),f(x)<0,只需要证明对任意的x∈[0,+∞),sin x-ax2+2a-e<0.设g(a)=sin x-ax2+2a-e=(-x2+2)a+sin x-e,看作以a为变量的一次函数,要使sin x-ax2+2a-e<0,则即因为sin x+1-e<0恒成立,所以①恒成立,对于②,令h(x)=sin x-x2+2-e,则h′(x)=cos x-2x,设x=t时,h′(x)=0,即cos t-2t=0.所以t=<,sin t<sin =,所以在(0,t)上,h′(x)>0,h(x)单调递增,在(t,+∞)上,h′(x)<0,h(x)单调递减,则当x=t时,函数h(x)取得最大值h(t)=sin t-t2+2-e=sin t-()2+2-e=sin t-+2-e=sin2t+sin t+-e=(+1)2+-e<()2+-e=-e<0,故②式成立,综上可知对任意的x∈[0,+∞),f(x)<0.22.解:(1)曲线C的参数方程为(α为参数)则曲线C的普通方程为+=1,直线l的极坐标轴方程为ρcos(θ-)=2,展开为(ρcos θ+ρsin θ)=2,ρcos θ+ρsin θ=4,所以直线l的直角坐标方程为x+y=4.(2)设点P的坐标为(2cos α,sin α),得P到直线l的距离d=,令sin ϕ=,cos ϕ=,则d=,显然当sin(α+ϕ)=-1时,d max=.此时α+ϕ=2kπ+,k∈Z.所以cos α=cos(2kπ+-ϕ)=-sin ϕ=-.sin α=sin(2kπ+-ϕ)=-cos ϕ=-,即P的直角坐标为(-,-).23.解:(1)不等式f(x+)≤2m+1(m>0)的解集为[-,],也就是不等式|2x|≤2m+1(m>0)的解集为[-,],由|2x|≤2m+1,可得-m-≤x≤m+,所以m+=,所以m=1.(2)若不等式f(x)≤|y|+|a-y|+|2x|,对任意的实数x,y都成立,即|2x-1|-|2x|≤|y|+|a-y|恒成立,因为(|2x-1|-|2x|)max=1,(|y|+|a-y|)min=a,所以a≥1,所以正实数a的最小值为1.。

2019年最新高三题库 高考二轮复习仿真冲刺试卷:数学理科试卷三

2019年最新高三题库 高考二轮复习仿真冲刺试卷:数学理科试卷三

3高考百天仿真冲刺卷数 学(理) 试 卷(三)第Ⅰ卷(选择题 共40分)一、本大题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

(1)“2x >”是“24x >”的(A )充分非必要条件 (B )必要非充分条件(C )充要条件 (D )既不充分也不必要条件(2)已知数列{}n a 为等差数列,且12a =,2313a a +=,那么则456a a a ++等于(A )40 (B )42(C )43 (D )45(3)已知函数()f x 对任意的x ∈R 有()()0f x f x +-=,且当0x >时,()ln(1)f x x =+,则函数()f x 的大致图像为(A ) (B ) (C ) (D )(4)已知平面上不重合的四点P ,A ,B ,C 满足0PA PB PC ++=,且AB AC mAP +=,那么实数m 的值为(A )2 (B )3(C )4 (D )5(5)若右边的程序框图输出的S 是126,则条件①可为(A )5n ≤ (B )6n ≤(C )7n ≤ (D )8n ≤ (6)已知(,)2απ∈π,1tan()47απ+=,那么ααcos sin +的值为 (A )51- (B )57 (C )57- (D )43 (7)已知函数31)21()(x x f x -=,那么在下列区间中含有函数)(x f 零点的是(A ))31,0( (B ))21,31( (C ))32,21( (D ))1,32( (8)空间点到平面的距离定义如下:过空间一点作平面的垂线,这个点和垂足之间的距离叫做这个点到这个平面的距离.已知平面α,β,γ两两互相垂直,点A ∈α,点A 到β,γ的距离都是3,点P 是α上的动点,满足P 到β的距离是P 到点A 距离的2倍,则点P 的轨迹上的点到γ的距离的最小值是。

全国高考2019届高三仿真试卷理科数学(二)

全国高考2019届高三仿真试卷理科数学(二)

1全国高考2019届高三仿真试卷理 科 数 学(二)本试题卷共8页,23题(含选考题),分选择题和非选择题两部分。

全卷满分150分。

考试用时120分钟。

★祝考试顺利★注意事项:1、考试范围:高考范围。

2、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。

用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。

3、选择题的作答:每个小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。

4、主观题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域的答案一律无效。

如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

5、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。

答案用0.5毫米黑色签字笔写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非选修题答题区域的答案一律无效。

6、保持卡面清洁,不折叠,不破损,不得使用涂改液、胶带纸、修正带等。

7、考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。

一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}2|230A x x x =--≥,{}2|4B x x =≤,则A B =( )A .[]2,1--B .[)1,2-C .[]1,1-D .[)1,2 2.i 为虚数单位,复数2ii 1z =-在复平面内对应的点所在象限为( )A .第二象限B .第一象限C .第四象限D .第三象限 3.甲乙两名同学6次考试的成绩统计如下图,甲乙两组数据的平均数分别为甲x 、乙x ,标准差分别为,甲乙σσ,则( )A .甲乙x x <,甲乙σσ<B .甲乙x x <,甲乙σσ>C .甲乙x x >,甲乙σσ<D .甲乙x x >,甲乙σσ> 4.已知函数()324x f x x =+,则()f x 的大致图象为( ) A . B . C . D . 5.已知向量)=a ,()0,1=-b,(k =c ,若()2-⊥a b c ,则k 等于( ) A. B .2 C .3- D .1 6.已知函数()()2sin f x x ωϕ=+,()0,0ωϕ><<π的部分图像如图所示,则ω,ϕ的值分别是( )2A .31,4πB .2,4πC .34ππ, D .24ππ,7.若过点()2,0有两条直线与圆222210x y x y m +-+++=相切,则实数m 的取值范围是( )A .(),1-∞-B .()1,-∞+C .()1,0-D .()1,1-8.运行如图所示的程序框图,若输出的S 的值为21-,则判断框中可以填( )A .64?a <B .64?a ≤C .128?a <D .128?a ≤9.抛物线()2:20E y px p =>的焦点为F ,点()0,2A ,若线段AF 的中点B 在抛物线上,则BF =( )A .54B .52 CD10.将半径为3,圆心角为23π的扇形围成一个圆锥,则该圆锥的内切球的体积为( )ABC .43πD .2π 11.ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,且sin 1sin sin A b B C a c +=++,则C 为( ) A .6π B .3π C .23π D .56π 12.已知可导函数()f x 的定义域为(),0-∞,其导函数()f x '满足()()20xf x f x -'>,则不等式()()()22017201710f x x f +-+-<的解集为( ) A .(),2018-∞- B .()2018,2017-- C .()2018,0- D .()2017,0- 二、填空题(本大题有4小题,每小题5分,共20分.请把答案填在题中横线上) 13.已知实数x ,y 满足约束条件2060 230x y x y x y -≥⎧⎪⎨+-≤-≤⎪⎩-,则23z x y =-的最小值是_____. 14.春节期间,某销售公司每天销售某种取暖商品的销售额y (单位:万元)与当天的平均气温x (单位:℃)有关.现收集了春节期间这个销售公司4天的x 与y 的数据列于下表:根据以上数据,求得y 与x 之间的线性回归方程y b x a =+的系数125b =-, 则a =________. 15.已知某三棱柱的三视图如图所示,那么该三棱柱最大侧面的面积为__________.316.在直角坐标系xOy 中,如果相异两点(),A a b ,(),B a b --都在函数()y f x =的图象上,那么称A ,B 为函数()f x 的一对关于原点成中心对称的点(A ,B 与B ,A 为同一对)函数()6sin 0 2log 0x x f x x x π⎧≤⎪=⎨⎪>⎩的图象上有____________对关于原点成中心对称的点.三、解答题(本大题有6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(12分)已知数列{}n a 的前n 项和n S 满足()2*2n n nS n +=∈N .(1)求数列{}n a 的通项公式;(2)设()*3n a n n b a n =⋅∈N ,求数列{}n b 的前n 项和n T .18.(12分)某少儿游泳队需对队员进行限时的仰卧起坐达标测试.已知队员的测试分数错误!未找到引用源。

2019届高考数学二轮复习仿真冲刺卷三理

2019届高考数学二轮复习仿真冲刺卷三理

仿真冲刺卷(三)(时间:120分钟满分:150分)第Ⅰ卷一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知i是虚数单位,若a+bi=-(a,b∈R),则a+b的值是( )(A)0 (B)-i (C)- (D)2.设集合A={-1,0,1,2,3},B={x||x|≤2},则A∩B等于( )(A){-1,0,1,2} (B){-2,-1,0,1,2} (C){0,1,2} (D){1,2}3.已知a=log35,b=log30.6,c=0.21.2,则( )(A)b<c<a (B)a<c<b (C)c<b<a (D)a<b<c4.如图是近三年某市生产总值增速(累计,%)的折线统计图,据该市统计局初步核算,2018年一季度全区生产总值为1 552.38亿元,与去年同一时期相比增长12.9%(如图,折线图中其他数据类同).根据统计图得出正确判断是( )第4题图(A)近三年该市生产总值为负增长(B)近三年该市生产总值为正增长(C)该市生产总值2016年到2017年为负增长,2017年到2018年为正增长(D)以上判断都不正确5.甲、乙、丙三人站到共有7级的台阶上,若每级台阶最多站2人,同一级台阶上的人不区分站的位置,则不同的站法种数是( )(A)258 (B)306 (C)336 (D)2966.设α∈(0,),β∈(0,),且tan β=,则( )(A)2β-α=(B)α-2β=(C)α+2β=(D)2α+β=7.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,俯视图中的两条曲线均为圆弧,则该几何体的体积为( )第7题图(A)64- (B)64-8π (C)64- (D)64-8.已知函数f(x)=2x-1,g(x)=1-x2,规定:当|f(x)|≥g(x)时,h(x)= |f(x)|;当|f(x)|<g(x)时,h(x)=-g(x),则h(x)( )(A)有最小值-1,最大值1 (B)有最大值1,无最小值(C)有最小值-1,无最大值(D)有最大值-1,无最小值9.如果实数x,y满足关系又≥λ恒成立,则λ的取值范围为( )(A)(-∞,] (B)(-∞,3](C)[,+∞) (D)(3,+∞)10.定义[x]表示不超过x的最大整数,(x)=x-[x],例如[2.1]=2,(2.1) =0.1,执行如图所示的程序框图,若输入的x=5.8,则输出的z等于( )第10题图(A)-1.4 (B)-2.6(C)-4.6 (D)-2.811.已知双曲线-=1(a>0,b>0)与抛物线y2=2px(p>0)有相同的焦点F,且双曲线的一条渐近线与抛物线的准线交于点M(-3,t),|MF|=,则双曲线的离心率为( )(A)(B)(C)(D)12.(2018·湖南联考)已知函数f(x)是定义在R上的奇函数,其导函数为f′(x),若对任意的正实数x,都有xf′(x)+2f(x)>0恒成立,且f()=1,则使x2f(x)<2成立的实数x的集合为( )(A)(-∞,-)∪(,+∞) (B)(-,)(C)(-∞,) (D)(,+∞)第Ⅱ卷本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生必须作答.第22,23题为选考题,考生根据要求作答.二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)13.以抛物线y2=4x的焦点为圆心,与该抛物线的准线相切的圆的标准方程为.14.在三棱锥P ABC中,侧棱PA,PB,PC两两垂直,PA=1,PB=2,PC=3,则三棱锥的外接球的表面积为.15.在△ABC中,a,b,c分别是内角A,B,C的对边,且B为锐角,若=,sin B=,S△ABC=,则b的值为.16.(2018·北京东城区二模)已知函数f(x)=若关于x的方程f(x+T)=f(x)有且仅有3个不同的实根,则实数T的取值范围是.三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分12分)已知数列{a n}的前n项和为S n,a1=2,且满足a n+1=S n+2n+1(n∈N*).(1)证明数列{}为等差数列;(2)求S1+S2+…+S n.18.(本小题满分12分)如图,在直角梯形ABCD中,AD∥BC,∠ADC=90°,AE⊥平面ABCD,EF∥CD,BC=CD=AE=EF=AD=1.(1)求证:CE∥平面ABF;(2)在直线BC上是否存在点M,使二面角E MD A的大小为?若存在,求出CM的长;若不存在,请说明理由.19.(本小题满分12分)(2018·孝义模拟)某餐厅通过查阅了最近5次食品交易会参会人数x(万人)与餐厅所用原材(1)根据所给5组数据,求出y关于x的线性回归方程y=x+;(2)已知购买原材料的费用C(元)与数量t(袋)的关系为C= 投入使用的每袋原材料相应的销售收入为700元,多余的原材料只能无偿返还,据悉本次交易大会大约有15万人参加,根据(1)中求出的线性回归方程,预测餐厅应购买多少袋原材料,才能获得最大利润,最大利润是多少?(注:利润L=销售收入-原材料费用)参考公式:==,=-.参考数据:x i y i=1 343,=558,=3 237.20.(本小题满分12分)(2018·安庆一中模拟)已知椭圆C:+=1(a>b>0)的左、右焦点分别是E,F,离心率e=,过点F的直线交椭圆C于A,B两点,△ABE的周长为16.(1)求椭圆C的方程;(2)已知O为原点,圆D:(x-3)2+y2=r2(r>0)与椭圆C交于M,N两点,点P为椭圆C上一动点,若直线PM,PN与x轴分别交于G,H两点,求证: |OG|·|OH|为定值.21.(本小题满分12分)已知函数f(x)=ln x-ax2-2x(a<0).(1)若函数f(x)存在单调递减区间,求a的取值范围;(2)若a=-且关于x的方程f(x)=-x+b在[1,4]上恰有两个不相等的实数根,求实数b的取值范围.请考生在第22,23题中任选一题作答,如果多做,则按所做的第一题计分.22.(本小题满分10分)选修44:坐标系与参数方程(2018·宜昌调研)在极坐标系中,已知圆C的极坐标方程为ρ=4cos θ,以极点为原点,极轴方向为x轴正半轴方向,利用相同单位长度建立平面直角坐标系,直线l的参数方程为(t为参数).(1)写出圆C的直角坐标方程和直线l的普通方程;(2)已知点M(,0),直线l与圆C交于A,B两点,求||MA|-|MB||的值.23.(本小题满分10分)选修45:不等式选讲设函数f(x)=|2x-1|-|x+2|.(1)解不等式f(x)>0;(2)若∃x0∈R,使得f(x0)+2m2<4m,求实数m的取值范围.1.D 因为a+bi=-==,所以a=,b=0,a+b=.2.A 因为集合A={-1,0,1,2,3},B={x||x|≤2}={x|-2≤x≤2},所以A∩B={-1,0,1,2}.故选A.3.A 由题意得a=log35>1,b=log30.6<0,0<c=0.21.2<1,所以b<c<a.选A.4.B 由折线统计图可知,增长率都是大于0的,故近三年该市生产总值为正增长,故选B.5.C 若7级台阶上每一级至多站1人,有种不同的站法;若1级台阶站2人,另一级站1人,共有种不同的站法.所以共有不同的站法种数是+=336.故选C.6.C 因为tan β==,所以cos αcos β=sin β+sin αsin β,所以cos αcos β-sin αsin β=sin β,即cos(α+β)=sin β=cos(-β).因为α,β∈(0,),所以α+β=-β,所以α+2β=.7.C 根据三视图画出该几何体的直观图.该几何体是一个棱长为4的正方体切去一个圆柱和一个圆锥.圆锥、圆柱底面半径为2,高为4.所以V=43-(4×22π+×22π×4)=64-π.故选C.8.C 作出函数g(x)=1-x2和函数|f(x)|=|2x-1|的图象如图1所示,得到函数h(x)的图象如图2所示,由图象得出函数h(x)有最小值-1,无最大值.9.A 设z==2+,z的几何意义是区域内的点到D(3,1)的斜率值加2,作出实数x,y满足关系对应的平面区域如图:由图形,可得C(,),由图象可知,直线CD的斜率最小值为=-,所以z的最小值为,所以λ的取值范围是(-∞,].故选A.10.C 模拟程序的运行,可得x=5.8,y=5-1.6=3.4,x=5-1=4;满足条件x≥0,执行循环体,x=1.7,y=1-1.4=-0.4,x=1-1=0;满足条件x≥0,执行循环体,x=-0.2,y=-1-1.6=-2.6,x=-1-1=-2;不满足条件x≥0,退出循环,z=-2+(-2.6)=-4.6.输出z的值为-4.6.故选C.11.C 由题意可知,抛物线y2=2px(p>0)的焦点坐标为F(,0),准线方程为x=-,由M在抛物线的准线上,则-=-3,则p=6,则焦点坐标为F(3,0),所以|MF|==,则t2=,解得t=±,双曲线的渐近线方程是y=±x,将M代入渐近线的方程=3×,即=,则双曲线的离心率为e===,故选C.12.C 构造函数g(x)=x2f(x),当x>0时,依题意有g′(x)=x[xf′(x)+2f(x)]>0,所以函数g(x)在x>0上是增函数,由f(x)是奇函数,可知g(x)也是R上的奇函数,故g(x)在x<0时,也为增函数,且g(0) =0,g()=2f()=2,所以不等式x2f(x)<2⇔g(x)<g(),根据单调性有x<,故选C.13.解析:抛物线y2=4x的焦点为(1,0),准线为x=-1,故所求圆的圆心为(1,0),半径为2,所以该圆的标准方程为(x-1)2+y2=4.答案:(x-1)2+y2=414.解析:由题知,三棱锥P ABC的外接球的直径为=,则球的表面积为4π()2=14π.答案:14π15.解析:由正弦定理知==.所以a= c.又sin B=,则由S△ABC=acsin B=×c×c×==.故c2=4,则c=2.此时a=5.由sin B=及B为锐角知cos B=.由余弦定理得b2=a2+c2-2accos B=14.故b=.答案:16.解析:化简函数f(x)的表达式,得f(x)=作出f(x)的图象如图所示.因为关于x的方程f(x+T)=f(x)有且仅有3个不同的实根,所以将f(x)的图象向左或向右平移|T|个单位后与原图象有3个交点,所以2<|T|<4,即-4<T<-2或2<T<4.答案:(-4,-2)∪(2,4)17.(1)证明:由条件可知,S n+1-S n=S n+2n+1,即S n+1-2S n=2n+1,整理得-=1,所以数列{}是以1为首项,1为公差的等差数列.(2)解:由(1)可知,=1+n-1=n,即S n=n·2n,令T n=S1+S2+…+S n=1·2+2·22+…+n·2n, ①2T n=1·22+…+(n-1)·2n+n·2n+1, ②①-②得-T n=2+22+…+2n-n·2n+1,整理得T n=2+(n-1)·2n+1.18.(1)证明:如图(1),作FG∥EA,AG∥EF,连接EG交AF于点H,连接BH,BG.因为EF∥CD且EF=CD,所以AG∥CD,即点G在平面ABCD内.由AE⊥平面ABCD,知AE⊥AG,所以四边形AEFG为正方形,四边形CDAG为矩形,所以H为EG的中点,B为CG的中点,所以BH∥CE.因为BH⊂平面ABF,CE⊄平面ABF,所以CE∥平面ABF.(2)解:存在.求解过程如下:如图(2),以A为原点,AG为x轴,AD为y轴,AE为z轴,建立空间直角坐标系,则A(0,0,0),E(0,0,1),D(0,2,0).设M(1,y0,0),所以=(0,2,-1),=(1,y0-2,0).设平面EMD的法向量为n=(x,y,z),则令y=1,得z=2,x=2-y0,所以n=(2-y0,1,2).又因为AE⊥平面AMD,所以=(0,0,1)为平面AMD的一个法向量,所以|cos<n,>|==cos =,解得y0=2±.故在直线BC上存在点M,使二面角E MD A的大小为,且CM=|2-(2±)|=.19.解:(1)由所给数据可得==10.4,==25,===2.5,=-=25-2.5×10.4=-1,则y关于x的线性回归方程为y=2.5x-1.(2)由(1)中求出的线性回归方程知,当x=15时,y=36.5,即预计需要原材料36.5袋,因为C=当t=35时,利润L=700×35-(400×35-20)=10 520;当t=36时,利润L=700×36-380×36=11 520,当t=37时,利润L=700×36.5-380×37=11 490.综上所述,餐厅应该购买36袋原材料,才能使利润获得最大,最大利润为11 520元.20.(1)解:由题意得4a=16,则a=4,由=,解得c=,则b2=a2-c2=9,所以椭圆C的方程为+=1.(2)证明:由条件可知,M,N两点关于x轴对称,设M(x1,y1),P(x0,y0),则N(x1,-y1),由题可知,+=1,+=1,所以=(9-),=(9-).又直线PM的方程为y-y0=(x-x0),令y=0得点G的横坐标x G=,同理可得H点的横坐标x H=.所以|OG|·|OH|=16,即|OG|·|OH|为定值.21.解:(1)对函数求导数,得f′(x)=-(x>0),依题意,得f′(x)<0在(0,+∞)上有解,即ax2+2x-1>0在x>0时有解.所以Δ=4+4a>0且方程ax2+2x-1=0至少有一个正根.再结合a<0,得-1<a<0.(2)a=-时,f(x)=-x+b,即x2-x+ln x-b=0.设g(x)=x2-x+ln x-b,则g′(x)=,所以当x∈(0,1)时,g′(x)>0;当x∈(1,2)时,g′(x)<0;当x∈(2,4)时,g′(x)>0.得函数g(x)在(0,1)和(2,4)上是增函数,在(1,2)上是减函数,所以g(x)的极小值为g(2)=ln 2-b-2;g(x)的极大值为g(1)=-b-, g(4)=-b-2+2ln 2; 因为方程g(x)=0在[1,4]上恰有两个不相等的实数根,所以解之得ln 2-2<b≤-.22.解:(1)由ρ=4cos θ得ρ2=4ρcos θ,化为直角坐标方程为x2+y2=4x,所以圆C的直角坐标方程为x2+y2-4x=0.由消去t得x-y-=0,所以直线l的普通方程为2x-2y-1=0.(2)显然直线l过点M(,0),将代入圆C的直角坐标方程x2+y2-4x=0得t2-t-=0,则t1+t2=,t1t2=-<0,根据直线参数方程中参数的几何意义知||MA|-|MB||=||t1|-|t2||=|t1+t2|=.23.解:(1)不等式f(x)>0,即|2x-1|>|x+2|, 即4x2-4x+1>x2+4x+4,3x2-8x-3>0,解得x<-或x>3.所以不等式f(x)>0的解集为{x|x<-或x>3}.(2)f(x)=|2x-1|-|x+2|=故f(x)的最小值为f()=-,因为∃x0∈R,使得f(x0)+2m2<4m,所以4m-2m2>-,解得-<m<.即m的取值范围为(-,).。

2019届高考数学(理)二轮复习仿真冲刺卷三(含答案)

2019届高考数学(理)二轮复习仿真冲刺卷三(含答案)

仿真冲刺卷(三)(时间:120分钟满分:150分)第Ⅰ卷一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知i是虚数单位,若a+bi=-(a,b∈R),则a+b的值是( )(A)0 (B)-i (C)- (D)2.设集合A={-1,0,1,2,3},B={x||x|≤2},则A∩B等于( )(A){-1,0,1,2} (B){-2,-1,0,1,2} (C){0,1,2} (D){1,2}3.已知a=log35,b=log30.6,c=0.21.2,则( )(A)b<c<a (B)a<c<b (C)c<b<a (D)a<b<c4.如图是近三年某市生产总值增速(累计,%)的折线统计图,据该市统计局初步核算,2018年一季度全区生产总值为1 552.38亿元,与去年同一时期相比增长12.9%(如图,折线图中其他数据类同).根据统计图得出正确判断是( )第4题图(A)近三年该市生产总值为负增长(B)近三年该市生产总值为正增长(C)该市生产总值2016年到2017年为负增长,2017年到2018年为正增长(D)以上判断都不正确5.甲、乙、丙三人站到共有7级的台阶上,若每级台阶最多站2人,同一级台阶上的人不区分站的位置,则不同的站法种数是( )(A)258 (B)306 (C)336 (D)2966.设α∈(0,),β∈(0,),且tan β=,则( )(A)2β-α=(B)α-2β=(C)α+2β=(D)2α+β=7.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,俯视图中的两条曲线均为圆弧,则该几何体的体积为( )第7题图(A)64- (B)64-8π (C)64- (D)64-8.已知函数f(x)=2x-1,g(x)=1-x2,规定:当|f(x)|≥g(x)时,h(x)= |f(x)|;当|f(x)|<g(x)时,h(x)=-g(x),则h(x)( )(A)有最小值-1,最大值1 (B)有最大值1,无最小值(C)有最小值-1,无最大值(D)有最大值-1,无最小值9.如果实数x,y满足关系又≥λ恒成立,则λ的取值范围为( )(A)(-∞,] (B)(-∞,3](C)[,+∞) (D)(3,+∞)10.定义[x]表示不超过x的最大整数,(x)=x-[x],例如[2.1]=2,(2.1) =0.1,执行如图所示的程序框图,若输入的x=5.8,则输出的z等于( )第10题图(A)-1.4 (B)-2.6(C)-4.6 (D)-2.811.已知双曲线-=1(a>0,b>0)与抛物线y2=2px(p>0)有相同的焦点F,且双曲线的一条渐近线与抛物线的准线交于点M(-3,t),|MF|=,则双曲线的离心率为( )(A)(B)(C)(D)12.(2018·湖南联考)已知函数f(x)是定义在R上的奇函数,其导函数为f′(x),若对任意的正实数x,都有xf′(x)+2f(x)>0恒成立,且f()=1,则使x2f(x)<2成立的实数x的集合为( )(A)(-∞,-)∪(,+∞) (B)(-,)(C)(-∞,) (D)(,+∞)第Ⅱ卷本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生必须作答.第22,23题为选考题,考生根据要求作答.二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)13.以抛物线y2=4x的焦点为圆心,与该抛物线的准线相切的圆的标准方程为.14.在三棱锥P ABC中,侧棱PA,PB,PC两两垂直,PA=1,PB=2,PC=3,则三棱锥的外接球的表面积为.15.在△ABC中,a,b,c分别是内角A,B,C的对边,且B为锐角,若=,sin B=,S△ABC=,则b的值为.16.(2018·北京东城区二模)已知函数f(x)=若关于x的方程f(x+T)=f(x)有且仅有3个不同的实根,则实数T的取值范围是.三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分12分)已知数列{a n}的前n项和为S n,a1=2,且满足a n+1=S n+2n+1(n∈N*).(1)证明数列{}为等差数列;(2)求S1+S2+…+S n.18.(本小题满分12分)如图,在直角梯形ABCD中,AD∥BC,∠ADC=90°,AE⊥平面ABCD,EF∥CD,BC=CD=AE=EF=AD=1.(1)求证:CE∥平面ABF;(2)在直线BC上是否存在点M,使二面角E MD A的大小为?若存在,求出CM的长;若不存在,请说明理由.19.(本小题满分12分)(2018·孝义模拟)某餐厅通过查阅了最近5次食品交易会参会人数x(万人)与餐厅所用原材第一次第二次第三次第四次第五次参会人数x(万人) 13 9 8 10 12原材料y(袋) 32 23 18 24 28(1)根据所给5组数据,求出y关于x的线性回归方程y=x+;(2)已知购买原材料的费用C(元)与数量t(袋)的关系为C= 投入使用的每袋原材料相应的销售收入为700元,多余的原材料只能无偿返还,据悉本次交易大会大约有15万人参加,根据(1)中求出的线性回归方程,预测餐厅应购买多少袋原材料,才能获得最大利润,最大利润是多少?(注:利润L=销售收入-原材料费用)参考公式:==,=-.参考数据:x i y i=1 343,=558,=3 237.20.(本小题满分12分)(2018·安庆一中模拟)已知椭圆C:+=1(a>b>0)的左、右焦点分别是E,F,离心率e=,过点F的直线交椭圆C于A,B两点,△ABE的周长为16.(1)求椭圆C的方程;(2)已知O为原点,圆D:(x-3)2+y2=r2(r>0)与椭圆C交于M,N两点,点P为椭圆C上一动点,若直线PM,PN与x轴分别交于G,H两点,求证: |OG|·|OH|为定值.21.(本小题满分12分)已知函数f(x)=ln x-ax2-2x(a<0).(1)若函数f(x)存在单调递减区间,求a的取值范围;(2)若a=-且关于x的方程f(x)=-x+b在[1,4]上恰有两个不相等的实数根,求实数b的取值范围.请考生在第22,23题中任选一题作答,如果多做,则按所做的第一题计分.22.(本小题满分10分)选修44:坐标系与参数方程(2018·宜昌调研)在极坐标系中,已知圆C的极坐标方程为ρ=4cos θ,以极点为原点,极轴方向为x轴正半轴方向,利用相同单位长度建立平面直角坐标系,直线l的参数方程为(t为参数).(1)写出圆C的直角坐标方程和直线l的普通方程;(2)已知点M(,0),直线l与圆C交于A,B两点,求||MA|-|MB||的值.23.(本小题满分10分)选修45:不等式选讲设函数f(x)=|2x-1|-|x+2|.(1)解不等式f(x)>0;(2)若∃x0∈R,使得f(x0)+2m2<4m,求实数m的取值范围.1.D 因为a+bi=-==,所以a=,b=0,a+b=.2.A 因为集合A={-1,0,1,2,3},B={x||x|≤2}={x|-2≤x≤2},所以A∩B={-1,0,1,2}.故选A.3.A 由题意得a=log35>1,b=log30.6<0,0<c=0.21.2<1,所以b<c<a.选A.4.B 由折线统计图可知,增长率都是大于0的,故近三年该市生产总值为正增长,故选B.5.C 若7级台阶上每一级至多站1人,有种不同的站法;若1级台阶站2人,另一级站1人,共有种不同的站法.所以共有不同的站法种数是+=336.故选C.6.C 因为tan β==,所以cos αcos β=sin β+sin αsin β,所以cos αcos β-sin αsin β=sin β,即cos(α+β)=sin β=cos(-β).因为α,β∈(0,),所以α+β=-β,所以α+2β=.7.C 根据三视图画出该几何体的直观图.该几何体是一个棱长为4的正方体切去一个圆柱和一个圆锥.圆锥、圆柱底面半径为2,高为4.所以V=43-(4×22π+×22π×4)=64-π.故选C.8.C 作出函数g(x)=1-x2和函数|f(x)|=|2x-1|的图象如图1所示,得到函数h(x)的图象如图2所示,由图象得出函数h(x)有最小值-1,无最大值.9.A 设z==2+,z的几何意义是区域内的点到D(3,1)的斜率值加2,作出实数x,y满足关系对应的平面区域如图:由图形,可得C(,),由图象可知,直线CD的斜率最小值为=-,所以z的最小值为,所以λ的取值范围是(-∞,].故选A.10.C 模拟程序的运行,可得x=5.8,y=5-1.6=3.4,x=5-1=4;满足条件x≥0,执行循环体,x=1.7,y=1-1.4=-0.4,x=1-1=0;满足条件x≥0,执行循环体,x=-0.2,y=-1-1.6=-2.6,x=-1-1=-2;不满足条件x≥0,退出循环,z=-2+(-2.6)=-4.6.输出z的值为-4.6.故选C.11.C 由题意可知,抛物线y2=2px(p>0)的焦点坐标为F(,0),准线方程为x=-,由M在抛物线的准线上,则-=-3,则p=6,则焦点坐标为F(3,0),所以|MF|==,则t2=,解得t=±,双曲线的渐近线方程是y=±x,将M代入渐近线的方程=3×,即=,则双曲线的离心率为e===,故选C.12.C 构造函数g(x)=x2f(x),当x>0时,依题意有g′(x)=x[xf′(x)+2f(x)]>0,所以函数g(x)在x>0上是增函数,由f(x)是奇函数,可知g(x)也是R上的奇函数,故g(x)在x<0时,也为增函数,且g(0) =0,g()=2f()=2,所以不等式x2f(x)<2⇔g(x)<g(),根据单调性有x<,故选C.13.解析:抛物线y2=4x的焦点为(1,0),准线为x=-1,故所求圆的圆心为(1,0),半径为2,所以该圆的标准方程为(x-1)2+y2=4.答案:(x-1)2+y2=414.解析:由题知,三棱锥P ABC的外接球的直径为=,则球的表面积为4π()2=14π.答案:14π15.解析:由正弦定理知==.所以a= c.又sin B=,则由S△ABC=acsin B=×c×c×==.故c2=4,则c=2.此时a=5.由sin B=及B为锐角知cos B=.由余弦定理得b2=a2+c2-2accos B=14.故b=.答案:16.解析:化简函数f(x)的表达式,得f(x)=作出f(x)的图象如图所示.因为关于x的方程f(x+T)=f(x)有且仅有3个不同的实根,所以将f(x)的图象向左或向右平移|T|个单位后与原图象有3个交点,所以2<|T|<4,即-4<T<-2或2<T<4.答案:(-4,-2)∪(2,4)17.(1)证明:由条件可知,S n+1-S n=S n+2n+1,即S n+1-2S n=2n+1,整理得-=1,所以数列{}是以1为首项,1为公差的等差数列.(2)解:由(1)可知,=1+n-1=n,即S n=n·2n,令T n=S1+S2+…+S n=1·2+2·22+…+n·2n, ①2T n=1·22+…+(n-1)·2n+n·2n+1, ②①-②得-T n=2+22+…+2n-n·2n+1,整理得T n=2+(n-1)·2n+1.18.(1)证明:如图(1),作FG∥EA,AG∥EF,连接EG交AF于点H,连接BH,BG.因为EF∥CD且EF=CD,所以AG∥CD,即点G在平面ABCD内.由AE⊥平面ABCD,知AE⊥AG,所以四边形AEFG为正方形,四边形CDAG为矩形,所以H为EG的中点,B为CG的中点,所以BH∥CE.因为BH⊂平面ABF,CE⊄平面ABF,所以CE∥平面ABF.(2)解:存在.求解过程如下:如图(2),以A为原点,AG为x轴,AD为y轴,AE为z轴,建立空间直角坐标系,则A(0,0,0),E(0,0,1),D(0,2,0).设M(1,y0,0),所以=(0,2,-1),=(1,y0-2,0).设平面EMD的法向量为n=(x,y,z),则令y=1,得z=2,x=2-y0,所以n=(2-y0,1,2).又因为AE⊥平面AMD,所以=(0,0,1)为平面AMD的一个法向量,所以|cos<n,>|==cos =,解得y0=2±.故在直线BC上存在点M,使二面角E MD A的大小为,且CM=|2-(2±)|=.19.解:(1)由所给数据可得==10.4,==25,===2.5,=-=25-2.5×10.4=-1,则y关于x的线性回归方程为y=2.5x-1.(2)由(1)中求出的线性回归方程知,当x=15时,y=36.5,即预计需要原材料36.5袋,因为C=当t=35时,利润L=700×35-(400×35-20)=10 520;当t=36时,利润L=700×36-380×36=11 520,当t=37时,利润L=700×36.5-380×37=11 490.综上所述,餐厅应该购买36袋原材料,才能使利润获得最大,最大利润为11 520元.20.(1)解:由题意得4a=16,则a=4,由=,解得c=,则b2=a2-c2=9,所以椭圆C的方程为+=1.(2)证明:由条件可知,M,N两点关于x轴对称,设M(x1,y1),P(x0,y0),则N(x1,-y1),由题可知,+=1,+=1,所以=(9-),=(9-).又直线PM的方程为y-y0=(x-x0),令y=0得点G的横坐标x G=,同理可得H点的横坐标x H=.所以|OG|·|OH|=16,即|OG|·|OH|为定值.21.解:(1)对函数求导数,得f′(x)=-(x>0),依题意,得f′(x)<0在(0,+∞)上有解,即ax2+2x-1>0在x>0时有解.所以Δ=4+4a>0且方程ax2+2x-1=0至少有一个正根.再结合a<0,得-1<a<0.(2)a=-时,f(x)=-x+b,即x2-x+ln x-b=0.设g(x)=x2-x+ln x-b,则g′(x)=,所以当x∈(0,1)时,g′(x)>0;当x∈(1,2)时,g′(x)<0;当x∈(2,4)时,g′(x)>0.得函数g(x)在(0,1)和(2,4)上是增函数,在(1,2)上是减函数,所以g(x)的极小值为g(2)=ln 2-b-2;g(x)的极大值为g(1)=-b-, g(4)=-b-2+2ln 2; 因为方程g(x)=0在[1,4]上恰有两个不相等的实数根,所以解之得ln 2-2<b≤-.22.解:(1)由ρ=4cos θ得ρ2=4ρcos θ,化为直角坐标方程为x2+y2=4x,所以圆C的直角坐标方程为x2+y2-4x=0.由消去t得x-y-=0,所以直线l的普通方程为2x-2y-1=0.(2)显然直线l过点M(,0),将代入圆C的直角坐标方程x2+y2-4x=0得t2-t-=0,则t1+t2=,t1t2=-<0,根据直线参数方程中参数的几何意义知||MA|-|MB||=||t1|-|t2||=|t1+t2|=.23.解:(1)不等式f(x)>0,即|2x-1|>|x+2|, 即4x2-4x+1>x2+4x+4,3x2-8x-3>0,解得x<-或x>3.所以不等式f(x)>0的解集为{x|x<-或x>3}.(2)f(x)=|2x-1|-|x+2|=故f(x)的最小值为f()=-,因为∃x0∈R,使得f(x0)+2m2<4m,所以4m-2m2>-,解得-<m<.即m的取值范围为(-,).。

最新2019届高三冲刺联考(二模)试题 数学(理) Word版含解析

最新2019届高三冲刺联考(二模)试题  数学(理) Word版含解析

. 第1卷(选择题共60分)―、选择题(本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.集合 A= {0)2)(1(|≤-+x x x },B = {2<|x x },则 A∩B=A. [0,2]B. [0,1]C. (0,2]D. [-1,0]2.设i 是虚数单位,复数iiz -=1的实部与虚部的和等于 A. -1 B.0 C.l D. 23.已知向量b a ,的夹角为60°,21),1,0(=⋅=b a a ,且b ta +的模为3,则实数t 的值为 A.-1B. 2C. -1 或 2D.1 或-24. 在如图所示的算法框图中,若输入的54=x ,则输出结果为A.51 B. 52 C. 53 D. 545.圆柱被一平面截去一部分所得几何体的三视图如图所示,则该几何体的面积为A. π47 B. π49C. π27D. π296.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若1cos tan sin ,257cos =-=A C A A ,则△ABC 的AC 边上的高为 A. 3B. 32C.4D.67.双曲线12222=-by a x (a>b>0)的离心率为3,则两条渐近线所成的锐角的余弦值为A.33 B. 31 C. 32D. 368. 设15log ,12log ,6log 514121===a b a ,则 ^A.a<b<cB.c<b<aC.b<a<cD.c<a<b9.已知y x ,满足约束条件⎪⎩⎪⎨⎧≥≥≤+,0,,62y a y y x 目标函数y x z +-=取得的最大值为9,则实数a 的值为A.-1B.1C.9D.-910.谢尔宾斯基三角形是一种分形,由波兰数学家谢尔宾斯基在1915年提出,先作一个正二今 形,挖去一个“中心三角形”(即以原三角形各边的中点为顶点的三角形),然后在剩下的小二 角形中又挖去一个“中心三角形”,我们用白色代表挖去的面积,那么黑三角形为剩下的面积 (我们称黑三角形为谢尔宾斯基三角形)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

仿真冲刺卷(三)(时间:120分钟满分:150分)第Ⅰ卷一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知i是虚数单位,若a+bi=-(a,b∈R),则a+b的值是( )(A)0 (B)-i (C)- (D)2.设集合A={-1,0,1,2,3},B={x||x|≤2},则A∩B等于( )(A){-1,0,1,2} (B){-2,-1,0,1,2} (C){0,1,2} (D){1,2}3.已知a=log35,b=log30.6,c=0.21.2,则( )(A)b<c<a (B)a<c<b (C)c<b<a (D)a<b<c4.如图是近三年某市生产总值增速(累计,%)的折线统计图,据该市统计局初步核算,2018年一季度全区生产总值为1 552.38亿元,与去年同一时期相比增长12.9%(如图,折线图中其他数据类同).根据统计图得出正确判断是( )第4题图(A)近三年该市生产总值为负增长(B)近三年该市生产总值为正增长(C)该市生产总值2016年到2017年为负增长,2017年到2018年为正增长(D)以上判断都不正确5.甲、乙、丙三人站到共有7级的台阶上,若每级台阶最多站2人,同一级台阶上的人不区分站的位置,则不同的站法种数是( )(A)258 (B)306 (C)336 (D)2966.设α∈(0,),β∈(0,),且tan β=,则( )(A)2β-α=(B)α-2β=(C)α+2β=(D)2α+β=7.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,俯视图中的两条曲线均为圆弧,则该几何体的体积为( )第7题图(A)64- (B)64-8π (C)64- (D)64-8.已知函数f(x)=2x-1,g(x)=1-x2,规定:当|f(x)|≥g(x)时,h(x)= |f(x)|;当|f(x)|<g(x)时,h(x)=-g(x),则h(x)( )(A)有最小值-1,最大值1 (B)有最大值1,无最小值(C)有最小值-1,无最大值(D)有最大值-1,无最小值9.如果实数x,y满足关系又≥λ恒成立,则λ的取值范围为( )(A)(-∞,] (B)(-∞,3](C)[,+∞) (D)(3,+∞)10.定义[x]表示不超过x的最大整数,(x)=x-[x],例如[2.1]=2,(2.1) =0.1,执行如图所示的程序框图,若输入的x=5.8,则输出的z等于( )第10题图(A)-1.4 (B)-2.6(C)-4.6 (D)-2.811.已知双曲线-=1(a>0,b>0)与抛物线y2=2px(p>0)有相同的焦点F,且双曲线的一条渐近线与抛物线的准线交于点M(-3,t),|MF|=,则双曲线的离心率为( )(A)(B)(C)(D)12.(2018·湖南联考)已知函数f(x)是定义在R上的奇函数,其导函数为f′(x),若对任意的正实数x,都有xf′(x)+2f(x)>0恒成立,且f()=1,则使x2f(x)<2成立的实数x的集合为( )(A)(-∞,-)∪(,+∞) (B)(-,)(C)(-∞,) (D)(,+∞)第Ⅱ卷本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生必须作答.第22,23题为选考题,考生根据要求作答.二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)13.以抛物线y2=4x的焦点为圆心,与该抛物线的准线相切的圆的标准方程为.14.在三棱锥PABC中,侧棱PA,PB,PC两两垂直,PA=1,PB=2,PC=3,则三棱锥的外接球的表面积为.15.在△ABC中,a,b,c分别是内角A,B,C的对边,且B为锐角,若=,sin B=,S△ABC=,则b的值为.16.(2018·北京东城区二模)已知函数f(x)=若关于x的方程f(x+T)=f(x)有且仅有3个不同的实根,则实数T的取值范围是.三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分12分)已知数列{a n}的前n项和为S n,a1=2,且满足a n+1=S n+2n+1(n∈N*).(1)证明数列{}为等差数列;(2)求S1+S2+…+S n.18.(本小题满分12分)如图,在直角梯形ABCD中,AD∥BC,∠ADC=90°,AE⊥平面ABCD,EF∥CD,BC=CD=AE=EF=AD=1.(1)求证:CE∥平面ABF;(2)在直线BC上是否存在点M,使二面角EMDA的大小为?若存在,求出CM的长;若不存在,请说明理由.19.(本小题满分12分)(2018·孝义模拟)某餐厅通过查阅了最近5次食品交易会参会人数x(万人)与餐厅所用原材料数量y(袋),得到如下统计表:(1)根据所给5组数据,求出y关于x的线性回归方程y=x+;(2)已知购买原材料的费用C(元)与数量t(袋)的关系为C= 投入使用的每袋原材料相应的销售收入为700元,多余的原材料只能无偿返还,据悉本次交易大会大约有15万人参加,根据(1)中求出的线性回归方程,预测餐厅应购买多少袋原材料,才能获得最大利润,最大利润是多少?(注:利润L=销售收入-原材料费用)参考公式:==,=-.参考数据:x i y i=1 343,=558,=3 237.20.(本小题满分12分)(2018·安庆一中模拟)已知椭圆C:+=1(a>b>0)的左、右焦点分别是E,F,离心率e=,过点F的直线交椭圆C于A,B两点,△ABE的周长为16.(1)求椭圆C的方程;(2)已知O为原点,圆D:(x-3)2+y2=r2(r>0)与椭圆C交于M,N两点,点P为椭圆C上一动点,若直线PM,PN与x轴分别交于G,H两点,求证: |OG|·|OH|为定值.21.(本小题满分12分)已知函数f(x)=ln x-ax2-2x(a<0).(1)若函数f(x)存在单调递减区间,求a的取值范围;(2)若a=-且关于x的方程f(x)=-x+b在[1,4]上恰有两个不相等的实数根,求实数b的取值范围.请考生在第22,23题中任选一题作答,如果多做,则按所做的第一题计分.22.(本小题满分10分)选修44:坐标系与参数方程(2018·宜昌调研)在极坐标系中,已知圆C的极坐标方程为ρ=4cos θ,以极点为原点,极轴方向为x轴正半轴方向,利用相同单位长度建立平面直角坐标系,直线l的参数方程为(t为参数).(1)写出圆C的直角坐标方程和直线l的普通方程;(2)已知点M(,0),直线l与圆C交于A,B两点,求||MA|-|MB||的值.23.(本小题满分10分)选修45:不等式选讲设函数f(x)=|2x-1|-|x+2|.(1)解不等式f(x)>0;(2)若∃x0∈R,使得f(x0)+2m2<4m,求实数m的取值范围.1.D 因为a+bi=-==,所以a=,b=0,a+b=.2.A 因为集合A={-1,0,1,2,3},B={x||x|≤2}={x|-2≤x≤2},所以A∩B={-1,0,1,2}.故选A.3.A 由题意得a=log35>1,b=log30.6<0,0<c=0.21.2<1,所以b<c<a.选A.4.B 由折线统计图可知,增长率都是大于0的,故近三年该市生产总值为正增长,故选B.5.C 若7级台阶上每一级至多站1人,有种不同的站法;若1级台阶站2人,另一级站1人,共有种不同的站法.所以共有不同的站法种数是+=336.故选C.6.C 因为tan β==,所以cos αcos β=sin β+sin αsin β,所以cos αcos β-sin αsin β=sin β,即cos(α+β)=sin β=cos(-β).因为α,β∈(0,),所以α+β=-β,所以α+2β=.7.C 根据三视图画出该几何体的直观图.该几何体是一个棱长为4的正方体切去一个圆柱和一个圆锥.圆锥、圆柱底面半径为2,高为4.所以V=43-(4×22π+×22π×4)=64-π.故选C.8.C 作出函数g(x)=1-x2和函数|f(x)|=|2x-1|的图象如图1所示,得到函数h(x)的图象如图2所示,由图象得出函数h(x)有最小值-1,无最大值.9.A 设z==2+,z的几何意义是区域内的点到D(3,1)的斜率值加2,作出实数x,y满足关系对应的平面区域如图:由图形,可得C(,),由图象可知,直线CD的斜率最小值为=-,所以z的最小值为,所以λ的取值范围是(-∞,].故选A.10.C 模拟程序的运行,可得x=5.8,y=5-1.6=3.4,x=5-1=4;满足条件x≥0,执行循环体,x=1.7,y=1-1.4=-0.4,x=1-1=0;满足条件x≥0,执行循环体,x=-0.2,y=-1-1.6=-2.6,x=-1-1=-2;不满足条件x≥0,退出循环,z=-2+(-2.6)=-4.6.输出z的值为-4.6.故选C.11.C 由题意可知,抛物线y2=2px(p>0)的焦点坐标为F(,0),准线方程为x=-,由M在抛物线的准线上,则-=-3,则p=6,则焦点坐标为F(3,0),所以|MF|==,则t2=,解得t=±,双曲线的渐近线方程是y=±x,将M代入渐近线的方程=3×,即=,则双曲线的离心率为e===,故选C.12.C 构造函数g(x)=x2f(x),当x>0时,依题意有g′(x)=x[xf′(x)+2f(x)]>0,所以函数g(x)在x>0上是增函数,由f(x)是奇函数,可知g(x)也是R上的奇函数,故g(x)在x<0时,也为增函数,且g(0) =0,g()=2f()=2,所以不等式x2f(x)<2⇔g(x)<g(),根据单调性有x<,故选C.13.解析:抛物线y2=4x的焦点为(1,0),准线为x=-1,故所求圆的圆心为(1,0),半径为2,所以该圆的标准方程为(x-1)2+y2=4.答案:(x-1)2+y2=414.解析:由题知,三棱锥PABC的外接球的直径为=,则球的表面积为4π()2=14π.答案:14π15.解析:由正弦定理知==.所以a= c.又sin B=,则由S△ABC=acsin B=×c×c×==.故c2=4,则c=2.此时a=5.由sin B=及B为锐角知cos B=.由余弦定理得b2=a2+c2-2accos B=14.故b=.答案:16.解析:化简函数f(x)的表达式,得f(x)=作出f(x)的图象如图所示.因为关于x的方程f(x+T)=f(x)有且仅有3个不同的实根,所以将f(x)的图象向左或向右平移|T|个单位后与原图象有3个交点,所以2<|T|<4,即-4<T<-2或2<T<4.答案:(-4,-2)∪(2,4)17.(1)证明:由条件可知,S n+1-S n=S n+2n+1,即S n+1-2S n=2n+1,整理得-=1,所以数列{}是以1为首项,1为公差的等差数列.(2)解:由(1)可知,=1+n-1=n,即S n=n·2n,令T n=S1+S2+…+S n=1·2+2·22+…+n·2n, ①2T n=1·22+…+(n-1)·2n+n·2n+1, ②①-②得-T n=2+22+…+2n-n·2n+1,整理得T n=2+(n-1)·2n+1.18.(1)证明:如图(1),作FG∥EA,AG∥EF,连接EG交AF于点H,连接BH,BG.因为EF∥CD且EF=CD,所以AG∥CD,即点G在平面ABCD内.由AE⊥平面ABCD,知AE⊥AG,所以四边形AEFG为正方形,四边形CDAG为矩形,所以H为EG的中点,B为CG的中点,所以BH∥CE.因为BH⊂平面ABF,CE⊄平面ABF,所以CE∥平面ABF.(2)解:存在.求解过程如下:如图(2),以A为原点,AG为x轴,AD为y轴,AE为z轴,建立空间直角坐标系,则A(0,0,0),E(0,0,1),D(0,2,0).设M(1,y0,0),所以=(0,2,-1),=(1,y0-2,0).设平面EMD的法向量为n=(x,y,z),则令y=1,得z=2,x=2-y0,所以n=(2-y0,1,2).又因为AE⊥平面AMD,所以=(0,0,1)为平面AMD的一个法向量,所以|cos<n,>|==cos =,解得y0=2±.故在直线BC上存在点M,使二面角EMDA的大小为,且CM=|2-(2±)|=.19.解:(1)由所给数据可得==10.4,==25,===2.5,=-=25-2.5×10.4=-1,则y关于x的线性回归方程为y=2.5x-1.(2)由(1)中求出的线性回归方程知,当x=15时,y=36.5,即预计需要原材料36.5袋,因为C=当t=35时,利润L=700×35-(400×35-20)=10 520;当t=36时,利润L=700×36-380×36=11 520,当t=37时,利润L=700×36.5-380×37=11 490.综上所述,餐厅应该购买36袋原材料,才能使利润获得最大,最大利润为11 520元.20.(1)解:由题意得4a=16,则a=4,由=,解得c=,则b2=a2-c2=9,所以椭圆C的方程为+=1.(2)证明:由条件可知,M,N两点关于x轴对称,设M(x1,y1),P(x0,y0),则N(x1,-y1),由题可知,+=1,+=1,所以=(9-),=(9-).又直线PM的方程为y-y0=(x-x0),令y=0得点G的横坐标x G=,同理可得H点的横坐标x H=.所以|OG|·|OH|=16,即|OG|·|OH|为定值.21.解:(1)对函数求导数,得f′(x)=-(x>0),依题意,得f′(x)<0在(0,+∞)上有解,即ax2+2x-1>0在x>0时有解.所以Δ=4+4a>0且方程ax2+2x-1=0至少有一个正根.再结合a<0,得-1<a<0.(2)a=-时,f(x)=-x+b,即x2-x+ln x-b=0.设g(x)=x2-x+ln x-b,则g′(x)=,所以当x∈(0,1)时,g′(x)>0;当x∈(1,2)时,g′(x)<0;当x∈(2,4)时,g′(x)>0.得函数g(x)在(0,1)和(2,4)上是增函数,在(1,2)上是减函数,所以g(x)的极小值为g(2)=ln 2-b-2;g(x)的极大值为g(1)=-b-, g(4)=-b-2+2ln 2;因为方程g(x)=0在[1,4]上恰有两个不相等的实数根,所以解之得ln 2-2<b≤-.22.解:(1)由ρ=4cos θ得ρ2=4ρcos θ,化为直角坐标方程为x2+y2=4x,所以圆C的直角坐标方程为x2+y2-4x=0.由消去t得x-y-=0,所以直线l的普通方程为2x-2y-1=0.(2)显然直线l过点M(,0),将代入圆C的直角坐标方程x2+y2-4x=0得t2-t-=0,则t1+t2=,t1t2=-<0,根据直线参数方程中参数的几何意义知||MA|-|MB||=||t1|-|t2||=|t1+t2|=.23.解:(1)不等式f(x)>0,即|2x-1|>|x+2|,即4x2-4x+1>x2+4x+4,3x2-8x-3>0,解得x<-或x>3.所以不等式f(x)>0的解集为{x|x<-或x>3}.(2)f(x)=|2x-1|-|x+2|=故f(x)的最小值为f()=-,因为∃x0∈R,使得f(x0)+2m2<4m,所以4m-2m2>-,解得-<m<.即m的取值范围为(-,).。

相关文档
最新文档