离散复习考试题

合集下载

离散数学样卷十二套(含答案)

离散数学样卷十二套(含答案)

一、证明下列各题1、 (10分)证明蕴涵式:()P P Q Q ∧→⇒2、(10分)证明:,1111f g f g -⇒-I 为函数为函数。

5、 3、(10分)给定代数结构,N ⨯和{}0,1,⨯,其中N 是自然数集合,⨯是数的乘法。

设{}:0,1f N →,定义为:12,,()0k n n k N f n ⎧=∈=⎨⎩否则试证}01N ⨯≅⨯,,,。

4、(10分)给定代数结构,R *,其中R 是实数集合,对R 中任意元a 和b ,*定义如下:a b a b a b *=++⨯ 试证明:,R *是独异点。

二、求下列各题的解:1、试求下列公式的主析取范式和主合取范式(15分):()()P Q P Q ⌝∨⌝→⌝€2、(15分){}010*********R =设,,,,,,,,,,,,试求(1)、R R *,(2)、{}1R ↑,(3)、{}11R -↑,(4)、{}1R ⎡⎤⎣⎦,(5)、{}11R -⎡⎤⎣⎦3、(15分给定无向图,G V E =,如图,试求: F E DCA B(1) 从A 到D 的所有基本链; (2) 从A 到D 的所有简单链;(3) 长度分别是最小和最大的简单圈; (4) 长度分别是最小和最大的基本圈; (5) 从A 到D 的距离。

4、(15分)给定二部图12,,G E V =,如图 9v 8v 7v 6v 1V1v 2v 3v 4v 5v 2V 试求1V 到2V 的最大匹配一、证明下列各题1、 (10分)证明蕴涵式:()P Q P P Q →⇒→∧2、(10分)证明:()()()A B C A B A C ⨯-=⨯-⨯3、(10分)给定群,G ,则,G 为Abel 群⇔222()()(,())∀∀∈→=a b a b G a b a b4、(10分)给定代数结构,S *,其中S 中元为实数有序对,*定义为 ,,,2a b c d a c b d bd *=+++,试证,S *是可交换独异点。

离散数学复习题

离散数学复习题

一、选择题:1.下列句子是命题的是( )。

A. 你喜欢我吗?B. 这里的景色真美啊!C. 2x = 9。

D. 明年国庆节是晴天。

2.设P:我们划船,Q:我们跑步。

命题“我们不能既划船又跑步”符号化为( )。

∧)A. ¬P∧¬QB. ¬(P QC. ¬(P↔Q)D. ¬(¬P∨¬Q)3.下列语句不是..命题的是( )。

A.黄金是非金属。

B.要是他不上场,我们就不会输。

C.他跑100米只用了10秒钟,你说他是不是运动健将呢?D.他跑100米只用了10秒钟,他是一个真正的运动健将。

4.若P:他聪明;Q:他用功;则“他虽聪明,但不用功”,可符号化为( )。

A.P∨QB.P∧¬QC.P→¬QD.P∨¬Q5.下列句子不是..命题的是( )。

A. 做人真难啊!B. 后天是阴天。

C. 2是偶数。

D. 地球是方的。

6.在命题演算中,语句为真为假的一种性质称为( )。

A. 真值B. 陈述句C. 命题D. 谓词7.命题公式¬(P∧Q)→R的成真指派是( )。

A. 000,001,110B. 001,011,101,110,111C. 全体指派D. 无8.下列命题中,不正确的是( )。

∈∅,{{∅}}}A.{∅}{∈∅,{∅}} B.{∅}{C.{∅}⊆{∅,{∅}}D. ∅⊆{∅,{∅}}9.命题公式P∧(Q∨¬ R)的成真指派是( )。

A.110,111,100B.110,101,011C.所有指派D.无∨⇒( )。

10.设P,Q,R是命题公式,则P→R,Q→R,P QA. PB. QC. RD. ¬R11.下列是两个命题变元p,q的小项是( )∨C.¬p q∨∨∧D.¬p p qA.p∧¬p q∧B.¬p q12.关于命题变元P和Q的大项M01表示( )。

离散数学期末复习题(6套)

离散数学期末复习题(6套)

《离散数学》期末考试题(A)一、填空题(每小题3分,共15分)1.设}}{},,{{c b a A =,}}{},,{},{{c c b a B =,则)(=⋃B A ,)(=⋂B A ,)()(=A P .2.集合},,{c b a A =,其上可定义( )个封闭的1元运算,( )个封闭的2元运算,( )个封闭的3元运算.3.命题公式1)(↑∧q p 的对偶式为( ).4.所有6的因数组成的集合为( ).5.不同构的5阶根树有( )棵.二、单选题(每小题3分,共15分)1.设A , B 是集合,若A B A =-,则(A)B = ∅ (B) A = ∅ (C)=⋂B A ∅ (D)A B A =⋂2.谓词公式)())()((x R y yQ x P x ∧∃→∀中量词x ∀的辖域为(A))())()((x R y yQ x P x ∧∃→∀ (B))()(y yQ x P ∃→(C))())()((x R y yQ x P ∧∃→ (D))()(y yQ x P ∃→和)(x R3.任意6阶群的子群的阶一定不为(A)4 (B)6 (C)2 (D)34.设n 是正整数,则有限布尔代数的元素个数为(A)2n (B)4n (C)n 2 (D)2n5.对于下列序列,可构成简单无向图的度数序列为(A)3, 3, 4, 4, 5 (B)0, 1, 3, 3, 3 (C)1, 1, 2, 2, 3 (D)1, 1, 2, 2, 2三、判断题(每小题3分,共15分): 正确打“√”,错误打“×”.1. 设N N N :⨯→f ,)1,()(+=x x x f ,则f 是满射. () 2. 5男5女圆桌交替就座的方式有2880种. () 3. 设),(≤L 是格,对于L z y x ∈,,,若z x y x ⋅=⋅且z x y x +=+,则z y =. () 4. 任何树都至少2片树叶. ()5. 无向图G 有生成树的充要条件是G 为连通图. ( )四、(10分)设C B A ,,和D 是集合,证明)()()()(D B C A D C B A ⨯-⨯⊆-⨯-,并举例说明上式中不能将⊆改为 = .五、(15分)设N 是自然数集合,定义N 上的关系R 如下:y x R y x +⇔∈),(是偶数,1.证明R 是N 上的等价关系.2.求出N 关于等价关系R 的所有等价类.3.试求出一个N 到N 的函数f ,使得)}()(,N ,|),{(y f x f y x y x R =∈=.六、(10分)在实数集合R 中证明下列推理的有效性:因为R 中存在自然数,而所有自然数是整数,所以R 中存在整数.七、(10分)设R 是实数集合,令}0,R ,|),{(≠∈=a b a b a G ,定义G 上的运算如下: 对于任意G d c b a ∈),(),,(,),(),(),(b ad ac d c b a +=⋅,证明),(⋅G 是非Abel 群.八、(10分)若简单平面图G 的节点数7=n 且边数15=m ,则G 是连通图,试证明之.《离散数学》期末考试题(B)一、填空题(每小题3分,共15分)1.设,,},,{{b a b a A =∅},则-A ∅ = ( ),-A {∅} = ( ),)(A P 中的元素个数=|)(|A P ( ).2.设集合A 中有3个元素,则A 上的二元关系有( )个,其中有( )个是A 到A 的函数.3.谓词公式))()(())()((y P y Q y x Q x P x ⌝∧∃∧→∀中量词x ∀的辖域为( ), 量词y ∃的辖域为( ).4.设}24,12,8,6,4,3,2,1{24=D ,对于其上的整除关系“|”,元素( )不存在补元.5.当n ( )时,n 阶完全无向图n K 是平面图,当n 为( )时,n K 是欧拉图.二、单选题(每小题3分,共15分)1.设R 是集合A 上的偏序关系,1-R 是R 的逆关系,则1-⋃R R 是A 上的(A)偏序关系 (B)等价关系 (C)相容关系 (D)以上结论都不成立2.由2个命题变元p 和q 组成的不等值的命题公式的个数有(A)2 (B)4 (C)8 (D)163.设p 是素数且n 是正整数,则任意有限域的元素个数为(A)n p + (B)pn (C)n p (D)pn4.设R 是实数集合,≤是其上的小于等于关系,则(R, ≤)是(A)有界格 (B)分配格 (C)有补格 (D)布尔格5.3阶完全无向图3K 的不同构的生成子图有(A)2 (B)3 (C)4 (D)5 三、判断题(每小题3分,共15分): 正确打“√”,错误打“×”.1.若一个元素a 既存在左逆元l a ,又存在右逆元r a ,则r l a a =. ( )2.命题联结词→不满足结合律. ( )3.在Z 8 = {0,1,2,3,4,5,6,7}中,2关于“⋅8”的逆元为4. ( )4.整环不一定是域. ( )5.任何),(m n 平面图的面数2+-=n m r . ( )四、(10分)设B A f →:且C B g →:,若g f 是单射,证明f 是单射,并举例说明g 不一定是单射.五、(15分)设},,,{d c b a A =,A 上的关系)},(),,(),,(),,(),,(),,(),,(),,(),,{(c d b d a d c c b c a c c a b a a a R =,1.画出R 的关系图R G .2.判断R 所具有的性质.3.求出R 的关系矩阵R M .六、(10分)利用真值表求命题公式))(())((p q r r q p A →→↔→→=的主析取范式和主合取范式.七、(10分) 边数30<m 的简单平面图G ,必存在节点v 使得4)deg(≤v .八、(10分) 有六个数字,其中三个1,两个2,一个3,求能组成四位数的个数.《离散数学》期末考试题(C)一、填空题(每小题3分,共15分)1. 若n B m A ==||,||,则=⨯||B A ( ),A 到B 的2元关系共有( )个,A 上的2元关系共有( )个.2. 设A = {1, 2, 3}, f = {(1,1), (2,1), (3, 1)}, g = {(1, 1), (2, 3), (3, 2)}和h = {(1, 3), (2, 1), (3,1)},则( )是单射,( )是满射,( )是双射.3. 下列5个命题公式中,是永真式的有( )(选择正确答案的番号).(1)q q p p →→∧)(;(2))(q p p ∨→;(3))(q p p ∧→;(4)q q p p →∨∧⌝)(;(5)q q p →→)(.4. 设D 24是24的所有正因数组成的集合,“|”是其上的整除关系,则3的补元( ),4的补元( ),6的补元( ).5. 设G 是(7, 15)简单平面图,则G 一定是( )图,且其每个面恰由( )条边围成,G 的面数为( ).二、单选题(每小题3分,共15分)1. 设A , B , C 是集合,则下述论断正确的是( ).(A)若A ⊆ B , B ∈ C ,则A ∈ C . (B)若A ⊆ B , B ∈ C ,则A ⊆ C .(C)若A ∈ B , B ⊆ C ,则A ∈ C . (D)若A ∈ B , B ⊆ C ,则A ⊆ C .2. 设R ⊆ A ⨯ A ,S ⊆ A ⨯ A ,则下述结论正确的是( ).(A)若R 和S 是自反的,则R ⋂ S 是自反的.(B)若R 和S 是对称的,则S R 是对称的.(C)若R 和S 是反对称的,则S R 是反对称的.(D)若R 和S 是传递的,则R ⋃ S 是传递的.3.在谓词逻辑中,下列各式中不正确的是( ).(A))()())()((x xB x xA x B x A x ∀∨∀=∨∀(B))()())()((x xB x xA x B x A x ∀∧∀=∧∀(C))()())()((x xB x xA x B x A x ∃∨∃=∨∃(D)),(),(y x xA y y x yA x ∀∃=∃∀4. 域与整环的关系为( ).(A)整环是域 (B)域是整环 (C)整环不是域 (D) 域不是整环5.设G 是(n , m )图,且G 中每个节点的度数不是k 就是k + 1,则G 中度数为k 的节点个数为( ). (A)2n . (B)n (n + 1). (C)nk . (D)m k n 2)1(-+. 三、判断题(每小题3分,共15分): 正确打“√”,错误打“×”.1.设f : Z → Z ,x x x f 2||)(-=,则f 是单射. ( )2.设ϕ是群G 1到群G 2的同态映射,若G 1是Abel 群,则G 2是Abel 群. ( )3.设),(≤L 是格,对于L z y x ∈,,,若z x y x ⋅=⋅且z x y x +=+,则z y =. ( )4.元素个数相同的有限布尔代数都是同构的. ( )5.设G 是n (n ≥ 11)阶简单图,则G 或G 是非平面图. ( )四、(15分)设A 和B 是集合,使下列各式(1)A B A =⋂; (2)A B B A -=-;(3)A A B B A =-⋃-)()(成立的充要条件是什么,并给出理由.五、(10分) 设S 是实数集合R 上的关系,其定义如下∈=y x y x S ,|),{(R 且是3y x -是整数}, 证明: S 是R 上的等价关系. 六、(10分) 求谓词公式)))()(()(()(x xD y yC y B x xA ∀→∃⌝→→∃的前束范式.七、(10分) 若n 个人,每个人恰有3个朋友,则n 必为偶数,试证明之.八、(10分) 利用生成函数求解递归关系⎩⎨⎧=-+=-2)1(211a n a a n n .《离散数学》期末考试题(D)一、填空题(每小题3分,共15分)1. 设|A | = 5, |B | = 2, 则可定义A 到B 的函数( )个,其中有( )单射,( )个满射.2. 令G (x ): x 是金子,F (x ): x 是闪光的,则命题“金子都是闪光的,但闪光的未必是金子”符号化为( ).3. 设X 是非空集合,则X 的幂集P (X )关于集合的⋃运算的单位元是( ),零元是( ),P (X )关于集合的⋂运算的单位元是( ).4. 不同构的5阶无向树有( )棵.5. 对于n 阶完全无向图K n , 当n 为( )时是Euler 图,当n ≥ ( )时是Hamilton 图,当n ( )时是平面图.二、单选题(每小题3分,共15分)1. 幂集P (P (P (∅))) 为( )(A){{∅}, {∅, {∅}}}. (B){∅, {∅, {∅}}, {∅}}.(C){ ∅, {∅, {∅}}, {{∅}}, {∅}} (D){ ∅, {∅, {∅}}}.2. 设R 是集合A 上的偏序关系,则1-⋃R R 是( ).(A)偏序关系 (B)等价关系 (C)相容关系 (D)以上答案都不对3. 下列( )组命题公式是不等值的.(A))(B A →⌝与B A ⌝∧. (B) )(B A ↔⌝与)()(B A B A ∧⌝∨⌝∧.(C))(C B A ∨→与C B A →⌝∧)(. (D))(C B A ∨→与)(C B A ∨∧⌝.4.下列代数结构(G , *)中,( )是群.(A)G = {0, 1, 3, 5}, “*”是模7加法. (B) G = Q , “*”是数的乘法.(C)G = Z , “*”是数的减法. (D) G = {1, 3, 4, 5, 9}, “*”是模11乘法.5.4阶完全无向图4K 中含3条边的不同构的生成子图有(A)3 (B)4 (C)5 (D)2三、判断题(每小题3分,共15分): 正确打“√”,错误打“×”.1.函数的复合运算“ ”满足结合律. ( )2. {→⌝,}是最小功能完备联结词集合. ( )3. 实数集R 关于数的乘法运算“⋅”阿贝尔群. ( )4. 任意有限域的元素个数为2n . ( )5. 设G 是n (n 为奇数)简单图,则G 与G 中度数为奇数的节点个数相同. ( )四、(10分)设A 和B 是集合,使B B A =-成立的充要条件是什么,并给出理由.五、(10分) 设R 和S 是集合A 上的对称关系,证明S R 对称的充要条件是R S S R =.六、(15分)分别利用(1)等值演算法和(2)真值表求命题公式))(())((r q p p q r A ∨→→→∨⌝=的主析取范式和主合取范式.七、(10分) 设G 是(n , m )无向图,若n m ≥,证明G 中必存在圈.八、(10分) 在初始条件f (1) = c 下,求解递归关系bn n f n f +⎪⎭⎫ ⎝⎛=22)(,其中b ,c 为常数且kn 2=,k 为正整数.《离散数学》期末考试题(E)一、填空题(每小题3分,共15分)1.设A = {2, {3}, 4, a }, B = {1, 3, 4, {a }}, 则{3}( )A ,{a }( )B ,{{a }}( )B .2. 设A = {1, 2, 3, 4, 5}上的关系R = {(1, 2), (3, 4), (2, 2)}, S = {(4, 2), (2, 5), (3, 1), (1, 3)}, 则=S R { }, =R S { }, =R R { }.3. gcd(36, 48) = ( ),lcm(36, 48) = ( ).4.任意有限布尔代数)1,0,,,,(⋅+B 均与集合代数( )同构,其元素个数为( ).5. 不同构的5阶无向树有( )棵,不同构的5阶根树有( )棵.二、单选题(每小题3分,共15分)1. 在有理数集合Q 上定义运算“*”如下:对于任意x , y ∈ Q ,y x * = x + y – xy ,则Q 关于*的单位元是( ).(A)x . (B)y . (C)1. (D)0.2. 设A = {1, 2, 3}, 下图分别给出了A 上的两个关系R 和S ,则S R 是( )关系.(A)自反. (B)对称. (C)传递. (D)等价.3.令T (x ): x 是火车,B (x ): x 是汽车,F (x , y ): x 比y 快,则“某些汽车比所有的火车慢”符号化为( ).(A)()()),()()(y x H x T x y B y →∀∧∃.(B)()()),()()(y x H x T x y B y ∧∀→∃.(C)()()),()()(y x H x T y B y x ∧→∃∀.(D)()()),()()(y x H x T x y B y →∀→∃.4. 整数集合Z 关于数的加法“+”和数的乘法“⋅”构成的代数结构(Z, +, ⋅)是( ). 1 1 22 3 3G S G R(A)域(B)域和整环(C)整环(D) 有零因子环G≅,则称G为自补图. 5阶不同构的自补图5.设G是简单图,G是G的补图,若G个数为( ).(A)0. (B)1. (C)2. (D)3.三、判断题(每小题3分,共15分): 正确打“√”,错误打“×”.1. { ∅, {∅}} ∉P(P({∅})). ( )2. 非空1元及2元联结词集合的个数为29-1. ( )3. 群可分为Abel群和非Abel群. ( )4. 元素个数相同的有限域都是同构的. ( )5. 设G是简单图,则G或G是连通图. ( )四、(15分)设C,:, 若gf 是单射,证明f是单射,并举例说明g→:f→gBBA不一定是单射.五、(10分)设A = {a, b, c, d}上的关系R = {(a, b), (b, d), (c, c), (a, c)}, 画出R的关系图,并求出R的自反闭包r(R)、对称闭包s(R)和传递闭包t(R).六、(10分)用CP规则证明下列推理.⌝∨→∨(.⇒),(⌝),→pqssrqrqp→七、(10分)求谓词公式))xyByAxA∀→∨∀∧⌝∃的前束范式.zC((x()))(z(()八、(10分)任意6个人中,一定有3个人彼此认识或有3个人彼此不认识.《离散数学》期末考试题(F)一、填空题(每小题3分,共15分)1. 设A = {1, 2, 3, {1, 2}, {3}}, B = {2, {2,3}, {1}} , 则A–B = { }, B–A = { }, A⊕B = { }.2. 实数集合R关于加法运算“+”的单位元为( ), 关于乘法运算“⋅”的单位元为( ), 关于乘法运算“⋅”的零元为( ).3. 令Z(x): x是整数,O(x): x是奇数,则“不是所有整数都是奇数”符号化为( ).4. 有限域的元素个数为( ), 其中( )且( ).5. 设G 是(7, 15)简单平面图,则G 一定 ( )连通图,其每个面恰由( )条边围成,G 的面数为( ).二、单选题(每小题3分,共15分)1. 函数的复合运算“ ”满足( )(A)交换律. (B)结合律. (C)幂等律. (D)消去律.2. 设集合A 中有4个元素,则A 上的等价关系共有( )个.(A)13 (B)14 (C)15 (D)163.下列代数结构(G , *)中,( )是群.(A)G = {0, 1, 3, 5}, “*”是模7加法. (B) G = Q , “*”是数的乘法.(C)G = Z , “*”是数的减法. (D) G = {1, 3, 4, 5, 9}, “*”是模11乘法.4. 下列偏序集,( )是格.5. 不同构的(5, 3)简单无向图有( )个.(A)4 (B)5 (C)3 (D)2三、判断题(每小题3分,共15分): 正确打“√”,错误打“×”.1. 设A ,B ,C 是集合,若C A B A ⊕=⊕, 则B = C . ( )2. 逻辑联结词“→”满足结合律. ( )3. 设 (L , ≤)是偏序集,若L 的任意非空子集均存在上确界和下确界,则(L , ≤)是格.( )4. 在同构意义下,有限布尔代数只有,,,),((⋂⋃X P ∅, X ). ( )5. 设G 是简单图,则G 与G 中度数为奇数的节点个数相同. ( )四、(15分) 设C B g B A f →→:,:, 若g f 是满射,证明g 是满射,并举例说明f 不一定是满射.五、(10分) 在整数集合Z 上定义关系R 如下:对于任意∈y x , Z ,y y x x R y x +=+⇔∈22),(.判断R 是否具有自反性、反自反性、对称性、反对称性及传递性.六、(10分)利用真值表求命题公式)())(q p q p A ⌝→↔→⌝=的主析取范式和主合取范式.七、(10分)证明:在至少两个人的人群中,必有两个人有相同个数的朋友.八、(10分)将6阶完全无向图K 6的边随意地涂上红色或蓝色,证明:无论如何涂法,总存在红色的K 3或蓝色的K 3.(ps :答案见离散数学期末复习题(6套)答案文档)。

《离散数学》复习题及答案

《离散数学》复习题及答案

页眉内容《离散数学》试题及答案一、选择或填空(数理逻辑部分)1、下列哪些公式为永真蕴含式?( )(1)⌝Q=>Q→P (2)⌝Q=>P→Q (3)P=>P→Q (4)⌝P∧(P∨Q)=>⌝P答:(1),(4)2、下列公式中哪些是永真式?( )(1)(┐P∧Q)→(Q→⌝R) (2)P→(Q→Q) (3)(P∧Q)→P (4)P→(P∨Q)答:(2),(3),(4)3、设有下列公式,请问哪几个是永真蕴涵式?( )(1)P=>P∧Q (2) P∧Q=>P (3) P∧Q=>P∨Q(4)P∧(P→Q)=>Q (5) ⌝(P→Q)=>P (6) ⌝P∧(P∨Q)=>⌝P答:(2),(3),(4),(5),(6)4、公式∀x((A(x)→B(y,x))∧∃z C(y,z))→D(x)中,自由变元是( ),约束变元是( )。

答:x,y, x,z5、判断下列语句是不是命题。

若是,给出命题的真值。

( )(1)北京是中华人民共和国的首都。

(2) 陕西师大是一座工厂。

(3) 你喜欢唱歌吗? (4) 若7+8>18,则三角形有4条边。

(5) 前进! (6) 给我一杯水吧!答:(1)是,T (2)是,F (3)不是(4)是,T (5)不是(6)不是6、命题“存在一些人是大学生”的否定是( ),而命题“所有的人都是要死的”的否定是( )。

答:所有人都不是大学生,有些人不会死7、设P:我生病,Q:我去学校,则下列命题可符号化为( )。

(1) 只有在生病时,我才不去学校 (2) 若我生病,则我不去学校(3) 当且仅当我生病时,我才不去学校(4) 若我不生病,则我一定去学校答:(1)PP⌝P→⌝↔(4)QQ→⌝(2)QP⌝→(3)Q8、设个体域为整数集,则下列公式的意义是( )。

(1) ∀x∃y(x+y=0) (2) ∃y∀x(x+y=0)答:(1)对任一整数x存在整数 y满足x+y=0(2)存在整数y对任一整数x满足x+y=0 9、设全体域D是正整数集合,确定下列命题的真值:(1) ∀x∃y (xy=y) ( ) (2) ∃x∀y(x+y=y) ( )(3) ∃x∀y(x+y=x) ( ) (4) ∀x∃y(y=2x) ( )答:(1) F (2) F (3)F (4)T10、设谓词P(x):x是奇数,Q(x):x是偶数,谓词公式∃x(P(x)∨Q(x))在哪个个体域中为真?( )(1) 自然数(2) 实数 (3) 复数(4) (1)--(3)均成立答:(1)11、命题“2是偶数或-3是负数”的否定是()。

离散数学复习题

离散数学复习题

《离散数学》复习题一、单项选择题1.下列句子是原子命题的是( A)A. 大熊猫产在我国;B. 2+x=5;C. 小王和小李是学生;D. 别讲话了!2. 设p:天下雨,q:我去新华书店,命题“除非天不下雨,我去新华书店”的符号化形式为( D )A.p→qB.q→pC.┐q→pD.┐p→q3. 以下命题不是重言式的有(A )⌝P B. P∨⌝PA. P∧C. (P→Q)↔(⌝Q→⌝P)D. P→P∨Q4. 以下语句中不是命题的为(B)A.明天我要上门去谢你。

B.谢谢你给了我机会。

C.如果不说,我就不谢你。

D.除非你做了,我才谢你5.与⌝(∃x) M(x) 等价的是(D)A.(∀x) M(x)B.(∃x) ⌝M(x)C.(∀x) M(x)D.(∀x) ⌝M(x)6. 设P(x)为“x是大学生”,Q(x)为“x满30岁”。

命题“所有大学生都不满30岁”写成谓词公式为( C )A. ∀x(P(x)∧Q(x))B.∃ x(P(x)∧Q(x))C.∀x(P(x)→Q(x))D.∃ x(P(x)→Q(x))7.公式(∀x) (P(x)→(∀y)R(x, y))中,∀x的辖域为(B )A.P(x)B.(P(x)→(∀y)R(x, y))C.P(x)和R(x, y)D.P(x)→(∀y)8.设S={a, b, c},则S的幂集的元素的个数有(C )A.3B.6 C. 8D.99.以下等式中不正确的是:( A ) A.A∪(B×C)=(A∪B)×(A∪C)B.A×(B∪C)=(A×B)∪(A×C)C.(A∪B)×C=(A×C)∪(A×C)D(A×B)×C=A×(B×C)10.设A={1, 2, 3, 4}, A上的等价关系R={<1, 2>, <2, 1>, <3, 4>, <4, 3>}∪I A, 则对应于R的A 的划分是( D ) A.{{1},{2, 3}, {4}}B.{{1, 2},{3}, {4}}C.{{1},{2}, {3}, {4}}D.{{1,2}, {3, 4}}11.设函数f:{1,2}→{1},则f是( B ) A.入射B.满射C.双射D.非入射非满射12.设Z-是负正整数集合,+,-,*,△是普通数的加法、减法和平方运算,则能构成代数系统是( B )A.< Z-, +> B.< Z-, ->C.< Z-, *>D< Z-, △>13.若他聪明,他用功,则“他虽聪明但不用功”,可符号化为( B )A. B.C.D.14. 若一个代数系统(A,*)满足运算封闭性及结合律,且有幺元,则它是( A ) A.独异点B.群C.格D.布尔代数15.设G为无限群,则( C ) A.G是交换群B.G是循环群C.G中每个元素都有逆元D.G中每个元素的阶都是无限的16.在有3个结点的图中,度数是奇数的结点的个数为( D ) A.1B.3C. 1或3D.0或217.在5阶图G中,若从结点v1到v4存在路,则从v1到v4的路中必存在路,其长度小于等于( D ) A.1B.2C. 3D.418.连通平面图G的面的次数之和为10,则其边数为( A ) A.5B.10C. 15D.2019. 在自然数集合上,下列哪种运算不是可交换的( D )A. B.C. D.20. 设简单图的最大结点度数为,图的结点数为,则与的关系为( B )A. B.C. D. 与没关系21.下列各项中错误的是(A)A.B.C.D.22.设,下列各式成立的是(C )A.B.C.D.23.连通平面图G中,所有面的次数之和是( C )A.边数B.边数的一半C.边数的两倍D.边数的一倍24.无向图具有一条欧拉回路,那么图的所有结点的度数都是(B )A.奇数B.偶数C.素数D.125. 下列集合哪个是最小联结词集( D )A. B.C. D.26. 设简单图的最大结点度数为,图的结点数为,则与的关系为(B)A. B.C. D. 与没关系27. 设集合A={1,2,3},B={2,3,4,5},C={2,4,8,16},D={1,2,3,4},设“|”是集合上的“整除”关系,则下列偏序集中能构成格的是( C )A. <A,|>;B. <B,|>;C. <C,|>;D. <D,|>;28.设上的二元关系,则关系具有的性质是哪一个(B)A. 自反性B. 对称性C. 传递性D. 反对称性29.判断下列各式中不是合式公式的是哪一个( C)A. B.C. D.30. 代数系统(S, )中以下断言正确的是( C )A. 单位元与零元总是不相等;B. 可能有二个左单位元和一个右单位元;C. 单位元总有逆元;D. 若S' S,则(S', )是(S, )的子代数31. 指出下列语句中哪个是原子命题( A)A. 苏州是中国的首都。

离散数学复习题

离散数学复习题

离散数学复习题第⼀套题⼀、填空题1设集合A,B,其中A={1,2,3}, B= {1,2},则A - B=____________________;ρ(A) - ρ(B)=_________________ .答案:{3};{{3},{1,3},{2,3},{1,2,3}}.2. 设有限集合A, |A| = n,则|ρ(A×A)| = ____________.答案:22n.3. 已知命题公式G=?(P→Q)∧R,则G的主析取范式是____________.答案:(P∧?Q∧R).4. 设A、B为两个集合, A= {1,2,4}, B = {3,4}, 则从A?B=_____; A?B=_____;A-B=_____.答案:{4};{1, 2, 3, 4};{1, 2}.5. 设R是集合A上的等价关系,则R所具有的关系的三个特性是______, ________, ________.答案:⾃反性;对称性;传递性.6. 设集合A={1,2,3,4}, A上的关系R1 = {(1,4),(2,3),(3,2)}, R1 = {(2,1),(3,2),(4,3)},则R1?R2=________;R2?R1 =________;R12=___________.答案:{(1,3),(2,2),(3,1)};{(2,4),(3,3),(4,2)};{(2,2),(3,3)}.7. 设有限集A, B,|A| = m, |B| = n,则| |ρ(A?B)| = ___________.则R以集合形式(列举法)记为______________.答案:{(2, 2),(2, 4),(2, 6),(3, 3),(3, 6),(4, 4),(5, 5),(6, 6)}.9. 设G是具有8个顶点的树,则G中增加_________条边才能把G变成完全图。

答案:21.10. 设谓词的定义域为{a, b},将表达式?xR(x)→?xS(x)中量词消除,写成与之对应的命题公式是_____________.答案:(R(a)∧R(b))→(S(a)∨S(b)).11. 设集合A={1, 2, 3, 4},A上的⼆元关系R={(1,1),(1,2),(2,3)},S={(1,3),(2,3),(3,2)}。

离散数学-期末复习题及答案

离散数学-期末复习题及答案

课程名称:《离散数学》一、单项选择题1、 (D)。

下列句子是命题的为 。

A 、这朵花多好看呀!B 、明天下午有会吗?C 、5y x >+D 、地球外的星球上也有人。

2、 (A)。

李平不是不聪明,而是不用功。

p:李平聪明q:李平用功。

符号化为 。

A 、 q )p (⌝⌝⌝∧ B 、 q p ⌝⌝∧ C 、 q )p (∧⌝⌝ D 、q )p (⌝⌝⌝∨ 3、 (A)。

与)q p (∨⌝命题公式等值的是 。

A 、q p ⌝⌝∧ B 、q p ⌝⌝∨ C 、q p ∧ D 、q)(p ∧⌝4、 (D)。

含有3个命题变项的简单和取式中一定可形成 种不同的极小项。

A 、2 B 、4 C 、6 D 、85、 (C)。

q )q p (∧→⌝此公式的类型为 。

A 、重言式B 、永真式C 、矛盾式D 、可满足式 6、 (C)。

q )q )q p ((→∧→此公式的类型为 。

A 、矛盾式B 、可满足式C 、重言式D 、永假式7、 (A)。

设A 是含有3个命题变项的公式,若它的主析取范式中含有8个极小项,则它是 。

A 、重言式B 、矛盾式C 、可满足式D 、永假式8、 (B)。

只有天下大雨,他才乘公共汽车上班.p:天下大雨q:他乘车上班,符号化为 。

A 、q p → B 、p q → C 、q p →⌝D 、p q →⌝9、 (B)。

不经一事,不长一智p:经一事q:长一智,符号化为 。

A 、p q →B 、q p ⌝⌝→C 、p q ⌝⌝→ D 、q p → 10、 (B)。

R Q P →∧⌝)(成真赋值为 。

A 、 000,001,110B 、 001,011,101,110,111C 、全体赋值D 、无11、 (B)。

公式Q P→的主析取范式为)3,1,0(∑,则公式的主合取范式为 。

A 、)2(TB 、)2(∏C 、)3,1,0(∏D 、)3,2,1,0(∏12、 (A)。

R Q P →∧⌝成假赋值为 。

离散数学考试题及答案

离散数学考试题及答案

离散数学考试题及答案一、选择题(每题5分,共20分)1. 下列哪个选项不是离散数学的研究对象?A. 图论B. 组合数学C. 微积分D. 逻辑学答案:C2. 在逻辑学中,下列哪个命题是真命题?A. 如果今天是周一,那么明天是周二。

B. 如果今天是周一,那么明天是周三。

C. 如果今天是周一,那么明天是周四。

D. 如果今天是周一,那么明天是周五。

答案:A3. 在集合论中,下列哪个符号表示集合的并集?A. ∩B. ∪C. ⊆D. ⊂答案:B4. 在图论中,下列哪个术语描述的是图中的顶点集合?A. 边B. 路径C. 子图D. 顶点答案:D二、填空题(每题5分,共20分)1. 如果一个集合A包含5个元素,那么它的子集个数是______。

答案:322. 在逻辑学中,如果命题P和命题Q都是真命题,那么复合命题“P且Q”的真值是______。

答案:真3. 在图论中,如果一个图的顶点数为n,那么它的最大边数是______。

答案:n(n-1)/24. 如果一个二叉树的深度为3,那么它最多包含______个节点。

答案:7三、简答题(每题10分,共30分)1. 请简述什么是图的连通性,并给出一个例子。

答案:图的连通性是指在图中任意两个顶点之间都存在一条路径。

例如,在一个完全图K3中,任意两个顶点之间都可以通过一条边直接连接,因此它是连通的。

2. 解释什么是逻辑蕴含,并给出一个例子。

答案:逻辑蕴含是指如果一个命题P为真,则另一个命题Q也必须为真。

例如,命题P:“如果今天是周一”,命题Q:“明天是周二”。

如果今天是周一,那么根据逻辑蕴含,明天必须是周二。

3. 请描述什么是二叉搜索树,并给出它的一个性质。

答案:二叉搜索树是一种特殊的二叉树,其中每个节点的左子树只包含小于当前节点的数,右子树只包含大于当前节点的数。

它的一个性质是中序遍历可以得到一个有序序列。

四、计算题(每题15分,共30分)1. 给定一个集合A={1, 2, 3, 4, 5},请计算它的幂集,并列出所有元素。

《离散数学》复习题及答案

《离散数学》复习题及答案

《离散数学》复习题及答案《离散数学》试题及答案⼀、选择或填空(数理逻辑部分)1、下列哪些公式为永真蕴含式?( )(1)?Q=>Q→P (2)?Q=>P→Q (3)P=>P→Q (4)?P∧(P∨Q)=>?P答:(1),(4)2、下列公式中哪些是永真式?( )(1)(┐P∧Q)→(Q→?R) (2)P→(Q→Q) (3)(P∧Q)→P (4)P→(P∨Q)答:(2),(3),(4)3、设有下列公式,请问哪⼏个是永真蕴涵式?( )(1)P=>P∧Q (2) P∧Q=>P (3) P∧Q=>P∨Q(4)P∧(P→Q)=>Q (5) ?(P→Q)=>P (6) ?P∧(P∨Q)=>?P答:(2),(3),(4),(5),(6)4、公式?x((A(x)→B(y,x))∧?z C(y,z))→D(x)中,⾃由变元是( ),约束变元是( )。

答:x,y, x,z5、判断下列语句是不是命题。

若是,给出命题的真值。

( )(1)北京是中华⼈民共和国的⾸都。

(2) 陕西师⼤是⼀座⼯⼚。

(3) 你喜欢唱歌吗? (4) 若7+8>18,则三⾓形有4条边。

(5) 前进! (6) 给我⼀杯⽔吧!答:(1)是,T (2)是,F (3)不是(4)是,T (5)不是(6)不是6、命题“存在⼀些⼈是⼤学⽣”的否定是( ),⽽命题“所有的⼈都是要死的”的否定是( )。

答:所有⼈都不是⼤学⽣,有些⼈不会死7、设P:我⽣病,Q:我去学校,则下列命题可符号化为( )。

(1) 只有在⽣病时,我才不去学校 (2) 若我⽣病,则我不去学校(3) 当且仅当我⽣病时,我才不去学校(4) 若我不⽣病,则我⼀定去学校答:(1)PP?P→(4)QQ→→(3)Q8、设个体域为整数集,则下列公式的意义是( )。

(1) ?x?y(x+y=0) (2) ?y?x(x+y=0)答:(1)对任⼀整数x存在整数 y满⾜x+y=0(2)存在整数y对任⼀整数x满⾜x+y=0 9、设全体域D是正整数集合,确定下列命题的真值:(1) ?x?y (xy=y) ( ) (2) ?x?y(x+y=y) ( )(3) ?x?y(x+y=x) ( ) (4) ?x?y(y=2x) ( )答:(1) F (2) F (3)F (4)T10、设谓词P(x):x是奇数,Q(x):x是偶数,谓词公式?x(P(x)∨Q(x))在哪个个体域中为真?( )(1) ⾃然数(2) 实数 (3) 复数(4) (1)--(3)均成⽴答:(1)11、命题“2是偶数或-3是负数”的否定是()。

离散数学期末考试题及答案

离散数学期末考试题及答案

离散数学期末考试题及答案一、选择题(每题2分,共20分)1. 在集合论中,以下哪个选项不是集合的基本运算?A. 并集B. 交集C. 差集D. 乘法答案:D2. 命题逻辑中,以下哪个命题不是基本的逻辑连接词?A. 与(∧)B. 或(∨)C. 非(¬)D. 等于(=)答案:D3. 在图论中,一个图的度数之和等于边数的几倍?A. 1B. 2C. 3D. 4答案:B4. 以下哪个是布尔代数的基本定理?A. 德摩根定律B. 布尔代数的分配律C. 布尔代数的结合律D. 所有选项都是答案:D5. 以下哪个不是组合数学中的计数原理?A. 加法原理B. 乘法原理C. 排列D. 组合答案:C6. 在关系数据库中,以下哪个操作不是基本的数据库操作?A. 选择B. 投影C. 连接D. 排序答案:D7. 以下哪个是有限自动机的组成部分?A. 状态B. 转移C. 输入符号D. 所有选项都是答案:D8. 以下哪个命题逻辑表达式是真命题?A. (p ∧ ¬p) ∨ qB. (p ∨ ¬p) ∧ qC. (p → q) ∧ (q → p)D. (p → q) ∧ (¬p → ¬q)答案:D9. 以下哪个是归纳法证明的基本步骤?A. 基础步骤B. 归纳步骤C. 反证法D. 所有选项都是答案:B10. 以下哪个是图的遍历算法?A. 深度优先搜索(DFS)B. 广度优先搜索(BFS)C. Dijkstra算法D. 所有选项都是答案:A二、简答题(每题10分,共30分)1. 简述命题逻辑中的德摩根定律。

答案:德摩根定律是命题逻辑中描述否定命题的两个重要定律。

它们分别是:- ¬(p ∧ q) ≡ ¬p ∨ ¬q- ¬(p ∨ q) ≡ ¬p ∧ ¬q2. 解释什么是图的连通分量,并给出一个例子。

答案:图的连通分量是指图中最大的连通子图。

离散考试复习题题

离散考试复习题题

第一部分:数理逻辑1 下列语句是命题的是( ):A.15能被3整除,3是偶数吗?B.明年5月1日是晴天C.2X+3>0D.我在说谎.2下列叙述中有( )个命题(1)离散数学是计算机科学系的一门必修课 (2) 地球外的星球上也有人(3) 我正在说谎. (4)请不要吸烟A.1个B.2个C. 3个D. 4个3 下列语句中不是..命题的只有()A.这个语句是假的。

B.1+1=1.0C.飞碟来自地球外的星球。

D.凡石头都可练成金。

4 设p:我很累,q:我去学习,命题:“除非我很累,否则我就去学习”的符号化正确的是A.┐p∧q B.┐p→qC.┐p→┐q D.p→┐q5 令p:今天下雪了,q:路滑,则命题“虽然今天下雪了,但是路不滑”可符号化为()A. p∧┐q B.p∨┐qC. p∧q D.p→┐q6使用逻辑连接词将下列复合命题符合化:(1)如果天不下雪且我有时间,我就进城;(2)我进城的必要条件是我有时间;(3)天不下雪或我不进城;(4)我进城当且仅当我有时间且天不下雪。

7判断下面一段论述是否为真:“ 是无理数。

并且,如果3是无理数,则2也是无理数。

另外6能被2整除,6才能被4整除。

”11. 将下列命题符号化(1)2或3是素数.(2)4或6是素数.(3)小元元只能拿一个苹果或一个梨.(4)王晓红生于1975年或1976年.8命题公式q ∧(p ∨┐q)的成真赋值是____________9命题公式p ∨(┐p →(q ∨(┐q →r)))的成假赋值是________10 命题公式(p →(q ∧r))∧(┐p →(┐q ∧┐r))的成真赋值是___11 命题公式p →(p ∧(q →r))的成假赋值是____________12..下列命题公式中是重言式的为( )A.q q)p (∧→⌝B. r q p ∧∧)(C.)()(q p q p ⌝∧∨∧D.p p q p ↔→→))((13 命题公式“q p q p →⌝∧∨)(”,是__________。

离散数学考试题及答案

离散数学考试题及答案

离散数学考试题及答案一、选择题(每题2分,共20分)1. 在集合论中,下列哪个符号表示属于关系?A. ∈B. ∉C. ⊆D. ∩答案:A2. 对于命题逻辑,下列哪个是真值表的表示方法?A. 真值表B. 逻辑图C. 布尔代数D. 集合论答案:A3. 以下哪个是图论中的基本单位?A. 点B. 线C. 面D. 体答案:A4. 函数f(x) = x^2 + 3x + 2在x=-1处的值是:A. 0C. 4D. 6答案:C5. 在关系数据库中,以下哪个操作用于删除表中的记录?A. SELECTB. INSERTC. UPDATED. DELETE答案:D6. 以下哪个是离散数学中的归纳法证明方法?A. 直接证明法B. 反证法C. 归纳法D. 构造性证明法答案:C7. 在逻辑中,以下哪个是析取命题?A. P ∧ QB. P ∨ QC. ¬PD. P → Q答案:B8. 以下哪个是图的遍历算法?B. BFSC. Dijkstra算法D. Floyd算法答案:B9. 在集合{1, 2, 3}上,以下哪个是幂集?A. {∅, {1}}B. {1, 2}C. {1, 2, 3}D. 所有选项答案:D10. 以下哪个是递归算法的特点?A. 不能自我调用B. 必须有一个终止条件C. 必须有一个基本情况D. 所有选项答案:D二、填空题(每空2分,共20分)1. 在离散数学中,_________ 表示一个命题的否定。

答案:¬P2. 如果集合A和集合B的交集为空集,那么A和B被称为_________。

答案:不相交3. 一个函数f: A → B是_________,如果对于集合B中的每个元素b,集合A中至少有一个元素a与之对应。

答案:满射4. 在图论中,一个没有环的连通图被称为_________。

答案:树5. 一个命题逻辑公式是_________,如果它在所有可能的真值分配下都是真的。

答案:重言式6. 一个关系R在集合A上是_________,如果对于A中的任意两个元素a和b,如果(a, b)属于R,则(b, a)也属于R。

离散数学复习题

离散数学复习题

1、从集合分类的角度看,命题公式可分为( C )A.永真式、矛盾式B. 永真式、可满足式、矛盾式C. 可满足式、矛盾式D. 永真式、可满足式 2、设B 不含有x ,))((B x A x →∃等值于 ( A )A.B x xA →∀)(B.))((B x A x ∨∃C.B x xA →∃)(D.))((B x A x ∧∃ 3、设S,T,M 是集合,下列结论正确的是( D )A .如果S ∪T=S ∪M ,则T=MB .如果S-T=Φ,则S=TC .S S S =⊕D .)(~T S T S =- 4、设R 是集合A 上的偏序关系,则R 不一定是( B )A.自反的B. 对称的C. 反对称的D. 传递的 5 设R 为实数集,定义R 上4个二元运算,不满足结合律的是( B )。

A. y x y x f +=),(1 B. y x y x f -=),(2 C. xy y x f =),(3 D. },max{),(4y x y x f = 6、设二元运算x y x = ,则它满足( C )A.交换律B. 吸收律C. 幂等律D. 消去律 7、设A={1,2},则群>⋂<),(A P 的单位元和零元是( B )A. Φ与AB. A 与ΦC. {1}与ΦD. {1}与A 8、下列编码是前缀码的是( C ).A.{1,11,101}B.{1,001,0011}C. {1,01,001,000}D.{0,00,000} 9、下图中不是二部图的是( A )A . 三角形B .四边形C .六四边形D .八边形 10、下图所示的二叉树中序遍历的结果是(A )A .abcdeB .edcbaC .bdecaD .badce二、填空题1、含3个命题变项的命题公式的主合取范式为76430M M M M M ∧∧∧∧, 则它的主析取范式为 m1Vm2Vm3 。

(的形势表示成m m ∨)2、公式),,()),(),,((z y x H y x G z y x F x ∧→∀中,x 约束出现 次。

离散数学-复习题

离散数学-复习题

离散数学试题1一、单项选择题在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.下列句子为命题的是( )A.走,看电影去B.x+y>0C.空集是任意集合的真子集D.你明天能来吗?2.下列式子不是..谓词合式公式的是( ) A.(∀x)(P(x)→(∃x)(Q(x) ∧A(x ,y)))B.(∀x)∧(∃y)∨P(x ,y)C.(∀x)P(x)→R(y)D.(∃x)P(x)∧Q(y ,z)3.下列式子为重言式的是( )A.P →P ∨QB.(﹁P ∧Q)∧(P ∨﹁Q)C.﹁ (P Q)D.(P ∨Q) (P →Q) 4.设个体域为实数集,特定元素a=0,函数f(x ,y)=x-y ,特定谓词F(x ,y)为x<y ,下列公式真值为真的是( )A.(∀x)(∀y)F(x ,f(f(x ,y),y))B.(∀x)(∀y)(﹁F(f(x ,y),x))C.(∀x)(∀y)(∀z)(F(x ,y)→F(f(x ,z),f(y ,z)))D.(∀x)F(f(a ,x),a)5.对于公式(∀x)(∀y)P(x ,y)∨Q(x ,z)∧(∃x)P(x ,y),下列说法正确的是( )A.x 是自由变元B.x 是约束变元C.( ∀x)的辖域是P(x ,y)∨Q(x ,z)D.(∀x)的辖域是P(x ,y)6.设论域为{1,2},与公式(∀x)﹁A(X)等价的是( )A. ﹁A(1) ∨﹁A(2)B. ﹁A(1)→﹁(A2)C. ﹁A(1) ∧﹁A(2)D. A(1) →A(2)7.设Z +是正整数集,f :Z +×Z +→Z +,f(n ,m)=n m ,则f( )A.仅是单射B.仅是满射C.是双射D.不是函数8.下列哪个关系矩阵所对应的关系具有自反性( )A.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001111101B.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡101110001C.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001100100D.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡00101010110.在整数集上,下面哪个运算不是..二元运算( )A.加法B.减法C.乘法D.除法二、填空题请在每小题的空格中填上正确答案。

离散结构复习题

离散结构复习题

《离散结构》复习题一.单项选择题1.设S={a,b},则S上可定义的二元运算的个数是()A.4;B.8;C.16;D.32。

2.下列数学结构中是代数系统的是()A.<N-{0},×,÷>;B.<R-{0},+,×>;C.<N,+,—>;D.<N,+,×>;3.A={x|x<100且为质数},在A上定义运算“*”和“#”如下: x,y∈A,x*y=max{x,y}, x#y=lcm(x,y),,其中lcm(x,y)表示x与y的最小公倍数。

以下说法正确的是()A.<A,*>是代数系统,<A,#>不是代数系统;B.<A,*>不是代数系统,<A,#>是代数系统;C.<A,*>是代数系统,<A,#>也是代数系统;D.<A,*>与<A,#>都不是代数系统。

4.设Z为整数集合,下列集合关于数的加法运算不能构成<Z,+>的子代数系统的是()A.N(自然数集合);B.{2k|k∈Z};C.{2k+1|∈Z};D.{3m+2n|m,n∈Z}。

5.在自然数集合N上,下列哪个运算是可交换的()A.a﹡b=a–b;B.a﹡b=max{a,b};C.a﹡b=a+2b;D.a﹡b=a。

6.在自然数集合N上,下列哪个运算是可结合的()A.a﹡b=a–b;B.a﹡b=max{a,b};C.a﹡b=a+2b;D.a﹡b=|a–b|。

7.在自然数集合N上,下列哪个运算满足幂等律()A.a﹡b=a–b;B.a﹡b=max{a,b};C.a﹡b=a+2b;D.a﹡b=|a–b|。

8.在自然数集合N上,下列哪个运算满足消去律()A.a﹡b=b;B.a﹡b=max{a,b};C.a﹡b=a+2b;D.a﹡b=|a–b|。

10.在代数系统<N6, 6>中关于运算“ 6”,下列元素中不是等幂元的是()。

离散数学考试试题及答案

离散数学考试试题及答案

离散数学考试试题及答案一、单项选择题(每题5分,共20分)1. 在离散数学中,以下哪个概念不是布尔代数的基本元素?A. 逻辑与B. 逻辑或C. 逻辑非D. 逻辑异或答案:D2. 下列哪个命题不是命题逻辑中的命题?A. 所有学生都是勤奋的B. 有些学生是勤奋的C. 学生是勤奋的D. 勤奋的学生答案:D3. 在集合论中,以下哪个符号表示集合的并集?A. ∩B. ∪C. ⊆D. ⊂答案:B4. 以下哪个图不是无向图?A. 简单图B. 完全图C. 有向图D. 多重图答案:C二、填空题(每题5分,共20分)1. 如果一个命题的逆否命题为真,则原命题的________为真。

答案:逆命题2. 在图论中,如果一个图的任意两个顶点都由一条边连接,则称这个图为________图。

答案:完全3. 一个集合的幂集是指包含该集合的所有________的集合。

答案:子集4. 如果一个函数的定义域和值域都是有限集合,那么这个函数被称为________函数。

答案:有限三、简答题(每题10分,共30分)1. 请简述什么是图的欧拉路径。

答案:欧拉路径是一条通过图中每条边恰好一次的路径。

2. 解释什么是二元关系,并给出一个例子。

答案:二元关系是指定义在两个集合之间的关系,它将第一个集合中的元素与第二个集合中的元素联系起来。

例如,小于关系就是一个二元关系。

3. 请说明什么是递归函数,并给出一个简单的例子。

答案:递归函数是一种通过自身定义来计算函数值的函数。

例如,阶乘函数就是一个递归函数,定义为:n! = n * (n-1)!,其中n! = 1当n=0时。

四、计算题(每题10分,共30分)1. 计算以下逻辑表达式:(P ∧ Q) ∨ ¬R答案:首先计算P ∧ Q,然后计算¬R,最后计算两者的逻辑或。

2. 给定集合A = {1, 2, 3},B = {2, 3, 4},求A ∪ B。

答案:A ∪ B = {1, 2, 3, 4}3. 已知函数f(x) = 2x + 3,求f(5)。

离散数学考试试题及答案

离散数学考试试题及答案

离散数学考试试题及答案一、选择题(每题2分,共20分)1. 在集合论中,以下哪个选项表示“属于”关系?A. ⊆B. ⊂C. ∈D. ⊇答案:C2. 以下哪个命题是真命题?A. p ∧ ¬pB. p ∨ ¬pC. p → ¬pD. ¬(p → q) → p答案:B3. 以下哪个选项是命题逻辑中的德摩根定律?A. ¬(p ∨ q) = ¬p ∧ ¬qB. ¬(p ∧ q) = ¬p ∨ ¬qC. ¬(p → q) = p ∧ ¬qD. ¬(p ∨ q) = ¬p ∨ ¬q答案:A4. 以下哪个选项是命题逻辑中的蕴含等价?A. p → q ≡ ¬p ∨ qB. p → q ≡ ¬q → ¬pC. p → q ≡ p ∨ ¬qD. p → q ≡ ¬p ∧ q答案:A5. 以下哪个选项是关系的性质?A. 反身性B. 对称性C. 传递性D. 所有选项都是答案:D6. 以下哪个选项是图论中的有向图?A. 无向图中的边没有方向B. 有向图中的边有方向C. 混合图中的边既有方向也有无方向D. 所有选项都是答案:B7. 在图论中,以下哪个选项是树的性质?A. 树是无环的B. 树是连通的C. 树是无向图D. 所有选项都是答案:D8. 以下哪个选项是布尔代数的基本运算?A. 与(AND)B. 或(OR)C. 非(NOT)D. 所有选项都是答案:D9. 以下哪个选项是组合数学中的排列?A. 从n个不同元素中取出m个元素的组合B. 从n个不同元素中取出m个元素的排列C. 从n个相同元素中取出m个元素的组合D. 从n个相同元素中取出m个元素的排列答案:B10. 以下哪个选项是集合论中的幂集?A. 一个集合的所有子集的集合B. 一个集合的所有真子集的集合C. 一个集合的所有超集的集合D. 一个集合的所有子集的个数答案:A二、简答题(每题10分,共30分)1. 简述命题逻辑中的等价命题是什么?答案:等价命题是指两个命题在所有可能的真值赋值下都具有相同真值的命题。

离散数学复习题参考带答案

离散数学复习题参考带答案

一、选择题:(每题2’)1、下列语句中不是命题的有()。

A.离散数学是计算机专业的一门必修课。

B.鸡有三只脚。

C.太阳系以外的星球上有生物。

D.你打算考硕士研究生吗?2、命题公式A与B是等价的,是指()。

A.A与B有相同的原子变元B.A与B都是可满足的C.当A的真值为真时,B的真值也为真D.A与B有相同的真值3、所有使命题公式P∨(Q∧¬R)为真的赋值为()。

A.010,100,101,110,111 B.010,100,101,111C.全体赋值D.不存在4、合式公式⌝(P∧Q)→R的主析取范式中含极小项的个数为()。

A.2 B.3 C.5 D.05、一个公式在等价意义下,下面哪个写法是唯一的()。

A.析取范式B.合取范式C.主析取范式D.以上答案都不对6、下述公式中是重言式的有()。

A.(P∧Q) → (P∨Q) B.(P↔Q) ↔ (( P→Q)∧(Q→P))C.⌝(P →Q)∧Q D.P →(P∧Q)7、命题公式(⌝P→Q) →(⌝Q∨P)中极小项的个数为(),成真赋值的个数为()。

A.0 B.1 C.2 D.38、若公式(P∧Q)∨(⌝P∧R) 的主析取范式为m001∨m011∨m110∨m111则它的主合取范式为()。

A.m001∧m011∧m110∧m111B.M000∧M010∧M100∧M101C.M001∧M011∧M110∧M111D.m000∧m010∧m100∧m1019、下列公式中正确的等价式是()。

A.⌝(∃x)A(x) ⇔ (∃x)⌝A(x) B.(∀x) (∀y)A(x, y) ⇔ (∃y) (∀x) A(x, y)C.⌝(∀x)A(x) ⇔ (∃x)⌝A(x) D.(∀x) (A(x) ∧B(x)) ⇔ (∀x) A(x) ∨(∀x) B(x)10、下列等价关系正确的是()。

A.∀x ( P(x) ∨Q(x) ) ⇔∀x P(x) ∨∀x Q(x) B.∃x ( P(x) ∨Q(x) ) ⇔∃x P(x) ∨∃x Q(x)C.∀x ( P(x) →Q ) ⇔∀x P(x) → Q D.∃x ( P(x) →Q ) ⇔∃x P(x) → Q11、设个体域为整数集,下列真值为真的公式是()。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1. 求下列公式的析取范式和合取范式。

r q p ↔→)(
2.求下列公式的前束范式,要求填写每一步的依据:
)()(x xG x xF ∀∧∃
3.证明集合等式(
)()()(C A B A C B A --=-
4.解释等价关系、集合的划分和商集,并举例说明。

5.在某次国际会议的预备会中,共有8人参加,他们来自不同的国家。

已知他们中任何两个无共同语言的人,与其余有共同语言的人数之和大于或等于8,试证明能将这8个人排在圆桌旁,使其任何人都能与两边的人交谈。

6、设<I,+>是一个群,设I E ={x|x=2n,n ∈I },证明<I E ,+>是<I,+>的一个子群。

7.设R 为N N ⨯上的二元关系,N N d c b a ⨯>∈<><∀,,,,
d
b d
c R b a =>⇔<><,,
证明:(1)R 为等价关系;(2)求商集R N N /⨯。

8.设R 是A 上一个二元



)}
,,,(),(|,{R b c R c a A c A b a b a S >∈<>∈<∈∧∈><=且有对于某一个试证明若R 是A 上一个等价关系,则S 也是A 上的一个等价关系.
9.如下图,回答以下的问题
1) v 1到v 4,v 4到v 1长为3的通路各有多少条? (2) v 1到自身长为1,2,3,4的回路各有多少条?
(3) 长为4的通路共有多少条?其中有多少条回路? (4) 长度小于等于4的回路共有多少条?
(5) 写出D 的可达矩阵, 并问D 是强连通的吗?
10.何谓欧拉回路,欧拉图?何谓哈密尔顿回路,哈密尔顿图。

11.求下列公式的主析取范式和主合取范式。

r q p ↔→)(
12.求下列公式的前束范式,要求填写每一步的依据:
)()(x xG x xF ∃∧∀
13.证明集合等式
)()()(C A B A C B A --=-
14.解释单射、满射和双射,并举例说明。

15.有7个人, A 会讲英语, B 会讲英语和汉语, C 会讲英语、意大利语和
v 1
v 2
v 3
v 4
俄语, D 会讲日语和汉语, E 会讲德语和意大利语, F 会讲法语、日语和俄语, G 会讲法语和德语. 问能否将他们沿圆桌安排就坐成一圈, 使得每个人都能与两旁的人交谈?
16.设R 是A 上自反和传递的关系,如下定义A 上的关系T,使得
R x y R y x T y x A y x ∈∧∈⇔>∈<∈∀),(),(,,,
证明T 是A 上的等价关系。

17. 若图G 不连通,则G 的补图G 是连通的。

18.如下图所示的赋权图表示某七个城市721,,,v v v 及预先算出它们之间的一些直接通信成路造价(单位:万元),试给出一个设计方案,使得各城市之间既能够通信又使总造价最小。

19.设 ∘ 运算为 Q 上的二元运算, ∀x , y ∈Q, x ∘ y = x +y +2xy ,
(1) 判断 ∘ 运算是否满足交换律和结合律,并说明理由. (2) 求出 ∘ 运算的单位元、零元和所有可逆元素的逆元.
20.设<A,*>,是半群,e 是左幺元且A x A x ∈∃∈∀ˆ,,使得e x x =*ˆ,
则<A , *>是群。

21何谓环?整环?请举例说明。

22.环同态?请举例说明。

23.请解释前缀码?并举例说明。

24.设G ={e , a , …, a 11}是12阶循环群,请求出G 的所有生成元。

25.证明:非平凡的无向树至少有两片树叶 。

26.求下图的最小生成树
27.在通信中,设八进制数字出现的频率(%)如下:
0: 25, 1: 20, 2: 15, 3: 10, 4: 10, 5: 10, 6: 5, 7: 5 采用2元前缀码, 求传输数字最少的2元前缀码 (称作最佳
前缀码), 并求传输100个按上述比例出现的八进制数字需要多少个二进制数字?若用等长的(长为3) 的码字传输需要多少个二进制数字?。

相关文档
最新文档