Optimal Control for Reactive Power Wind Farms Consisting of VSCF DFIG Wind Turbine Generator Systems

合集下载

可再生能源高度整合的电力系统的最优能量调度说明书

可再生能源高度整合的电力系统的最优能量调度说明书

Ruben Chaer (IEEE-Senior Member)Gerente de Técnica y Despacho Nacional de Cargas - ADME.Prof.Agr. Instituto de Ingeniería Eléctrica - FING - UdelaR.Uruguay - September2020Optimal Energy Dispatch of Power Systems with high integration of VariableRenewable Energies.SimSEE●This tutorial is about the optimal operation of power systems with high variability in their resources.●We will see the tools developed for modeling such variabilities and for the assimilation of theirforecasts.Each system has its peculiarities. The optimal solution is surely differentfor each country.A measure of the difficulty of handling a variability energy resource is the averaging-time needed to obtain the expected value with a 10% error with 90% confidence. Characterization of the variability in Uruguay.16 yearsWS 2 months water inflowswind & solarSource: The risk images are from the IIE studies carried out in 2010 and 2018 respectively .Demand of 2011HydrobiomassprobabilityGW hpetroleumdray yearsrainy yearsSystem of 2011Source: The risk images are from the IIE studies carried out in 2010 and 2018 respectively .System of 2018dray yearsrainy years2018-012018-022018-032018-042018-052018-062018-072018-082018-092018-102018-112018-120,00,20,40,60,81,01,21,41,61,8Uruguay 2018.Wind and Solar installed capacity compared with daily Demand.Daily_Min(Dem)Daily_Average(Dem)Daily_Max(Dem)Wind+Solar Capacity0.4*Wind+0.2*Solar Expected mean[p .u . o f t h e a n n u a l a v e r a g e o f t h e D e m a n d ]The installed capacity of solar plus wind power exceeds the daily peak of La Demand in 70% of the days of the year.Network Codes.All generators under controlSCADAOperatorsCotrol Modes:●Active Power Control●Reactive Power Control●Voltage ControlAdditional tools●Authomatic Generation Control (AGC)●Dynamic Line Rating (DLR)●Remedial Action Scheme (RAS)Any 72 hours of January 2020 of the dispatch just as an exampleExportsSource: https://.uyIn the end, it wasn't that difficult. The ten-minutevariations of the Net-Demand are only the double of those of the True-Demand.The Uruguayan system then only needs an additional 25 MW of rotating reserve.Mission of the System Operator●Centralized Dispatch.●Only Variable Costs.●Contracts are of paper(in the sense that they should not interfere in the Dispatch).Provide energy with acceptable reliabilityand quality at the minimum cost.Platform for simulation of optimal operation of the energy dispatch.100% OOPActors PlayroomDynamic parameters MonitorsFree & OpenSourceSimSEEhttps://Temporary linking of decisions.The use of stored resources (water) in thepresent produces an increase in futureoperating costs. The postponement ofthe use of a stored resource produces anincrease in the costs of the present.The Optimal Policy is the one thatbalances the cost impact betweenpresent and future.The System, The Operator and The Operation PolicyX = Stater = Non-controllable inputsu = Controllable Inputsu=P(X,r,t)FCP (Xahora)=⟨∫nowfuture+∞oc(X,r,u,t)dt⟩Operation Policy:Instant operating cost:oc(X,r,u,t)Future Cost:Time-Step used for simulation.Big time step / implicit inertiaSmall time step / more state variablesbalance restrictionsoverestimate filtering capacityneed of availability models to representfail/repair inertiaBellman's curse of dimensionality.u =P (X ,r ,t )Operation Policy:Dim (u )×N X 1×N X 2...×N XDim (X )×N r 1×N r 2...×N rDim (r )×N tTime-Bands (Patamares)defined by the Monotonous Load Curve ... Makes sense?Only an example, 4 days of july-2018-UruguaySource: ADME - SCADA ten-minute time series035710121417192124262831333538404244474951545658616365687072757780828487899194965001000150020002500Térmica Hydro Biomass Wind SolarhoursM WSource: ADME - SCADA ten-minute time series036811141619222427303235384043454851535659616467697275788083868891945001000150020002500Demand Demand-VREhoursM WTime-Bands (Patamares)defined by the Monotonous Load Curve ... Makes sense?better use Net-Demand instead of Demandtime band 1time band 3time band 2Sources of randomness Stochastic processes●Demand and temperature●Flows of water contributions●Wind speed●Solar radiation●Price of interconnected markets ●Fuel prices●Availability of fuels●Availability of generating plants ●Availability of transport linesEquipment availability(independent booleans) El Niño, Hydro, Wind, Solar, Demand, T emperature. (correlated processes)Representation of uncertainty.We are managing faster dynamics,therefore, the correlation between thedifferent resources has greaterimportance.We need models of variability thatcorrectly represent the correlationbetween resources and the correlationwith the past.That is, we have to represent theinertia behind the stochastic variables.UnavailableAvailability of generators, powertransmission lines, etc.AvailableI f we do not represent the state of the availability when simulating with small time-steps, the consequences of the inertia ofthe fault-repair process are underestimated.Each generator, transmission line, etc. adds a Boolean state variable to the system.FailRepairWind, Solar and Demand correlations.WindSolarW i n dS o l a rDem an dGaussian WorldReal World ModelGaussian World:Multi-variable linear systemfed withGaussian independent white noiseCEGH modeling.X k +1=∑h =0h =n −1A h X k −h +∑h =0h =m −1B h R k −hNLTNLT NLT NLT NLTNLT •reproduces the amplitude histograms of the original processes.•reproduces the spatial and temporal correlations in a gaussian space.Accept state space reductions.Accept forecast information.PRONOS2016-2017https://.uyhttps://.uy/svg/Weather ForecastReal time status informationPower plants modelsLoad, Wind and Solar powerForecastADME_Data y ADME_WindSimOperator without forecastsOperator with forecastsTreatment of forecasts in CEGH modeling. GaussianizationP50P90P10tx1x2P 50P 90P 10Real WorldGaussian SpaceEase integration of FORECASTS in CEGH modeling.The biases (S) change the 50% probability guide and the attenuation factors (F)regulate the noise injection, allowing to go from a Deterministic Forecast (F = 0 = null noise) to the disappearance of the forecast (S = 0; F = 1 =historical noise).X k +1=∑h =0h =n r −1A h X k −h +S k +F k∑h =0h =m −1B h R k −hS k =[s 1,k...s n ,k]biases:F k =[f 1,k 0...00f 2,k 00...0f n ,k]attenuators:Treatment of forecasts in Gaussian space with reduction in CEGH modeling.u =PO z (z,r,t )z =M R X RA X =M A (t )z +B A (t )wP50P90P10tx1x2P50P90P10tProgramming the enegy dispatch withoutwindpower forecasts.σ=0Programming the enegy dispatch with 72h ofwindpower forecasts.ForecastDemand Stochastic Model Eng. ElianaCornalinoFor more information see: https://youtu.be/SvidemGQdG4Hydrological modelingEng. Alejandra de VeraFor more information see: https://youtu.be/DYvZLeotxEkAssimilation of Forecast Ensembles in CEGH Models. Eng. Guillermo FliellerFor more information see: https://youtu.be/glheJY9PPc4Considering the ENSO ForecastsModeling Wind and Solar Power Forecasts usingMixture Density NetworksEng. Damián Vallejo.For more information see: https://youtu.be/ZDUhUMfI-7oContinuous forecast of the next 168 VATEShours of optimal operation.Expected generation by source. (Example from ADME’s WEB)Next 168 h, System Load forecast. (Example from ADME’s WEB)Next 168 h, Windpower forecast. (Example from ADME’s WEB)Next 168 h, Spot Price forecast. (Example from ADME’s WEB)Determination of Exportable Energy BlocksEng. Felipe PalacioFor more information see: https://youtu.be/F7h43i3sxU0What we are working on now for the future.Combined Cycle Model. Eng. Vanina Camacho2 State variables for each group TG+Boiler.●Timer_TGtoCC_ (Purge 4h, Full Load 2h)●Boiler_temperature (startup type:, warm, hot, cold)For more information see: https://youtu.be/_EcEf4w8yn4Optimal dispatch with network representation in SimSEE.Eng. Ignacio Reyes FlucarSimSEEi t er a t i o n For more information see: https://youtu.be/jHRlAaL5mq4Bellman's curse of dimensionality.u =P (X ,r ,t )Operation Policy:SimSEE Self-Learning a pesudo-optimal Operation Policy to Combat Bellman's Curse of DimensionalityANII_FSE_1_2017_1_144926 (2018-2020)IIE-FING-UdelaRRuben Chaer, Ignacio Ramirez, XimenaCaporale, Pablo Soubes, Damián Vallejo,Felipe Palacio, Sergio Tagliafico.N01 N02 N03 N04N11N12N13N14Lin N15N17N18N19EntradaSalida ⏟Capas ocultasMAXTemporal ParsimonyEng. Ximena CaporaleFor more information see: https://youtu.be/4P4yriSpSBk。

Real-time optimal reactive power dispatch using multi-agent technique

Real-time optimal reactive power dispatch using multi-agent technique

0378-7796/$ – see front matter © 2003 Elsevier B.V. All rights reserved. doi:10.1016/j.epsr.2003.10.009
260
Y.-j. Zhang, Z. Ren / Electric Power Systems Research 69 (2004) 259–265

Corresponding author. E-mail address: 87112526@ (Y.-j. Zhang).
Extensive computational experience indicates that nonlinear programming technique is very demanding task, especially for large-scale power systems [1]. An artificial neural network-based approach is used in a 62-bus network for the reactive power optimization [1]; a hybrid stochastic search technique is tested on IEEE 30-bus [2]; a hybrid approach combining heuristic and numerical techniques is applied to the Algerian 220/60 kV system with 68 buses [3]. It is not easy to find the global optimum within a limited time not only by using the deterministic optimization methods but also by using heuristic search approaches, so that the technique of real-time ORPD is applied popularly to nothing more than small-scale local electric networks up to now. In view of the fact that the power dispatch systems are distributed geographically, distributed solving is more suitable for reactive power optimization because it can enhance the solving efficiency and reliability greatly. Distributed artificial intelligence (DAI) is concerned with situations in which several computer systems interact in order to solve a common problem. Multi-agent system is an advanced branch of DAI. A new technique based on MAS for large-scale real-time ORPD problem is presented in this paper, and a coordinative optimization method with a built-in Cataclysmic Genetic Algorithm is adopted to solve the problem. The numeric simulation results demonstrate that the proposed

基于混合整数二阶锥规划的主动配电网有功无功协调多时段优化运行

基于混合整数二阶锥规划的主动配电网有功无功协调多时段优化运行

基于混合整数二阶锥规划的主动配电网有功无功协调多时段优化运行一、本文概述Overview of this article随着可再生能源的大规模接入和电力电子设备的广泛应用,主动配电网(Active Distribution Network, ADN)的运行和管理面临着前所未有的挑战。

有功功率和无功功率的协调优化是保障ADN安全、经济、高效运行的关键。

本文提出了一种基于混合整数二阶锥规划(Mixed-Integer Second-Order Cone Programming, MISOCP)的主动配电网有功无功协调多时段优化运行方法。

该方法旨在通过综合考虑ADN中的多种约束条件和运行目标,实现有功和无功功率的协同优化,提高配电网的运行效率和稳定性。

With the large-scale integration of renewable energy and the widespread application of power electronic devices, the operation and management of Active Distribution Network (ADN) are facing unprecedented challenges. The coordinated optimization of active and reactive power is the key to ensuring the safe, economical, and efficient operation of ADN. Thisarticle proposes a multi period optimization operation method for active and reactive power coordination in active distribution networks based on Mixed Integer Second Order Cone Programming (MISOCP). This method aims to achieve collaborative optimization of active and reactive power by comprehensively considering various constraints and operational objectives in ADN, and improve the operational efficiency and stability of the distribution network.本文首先介绍了ADN的特点和面临的挑战,然后详细阐述了有功无功协调优化的重要性。

光伏控制英语

光伏控制英语

IntroductionPhotovoltaic (PV) systems, harnessing the power of sunlight to generate electricity, have emerged as a pivotal component of global renewable energy strategies. The efficient and reliable operation of these systems is largely dependent on sophisticated control mechanisms that optimize their performance, ensure safety, and facilitate seamless integration with electrical grids. This comprehensive analysis delves into various aspects of PV control, exploring the technologies, methodologies, and standards that underpin high-quality, high-standard PV systems.I. Fundamental Principles of Photovoltaic ControlThe core objective of PV control is to maximize energy yield while maintaining system stability and compatibility with the grid. Key principles guiding this endeavor include:1. Maximum Power Point Tracking (MPPT): MPPT algorithms dynamically adjust the operating point of the PV array to extract the maximum available power under varying environmental conditions such as solar irradiance and temperature. Advanced MPPT techniques, such as perturb-and-observe, incremental conductance, and fuzzy logic, offer improved tracking accuracy and response time.2. Power Quality Management: PV inverters, responsible for converting DC power from the PV array to AC power compatible with the grid, must adhere to stringent power quality standards. Harmonic distortion, voltage flicker, and reactive power compensation are critical parameters that need to be controlled to prevent grid instability and equipment damage.3. Grid Interfacing and Compliance: PV systems must comply with grid codes and regulations, which vary across jurisdictions. Key requirements include low-voltage ride-through capability, frequency and voltage regulation support, and provision of ancillary services like reactive power control and active power curtailment.II. Advanced Control Strategies for Enhanced Performance1. Distributed MPPT: In large-scale PV installations, employing multiple MPPT units per inverter or using module-level power electronics can significantly enhance overall system efficiency by mitigating the effects of partial shading, module mismatch, and soiling.2. Forecasting and Predictive Control: Integrating weather forecasting and historical data analysis enables proactive control strategies that anticipate changes in solar irradiance and temperature, thereby optimizing power output and reducing energy losses. Machine learning algorithms can further enhance predictive capabilities by learning patterns and adapting to site-specific conditions.3. Hybrid Energy Systems Control: In scenarios where PV is combined with other renewable sources or energy storage, advanced control strategies are necessary to coordinate the operation of these components, ensuring optimal energy utilization, stability, and cost-effectiveness.III. Cybersecurity and Communication ProtocolsAs PV systems increasingly rely on digital communication and remote monitoring, cybersecurity becomes a paramount concern. Ensuring secure data transmission, protecting against cyber threats, and maintaining system integrity are vital for high-quality, high-standard PV control. Key aspects include:1. Secure Communication Protocols: Implementing industry-standard communication protocols like Modbus TCP/IP, DNP3, or IEC 61850, with robust encryption and authentication mechanisms, safeguards against data breaches and unauthorized access.2. Intrusion Detection and Prevention Systems: Deploying advanced cybersecurity measures, such as firewalls, intrusion detection/prevention systems (IDS/IPS), and regular firmware updates, fortifies PV systems against potential cyberattacks.3. Cybersecurity Standards Compliance: Adhering to international standards like IEC 62443 for industrial control systems security and NIST Cybersecurity Framework ensures a systematic approach to addressing cybersecurity risks in PV systems.IV. Quality Assurance and StandardizationTo guarantee high-quality, high-standard PV control, adherence to rigorous testing, certification, and standardization processes is essential. Key aspects include:1. International Standards: Compliance with international standards like IEC 61727 for MPPT performance evaluation, IEC 61000 for electromagnetic compatibility, and UL 1741 for inverter safety and performance ensures consistency and interoperability across different PV systems and markets.2. Certification and Testing: Third-party certification by recognized bodies like TÜV Rheinland, UL, or Intertek provides independent validation of PV control systems' compliance with relevant standards, enhancing reliability and consumer confidence.3. Continuous Monitoring and Maintenance: Regular system monitoring, performance assessment, and maintenance according to guidelines like O&M Best Practices Guidelines for Photovoltaic Systems ensure sustained high performance and early detection of potential issues.V. Future Perspectives and Technological AdvancesThe ongoing evolution of PV control is driven by advancements in areas such as:1. Digital Twins and Virtual Commissioning: Digital replicas of PV systems enable virtual testing and optimization of control strategies before deployment, reducing commissioning time and costs while enhancing overall system performance.2. Edge Computing and AI: Integrating edge computing devices and artificial intelligence algorithms can enable real-time, autonomous decision-making at the component level, further improving MPPT efficiency, fault detection, and predictive maintenance.3. Grid 2.0 Integration: As power grids transition towards more decentralized, flexible, and intelligent architectures (Grid 2.0), PV control systems will need to adapt to support bi-directional power flows, enhanced grid stability services, and participation in local energy markets.ConclusionHigh-quality, high-standard photovoltaic control is a multifaceted endeavor that encompasses advanced control strategies, robust cybersecurity measures, rigorous quality assurance, and continuous adaptation to technological advancements. By diligently addressing these aspects, the global PV sector can accelerate its contribution to a sustainable, resilient, and low-carbon energy future.。

电力系统专业词汇

电力系统专业词汇

电力专业术语英汉对照表sudden loss of a generator or transmission line.突然损失发电机或线路sudden load increases or decreases负荷突然增加或减少short circuits and switching operations. 短路和开关操作three-phase and line-to-ground faults三相和对地短路circuit breaker短路器transient overvoltages and currents暂态过电压和电流lightning strikes雷击surge arrester电涌放电器phasor相量instantaneous power瞬时功率A sinusoidal voltage or current at constant frequency正弦电压或电流maximum value最大值effective value有效值average value平均值real axis坐标系实轴imaginary axis坐标系虚轴phasor diagram for相量图passive elements无源元件resistor电阻inductor电感capacitor电容reactance电抗inductive感性capacitive容性real power or active power有功功率reactive power无功功率power factor功率因数power factor angle功率因数角The physical significance of …物理意义…be in phase with……与…同相位As indicated by (2.1), …如式(2.1)所示The current lags(leads)the voltage by 90…落后(超前)…多少相位.sinusoidal-steady-state正弦稳态让a=b,得到:Letting a=b givesBy convention, the power factor cos(a-b) is positive按照惯例(通常).a time interval T. Example: The total energy absorbed by a load during a time interval时间区间rating. 定值power rating额定功率power rating of electric generator;发电机额定功率voltage rating. 额定电压Kirchhoff’s current(voltage) law基尔霍夫电流(电压)方程nodal equations节点方程admittance matrix导纳矩阵column vector of N bus voltages有N个节点电压构成的列相量diagonal elements对角元素off-diagonal elements非对角元self-admittance; driving-point admittance自导纳mutual admittance; transfer admittance互导纳The US blackout on 14 August, 2003美国8.14大停电The blackout will have huge technical and organizational consequences for the US power industry…对…将产生深远影响The existing local reactive power sources were not able to support the voltages. 当地仅存的无功电源无法维持电压trip(tripped) the lines. 切除线路Power system stability refers to the ability of synchronous machines to move from one steady-state operating point following a disturbance to another steady-state…operating point, without losing synchronism. 电力系统稳定是指nominal values额定值loss of generation, line-switching operations, faults, sudden load changes故障类型EMS=Energy Management System能量管理系统DMS=Distribution Management System配电网络管理系统SCADA=Supervisory Control And Data Acquisition 监管控制与数据采集(调度自动化系统)AGC=Automatic Generation Control自动发电控制LFC=Load Frequency Control负荷频率控制EDC=Economic load Dispatching Control 经济调度负荷控制RTU=Remote Terminal Unit远程终端单元(远动分站)MMI=Men Machine Interface人机交互界面(在屏幕上进行监视与操作、控制)CRT=Cathode Ray Type阴极射线显示(显像管监视器)LC=Load Control负荷控制AM/FM=Automated Mapping and Facilities Management自动绘图与设备管理DSM=Demand Side Management需求端管理TOU=Time Of Use使用时间(次数)GEM=Generation Efficiency Management发电功效管理MIS=Management Information System信息管理系统OS=Operation System操作系统DTS=Dispatcher Training Simulator调度员培训系统EMP=Energy Management Platform能量管理平台FA T=Factory Acceptance Test工厂验收试验SA T=on Site Acceptance Test现场验收试验RTGEN=Real Time Generation Control实时发电控制RTNET=Real Time NETwork state analysis实时网络状态分析FM=Facilities Management设备管理GIS=Geographic information System地理信息系统IEEE=The Institute of Electrical and Electronic Engineers 电气电子工程学会POSIX=Portable Operating System Interface Standard Portable操作系统标准MIT=Massachusetls Institute of Technology 麻省理技术学院OSF=Open System Foundation开放式系统基础ANSI=American National Standards Institute 北美标准协会TCP/IP=Transaction Control Protocal/ Internet Protocal 传输控制协议与互联网协议SQL=Structured Query Language结构查询语言LAN=Local Area Network局域网络EPRI=Electric Power Research Institute电力研究(科学)院MMI=Man-Machine Interactive人机交互界面MMC=Man-Machine Communication人机交互通讯PHIGS=Programmer’s Hierachical Interactive Graphics System 分级式程序员交互图形系统LTU=Local Terminal Unit负荷终端单元SOE=Sequence Of Event recording 事件记录顺序记忆PDR=Post Disturbance Review提示扰动(故障)记忆AFC=Automatic Frequency Control 自动频率控制ACE=Area Control Error区域控制误差PLC=Plant Controler 工厂控制TBC=Tie line Bias Control联络线(功率)偏差控制CFC=Constant Frequency Control恒定频控制CNIC=Constant Net Interchange Control 既定网络交换控制NERC=North American Electric Reliability Council –北美电力可靠性联合会LDC=Load Duration Curve负荷变化曲线ELDC=Equivalent Load Duration Curve 等效负荷变化曲线OPF=Optimal Power Flow 最优潮流GRG=Generalized Reduced Gradient 函数化简梯度A VR=Automatic V oltage Regulation自动电压调整REI=Radial Equivalent Independent REI等值(辐射状等值独立电源发)ZPBN=Zero Power Balance Network零功率平衡网络(无交换功率网络)OMG=Object Management Group目标管理集合CORBA=Common Object Request Broker Architecture公共目标请求对象体系IDI=Interface Definition Language界面定义语言API=Application Programming Interface 应用程序界面ORB=Object Request Broker目标请求对象armature电枢(电机的部件)field场,范围pole pair杆对, 极对mmf=Magnetic Motive Force 磁动势quadrature90 度相移direct and quadrature axesd和q轴magnetic circuit磁路Per unit representation每个机组的表示法Stator定子, 固定片Rotor转子flux linkage磁链torque转矩phasor representation矢量表示法, magnetic saturation磁(性)饱和open circuit[电]断路swing摆动、摇摆inertia惯性constant常数large-scale大规模的amortisseur阻尼器reactive电抗的capability可能输出功率natural固有的surge冲花transfer传递,转移loadability载荷能力,载荷率induction motor感应电动机steady-state稳态approach趋近,近似法excitation励磁underexcite欠励磁, 励磁不足limiter限制器overexcitation过激励, 超激磁subtransient次暂态phase-shifting transformer移相变压器field-shorting励磁短路prime mover原动机energy supply供电hydraulic turbine水轮机governing控制,管理,调节turbine汽轮机、涡轮机inelastic非弹性的governor蒂器thermal热的off-frequency越限频率fossil-fuelled energy systems燃气能量系统converter变换机valve阀, 活门blocking闭塞harmonics谐波ratio比fault故障composite复合的underfrequency低于额定频率,频率过低shunt并联series串联Underfrequency load shedding低频减载Interarea oscillation基面(主面)振荡AC relay交流继电器Abnormal information 异常信息abnormal load不规则负荷absorption capacitor吸收电容器active load有功负荷active loss有功损耗active power有功active power balance有功电力平衡Adaptive control自适应控制Air conditioning loads空调负荷Alert state 警戒状态alternating current交流alternating current commentator motor交流换向器电动机alternating field交变场Analytical solution 解析法angle stability功角稳定Angular velocity角频率asynchronous异步的Asynchronous Motor异步电机Asynchronous operation of a synchronous machine同步电机异步运行ABC Automatic bias compensation 自动偏压补偿automatic field-suppressing自动灭磁Automatic generator control自动发电控制Automatic supervision function自检功能Automatic voltage regulator自动电压调节器recloser自动重合闸A vailable transfer capability可传输能力Backbone主网架Backup protection后备保护Base load set基本负荷机组basic theory of circuitry电路基本理论blackout停电Brittle, fragile脆弱Bulk power system大型电力系统bulk transmission system大容量输电系统Bundled conductor分裂导线bus bar母线Cable电缆Capability curves 运行极限图cascading failure连锁故障condenser调相机Conditional stability of a power system电力系统条件稳定性Constant active power load恒功率负荷Constant energy load恒能量负荷Contingency screening and ranking事故筛选与排序continuous current generator直流发电机conversion equipmen换流设备Converter整流器copper loss铜耗Corona电晕critical clearing time极限切除时间Critical voltage临界电压curve fitting曲线拟合Customer power定制电力daily load curves日负荷曲线damping阻尼DC converter直流换流器degree of compensation补偿度destabilizing perturbation不稳定扰动digital sampling control数字采样控制DC Direct current直流direct current transmission直流输电Distribution network配电网Distribution voltage regulator 配电电压调整Disturbance扰动Dynamic analysis method动态分析方法dynamic reactive power compensation动态无功补偿Dynamic simulation动态仿真dynamic stability动态稳定DVR Dynamic voltage restorer动态电压恢复器earth fault接地故障Economic loading schedule经济承载计划Effective short circuit ratio有效短路比electric apparatus电气设备,电气装置,;电机;电器electric drive电力传动electrical braking电气制动Electrical islanding电器孤岛electronic commutation电子换向,电子整流emergency state紧急状态EMS energy management system能量管理系统Epoch angle初相角equal incremental cost rule等微增率准则equal-area criterion等面积定则Equilibrium平衡Equilibrium point平衡点equivalent circuit等值电路equivalent network等值电网excitation励磁excitation control励磁控制Fast fault clearing快速故障切除装置Fault clearance time故障清除时间Fault location故障定位Ferror-resonance铁磁谐振field regulator励磁调节器Filter滤波器fixed series capacitor compensation固定串联电容补偿flexibility灵活性FACTS Flexible AC transmission system柔性交流输电Frequency drift频率漂移frequency response characteristics频率特性Fundamental frequency temporary voltage基频短时过电压fuzzy identification模糊识别generation capacity装机容量generation mix多能源发电Generation schedule发电计划Generation shedding切机Generator capability curve发电机运行极限图Generator Q-V curve发电机Q-V曲线generator terminal机端generator tripping切机Governor power flow调速器潮流harmonic谐波harmonic distortion谐波畸变High pass filter高通滤波器High performance excitation system高性能励磁系统high voltage shunt reactor高抗High-side voltage control高压侧电压控制Hunting of interconnected synchronous machines并联同步电机振荡hydro generation水力发电厂Induction motor感应电动机Inherent stability of a power system电力系统固有稳定性Initial mechanical power初始机械转矩In-phase (voltage)control纵向电压调节instability criterion不稳定性判据installed capacity装机容量Insulation fault绝缘故障intangible depreciation无形损耗integrated system综合系统interconnected systems互联系统internal combustion内燃机Interrupt开断Inverter逆变站Inverter control逆变器控制iron loss铁耗isolator刀闸(隔离开关)LDC line drop compensation线路补偿器Line Commutation电网换流Line drop compensation线路压降补偿Load characteristi c负荷特性load curve负荷曲线load disconnection切负荷Load diversity负荷不同时性Load dynamics负荷动态Load factor负荷率load forecasting负荷预测Load patterns负荷形式Load rejection甩负荷load reserve负荷备用load saturation curve负载饱和曲线Load shedding切负荷LTC Load tap changing 有载调压Load testing负荷测试Load-ability curve负荷能力曲线load-frequency and load-voltage characteristics负荷特性Loss of synchronism同步失稳low frequency oscillation低频振荡low water condition year枯水年lower limit下限Magnetic and electric field电磁场magnetizing current励磁电流Management forecast of a system电力系统预测负荷Mature power system饱和电力系统mean absolute deviation平均绝对偏差measurement of phase sequence and phase angle相序和相位测量mechanical stability against short circuit动稳定性MSC Mechanically switched capacitors机械投切电容器Mid-term stability中期电压稳定Modal analysis模型分析modulator调制器Negative (sequence) component负序分量negative damping负阻尼negative sequence impedance负序阻抗feeder馈电线Network maximum power transfer网络最大传输能力network optimization电网优化Neutral中性点Nodal admittance matrix节点导纳矩阵no-load current空载电流nonlinear control非线性控制nonlinear model非线性模型one machine - infinity bus system单机无穷大系统Online security assessment在线安全估计OLTC On-load tap changing有载调压Operating point运行点optical operation collapse prevention灾变防治optimal control最优控制optimal power flow最优潮流ORF optimal reactive power无功优化optimization of reactive power distribution无功功率最优分布Optimum load经济负荷Optimum power flower有功潮流优化oscillation振荡Oscillatory instability振荡不稳定Oscillatory voltage instability振荡性电压失稳outage断电Outage state停运状态Out-of-step operation失步运行Over-excitation limiter过励磁限制器Overload capacity过载能力Over-voltage过电压parallel AC/DC交直流并联Past V oltage within Power system电力系统内部过电压Per Unit标幺值Per unit system标幺制系统perturbation theory小扰动理论Positive (sequence) component正序分量positive sequence impedance正序阻抗Post-disturbance stability扰动后电压稳定Post-transient stability暂态后电压稳定Potential电位potential distribution电位分布Power circle diagram功率圆Power factor功率因数Power flow simulation潮流仿真power frequency voltage工频电压Power instability功率不稳定性power line/over head功率损线power plant发电厂Power quality电能质量Power shortfall电力短缺Power system abnormality电力系统异常Power system fault电力系统故障Power system management电力系统管理Power system planning电力系统规划Power system stability电力系统稳定性Power transmission line输电线power(load) flow电力潮流power-angle功角power-factor功率因数Power-regulation coefficient of load负荷的功率调节系数primary power-system一次系统pulse脉动Power quality电能质量quick action速动,快动,快作用quick action valve速动阀,快动阀门Radial operation辐射运行Radial system辐射型系统reactive compensation equipment无功补偿装置reactive component无功分量reactive load无功负荷reactive loss有功损耗reactive power无功reactive power absorption无功功率吸收reactive power compensation无功补偿reactive power dispatch无功调度reactive power distribution无功分布reactive power flow无功潮流Reactive power margin无功功率裕度reactive power source无功电源reactive-load compensation equipment无功补偿设备reactor电抗器receiving system接收系统Rectifier整流站Redundant equipment冗余Region of attraction 吸引域reinforced excitation强行励磁Reinforcement of a system电力系统改造relay failure disoperation误动作reliability可靠性Reliability criteria可靠性准则reliability evaluation可靠性评估reliability of transmission system输电系统可靠性remote kilowatt-hour-meter reading远方自动抄表retarding/synchronizing torque阻滞转矩/同步转矩robust鲁棒性Rotor转子Rotor angle stability功角稳定性rotor coil转子线圈Schematic示意图secondary power-system二次系统security monitoring安全监视Self-(or mutual) induction自(互)感Self-synchronization自同步series capacitor串联电容器series compensation串联补偿Severe voltage dip电压跌落严重Short circuit capacity短路容量Short circuit ratio短路比SC shunt capacitor并联电容器shunt commutator motor并励换向器式电动机shunt reactor并联电抗器simulation analysis仿真分析Skin effect集肤效应Slip转差stability稳定性Stability limit of a system state variable系统状态变量稳定极限Stability margin of a system state variable系统状态变量稳定裕度Stability zone稳定区Stall-prone motor堵转电机State estimation状态估计State transition diagram状态转移图Static models稳态模型SVC static var compensator静止无功补偿器,静止无功补偿装置SVG static var generator 静止无功发生器Static voltage stability analysi静态电压稳定分析方法Stator定子steady short-circuit current稳态短路电流steady state operation稳态运行steady-state analysis稳态分析steady-state analysis of power system电力系统稳态分析Steady-state load characteristi c静态负荷特性steady-state stability静态稳定Steady-state stability of a power system电力系统静态稳定性stochastic modeling随机模型(统计建模) Sub synchronous resonance次同步谐振substation变电站Sufficient resilience足够的恢复能力SCADA Supervisory control and data acquisition system监视控制和数据收集系统Supply-interruption costs停电费用Surge impedance波阻抗surge impedance loading冲击阻抗Surge voltage冲击电压swing摇摆Swing curve摇摆曲线switching station with single bus单母线配电站Switchyard开关站Synchronism restoration再同步synchronize同步Synchronous condenser同步调相机Synchronous operation of a machine电机同步运行Synchronous time同步时间SPC System protection centre系统保护中心System black start generator系统黑启动发电机System demand control系统需量控制SPT System protection terminals系统保护终端System reliability系统可靠性System robustness系统的鲁棒性tap分接头Tap changer instability分接头不稳定性Terminal voltage端电压The time-overload limit of transmission lines 输电线路过载时间限制Thermal capacity 热容量Thermal limit热极限Thermostatically-controlled heating loads温控加热负荷threefold line of defense三道防线three-phase fault三相故障three-phase ungrounded fault三相非接地短路故障Time frame时间框架Tolerance 容差topological structure拓扑结构Torque-slip curve转矩-转差曲线Transfer limits传输极限transformer amplifier变压器耦合放大器Transient angle instability瞬时功角失稳Transient load characteristic暂态负荷特性transient overreach暂态超越Transient rotor angle stability暂态功角稳定transient stability暂态稳定Transient voltage stability暂态电压稳定transient-state analysis of power system电力系统暂态分析transmission and distribution energy losses线损Transmission grid输电网transmission line输电线Transmission losses输电损耗transmission network输电网trigger amplifier触发放大器turbine generation汽轮发电厂two-step earth-fault protection二级接地保护ULTC blocking ULTC闭锁ULTC under load tap changer有载调压变压器Under-frequency load shedding 低频减载Under-voltage load shedding低压减载unit commitment开停机计划UPFC United power flow controller 联合潮流控制器unstable equilibrium point不稳定平衡点unstable oscillation不稳定运行unsymmetrical short-circuit不对称短路upper limit上限urgency control system紧急控制系统Utilization time of power losses最大功率损耗等值时间v-curve V形曲线vibration absorber减振器,消振器,振动吸收器voltage collapse电压崩溃VCPI V oltage Collapse Proximity Indicator 电压崩溃邻近指标V oltage control电压控制V oltage control area电压控制区域voltage curve电压曲线V oltage fluctuation电压波动voltage grade电压等级V oltage instability mechanisms电压失稳机理voltage profile 电压分布V oltage reduction 电压降低voltage regulation电压调整V oltage security电压安全V oltage sensitive load电压灵敏性负荷V oltage sensitivity电压灵敏性V oltage stability电压稳定V oltage stability factor电压稳定因子V oltage stability limit电压稳定极限V oltage stability margin电压稳定裕度voltage stresses电压强度V oltage-weak point弱电压节点V-Q curves V-Q曲线vulnerability脆弱性Weather sensitive loads对天气变化灵敏的负荷WAPS Wide Area Protection System广域保护系统wireless radio-controlled无线控制zero (sequence) component零序分量zero sequence reactance零序电抗abnormal overload异常过载,事故过载active power 有功功率ampere-hour efficiency充电效率aperiodic damping非周期阻尼arithmetic circuitry运算电路capacitive voltage transformer电容式电压互感器closed electric circuit闭合电路de-energizing circuit去激电路,去励磁电路distribution network配电网earthing arrangement接地系统electrical phase angle电相(位)角electronic transducer电子式互感器end pressure端部压力energy conversion factor能量转换系数equivalent admittance等效导纳equivalent generator等效发电机equivalent parameter等效参数,等值参数equivalent reactance等效电抗,等值电抗equivalent resistance等效电阻,等值电阻excitation characteristic励磁特性extended uncertainty扩展不确定度faulty line selection故障选线Ferro resonance铁磁谐振field inspection现场检验fully energized全激励,满励磁fundamental frequency基本频率,基频high tension lead高压引线insulation绝缘interrupt mode中断模式inverter逆变器Laplace's transformation拉普拉斯变换,拉氏变换leakage magnetic flux漏磁通load of normal running正常运行负荷measuring apparatus测量装置mechanical strength机械强度monitoring apparatus监控装置negative feedback amplifier负反馈放大器neutral中性点neutral lead中性点引出线nodal admittance matrix 节点导纳矩阵open-circuit characteristic开路特性,空载特性optimal allocation最佳分配,最优配置optimal design优化设计output end输出端phase-frequency相频physics distributing物理分布polarity check极性检测potential transformer电压互感器power factor功率因数power rush功率冲击,功率骤增practical capacity实际容量proportional gain比例增益reactance amplifier电抗耦合放大器reactive power absorption无功功率吸收reactive power compensation无功补偿realistic model仿真模型resonance characteristic谐振特征rotor winding转子绕组,转子线圈running load运行负载rupturing current切断电流safety impedance安全阻抗sampling function采样函数sampling period采样周期scheduling algorithm调度算法secondary wiring mode二次接线方式shielding windings屏蔽绕组single-phase rotor单相转子the stability and reliability稳定性和可靠性three phase current transformers三相电流互感器time to chipping截断时间track-and-hold amplifier跟踪保持式放大器transfer admittance转移导纳transformer amplifier变压器耦合放大器transient signal暂态信号transistor amplifier晶体管放大器voltage feedback amplifier电压反馈放大器wave analyzer波形分析器wavelet transform小波变换。

配电网动态无功优化空间-时间解耦的一种新方法

配电网动态无功优化空间-时间解耦的一种新方法

配电网动态无功优化空间-时间解耦的一种新方法杨悦;李国庆【摘要】离散控制设备动作次数约束造成动态无功优化问题的时空强耦合性,提出了配电网动态无功优化空间-时间解耦的一种新方法.根据全天各时段静态潮流计算得到的网损值大小,确定控制设备的预动作时间表,分配各时段的动作权限,从而找出第一个具有最大动作权限的时段.然后进行时间表的逐步动态调整,确定下一动作时段,直到满足动作控制设备的动作约束条件为止.该方法数学模型清晰简单,便于实现,且时刻保证了以网损值最小为依据分配动作时间.优化结果表明能够在完全满足动态次数约束的前提下,整体优化系统的无功,达到有效降低系统在一天内的有功损耗的目的.【期刊名称】《电力系统保护与控制》【年(卷),期】2010(038)021【总页数】5页(P39-43)【关键词】动态无功优化;静态无功优化;电容器组;负荷曲线【作者】杨悦;李国庆【作者单位】东北电力大学电气工程学院,吉林,吉林,132012;东北电力大学电气工程学院,吉林,吉林,132012【正文语种】中文【中图分类】TM76不断增长的电力需求以及不断提高的电力市场化程度要求现代电力系统在满足用户需要的前提下,充分发挥系统的无功调节手段,保证系统的电能质量和安全经济运行。

于是随着无功优化研究的深入,又提出了动态无功优化的概念[1]。

动态无功优化是指在网络结构参数及未来一天各负荷母线的有功、无功变化曲线及有功电源出力给定的情况下,通过调节发电机的无功出力、电容器组的出力及有载调压变压器的分接头,在满足各种运行约束的条件下使整个电网的电能损耗最小。

目前,关于动态无功优化的研究主要是针对单个变电站或配电网进行。

也就是说主要通过电容器投切的改变和变压器分接头的调节来达到无功优化的目的[2]。

文献[3]根据各负荷母线的负荷曲线的变化,将负荷曲线分段,其段数不大于控制设备的日动作次数限制。

同时在各个时段中再细分成若干个周期,每个周期只使用连续变量进行优化。

电力系统的无功优化模型

电力系统的无功优化模型
由式1.1和式1.2可以看出,当有功功率和无功功率通过网络元件时,会造成有功 功率损耗。当输送的有功功率一定时,输送的无功功率越大,总的有功损耗就越大,反 之输送的无功功率越少时,总的有功损耗就越小。无功功率的流动是造成有功损耗增大 的直接原因。因此,为了降低电网中的有功损耗,必须尽量减少无功功率在电网中的流 动。
1.1.1无功功率对电力系统的影响
无功功率对电力系统的影响主要可以从电圧损耗和有功损耗两方面来考虑。
(1)无功功率与电压的关系
电力系统中的电圧水平与无功功率密切相关。系统中各种无功电源的无功功率输出 应能满足系统负荷和网络损耗在额定电圧下对无功功率的需求,否则电压就会偏离额定 值。在高压电力系统中,正常运行时输电线路两端的电压相位角差8比较小,可以认为cos^«1,111 <2 =V(V.cos0-V,)/X可知线路中传输的无功功率大小与线路两端电压幅值之差 成正比,无功功率将从节点电压高的一端流向节点电压低的一端。节点电压有效值的变 化,将使流经线路的无功功率随之发生变化,因此电力网中节点电压的变化会引起无功 功率潮流的变化。
2.2.2潮流计算的PQ分解法6
2.3电力系统中常用无功控制设备7
2.3.1发电机7
2.3.2并联电容器9
2.3.3并联电抗器10
2.3.4有载调压变压器10
3基于改进遗传算法的电力系统无功优化11
3.1遗传算法简介11
3.1.1遗传算法的原理11
3.1.2遗传算法的特点11
3.1.3简单遗传算法的数学模型和流程图12
3.2改进遗传算法12
3.2.1遗传编码的改进12
3.2.2保优算子14
3.2.3自适应交叉率和变异率14
3.2.4初始种群的生成15

通用电气(GE)最新的刷less同步电机激励控制器 (ESP1) for 大同步电机 with an

通用电气(GE)最新的刷less同步电机激励控制器 (ESP1) for 大同步电机 with an

As an operator of GE’s legacy excitation controls for large brushless synchronous motors, we are pleased to offer you GE's latest (ESP1) brushless exciter control for large synchronous motors with an upgraded exciter panel (RX3i) which enables sophisticated control and the use of self-diagnostics, without complexity.GE Brushless Exciter Controls for Large Synchronous Motors have been designed to improve operation and surveillance of your critical equipment. GE Brushless Exciter Controls provide intelligent starting and reliability during running. Diagnostics have also been enhanced to give your operating personnel clear information about the motor and the electrical driver component of your process.Lack of effective control may result in the motor failing to synchronize or remain in synchronism. This translates into down time and lost production. Optimal use of the available motor torque characteristics depends on the effectiveness of the motor excitation control, synchronizing and pull out protection.The GE's RX3i PLC enables sophisticatedcontrol and the use of self-diagnostics, without complexity. The human interface and serial and Ethernet communication options, mean that maintenance staff need not be PLC expertsfor you to benefit from the RX3i’s high MTBF (reliability). UPGRADE BENEFITSLower motor operating cos t due to reactive power regulation.Fast installation and start up due to factory custom-ized setup for your motor.Upgrade process does not require any changesto your automation system or existing drives communications, therefore minimizing downtime. Built-in diagnostics with user-friendly HMI interface. All-digital regulators ensure consistent control that does not depend on selecting analogue components. Self-monitoring combined with watchdog circuits and very high MTBF lead to maximum availability.Built in flexibility with a wide variety of control modes to suit your application.Quality Assuranceto ISO 9001 since 1994Email: *******************************CONTACT USFree Standing Cubicle Version (Shown with optional Multilin SR469, PF meter, and voltmeter)。

50本电力经典书籍 -回复

50本电力经典书籍 -回复

50本电力经典书籍-回复「50本电力经典书籍」是一个非常具有挑战性的主题,因为电力工程这一领域没有像文学或者历史等领域一样广为人知的经典著作。

然而,我们可以通过对电力工程相关主题的深入研究,找到一些经典书籍,这些书籍对于电力工程师、学生和研究人员来说都是不可或缺的资源。

电力工程是涉及电力生成、传输、配电和电力系统运营的学科。

在这个广阔的领域中,有许多书籍提供了有关发电、配电、传输线路、电力系统规划、保护和控制等方面的知识。

从基础原理到应用实践,以下是50本被广泛认可的电力工程经典书籍:1.《电力系统分析》(Electric Power Systems Analysis)- John J. Grainger, William D. Stevenson这本书作为电力工程领域的经典教材,涵盖了电力系统分析的许多基本原理。

2.《电力系统稳定》(Power System Stability)- Edward Wilson Kimbark 这本参考书为电力系统稳定性提供了深度的理论和实践知识。

3.《电力系统保护》(Protective Relaying)- J. Lewis Blackburn, Thomas Domin该书详细介绍了电力系统保护的原理和技术。

4.《电力系统的有功和无功控制》(Active and Reactive Power Control of Electric Power Systems)- Takashi Kaneda该书介绍了有关有功和无功控制的先进方法和技术。

5.《电力电子和电力驱动系统: Fundamentals and Hard-switching Converters》- Bimal K. Bose这本书提供了电力电子和电力驱动系统的基础知识,深入讨论了硬开关变换器。

6.《电离害电、地欠电压与电网故障》(Electromagnetic Transients in Power Systems) - R.D. Begamudre该书详细介绍了电磁暂态现象对电力系统的影响以及如何控制它们。

研究生专业英语_电力系统及其自动化(虚拟仪器)

研究生专业英语_电力系统及其自动化(虚拟仪器)

abnormal overload 异常过载,事故过载active power 有功功率ampere-hour efficiency 充电效率aperiodic damping 非周期阻尼arithmetic circuitry 运算电路capacitive voltage transformer 电容式电压互感器closed electric circuit 闭合电路de-energizing circuit 去激电路,去励磁电路distribution network 配电网earthing arrangement 接地系统electrical phase angle 电相(位)角electronic transducer 电子式互感器end pressure 端部压力energy conversion factor 能量转换系数equivalent admittance 等效导纳equivalent generator 等效发电机equivalent parameter 等效参数,等值参数equivalent reactance 等效电抗,等值电抗equivalent resistance 等效电阻,等值电阻excitation characteristic 励磁特性extended uncertainty 扩展不确定度faulty line selection 故障选线Ferro resonance 铁磁谐振field inspection 现场检验fully energized 全激励,满励磁fundamental frequency 基本频率,基频high tension lead 高压引线insulation 绝缘interrupt mode 中断模式inverter 逆变器。

大学课程英文翻译

大学课程英文翻译

基础英语Basic English英语口语Spoken English英语写作English Writing英汉翻译Translation between English and Chinese现代汉语Modern Chinese古代汉语Ancient Chinese语言学概论An Introduction to Linguistics中国古代文学Ancient Chinese Literature中国现当代文学Modern and Contemporary Literature of China外国文学Foreign Literature中国文化概论Introduction to Chinese Culture西方文化与礼仪Western Culture and Etiquette汉语写作Chinese Writing对外汉语教学概论Introduction to Foreign-Related Chinese Education中外文化通论Introduction to Chinese and Foreign Culture国外汉学研究Chinese Research Abroad主题:大学课程名称英文翻译 1 2 [Shirley] 发表于2004-03-20 14:04 [彩信][引用][回复][编辑]大学课程名称英文翻译大学课程名称英文翻译(1-8)连载(1)生物物理学Biophysics真空冷冻干燥技术Vacuum Freezing & Drying Technology16位微机16 Digit MicrocomputerALGOL语言ALGOL LanguageBASIC 语言BASIC LanguageBASIC 语言及应用BASIC Language & ApplicationC 语言C LanguageCAD 概论Introduction to CADCAD/CAM CAD/CAMCOBOL语言COBOL LanguageCOBOL语言程序设计COBOL Language Program DesigningC与UNIX环境C Language & Unix EnvironmentC语言与生物医学信息处理C Language & Biomedical Information Processing dBASE Ⅲ课程设计C ourse Exercise in dBASE ⅢFORTRAN语言FORTRAN LanguageIBM-PC/XT Fundamentals of Microcomputer IBM-PC/XTIBM-PC微机原理Fundamentals of Microcomputer IBM-PCLSI设计基础Basic of LSI DesigningPASCAL大型作业PASCAL Wide Range WorkingPASCAL课程设计Course Exercise in PASCALX射线与电镜X-ray & Electric MicroscopeZ-80汇编语言程序设计Z-80 Pragramming in Assembly Languages板壳理论Plate Theory板壳力学Plate Mechanics半波实验Semiwave Experiment半导体变流技术Semiconductor Converting Technology半导体材料Semiconductor Materials半导体测量Measurement of Semiconductors半导体瓷敏元件Semiconductor Porcelain-Sensitive Elements半导体光电子学Semiconductor Optic Electronics半导体化学Semiconductor Chemistry半导体激光器Semiconductor Laser Unit半导体集成电路Semiconductor Integrated Circuitry半导体理论Semiconductive Theory半导体器件Semiconductor Devices半导体器件工艺原理Technological Fundamentals of Semiconductor Device半导体物理Semiconductor Physics半导体专业Semiconduction Specialty半导体专业实验Specialty Experiment of Semiconductor薄膜光学Film Optics报告文学专题Special Subject On Reportage报刊编辑学Newspaper & Magazine Editing报纸编辑学Newspaper Editing泵与风机Pumps and Fans泵与水机Pumps & Water Turbines毕业设计Graduation Thesis编译方法Methods of Compiling编译技术Technique of Compiling编译原理Fundamentals of Compiling变电站的微机检测与控制Computer Testing & Control in Transformer Substation变分法与张量Calculus of Variations & Tensor变分学Calculus of Variations变质量系统热力学与新型回转压Variable Quality System Thermal Mechanics & Neo-Ro 表面活性物质Surface Reactive Materials并行算法Parallel Algorithmic波谱学Wave Spectrum材料的力学性能测试Measurement of Material Mechanical Performance材料力学Mechanics of Materials财务成本管理Financial Cost Management财政学Public Finance财政与金融Finance & Banking财政与信贷Finance & Credit操作系统Disk Operating System操作系统课程设计Course Design in Disk Operating System操作系统原理Fundamentals of Disk Operating System策波测量技术Technique of Whip Wave Measurement测量原理与仪器设计Measurement Fundamentals & Meter Design测试技术Testing Technology测试与信号变换处理Testing & Signal Transformation Processing产业经济学Industrial Economy产业组织学Industrial Organization Technoooligy场论Field Theory常微分方程Ordinary Differentical Equations超导磁体及应用Superconductive Magnet & Application超导及应用Superconductive & Application超精微细加工Super-Precision & Minuteness Processing城市规划原理Fundamentals of City Planning城市社会学Urban Sociology成组技术Grouping Technique齿轮啮合原理Principles of Gear Connection冲击测量及误差Punching Measurement & Error冲压工艺Sheet Metal Forming Technology抽象代数Abstract Algebra传动概论Introduction to Transmission传感器与检测技术Sensors & Testing Technology传感器原理Fundamentals of Sensors传感器原理及应用Fundamentals of Sensors & Application传热学Heat Transfer传坳概论Introduction to Pass Col船舶操纵Ship Controling船舶电力系统Ship Electrical Power System船舶电力系统课程设计Course Exercise in Ship Electrical Power System 船舶电气传动自动化Ship Electrified Transmission Automation船舶电站Ship Power Station船舶动力装置Ship Power Equipment船舶概论Introduction to Ships船舶焊接与材料Welding & Materials on Ship船舶机械控制技术Mechanic Control Technology for Ships船舶机械拖动Ship Mechamic Towage船舶建筑美学Artistic Designing of Ships船舶结构力学Structual Mechamics for Ships船舶结构与制图Ship Structure & Graphing船舶静力学Ship Statics船舶强度与结构设计Designing Ship Intensity & Structure船舶设计原理Principles of Ship Designing船舶推进Ship Propeling船舶摇摆Ship Swaying船舶阻力Ship Resistance船体建造工艺Ship-Building Technology船体结构Ship Structure船体结构图Ship Structure Graphing船体振动学Ship Vibration创造心理学Creativity Psychology磁测量技术Magnetic Measurement Technology磁传感器Magnetic Sensor磁存储设备设计原理Fundamental Design of Magnetic Memory Equipment 磁记录技术Magnetographic Technology磁记录物理Magnetographic Physics磁路设计与场计算Magnetic Path Designing & Magnetic Field Calculati磁盘控制器Magnetic Disk Controler磁性材料Magnetic Materials磁性测量Magnetic Measurement磁性物理Magnetophysics磁原理及应用Principles of Catalyzation & Application大电流测量Super-Current Measurement大电源测量Super-Power Measurement大机组协调控制Coordination & Control of Generator Networks大跨度房屋结构Large-Span House structure大型锅炉概况Introduction to Large-V olume Boilers大型火电机组控制Control of Large Thermal Power Generator Networks大学德语College German大学俄语College Russian大学法语College French大学日语College Japanese大学英语College English大学语文College Chinese大众传播学Mass Media代用运放电路Simulated Transmittal Circuit单片机原理Fundamentals of Mono-Chip Computers单片机原理及应用Fundamentals of Mono-Chip Computers & Applications 弹性力学Theory of Elastic Mechanics当代国际关系Contemporary International Relationship当代国外社会思维评价Evaluation of Contemporary Foreign Social Thought 当代文学Contemporary Literature当代文学专题Topics on Contemporary Literature当代西方哲学Contemporary Western Philosophy当代戏剧与电影Contemporary Drama & Films党史History of the Party导波光学Wave Guiding Optics等离子体工程Plasma Engineering低频电子线路Low Frequency Electric Circuit低温传热学Cryo Conduction低温固体物理Cryo Solid Physics低温技术原理与装置Fundamentals of Cryo Technology & Equipment低温技术中的微机原理Priciples of Microcomputer in Cryo Technology低温绝热Cryo Heat Insulation低温气体制冷机Cryo Gas Refrigerator低温热管Cryo Heat Tube低温设备Cryo Equipment低温生物冻干技术Biological Cryo Freezing Drying Technology低温实验技术Cryo Experimentation Technology低温物理导论Cryo Physic Concepts低温物理概论Cryo Physic Concepts低温物理概念Cryo Physic Concepts低温仪表及测试Cryo Meters & Measurement低温原理Cryo Fundamentals低温中的微机应用Application of Microcomputer in Cryo Technology低温装置Cryo Equipment低噪声电子电路Low-Noise Electric Circuit低噪声电子设计Low-Noise Electronic Designing低噪声放大与弱检Low-Noise Increasing & Decreasing低噪声与弱信号检测Detection of Low Noise & Weak Signals地理Geography第二次世界大战史History of World War II电测量技术Electric Measurement Technology电厂计算机控制系统Computer Control System in Power Plants电磁测量实验技术Electromagnetic Measurement Experiment & Technology 电磁场计算机Electromagnetic Field Computers电磁场理论Theory of Electromagnetic Fields电磁场数值计算Numerical Calculation of Electromagnetic Fields电磁场与电磁波Electromagnetic Fields & Magnetic Waves电磁场与微波技术Electromagnetic Fields & Micro-Wave Technology电磁场中的数值方法Numerical Methods in Electromagnetic Fields电磁场中的数值计算Numerical Calculation in Electromagnetic Fields电磁学Electromagnetics电动力学Electrodynamics电镀Plating电分析化学Electro-Analytical Chemistry电工测试技术基础Testing Technology of Electrical Engineering电工产品学Electrotechnical Products电工电子技术基础Electrical Technology & Electrical Engineering电工电子学Electronics in Electrical Engineering电工基础Fundamental Theory of Electrical Engineering电工基础理论Fundamental Theory of Electrical Engineering电工基础实验Basic Experiment in Electrical Engineering电工技术Electrotechnics电工技术基础Fundamentals of Electrotechnics电工实习Electrical Engineering Practice电工实验技术基础Experiment Technology of Electrical Engineering电工学Electrical Engineering电工与电机控制Electrical Engineering & Motor Control电弧电接触Electrical Arc Contact电弧焊及电渣焊Electric Arc Welding & Electroslag Welding电化学测试技术Electrochemical Measurement Technology电化学工程Electrochemical Engineering电化学工艺学Electrochemical Technology电机测试技术Motor Measuring Technology电机电磁场的分析与计算Analysis & Calculation of Electrical Motor & Electromagnetic Fields电机电器与供电Motor Elements and Power Supply电机课程设计Course Exercise in Electric Engine电机绕组理论Theory of Motor Winding电机绕组理论及应用Theory & Application of Motor Winding电机设计Design of Electrical Motor电机瞬变过程Electrical Motor Change Processes电机学Electrical Motor电机学及控制电机Electrical Machinery Control & Technology电机与拖动Electrical Machinery & Towage电机原理Principle of Electric Engine电机原理与拖动Principles of Electrical Machinery & Towage电机专题Lectures on Electric Engine电接触与电弧Electrical Contact & Electrical Arc电介质物理Dielectric Physics电镜Electronic Speculum电力电子电路Power Electronic Circuit电力电子电器Power Electronic Equipment电力电子器件Power Electronic Devices电力电子学Power Electronics电力工程Electrical Power Engineering电力生产技术Technology of Electrical Power Generation电力生产优化管理Optimal Management of Electrical Power Generation电力拖动基础Fundamentals for Electrical Towage电力拖动控制系统Electrical Towage Control Systems电力系统Power Systems电力系统电源最优化规划Optimal Planning of Power Source in a Power System 电力系统短路Power System Shortcuts电力系统分析Power System Analysis电力系统规划Power System Planning电力系统过电压Hyper-V oltage of Power Systems电力系统继电保护原理Power System Relay Protection电力系统经济分析Economical Analysis of Power Systems电力系统经济运行Economical Operation of Power Systems电力系统可靠性Power System Reliability电力系统可靠性分析Power System Reliability Analysis电力系统无功补偿及应用Non-Work Compensation in Power Systems & Applicati电力系统谐波Harmonious Waves in Power Systems电力系统优化技术Optimal Technology of Power Systems电力系统优化设计Optimal Designing of Power Systems电力系统远动Operation of Electric Systems电力系统远动技术Operation Technique of Electric Systems电力系统运行Operation of Electric Systems电力系统自动化Automation of Electric Systems电力系统自动装置Power System Automation Equipment电路测试技术Circuit Measurement Technology电路测试技术基础Fundamentals of Circuit Measurement Technology电路测试技术及实验Circuit Measurement Technology & Experiments电路分析基础Basis of Circuit Analysis电路分析基础实验Basic Experiment on Circuit Analysis电路分析实验Experiment on Circuit Analysis电路和电子技术Circuit and Electronic Technique电路理论Theory of Circuit电路理论基础Fundamental Theory of Circuit电路理论实验Experiments in Theory of Circuct电路设计与测试技术Circuit Designing & Measurement Technology电器学Electrical Appliances电器与控制Electrical Appliances & Control电气控制技术Electrical Control Technology电视接收技术Television Reception Technology电视节目Television Porgrams电视节目制作Television Porgram Designing电视新技术New Television Technology电视原理Principles of Television电网调度自动化Automation of Electric Network Management电影艺术Art of Film Making电站微机检测控制Computerized Measurement & Control of Power Statio电子材料与元件测试技术Measuring Technology of Electronic Material and Element电子材料元件Electronic Material and Element电子材料元件测量Electronic Material and Element Measurement电子测量与实验技术Technology of Electronic Measurement & Experiment 自:------------------------------本帖网址:/60113377.html 复制------------------------------去商城换装主题:Re:大学课程名称英文翻译(沙发1楼)[楼主:Shirley] 发表于2004-03-20 14:05 [彩信][引用][回复][编辑]电子测试Electronic Testing电子测试技术Electronic Testing Technology电子测试技术与实验Electronic Testing Technology & Experiment电子机械运动控制技术Technology of Electronic Mechanic Movement Control电子技术Technology of Electronics电子技术腐蚀测试中的应用Application of Electronic Technology in Erosion Measurement 电子技术基础Basic Electronic Technology电子技术基础与实验Basic Electronic Technology & Experiment电子技术课程设计Course Exercise in Electronic Technology电子技术实验Experiment in Electronic Technology电子理论实验Experiment in Electronic Theory电子显微分析Electronic Micro-Analysis电子显微镜Electronic Microscope电子线路Electronic Circuit电子线路设计与测试技术Electronic Circuit Design & Measurement Technology电子线路实验Experiment in Electronic Circuit电子照相技术Electronic Photographing Technology雕塑艺术欣赏Appreciation of Sculptural Art调节装置Regulation Equipment动态规划Dynamic Programming动态无损检测Dynamic Non-Destruction Measurement动态信号分析与仪器Dynamic Signal Analysis & Apparatus锻压工艺Forging Technology锻压机械液压传动Hydraulic Transmission in Forging Machinery锻压加热设备Forging Heating Equipment锻压设备专题Lectures on Forging Press Equipments锻压系统动力学Dynamics of Forging System锻造工艺Forging Technology断裂力学Fracture Mechanics对外贸易概论Introduction to International Trade多层网络方法Multi-Layer Network Technology多目标优化方法Multipurpose Optimal Method多项距阵Multi-Nominal Matrix多元统计分析Multi-Variate Statistical Analysis发电厂Power Plant发电厂电气部分Electric Elements of Power Plants法律基础Fundamentals of Law法学概论An Introduction to Science of Law法学基础Fundamentals of Science of Law翻译Translation翻译理论与技巧Theory & Skills of Translation泛函分析Functional Analysis房屋建筑学Architectural Design & Construction非电量测量Non-Electricity Measurement非金属材料Non-Metal Materials非线性采样系统Non-Linear Sampling System非线性光学Non-Linear Optics非线性规划Non-Linear Programming非线性振荡Non-Linear Ocsillation非线性振动Non-Linear Vibration沸腾燃烧Boiling Combustion分析化学Analytical Chemistry分析化学实验Analytical Chemistry Experiment分析力学Analytical Mechanics风机调节Fan Regulation风机调节.使用.运转Regulation,Application & Operation of Fans风机三元流动理论与设计Tri-Variate Movement Theory & Design of Fans风能利用Wind Power Utilization腐蚀电化学实验Experiment in Erosive Electrochemistry复变函数Complex Variables Functions复变函数与积分变换Functions of Complex Variables & Integral Transformation 复合材料力学Compound Material Mechanics傅里叶光学Fourier Optics概率论Probability Theory概率论与数理统计Probability Theory & Mathematical Statistics概率论与随机过程Probability Theory & Stochastic Process钢笔画Pen Drawing钢的热处理Heat-Treatment of Steel钢结构Steel Structure钢筋混凝土Reinforced Concrete钢筋混凝土及砖石结构Reinforced Concrete & Brick Structure钢砼结构Reinforced Concrete Structure高层建筑基础设计Designing bases of High Rising Buildings高层建筑结构设计Designing Structures of High Rising Buildings高等材料力学Advanced Material Mechanics高等代数Advanced Algebra高等教育管理Higher Education Management高等教育史History of Higher Education高等教育学Higher Education高等数学Advanced Mathematics高电压技术High-V oltage Technology高电压测试技术High-V oltage Test Technology高分子材料High Polymer Material高分子材料及加工High Polymer Material & Porcessing高分子化学High Polymer Chemistry高分子化学实验High Polymer Chemistry Experiment高分子物理High Polymer Physics高分子物理实验High Polymer Physics Experiment高级英语听说Advanced English Listening & Speaking高能密束焊High Energy-Dense Beam Welding高频电路High-Frenquency Circuit高频电子技术High-Frenquency Electronic Technology高频电子线路High-Frenquency Electronic Circuit高压测量技术High-V oltage Measurement Technology高压测试技术High-V oltage Testing Technology高压电场的数值计算Numerical Calculation in High-V oltage Electronic Field 高压电器High-Voltage Electrical Appliances高压绝缘High-Voltage Insulation高压实验High-Voltage Experimentation高压试验技术High-V oltage Experimentation Technology工程材料的力学性能测试Mechanic Testing of Engineering Materials工程材料及热处理Engineering Material and Heat Treatment工程材料学Engineering Materials工程测量Engineering Surveying工程测试技术Engineering Testing Technique工程测试实验Experiment on Engineering Testing工程测试信息Information of Engineering Testing工程动力学Engineering Dynamics工程概论Introduction to Engineering工程概预算Project Budget工程经济学Engineering Economics工程静力学Engineering Statics工程力学Engineering Mechanics工程热力学Engineering Thermodynamics工程项目评估Engineering Project Evaluation工程优化方法Engineering Optimizational Method工程运动学Engineering Kinematics工程造价管理Engineering Cost Management工程制图Graphing of Engineering工业分析Industrial Analysis工业锅炉Industrial Boiler工业会计学Industrial Accounting工业机器人Industrial Robot工业技术基础Basic Industrial Technology工业建筑设计原理Principles of Industrial Building Design工业经济理论Industrial Economic Theory工业经济学Industrial Economics工业企业财务管理Industrial Enterprise Financial Management工业企业财务会计Accounting in Industrial Enterprises工业企业管理Industrial Enterprise Management工业企业经营管理Industrial Enterprise Adminstrative Management 工业社会学Industrial Sociology工业心理学Industrial Psychology工业窑炉Industrial Stoves主题:Re:大学课程名称英文翻译(2楼)[楼主:Shirley] 发表于2004-03-20 14:06 [彩信][引用][回复][编辑]工艺过程自动化Technics Process Automation公差Common Difference公差技术测量Technical Measurement with Common Difference公差与配合Common Difference & Cooperation公共关系学Public Relations公文写作Document Writing古代汉语Ancient Chinese古典文学作品选读Selected Readings in Classical Literature固体激光Solid State Laser固体激光器件Solid Laser Elements固体激光与电源Solid State Laser & Power Unit固体物理Solid State Physics管理概论Introduction to Management管理经济学Management Economics管理数学Management Mathematics管理系统模拟Management System Simulation管理心理学Management Psychology管理信息系统Management Information Systems光波导理论Light Wave Guide Theory光电技术Photoelectric Technology光电信号处理Photoelectric Signal Processing光电信号与系统分析Photoelectric Signal & Systematic Analysis光辐射探测技术Ray Radiation Detection Technology光谱Spectrum光谱分析Spectral Analysis光谱学Spectroscopy光纤传感Fibre Optical Sensors光纤传感器Fibre Optical Sensors光纤传感器基础Fundamentals of Fibre Optical Sensors光纤传感器及应用Fibre Optical Sensors & Applications光纤光学课程设计Course Design of Fibre Optical光纤技术实验Experiments in Fibre Optical Technology光纤通信基础Basis of Fibre Optical Communication光学Optics光学测量Optical Measurement光学分析法Optical Analysis Method光学计量仪器设计Optical Instrument Gauge Designing光学检测Optical Detection光学设计Optical Design光学信息导论Introduction of Optical Infomation光学仪器设计Optical Instrument Designing光学仪器与计量仪器设计Optical Instrument & Gauge Instrument Designing 光学仪器装配与校正Optical Instrument Installation & Adjustment广播编辑学Broadcast Editing广播新闻Broadcast Journalism广播新闻采写Broadcast Journalism Collection & Composition广告学Advertisement锅炉燃烧理论Theory of Boiler Combustion锅炉热交换传热强化Boiler Heat Exchange,Condction & Intensification锅炉原理Principles of Boiler国际金融International Finance国际经济法International Economic Law国际贸易International Trade国际贸易地理International Trade Geography国际贸易实务International Trade Affairs国际市场学International Marketing国际市场营销International Marketing国民经济计划National Economical Planning国外社会学理论Overseas Theories of Sociology过程(控制)调节装置Process(Control) Adjustment Device过程调节系统Process Adjustment System过程控制Process Control过程控制系统Process Control System海洋测量Ocean Surveying海洋工程概论Introduction to Ocean Engineering函数分析Functional Analysis焊接方法Welding Method焊接方法及设备Welding Method & Equipment焊接检验Welding Testing焊接结构Welding Structure焊接金相Welding Fractography焊接金相分析Welding Fractography Analysis焊接冶金Welding Metallurgy焊接原理Fundamentals of Welding焊接原理及工艺Fundamentals of Welding & Technology焊接自动化Automation of Welding汉语Chinese汉语与写作Chinese & Composition汉语语法研究Research on Chinese Grammar汉字信息处理技术Technology of Chinese Information Processing毫微秒脉冲技术Millimicrosecond Pusle Technique核动力技术Nuclear Power Technology合唱与指挥Chorus & Conduction合金钢Alloy Steel宏观经济学Macro-Economics宏微观经济学Macro Micro Economics红外CCD Infrared CCD红外电荷耦合器Infrared Electric Charge Coupler红外探测器Infrared Detectors红外物理Infrared Physics红外物理与技术Infrared Physics & Technology红外系统Infrared System红外系统电信号处理Processing Electric Signals from Infrared Systems厚薄膜集成电路Thick & Thin Film Integrated Circuit弧焊电源Arc Welding Power弧焊原理Arc Welding Principles主题:Re:大学课程名称英文翻译(3楼)[楼主:Shirley] 发表于2004-03-20 14:06 [彩信][引用][回复][编辑]互换性技术测量基础Basic Technology of Exchangeability Measurement互换性技术测量Technology of Exchangeability Measurement互换性与技术测量Elementary Technology of Exchangeability Measurement互换性与技术测量实验Experiment of Exchangeability Measurement Technology 画法几何及机械制图Descriptive Geometry & Mechanical Graphing画法几何与阴影透视Descriptive Geometry,Shadow and Perspective化工基础Elementary Chemical Industry化工仪表与自动化Chemical Meters & Automation化工原理Principles of Chemical Industry化学Chemistry化学反应工程Chemical Reaction Engineering化学分离Chemical Decomposition化学工程基础Elementary Chemical Engineering化学计量学Chemical Measurement化学文献Chemical Literature化学文献及查阅方法Chemical Literature & Consulting Method化学粘结剂Chemical Felter环境保护理论基础Basic Theory of Environmental Protection环境化学Environomental Chemistry环境行为概论Introduction to Environmental Behavior换热器Thermal Transducer回旧分析与试验设计Tempering Analysis and Experiment Design回转式压缩机Rotary Compressor回转压缩机数学模型Mathematical Modeling of Rotary Compressors会计学Accountancy会计与财务分析Accountancy & Financial Analysis会计与设备分析Accountancy & Equipment Analysis会计原理及外贸会计Principles of Accountancy & Foreign Trade Accountancy 会计原理与工业会计Principles of Accountancy & Industrial Accountancy活力学Energy Theory活塞膨胀机Piston Expander活塞式制冷压缩机Piston Refrigerant Compreessor活塞式压缩机Piston Compressor活塞式压缩机基础设计Basic Design of Piston Compressor活塞压缩机结构强度Structural Intensity of Piston Compressor活赛压机气流脉动Gas Pulsation of Piston Pressor货币银行学Currency Banking基本电路理论Basis Theory of Circuit基础写作Fundamental Course of Composition机床电路Machine Tool Circuit机床电器Machine Tool Electric Appliance机床电气控制Electrical Control of Machinery Tools机床动力学Machine Tool Dynamics机床设计Machine Tool design机床数字控制Digital Control of Machine Tool机床液压传动Machinery Tool Hydraulic Transmission机电传动Mechanical & Electrical Transmission机电传动控制Mechanical & electrical Transmission Control机电耦合系统Mechanical & Electrical Combination System机电系统计算机仿真Computer Simulation of Mechanic/Electrical Systems机电一体化Mechanical & Electrical Integration机构学Structuring机器人Robot机器人控制技术Robot Control Technology机械产品学Mechanic Products机械产品造型设计Shape Design of Mechanical Products机械工程控制基础Basic Mechanic Engineering Control机械加工自动化Automation in Mechanical Working机械可靠性Mechanical Reliability机械零件Mechanical Elements机械零件设计Course Exercise in Machinery Elements Design机械零件设计基础Basis of Machinery Elements Design机械设计Mechanical Designing机械设计基础Basis of Mechanical Designing机械设计课程设计Course Exercise in Mechanical Design机械设计原理Principle of Mechanical Designing机械式信息传输机构Mechanical Information Transmission Device机械原理Principle of Mechanics机械原理和机械零件Mechanism & Machinery机械原理及机械设计Mechanical Designing机械原理及应用Mechanical Principle & Mechanical Applications机械原理课程设计Course Exercise of Mechanical Principle机械原理与机械零件Mechanical Principle and Mechanical Elements机械原理与机械设计Mechanical Principle and Mechanical Design机械噪声控制Control of Mechanical Noise机械制造概论Introduction to Mechanical Manufacture机械制造工艺学Technology of Mechanical Manufacture机械制造基础Fundamental of Mechanical Manufacture机械制造基础(金属工艺学) Fundamental Course of Mechanic Manufacturing (Meta 机械制造系统自动化Automation of Mechanical Manufacture System机械制造中计算机控制Computer Control in Mechanical Manufacture机制工艺及夹具Mechanical Technology and Clamps积分变换Integral Transformation积分变换及数理方程Integral Transformation & Mathematical Equations积分变换控制工程Integral Transformation Control Engineering积分变换与动力工程Integral Transforms & Dynamic Engineering主题:Re:大学课程名称英文翻译(4楼)[楼主:Shirley] 发表于2004-03-20 14:06 [彩信][引用][回复][编辑]【第7楼】激光电源Laser Power Devices激光焊Laser Welding激光基础Basis of Laser激光技术Laser Technology激光加工Laser Processing激光器件Laser Devices激光器件与电源Laser Devices & Power Source激光原理Principles of Laser激光原理与技术Laser Principles & Technology极限分析Limit Analysis集合论与代数结构Set Theory & Algebraical Structure技术管理Technological Management技术经济Technological Economy技术经济学Technological Economics技术市场学Technological Marketing计量经济学Measure Economics计算方法Computational Method计算机导论Introduction to Computers计算机导论与实践Introduction to Computers & Practice计算机辅助设计CAD计算机辅助设计与仿真Computer Aided Design & Imitation计算机辅助语言教学Computer-Aided Language Teaching计算机辅助制造Computer-Aided Manufacturing计算机概论Introduction to Computers计算机绘图Computer Graphics计算机基础Basis of Computer Engineering计算机接口技术Computer Interface Technology计算机接口与通讯Computer Interface & Communication计算机局域网Regional Network of Computers计算机控制Computer Controling计算机设计自动化Automation of Computer Design计算机实践Computer Practice计算机数据库Computer Database计算机算法基础Basis of Computer Algorithm计算机图形显示Computer Graphic Demonstration计算机图形学Computer Graphics计算机网络Computer Networks计算机系统结构Computer Architecture计算机语言处理Computer Language Processing计算机原理Principle of Computer Engineering计算机在化学中的应用Application of Computer in Chemistry计算机组成原理Principles of Computer Composition计算力学Computational Mechanics计算力学基础Basis of Computational Mechanics计算流体Fluid Computation主题:Re:大学课程名称英文翻译(5楼)[楼主:Shirley] 发表于2004-03-20 14:07 [彩信][引用][回复][编辑]继电保护新技术New Technology of Relay Protection继电保护原理Principles of Relay Protection继电保护运行Relay-Protected Operation检测技术Measurement Technique检测系统动力学Detection System Dynamics检测与控制Detection & Controling简明社会学Concise Sociology简明世界史Brief World History减振设计Vibration Absorption Designing渐近方法Asymptotical Method建筑材料Building Materials建筑初步Elementary Architecture建筑防火Building Fire Protection建筑概论Introduction to Architecture建筑构造Architectural Construction建筑结构Architectural Structure建筑结构抗震设计Anti-quake Architectural Structure Design建筑经济与企业管理Architectural Economy & Enterprise Management 建筑力学Architectural Mechanics建筑名作欣赏Appreciation of Architectural Works建筑入门Elementary Architecture建筑摄影Architectural Photographing建筑设备Architectural Equipment建筑设计Architectural Design建筑施工Construction Technology建筑绘画Architectural Drawing建筑物理Architecural Physics建筑制图Architectural Graphing胶体化学Colloid Chemistry交流调速系统Alternating Current Governor System教育心理学Pedagogic Psychology接口与控制器Interface and Controler接口与通讯Interface and Communication结构程序设计Structural Program Designing结构动力学Structural Dynamics结构化学Structural Chemistry结构检验Structural Testing结构力学Structural Mechanics结构素描Structure Sketching结构塑性分析Structural Plasticity Analysis结构稳定Stability Analysis of Structures结构先进技术Advanced Structuring Technology结构优化理论Optimal Structure Theory结构优化设计Optimal Structure Designing解析几何Analytic Geometry主题:Re:大学课程名称英文翻译(6楼)[楼主:Shirley] 发表于2004-03-20 14:07 [彩信][引用][回复][编辑]介质波导Medium Wave Guide介质测量Medium Measurement介质光学Medium Optics金属X射线学Metal X-Ray Analysis金属材料焊接Metal Material Welding金属材料学Metal Material Science金属材料与热处理Metal Material & Heat Treatment金属腐蚀与保护Metal Erosion & Protection金属腐蚀原理Principles of Metal Erosion金属工艺学Metal Technics金属焊接性基础Elementary Metal Weldability金属焊接原理Principles of Metal Welding金属机械性能Mechanical Property of Metal金属力学性能Metal Mechanic Property金属切削机床Metal Cutting Machine Tool金属切削原理及刀具Principles of Metal Cutting & Cutters金属熔焊原理Principles of Metal Molten Welding金属熔焊原理及工艺Principles of Metal Molten Welding & Technique 金属熔炼Metal Melting金属塑性成形原理Principles of Metal Forming金属物理性能Physical Property of Metal金属学Metallography金属学与热处理Metallography & Heat Treatment金属学原理Principles of Metallography金相分析Metallographic Analysis金相技术Metallographic Techniques近代光学测试技术Modern Optical Testing Technology近代光学计量技术Modern Optical Measuring Technology近代经济史Modern History of Economics近代物理实验Lab of Modern Physics近世代数Modern Algebra主题:Re:大学课程名称英文翻译(7楼)[楼主:Shirley] 发表于2004-03-20 14:07 [彩信][引用][回复][编辑]晶体管原理Principles of Transistors晶体光学Crystallographic Optics精密测量技术Technology of Precision Measurement。

变压器电压与匝数的关系公式推导

变压器电压与匝数的关系公式推导

变压器电压与匝数的关系公式推导1.变压器电压与匝数的关系可以通过公式Vp/Vs=Np/Ns来表示。

(The relationship between transformer voltage and turns can be expressed as the formula Vp/Vs=Np/Ns.)2.在这个公式中,Vp表示初级电压,Vs表示次级电压,Np表示初级匝数,Ns表示次级匝数。

(In this formula, Vp represents primary voltage, Vs represents secondary voltage, Np represents primary turns, and Ns represents secondary turns.)3.当变压器的匝数比为1:1时,初级电压等于次级电压。

(When the turns ratio of the transformer is 1:1, the primary voltage is equal to the secondary voltage.)4.当变压器的匝数比不为1:1时,变压器可以实现电压的升高或降低。

transformer can realize voltage increase or decrease.)5.如果变压器的匝数比为Np:Ns,则初级电压Vp与次级电压Vs的关系为Vp/Vs=Np/Ns。

(If the turns ratio of the transformer is Np:Ns, then the relationship between primary voltage Vp and secondary voltage Vs is Vp/Vs=Np/Ns.)6.这个公式告诉我们,变压器的电压比与匝数比成正比。

(This formula tells us that the voltage ratio of the transformer is directly proportional to the turns ratio.)7.变压器的匝数比决定了电压的升降倍数。

诺基亚电容器有限公司电源因数控制器N-6、N-12和NC-12说明书

诺基亚电容器有限公司电源因数控制器N-6、N-12和NC-12说明书
10. Voltage distortion 11. Capacitor overload 12. Capacit; 0.5 ind or 0.8 cap < 80 % U within 1s
> 120% > 110% U > 35°C (1) > 50°C (1) > 7% (1) Irms/I1 > 1.3 (1) < 75% of nominal
A COMMUNICATING MODEL
• optional communication auxiliary (RS485 Modbus)
NC-12 CONNECTION EXAMPLES
Line-to-Line connection
Line-to-Neutral connection
TECHNICAL SPECIFICATION
MONITORING AND PROTECTION
Alarms
• should a disturbance occur on the network or in the capacitor bank, alarms are indicated on the screen and alarm contact closure is initiated
networks
Provided by Northeast Power Systems, Inc.
TAKE THE STEP TOWARDS INTELLIGENT POWER FACTOR CONTROLLING
Provided by Northeast Power Systems, Inc.
Type
Number of step output contacts

西安交通大学14年6月课程考试《专业英语》考查课试题

西安交通大学14年6月课程考试《专业英语》考查课试题

西安交通大学14年6月课程考试《专业英语》考查课试题西安交通大学14年6月课程考试《专业英语》考查课试题一、其他题(共 5 道试题,共 70 分。

)1.1. the standard measure of electrical power ____________2. an electric generator that produces alternating current __________3. two pieces of wire were connected end to end ____________4. two pieces of wire were connected side by side ____________5. the standard unit of measurement for strength of an electrical current____________6. a device used to break or open an electric circuit or to divert current from one conductor to another ____________7. a device that generates light, heat, or therapeutic radiation____________8. a material that insulates, especially a nonconductor of sound, heat, or electricity ____________9. of or relating to a system of numeration having 2 as its base____________10. the standard unit of electrical resistance ____________2.我们将大规模发展电力工业。

有源电力滤波器直流侧电容的选择方法

有源电力滤波器直流侧电容的选择方法

I4cos (3ωt+φ4 ) ]=
2 × 3E (I2+I4 )
总第 47 卷 2010 年
第 540 期
电测与仪表 Electrical Measurement & Instrumentation
Vol.47 No.540 Dec. 2010
第 12 期
C=
SA 300π×UdΔU
(10 )
由式 (10 ) 可知, 在APF补偿容量、 APF直流侧电容 电压参考值和电压允许波动范围确定后, 电容的最小 电容电压的 容量就确定。当实际电容大于计算值时, 也说明, 电容值的大小与 波动幅值会减小; 反之亦然。 开关频率、 APF连接的滤波电感大小等因素无关。 3 设计举例 直流侧电压参考 设计30kVA的有源电力滤波器, 值为800V, 由式 (9 ) 可得: SA 30000 C= = =4.0(mF) 300π×UdΔU 300π×800×10 4 仿真分析 在MATLAB/simulink仿真软件中建立模型, 如图2 所示。仿真参数如下: 三相电网电压220V/50Hz, 负载 为三相不控整流桥带阻感负载, RL=2Ω, L=10mH。 APF 与电网连接的滤波电感L=0.6mH, 变流器直流侧电压 Ud=800V, 直流侧电容C=4mF。APF设置为只对电源电 流中谐波进行补偿。 图 4 补偿后电源电流 is 和直流侧电压 Ud Fig.4 Source is and DC voltage Ud after compensation 基波频率的6倍 (即3的倍数次 ) 。 如图5所示,直流侧电压的波动频率和负载瞬时 有功电流的波动频率相同, 说明APF直流侧与负载之 间存在能量交换, 能量交换的大小与负载电流中交流 分量的大小有关。

OPTIMAL CONTROL METHOD FOR REACTIVE VOLTAGE OF WIN

OPTIMAL CONTROL METHOD FOR REACTIVE VOLTAGE OF WIN

专利名称:OPTIMAL CONTROL METHOD FORREACTIVE VOLTAGE OF WIND POWER ANDPHOTOVOLTAIC POWER CENTRALIZEDGRID CONNECTION发明人:NINGBO WANG,WENYING LIU,DANJIN,JIAMING WANG,YANHONG MA,CAILIANG,LONG ZHAO,YALONG LI,QIANGZHOU,JING WEN,RONG HUANG,RUNDONGGE,JIN LI,PENG XU申请号:US14655235申请日:20140418公开号:US20150357818A1公开日:20151210专利内容由知识产权出版社提供专利附图:摘要:The present invention has disclosed an optimal control method for reactive voltage of wind power and photovoltaic power centralized grid connection in the field of wind power and photovoltaic power grid connection control technology, comprising: setting actuating stations used to control single wind power plant/photovoltaic power plant, setting substations used to control actuating stations and set master station used to control all the substations; master station calculates setting voltage reference Uof each substation; adopting 3σ method to process set voltage reference Uto obtain set voltage reference interval; regulating high-side voltage of substation to make it fall in set voltage reference interval; if high-side voltage of substation does not fall in set voltage reference interval, then regulating the equipment in wind power plant/photovoltaic power plant via actuating station. The present invention guides the actual operations of electric power system.申请人:STATE GRID CORPORATION OF CHINA,State Grid Gansu Electric Power Corporation,Gansu Electric Power Corporation Wind Power Technology Center,NorthChina Electric Power University地址:Beijing CN,Lanzhou, Gansu CN,Lanzhou, Gansu CN,Beijing CN 国籍:CN,CN,CN,CN更多信息请下载全文后查看。

抽水蓄能机组电动运行方式无功电压控制研究

抽水蓄能机组电动运行方式无功电压控制研究

抽水蓄能机组电动运行方式无功电压控制研究郝鑫杰;宋述勇;郑惠萍;刘新元;高宏;郝捷【摘要】抽水蓄能机组具有四象限运行能力,在电网调峰中发挥重要作用.山西电网配置有4×300MW的西龙池抽蓄机组,为接纳更多的风电,需要西龙池抽水蓄能电站多台机组抽水运行,由此会带来西龙池电站500kV母线电压降低,影响电网安全运行.本文通过仿真分析和现场试验的手段研究了西龙池电站在3台及以上机组抽水工况下,机组发出无功量对机组安全、电网电压及系统稳定性的影响,给出了机组运行的最优无功值.%Pumped storage power plant can run at four quadrant operation, which plays an important role in the peak load regulating of power system. More than two units of Xilongchi power plant need pumping operation to improve wind power integration ability. Then the 500kV bus voltage of Xilongchi will be lower than normal level, having impact on the safe operation of power grid. The units safety voltage level and stability of power grid is studied by simulation and experiment. The optimal reactive Var of every unit is presented.【期刊名称】《大电机技术》【年(卷),期】2017(000)002【总页数】4页(P56-59)【关键词】抽水蓄能电站;调压;无功;抽水运行【作者】郝鑫杰;宋述勇;郑惠萍;刘新元;高宏;郝捷【作者单位】国网山西省电力公司电力科学研究院,太原 030001;国网山西省电力公司电力科学研究院,太原 030001;国网山西省电力公司电力科学研究院,太原030001;国网山西省电力公司电力科学研究院,太原 030001;国网山西省电力公司电力科学研究院,太原 030001;国网山西省电力公司电力科学研究院,太原 030001【正文语种】中文【中图分类】TM761近年来,山西电网风电装机保持快速增长且风电呈现很强的反调峰性,加之火电机组比例大,冬季又涉及供热等问题,使得新能源消纳问题日益严峻。

基于Steinmetz理论的三相四线制不平衡电流补偿

基于Steinmetz理论的三相四线制不平衡电流补偿

基于Steinmetz理论的三相四线制不平衡电流补偿王江彬;田铭兴;陈敏;赵远鑫【摘要】由于零序分量的存在,三相四线制电路的不平衡补偿问题较三相三线制电路更复杂。

该文基于Steinmetz理论的对称分量分析法考虑三相三线制系统负荷的平衡化补偿思路给出了三相四线制系统负荷不平衡电流的补偿方法,并给出3种约束方程下的补偿电纳模型。

在三相四线制系统中,在已找到的3种约束方程条件下,对Y型联接的负荷进行零、负序电流补偿,并使系统功率因数提高到1。

最后通过Matlab仿真表明,所提补偿理论不仅能实现不平衡电流的平衡化,还能使系统总功率因数接近于1,证明了所提补偿理论的正确性。

%Because of the existence of zero sequence components,the unbalanced compensation of three-phase four-wire system is more complicated than that of three-phase three-wire system. The compensation method of symmetrical component analysis method based on Steinmetz theory in three-phase three-wire system load balancing compensation is considered in the three-phase four-wire system unbalanced load current compensation. Moreover,the compensation mod⁃el of three kinds of constraint equations is given. In the three-phase four-wire system with the three above constraint equations,attempts are made to compensate the zero sequence and negative sequence current for star-connected load, and increase the system power factor to 1. Finally,the Matlab simulation results show that the proposed compensation theory can not only keep the unbalanced current balanced,but also make the power factor of total system be equalto 1 approximately,which proves the correctness of the proposed compensation theory.【期刊名称】《电力系统及其自动化学报》【年(卷),期】2016(028)009【总页数】7页(P20-26)【关键词】对称分量分析法;三相四线制;约束方程;零;负序电流补偿【作者】王江彬;田铭兴;陈敏;赵远鑫【作者单位】兰州交通大学自动化与电气工程学院,兰州 730070;兰州交通大学自动化与电气工程学院,兰州 730070;兰州交通大学自动化与电气工程学院,兰州 730070;兰州交通大学自动化与电气工程学院,兰州 730070【正文语种】中文【中图分类】TM714.3在中、低压配电系统中,很多因素会造成配电系统三相不平衡[1-5],从而导致供电系统的三相电压、电流不平衡。

基于双随机相位估计的无功补偿方法

基于双随机相位估计的无功补偿方法

基于双随机相位估计的无功补偿方法彭翌春;何时秋【摘要】为了解决实时无功补偿问题,提出了一种基于双随机相位估计的无功补偿方法.对采样电能信号进行傅里叶变换,通过频谱峰值定位算法确定电能信号的基波、各阶次谐波的频率信息.采用同频率不同相位信号调制,得到调制后信号,再经过低通滤波得到滤波后信号.结合滤波信号的比值和随机相位三角函数数值得到所要估计的信号相位信息,辅助无功补偿.通过仿真电能信号和实际采集的电能信号验证了该算法的有效性,结果表明信号相位估计相对误差在1‰以下,无功补偿能够有效提升电路的能量利用效率.%In order to solve the problem of real time reactive power compensation, a reactive power compensation method based on double random phase estimation was proposed.The Fourier transform was carried out for the sampled power signal, and the fundamental wave of power signal and the frequency information of harmonic waves in each order were determined with the spectral peak location algorithm.In addition, the signal with the same frequency and different phase was modulated to obtain the modulated signal, and the filtered signal was attained through the low pass filtering.In combination with the specific value of filtered signal and the value of random phase trigonometric function, the signal phase information to be estimated was obtained, which could assist the reactive power compensation.The validity of the proposed algorithm was verified through the stimulated and the actually acquired power signals.The results show that the relative error of phaseestimation is below 1‰, and the reactive power compensation can effectively improve the energy usage efficiency of the circuit.【期刊名称】《沈阳工业大学学报》【年(卷),期】2017(039)004【总页数】5页(P361-365)【关键词】无功补偿;随机相位;相位调制;傅里叶变换;频谱峰值定位;低通滤波;电能信号;谐波【作者】彭翌春;何时秋【作者单位】国家电网公司宁德供电公司,福建宁德 352100;国家电网公司宁德供电公司,福建宁德 352100【正文语种】中文【中图分类】TM715无功补偿是现代电网设计中必不可少的环节,其对于提高电能质量、降低电力损耗及延长电子元器件使用寿命至关重要[1-6].常见的无功补偿方式包括集中补偿和分散补偿两种,其中集中补偿是从电站或变压器端对需求的无功功率进行一次性补偿,一般采用同步调相机实现;分散补偿则多采用并联电容器、电感器、静止无功补偿器(SVC)及静止同步补偿器(SVG)等小型装置实现,并局部跟踪补偿电路需求的无功功率[7-10].然而,无论采用何种方式进行无功功率补偿,均需要确定电能传输的电压信号与其对应的电流信号之间的相位差,这是因为无功补偿的目标就是校准电路中传输电流信号,使其相位不再滞后或者超前相应的电压信号.经典的无功补偿技术主要是通过傅里叶分析,结合数字电路技术实现对电能信号的相位估计和同步[11-12].例如利用卷积计算电压信号和电流信号的互相关函数[13],通过识别互相关函数的峰值位置确定电压、电流信号的相位关系;或者将锁频电路和锁相电路结合[10-14],通过分析电能信号的基波和各阶次谐波的频谱位置,然后进一步通过比较电路确定电能信号的占空比,从而确定电能信号的相位信息,实现相位校正.这些方法对于解决无功补偿中信号的相位估计问题提供了众多途径,但依然存在不足.具体而言,采用互相关函数的方式计算复杂度明显偏高,计算时间长,在实时跟踪补偿的情况下难以应用;而采用锁相比较电路的方式,则存在过零点比较电路,对噪声的敏感度较高,占空比计算容易因为电路中的干扰而变得不可靠[11].因此,若能设计一种可快速计算且稳定度高的电能信号相位估计算法,将对实现无功补偿、谐波抑制具有较高的借鉴价值.本文提出一种采用双随机相位估计的电能信号相位算法.通过傅里叶变换提取待测电能信号的频谱峰值信息,确定基波和各阶次谐波的频率信息;对基波以及各阶次谐波频谱峰值信号进行同频率双随机相位调制,得到调制后信号;对两个调制信号低通滤波,通过滤波信号估计电能信号的相位信息.双随机相位信号估计思想源于经典数学中三角函数的“积化和差”公式,通过将初始相位未知的电能信号与随机相位的同频率三角函数相乘,可得到只含有随机相位与所要估计相位信息的三角函数分量.进一步通过两次运算,联立可以求解出所要估计的相位.通过傅里叶变化,将电能信号的基波及各阶次谐波信号在频域中转化为对应频率的谱峰,并记作Speak,其表达式为式中:fi(t)为一个光滑的低频信号,在理想状况下为一常数;ψi为所要估计的相位信息;i为对应的基波或谐波阶数.利用双随机相位估计法求解式(1)中的ψi,具体过程如下:首先,随机选取不同的初始相位φ1和φ2,使用cos(wit+φ1)、cos(wit+φ2)分别对频谱峰值信号Speak调制.用cos(wit+φ1)调制频谱峰值信号Speak后得到fi(t)cos(wit+ψi)cos(wit+φ1)=fi(t)[cos(ψi-φ1)+cos(wit+ψi+φ1)]低通滤波后得到Speak为fi(t)cos(ψi-φ1).同理,用cos(wit+φ2)调制频谱峰值信号Speak后得到fi(t)cos(wi t+ψi)cos(wit+φ2)=fi(t)[cos(ψi-φ2)+cos(wit+ψi+φ2)]低通滤波后得到Speak为fi(t)cos(ψi-φ2).将上述两次随机估计的低通滤波后信号相除,抵消掉与相位估计无关的因素,可得通过式(3)可以求得初相的估计值,即从式(3)不难看出,通过反正切函数,可以由比值K以及随机相位的正弦函数、余弦函数直接计算得到所要估计的相位信息,从而实现对电能信号的相位分析,确定功率因子等参数,实现无功补偿.上述双随机相位估计的算法思想是普适的,但本文需要对信号进行频谱峰值检测(频率估计)以及低通滤波,故本文采用傅里叶变换实现相应的频谱分析.结合简单的动态阈值算法,检测所要分析信号的频谱峰值Speak,低通滤波器则选择常规的FIR滤波器结构,从而避免造成相位非线性失真.需要指出的是,上述选择并不是唯一的,其他常见的频率估计、检测算法以及滤波器也可被应用于本文提出的相位估计算法中.可以使用快速傅里叶变换(FFT)将待测信号变换到频域,设x(n)是一个长度为M的有限长序列,则x(n)的N点离散傅里叶变换可表示为式中对应的定位算法具体内容为:首先选取初始值和阈值,然后通过循环比对,查找比阈值大的数据点,记录其频率信息和幅度信息,由此找出各个频谱峰值信号Speak.为了评价本文提出的双随机相位估计算法,文中采用仿真电能信号和实际采集的电能信号对上述算法进行了验证,仿真电能信号的离散模型表达式为式中:Ai为各次谐波的幅度数值;基波频率f1为50 Hz;采样率fs为1 000 Hz;θi为初始随机相位;e(n)为白噪声.实际每次采集的样本点数据长度N为1 000点,基波和各次谐波的幅值(无单位数值)与相位如表1所示.图1为仿真电能信号,可以看出电能信号基本振动幅值在-1~1之间,信号的时域峰值存在一定的波动趋势,显然是因为基波信号受到了其他高频谐波作用的影响. 对电能仿真信号进行傅里叶分析,得到的频谱峰值如图2所示.可以从归一化的频谱中直接看出仿真信号包括5个不同分量的基波和谐波信号,利用频谱峰值定位算法可从频谱中准确定位出频谱峰值,图2中*所表示的就是定位频谱峰值.确定需要进行相位检测的基波以及谐波频率后即可实施相位调制.图3、4分别为仿真电能信号经过一次和二次随机相位调制后得到调制信号,可以看出调制信号的振动频率和形式基本一致,主要的区别在于基线的位置,基线信息正是用于相位估计的关键,基线反映出随机相位和所要估计相位之间相位差的余弦值.本算法采用的低通滤波器为一个3阶的FIR滤波器,通带比例为5%,即选取信号采样率小于2.5%的频率信号.进一步对随机调制的信号进行滤波可以得到对应的第一次调制滤波信号以及第二次调制滤波信号,其波形如图5、6所示.不难发现,滤波信号在信号的起点和终点部分具有明显的跳跃点,这是由滤波信号的边界效应引起的.为了避免这种边界效应带来的计算误差,本文剔除开端和结尾数据点,最后用于估计相位的比值来自滤波数据点的中间部分.表2为采用双随机相位估计基波和各阶次谐波相位的相对误差,表明双随机相位估计算法具有优越的性能,其对于任意谐波的相位识别误差均在1‰以下,具有良好的识别精度与准确性.现有的利用循环相关算法进行相位估计的方法复杂度为O(N2lg N),本文提出的算法运行复杂度为O(Nlg N),提高了运算效率.为了进一步验证本算法的有效性,实际采集1 000组电能信号进行分析,采集的频率为1 000 Hz,每个样本的时间间隔为1 s.利用本文算法估计得到的相位数据进行相位修正,可使得电路整体的功率因子得到明显提升,实现了电路系统的及时准确无功补偿.本文提出的双随机相位无功补偿算法可以有效地估计由电容元件、电感元件造成的电路电压、电流信号相位失调,从而辅助实现电路无功补偿.通过估计各阶次谐波的相位信息,可以完成谐波分量消除,可将谐波能量重新调制补充到基波信号中,提高电能利用效率.本文算法具有实现简便、计算准确度高的优势,既可以用纯粹软件实现,也容易以电路结构实现,可以广泛应用于各种现有的无功补偿设备.【相关文献】[1]陈雨.智能无功补偿技术在电力自动化中的应用分析 [J].电子测试,2016(4):150-151. (CHEN Yu.Application of intelligent reactive power compensation technology in electric power automation [J].Electronic Measurement and Testing,2016(4):150-151.)[2]王鹤霖,程启明,李明,等.基于自适应滤波LMS算法的超高压TCR动态无功补偿调压方案设计与仿真 [J].电测与仪表,2016,53(4):5-13.(WANG He-lin,CHENG Qi-ming,LI Ming,et al.Design and simulation of voltage regulator for super high voltage TCR dynamic reactive power compensation based on adaptive filtering LMS algorithm [J].Electrical Measurement and Instrumentation,2016,53(4):5-13.)[3]杨万清,姜学朴,张成文,等.基于IEC62053-24静止式基波频率无功电能表标准对提高无功补偿效果的作用 [J].电测与仪表,2016,53(9):79-82.(YANG Wan-qing,JIANG Xue-pu,ZHANG Cheng-wen,et al.Based on IEC62053-24 static fundamental frequency reactive power meter standard to improve the effect of reactive power compensation [J].Electrical Measurement and Instrumentation,2016,53(9):79-82.)[4]徐蒙福.计及集电系统网损最优的双馈风电场无功协调控制策略 [D].吉林:东北电力大学,2016. (XU Meng-fu.The doubly active wind field reactive power coordination control strategy considering the optimal loss of current collecting system [D].Jilin:Northeast Electric Power University,2016.)[5]鲁庆,张建文,苏莉雅,等.对称分量法控制的静止无功补偿装置设计 [J].电力电容器与无功补偿,2007,28(3):26-28.(LU Qing,ZHANG Jian-wen,SU Li-ya,et al.Design of static Var compensator controlled by symmetrical component method [J].Power Capacitors and Reactive Power Compensation,2007,28(3):26-28.)[6]肖弘扬,公茂法,刘宁,等.基于DSP和小波变换的煤矿无功功率测量方案[J].煤矿机械,2015,36(5):242-245.(XIAO Hong-yang,GONG Mao-fa,LIU Ning,et al.Based on DSP and wavelet transform of mine reactive power measurement program [J].Coal Mine Machinery,2015,36(5):242-245.)[7]杨昆,谢川,陈国柱.基于频率自适应谐振控制器的静止无功发生器电流控制 [J].电工技术学报,2014,29(8):248-254.(YANG Kun,XIE Chuan,CHEN Guo-zhu.Current control of SVG based on frequency adaptive resonant controller [J].Journal of Electrical Engineering,2014,29(8):248-254.)[8]李孝揆,梁国林.基于双DSP的注入式有源滤波器系统的研究[J].电力电子技术,2014,48(8):30-32.(LI Xiao-kui,LIANG Guo-lin.Research on double-DSP-based injection active power filter system [J].Power Electronics Technology,2014,48(8):30-32.)[9]宋泽.基于数学形态学的风电并网电能质量扰动检测研究 [D].兰州:兰州理工大学,2015. (SONG Ze.Research on wind power quality distur-bance detection based on mathematical morphology [D].Lanzhou:Lanzhou University of Technology,2015.)[10]胡月.单相光伏逆变器功率控制策略的研究 [D].武汉:华中科技大学,2015.(HU Yue.Single-phase photovoltaic inverter power control strategy research [D].Wuhan:Huazhong University of Science and Technology,2015.)[11]王东冬.静止同步无功补偿器的锁相技术研究 [D].武汉:湖北工业大学,2015.(WANG Dong-dong.Research on phase locking technology of static synchronous reactive power compensator [D].Wuhan:Hubei University of Technology,2015.)[12]张志文,郭斌,罗隆福,等.用于SVC数控系统的数字锁相环的设计与实现 [J].电力系统及其自动化学报,2011,23(1):103-107.(ZHANG Zhi-wen,GUO Bin,LUO Long-fu,et al.Design and implementation of digital phase locked loop for SVC numerical control system [J].Journal of Electric Power System and Its Automation,2011,23(1):103-107.)[13]张乐丰.风电场风机有功、无功协调优化调度研究 [D].北京:华北电力大学,2015. (ZHANG Le-feng.Study on optimized operation of active and reactive power coordination in wind turbine fan [D].Beijing:North China Electric Power University,2015.)[14]朱翔,解大,高强,等.基于FFT和db20小波变换的电力系统谐波联合分析策略 [J].电力系统保护与控制,2012,40(12):62-65.(ZHU Xiang,XIE Da,GAO Qiang,et al.Harmonic analysis of power system based on FFT and db20 wavelet transform [J].Electric Power System Protection and Control,2012,40(12):62-65.)。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

An Optimal Control Strategy for Reactive Power in Wind Farms Consisting of VSCF DFIG WindTurbine Generator SystemsJingmei Fang, Gengyin Li, Xuefeng Liang, Ming ZhouState Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources(North China Electric Power University)Beijing 102206, P.R.Chinaclearvic@, ligy@, liangxuefeng@, zhouming@Abstract—Doubly-fed Induction Generator (DFIG) is a kind of variable-speed constant-frequency (VSCF) wind generator (WG) which can output reactive power when not working in the constant power factor mode and be used as a reactive power supply for wind farm. In this paper, an optimal control strategy for reactive power in wind farms consisting of DFIG is proposed by combining the reactive power compensation ability of both DFIG and reactive power compensation device (RPCD). The control target is minimum power loss and optimal power flow (OPF) of wind farm. First, the reactive power characteristic of DFIG is detailed analyzed. Then the control strategy which includes three modules is presented based on the “Fix-place and Quantitative” thought, and the modules of which are Wind Farm Data Process Module (WFDPM), Wind Farm Data Acquisition Module (WFDAM) and Wind Farm Control Module (WFCM). As the core part of the strategy, WFDPM applies Sensitivity Analysis (SA) and improved genetic algorithm (IGA) to optimize the control strategy. At last, a wind farm consisting of twenty DFIGs of 1.5MW is built in DIgSILENT/PowerFactory, and the results data show that the optimal reactive power control strategy proposed in this paper can effectively achieve the minimum power loss and OPF.Keywords-wind farm; DFIG; reactive power optimisation control; sensitivity analysis; improved genetic algorithm; optimal power flowI.I NTRODUCTIONWind power is a kind of intermittent energy source, which makes the output power of wind farm unstable and random. Moreover, the random change of active power in wind farm makes the reactive power consumption of equipments and transmission cables changes as well, so as to affect the voltage stability and power flow distribution of the wind farm and local grid [1]. Therefore, research on the optimal control strategy of reactive power compensation in wind farm which aims to achieve optimal power flow (OPF) has become a research focus at home and abroad [2].As the development of wind power generation technology, variable-speed constant-frequency (VSCF) wind turbine generator system (WTGS) such as doubly-fed induction generator (DFIG) has gradually become the mainstream model type in newly set-up wind farms. Such type of WTGS can achieve active and reactive power decoupling control, absorb or output reactive power according to the requirement of system operation plan and control strategy, so that they can be applied in the voltage control of wind farms [3]. However, the DFIG WTGS in domestic wind farm usually operates with constant power factor, and its fast and flexible reactive power regulation ability has not been fully used. So it is urgent to study how to make this capability of DFIG WTGS combined with all kinds of reactive power compensation device (RPCD) to participate in regulating the reactive power and voltage of grid.While currently, little papers about reactive power control strategy in wind farm consisting of VSCF DFIG WTGS have compositely considered the reactive power compensation ability of both RPCD and wind generator (WG), and most of them focus on how to allocate the reactive power among all the WGs or how to take advantage of RPCD individually to compensate the reactive power in wind farm. According to the reactive power limit of DFIG, [4] proposed a reactive power nearby compensation strategy to the local consumers in wind farm, which mainly discussed the reactive power distribution rules between WGs in wind farm and between the stator-side and grid-side converters of a single WG, but the compensation ability of RPCD is ignored. Reference [5] presented a reactive power compensation method which includes local compensation on the WG terminal and centralized compensation on the substation of wind farm using shunt capacitors, while it didn’t think over the reactive power output capability of WG.In this paper, on the basis of taking full account of all the reactive power regulation measures including both reactive power output ability of DFIG and various RPCD, an optimal control strategy for reactive power in wind farms consisting of VSCF DFIG WTGS with the aim of minimizing the active power loss and achieving OPF is proposed. Issues about optimization belong to the multi-constraint non-linear combinatorial optimization research scope. Simply it is an optimal problem aiming to achieve minimum reactive power loss and making the solution vectors to meet various constraints through the control of wind farm. In recent years,This work was supported in part by National Eleven-Five Scientific and Technical Supporting Program of China (2008BAA14B05), National Natural Science Foundation of China (50877027), and “111” Project (B08013).genetic algorithm (GA) is widely applied for researches about reactive power optimization of power system, for it has extraordinary capability of solving discrete variables and owns good robustness [6]. In this paper, the reactive power characteristic of DFIG is discussed firstly. Then establishing an active power loss/reactive power sensitivity model of a single wind farm and solves the model for identifying the compensation place. Moreover this paper uses an improved GA for calculating the compensation capacities of WGs and RPCDs on the compensation spots. At last, the effectiveness of this optimal control strategy is validated in the 20*1.5MW wind farm model built in DIgSILENT/PowerFactory. The results show that the reactive power optimization control strategy for wind farms consisting of VSCF DFIG WTGS can effectively reduce the active power loss in wind farm, maintain the voltage of each bus within the required range and achieve the OPF.II.R EACTIVE P OWER C HARACTERISTIC OF DFIGA. Wind Generation System Model of DFIG WTGSThe model of DFIG WTGS is composed of wind turbine, doubly-fed induction generator, AC-DC-AC inverter and control system. The detailed structural diagram of windgeneration system is shown in Fig.1.Figure 1. Diagram of the structure of wind generation system of DFIGWTGSThe vector control of rotor-side converter realizes the active power and reactive power decoupling control of the stator of generator. The rotor-side converter provides excitation current component and torque current component to rotor current, which are used for controlling reactive power of stator and achieving the maximum wind capture respectively. While the vector control of grid-side converter plays a role in maintaining the voltage of DC-capacitor in a fixed value and regulating the reactive power which flows to grid through converter. B. The Reactive Power Limit of DFIG WTGS1) The reactive power elements of DFIG WTGSThe power relationship of DFIG wind generation system isshown in Fig.2, where P M is the mechanical power which is produced by wind turbine and transported to generator; P s and Q s are the active power and reactive power from stator; P c and Q c are the active power and reactive power from grid-side converter; P r and Q r are the active power and reactive power from rotor-side converter; P E and Q E are the active power andreactive power transported from generator to grid.Figure 2. The power relationship of DFIGUnder the condition of neglecting the power loss of stator, rotor and transformer, the relationship among P M , P s , P r , P E can be expressed by (1).r s M E P P P P −== (1)And ignoring the rotor winding resistance r r , the following expressions are obtained.⎪⎪⎩⎪⎪⎨⎧−=−=E r E s P s s P P s P 111 (2) The dc-link between two converters makes only activepower exchanges happen to the converters, and reactive power Q c and Q r are decoupled.According to the direction of power flow defined in Fig.1, the reactive power flowing into grid from generator is expressed as (3).c s E Q Q Q −= (3)As a result, discussions about reactive power limits transported from generator to grid can be put into two parts, one is the upper and lower reactive power limits Q s max and Q s min of stator, the other is upper and lower reactive power limits Q c max and Q c min of grid-side converter.2) The reactive power limitsIn this paper, study on the reactive power constraint of stator in DFIG takes three constraints into account, which are stator current constraint, rotor-side converter current constraint and grid-side converter capacity constraint.a) Stator current constraintAccording to the standard positive direction of motor and excluding the zero-axis component, the voltage and flux equations of DFIG based on per-unit system in the stator rotating coordinate system DQ can be established, and ignoring the stator winding transient procedure, (4) and (5) are obtained.⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡ΨΨ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡r s r s r s I I D C B A U U 11110000 (4) ⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡ΨΨr s r s I I C B B A 2222(5) where[]T qs ds s U U U =, []T qr dr r U U U =, []T qr ds s ΨΨ=Ψ,[]TqrdrrΨΨ=Ψ, []T qs ds s I I I =, []T qr dr r I I I =,and⎥⎦⎤⎢⎣⎡−=01101A , ⎥⎦⎤⎢⎣⎡−=001s s B , ⎥⎦⎤⎢⎣⎡−=s s r r C 001,⎥⎦⎤⎢⎣⎡=r r r r D 001, ⎥⎦⎤⎢⎣⎡−=s s X X A 002, ⎥⎦⎤⎢⎣⎡=m mX X B 002,⎥⎦⎤⎢⎣⎡=r r X XC 002where U ds , U qs , U dr , U qr are the d -axis and q -axis componentsof stator and rotor winding voltage; ψds , ψqs , ψdr and ψqr are the d -axis and q -axis components of stator and rotor synthetic flux; r s and r r are the winding resistance of stator and rotor; X m is the exciting reactance; X sr is the stator leakage reactance; X rr is the rotor leakage reactance value equivalent to the stator-side; s is the slip ratio; p is the differential operator. In addition, X s =X sr +X m , X r =X rr +X m .Set the synchronous rotating reference frame d -axis in the same direction of stator synthetic flux, then ψqs =0. Neglect r r and suppose U s =U ds +j U qs , then (6) is got.⎪⎩⎪⎨⎧==s qsds U U U 0 (6) According to the active and reactive power equations ofstator-side, the following equations are gots s qs s s dsP U I Q U I ⎧=⎪⎨=−⎪⎩ (7) So the first constraint condition is (8).2max222s s s s I U Q P ≤+ (8) b) Rotor-side converter current constraintThe active power and reactive power of stator-side can be expressed by rotor-side current, as shown in (9).ss m qrs s m dr s s s U P X I X U X I Q U X ⎧⎪=⎪⎪⎨⎛⎞−⎪⎜⎟=−⎪⎜⎟⎪⎝⎠⎩(9)Then the second constraint condition is (10).2max 22222r sm s s s s s I X X U X U Q P ≤⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛++ (10) c) The reactive power constraint of grid-side converterGrid-side converter usually operates at the unit power factor state, and the choice of capacity of which is based on the maximum slip active power. In fact, the wind turbine runs at variable speed as the wind speed changes, so the converter cannot always operate at the maximum slip active power status. When the wind turbine is running at low speed and the grid-side converter is in the under-power state, in which the power handling capability is not fully played, if the grid has requirement of reactive power, making the grid-side converter operate in the non-unit power factor mode is admissible.Assume the maximum designed power of grid-side converter is S c max , its ability of outputting or absorbing reactive power can identified as (11).2max 22c c c S Q P ≤+ (11)P c equals P r when ignoring the transformer loss, the upperand lower reactive power constraint condition of grid-side converter is2max 2max 11⎟⎠⎞⎜⎝⎛−−≤≤⎟⎠⎞⎜⎝⎛−−−E c c E c P s s S Q P s s S (12) According to the analysis above, the reactive power limitsof DFIG can be concluded as (13).max min E E E Q Q Q ≤≤ (13)where2min 2max s E s s E s U Q X U Q X ⎧⎪=−⎪⎪⎨⎪⎪=−⎪⎩III. T HE O PTIMAL C ONTROL S TRATEGY OF R EACTIVEP OWER IN W IND F ARM C ONSISTING OF DFIG A. Reactive Power Control Strategy of DFIGDFIG has a certain capability of absorbing or outputting reactive power, as a result of which it can be used as a reactive power supply to stabilize the voltage of point of interconnection (POI) as well as used as an active power supply to afford electrical energy to grid.Currently, the reactive power control strategies of DFIG WTGS include constant power factor control, constant terminal voltage control and optimal compensation control (OCC) [7].1)Constant power factor controlWhen small-scale wind farm is integrated into grid, the output change of wind farm has little influence that can be ignored to grid, and the WTGS usually operates in the constant power factor mode. Actually the power factor is often set to one and no reactive power exchanges between WTGS and grid, the reference reactive power Q ref=0.2)Constant terminal voltage controlWhen the scale of wind farm is large and the wind farm accesses to the weak power grid, the wind farm output changes as the wind speed fluctuates and it may cause the voltage fluctuation of integration point of wind farm, even seriously leads to the voltage limit violation and threatens the continuous operation of grid-connected WTGS. However, constant terminal voltage control takes the voltage of integration point as its control target, maintaining the voltage stability through changing the reactive power output.3)Optimal compensation controlIn order to make full use of reactive power regulation ability of wind farm that connected to the strong power grid, an optimal control mode for dynamic reactive power, which takes account of the reactive power limit of WTGS and the actual operation mode of power system, is proposed with the control target of satisfying the reactive power requirement of load near to the integration point and absorbing excess reactive power of grid.As a result, the reactive power control mode of all the DFIGs in this paper is OCC, in which the reactive power compensation capability of DFIG can be fully used. If the terminal voltage or power factor of WTGS is within the required range, the dispatch center can send any command to WTGS as long as Q iref is smaller than the upper reactive power limit Q i max of WTGS and larger than the lower reactive power limit Q i min of WTGS (Q i max and Q i min are calculated according to the actual operation situation of WTGS), realizing the role of WTGS as a reactive power supply, as well as reducing the operation costs of wind farm. In this paper, every DFIG is viewed as a dynamic RPCD which possesses continuously reactive power regulation ability, participating in the reactive power optimization task together with RPCD.B.The Optimal Control Strategy for Reactive Power in WindFarms Consisting of DFIGAn optimal control strategy called “Fix-place and Quantitative (FQ) Control Strategy” (FQCS) is proposed in this paper. “Fix-place” means the best compensation places are determined ahead, for not all the equipments are needed to supply the reactive power. “Quantitative” means the compensation capacity is identified ahead as well.The control strategy is composed of three modules, which are wind farm data process module (WFDPM), wind farm data acquisition module (WFDAM) and wind farm control module (WFCM). WFDAM is used for recording the correlative data of wind farm, such as parameters and operation mode of each WTGS, wind speed and power flow distribution of wind farm and so on. WFDAM is the data exchange part of the strategy. WFDPM plays the role of allocating the reference reactive power from dispatch center, deciding the place and the capacity of reactive power compensation, aim to achieve minimum loss and OPF. It is the core part of the strategy. WFCM is used for sending command signals to selected WTGS or RPCD. It is the executive part of the strategy. The diagram of control strategy is shown in Fig.3.Process(WFDPM)1+2<0DatabaseWind Farm Monitor CenterReactive Power Compensationneedreactivepower fromwind farm)Signal2RecollectingData...Collecting Data (minute level)Figure 3. Schematic diagram of the optimal control strategy for reactivepower in wind farms consisting of DFIGWFDAM is in charge of collecting related data in wind farm for regular internals (minute level) and recording them in database. When the voltage of POI fluctuates and need the wind farm to supply reactive power, the dispatch center will send a signal to WFDAM, which includes the required reactive power (Q req) and the event emergency value kT0 (i.e. tolerable waiting time, in units of s). The WFDAM decide neither to execute data collection operation nor to provide latest data in database. Assume the data acquisition time of WFDAM is T1, the total time of transfer data back and forth is T2. If T1+T2<kT0, WFDAM will start its data collection task by using its remote monitoring system (the signal is “Signal2” as show in Fig.3); If T1+T2>kT0, WFDAM will transfer the latest minute level data to WFDPM (the signal is “Signal1” as show in Fig.3).After WFDPM has received the current data of wind farm (by “Signal 1”), it begins to calculate the reactive power support ability of entire wind farm and feedback theinformation to dispatch center. Then the dispatch center sends the value of Q ref to WFDPM, and WFDPM starts to operate again. First, choose the best compensation place by using sensitivity analysis (SA), then “fix-place” has been realized; second, calculate the reactive power compensation capacity of every compensation place by improved genetic algorithm (IGA), then “quantitative” is achieved. After the optimal calculation, WFDPM transfers the results (Q iref ) to WFCM, and WFCM starts to send command signals (Q c and Q g ) to the corresponding WTGS or RPCD. The equipments run following the command, finally, the POI acquire the needed reactive power, the power loss of wind farm is least and the power flow distribution is best.IV. A CHIEVEMENT OF O PTIMAL C ONTROL S TRATEGY The core content of optimal control strategy of reactive power in wind farm consisting of DFIG in this paper is the FQ thought, which will be realized through combination of SA and IGA. The first step is to establish the optimal mathematical model of the entire wind farm.A. Mathematical Model of the Reactive Power Optimization of Wind Farm 1) Objective function()21min max11sin cos min ∑∑∑===⎟⎟⎠⎞⎜⎜⎝⎛−Δ++=Ni i i iNj ij ij ij ij j N i i U U U k B G U U F θθ(14) The control target of the optimal control strategy is theminimum power loss. In the target function, U i or U j is the voltage per-unit value of node i or j , G ij and B ij are the conductance and susceptance between node i and j , N is the number of all the nodes and k is the penalty function factor. ΔU i equals 0 when U i min ≤U i ≤U i max (U i min is the minimum value of U i , U i max is the maximum value of U i ), ΔU i equals (U i -U i max ) when U i >U i max and ΔU i equals (U i min -U i ) when U i <U i min . 2) Constraint conditions()()⎪⎪⎩⎪⎪⎨⎧−==−++==−∑∑==N j ij ij ij ij j i i Li Ci GiN j ij ij ij ij j i i Li Gi B G U U Q Q Q Q B G U U P P P 11cos sin sin cos θθθθ(15) max min Ci Ci Ci Q Q Q ≤≤ (16) max min Gi Gi Gi Q Q Q ≤≤ (17)max min i i i U U U ≤≤ (18)In these constraint conditions, P Gi , P Li , Q Gi , Q Ci , Q Li represent active power output of DFIG, active power load, reactive power output of DFIG, reactive power output of RPCD and reactive power load. Q Gi min , Q Gi max , Q Ci min , Q Ci max are the reactive power lower limit of DFIG, upper limit of DFIG, lower limit of RPCD and upper limit of RPCD. U i min and U i max are the lower and upper voltage fluctuation limit of node i .B. Sensitivity AnalysisFirst calculate the sensitivity of system loss to the reactive power of node. Second, choose some of the nodes which have high sensitivity for reactive power compensation. Then the search space of optimization algorithm can be limited to the most effective areas, which can effectively reduce the calculation time and system loss.The active loss of wind farm is()∑∑∑===+==Nj ij ij ij ijjN i iN i iLoss B GU U P P 111sin cos θθ (19)The sensitivity of wind farm loss to the change of active and reactive power of nodes can be obtained according to (15) and (20), as shown in (21).()⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡∂∂∂∂=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡∂∂∂∂⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⋅∂∂∂∂⋅∂∂∂∂=⎥⎦⎤⎢⎢⎢⎢⎣⎡∂∂∂∂−U U P P J U P P U Q U Q U P U PQ P P P Loss Loss TLoss Loss i i i i i Loss i Loss θθθθ111(20) where J is the Jacobian matrix of power flow equation, and⎪⎪⎩⎪⎪⎨⎧=∂∂−=∂∂∑∑==Nj ij ij j Loss N j ij ij j i LossG U UP G U U P 11cos 2sin 2θθθ (21) Large sensitivity means large power loss control ability,and has much value for the target of minimum power loss of entire system. Adjusting the control variables according to the descending order of the magnitude of sensitivity, not only can effectively reduce the power loss, but has great significance for avoiding the system shock caused by control simultaneously. C. Improved Genetic AlgorithmGA is widely applied in reactive power optimization issues of power system due to it has extraordinary advantages in solving the multivariable, nonlinear, discontinuous and multi-constraint problems [8]. This paper gives certain improvements to the traditional GA.1) Improvement for the selection of initial populationIn order to achieve the global optimal solution, the initial population should be as distributed as possible in the solution space. Standard GA generates the initial solution by predetermination and stochastic method, which may leads to the uneven distribution of initial solution and then affects the performance of the algorithm. In this paper, the “uniform distribution and random selection” principle is used for the generation of the initial solution matrix, as shown in (22).()min min max i i i i X X X r X +−⋅= (22)where r is a random figure which meets the standard normal distribution.2) Improvement of codeBinary code is used in traditional GA, the individual of which will be a very long string of code. So the computation is large and the search performance is bad due to the large search space. However, the application of real-coded gene in GA has much more advantages compared with binary code. For example, the omission of the encoding and decoding process has improved the efficiency; there is no precision loss compared with discrete binary code; it is free to use different genetic operators and so on. Therefore, the real-coded GA is applied in this paper.3) Fitness functionIn the early stages during the running of GA, there may be only a few individuals which have higher fitness than others. Premature convergence may occur in GA if determine the number of genetic individuals by using common method, which will lead to relatively better individuals have high percentage in the population of next generation and a local optimal solution to become the final answer. While in the later stages, the average fitness of all the individuals is close to the fitness of the best individual. In a word, the evolutionary process will be stagnancy due to the few differences between the individuals and it eventually becomes a random selection process, which will result in failure search of certain key areas.In order to solve the issues above, a horizontal-displacement linear transformation of fitness is applied as show in (23).B AF F +=' (23)()()⎪⎪⎩⎪⎪⎨⎧−≤−−>−=max min minmax min max22F F F F F F F F F F F F A aver aver averaver aver aver (24)()()()⎪⎪⎩⎪⎪⎨⎧−≤−⋅−−>−−⋅=max min minmin max min max max 222F F F F F F F F F F F F F F F B aver aver aver aver aver aver aver (25)where F aver , F max and F min are the average value, maximumvalue and minimum value of fitness.4) Self-adaptive crossover and mutation operatorsChanging the value of crossover probability P c and mutation probability P m adaptively according to the specific situation of individual, and dividing the evolutionary process into two different stages: the progressive stage and mutation stage. In the progressive stage, enhance the crossover and weaken the mutation; in the mutation stage, enhance the mutation and weaken the crossover. The two stages can be expressed by the following equations.⎪⎩⎪⎨⎧<≥−−−=aver ij c aver ij c c c c F F P F F F F P P P P max ,max max ,minmax min max max (26) ⎪⎩⎪⎨⎧<≥−−−=aver ij m aver ij m m m m F F P F F F F P P P P max ,max max ,minmax min max max (27) where P c max , P c min , P m max , P m min are the maximum value of P c , minimum value of P c , maximum value of P m and minimum value of P m respectively. And F ij,max is the larger fitness of two individuals i and j , which will crossover.V.T HE E XAMPLES FOR V ERIFYING THE E FFECTIVENESS OFTHE S TRATEGYTo verify the effectiveness of the proposed strategy, in this paper, a small wind farm consisting of twenty DFIGs of 1.5MW is built in DIgSILENT/PowerFactory. This wind farm is composed of twenty DFIG WTGSs, twenty step-up transformers of 1.6MVA (transformation ratio is 20kV/0.69kV) and a main transformer of 80MVA (transformation ratio is 220kV/20kV). The DFIGs are placed in three rows, the voltage of which is stepped up to 20kV by step-up transformers, and then be collected to the main transformer of 220kV though three voltage lines of 20kV. The electric diagram of the windfarm is shown in Fig.4.Figure 4. The electric diagram of the wind farmThe wind farm model in this paper has forty-two nodes. Five of them will be selected to be the compensation place. For all the twenty DFIGs are controlled in OCC mode, they can supply reactive power with RPCD to compensate the needed reactive power of wind farm or POI. First the power loss/reactive power sensitivity model of wind farm is analyzed by programming calculation before the compensation. According to the value of sensitivity, choose node No.6, No.9 and No.16 as the reactive power compensation place by WTGS, and node No.14 and No.20 as the reactive power compensation places by SVC, which is a kind of RPCD that can be adjusted continuously. The voltage range of each node, the reactive power limits of node No.6, No.9 and No.16, andthe reactive power compensation range of node No.14 and No.20 are shown in Table I.TABLE I. T HE L IMITS OF THE V OLTAGE OF E ACH N ODE AND THE REACTIVE P OWER C OMPENSATION L IMITS OF RPCD AND DFIGLimitU i(pu) RPCD (MVar) DFIG (MVar) i=1,3…41 i=2,4…42No.14 No.20 No.6 No.9 No.16Lower limit 0.95 0.97 0 0-1.6-1.6-1.6Upper limit 1.05 1.07 20 201.61.61.6In this paper, the wind speed is represented by active power output of WTGS (%). The voltages, active power and reactive power of part of the nodes before and after the optimization are shown in Table II and Table III when the output is 50% and 100% respectively.TABLE II. T HE P ARAMETER V ALUES O F P ART OF THE N ODES B EFORE A NDA FTER O PTIMIZATION (THE A CTIVE P OWER O UTPUT I S 50%)Node No.Before Optimization After OptimizationU i(pu)P i (MW)Q i(MVar)U i(pu)P i (MW)Q i (MVar)1 1.007 0.750 -0.514 1.001 0.75 -0.632 6 1.009 0.744 -0.478 1.024 0.748 0.419 10 0.998 0.745 -0.399 1.001 0.743 -0.127 14 0.987 0.746 -0.07 1.003 0.744 10.340 16 1.006 0.745 -0.321 1.012 0.742 0.306 19 1.001 0.75 -0.224 0.999 0.749 -0.275 28 0.997 0.746 -0.074 1.002 0.747 -0.001 36 0.999 0.738 -0.476 1.006 0.748 -0.379 38 0.996 0.746 -0.056 1.003 0.748 -0.003 42 0.984 14.525 -6.844 1.000 14.611 -5.772 The power loss of entire wind farm beforethe optimization (MW)0.475The power loss of entire wind farm afterthe optimization (MW)0.389From the data of the Table II, it can be seen that the power loss is reduced by about 18.1% after the optimization when the output is 50%. While the data from the Table III show that the power loss is decreased by 20.2% after the optimization when the output is 100%. The compare between the two situation shows that the power loss is much less than the situation when there is no “Fix-place and Quantitative” reactive power compensation in the wind farm. And the voltage of all the nodes are within their voltage limits, no evident voltage fluctuation happens. In this paper, DFIG WTGS has fully showed its ability of supplying reactive power to wind farm, and all the results show that the optimal reactive power control strategy of wind farm proposed in this paper is effective and useful for achieving the minimum power loss and OPF.VI.CONCLUSIONDFIG can absorb or output reactive power within limits toTABLE III. T HE P ARAMETER V ALUES OF P ART OF THE N ODES B EFORE ANDA FTER O PTIMIZATION (THE A CTIVE P OWER O UTPUT I S 100%)NodeNo.Before Optimization After Optimization U i (pu)P i (MW)Q i (MVar)U i(pu)P i (MW)Q i (MVar)1 1.006 1.500 -0.908 1.001 1.500 -1.002 6 1.017 1.479 -0.892 1.028 1.496 0.119 10 1.02 1.481 -0.730 1.001 1.492 -0.942 14 0.96 1.483 -0.083 1.012 1.489 10.340 16 1.003 1.482 -0.585 1.010 1.491 0.216 19 1.002 1.500 -0.345 0.999 1.498 -0.498 28 0.991 1.483 -0.092 0.998 1.493 -0.002 36 0.999 1.456 -0.791 1.012 1.486 -0.179 38 0.993 1.483 -0.056 0.998 1.495 -0.003 42 0.986 28.546 -12.381 1.002 28.839 -10.124 The power loss of entire wind farm beforethe optimization (MW) 1.454The power loss of entire wind farm after theoptimization (MW) 1.161participate in the voltage and power flow regulation of wind farms. In this paper, an optimal control strategy for reactive power in wind farms consisting of VSCF DFIG WTGS is proposed based on the “Fix-place and Quantitative” thought and three modules named WFDPM, WFDAM and WFCM respectively, which takes fully use of reactive power output ability of DFIG and applies SA and IGA as its optimization algorithm. The experiment results show that the power loss of the wind farm is much less after the optimization and OPF is achieved. So the strategy proposed is effective and useful.R EFERENCES[1]Wang Songyan, Zhu Lingzhi, Chen Ning, Yu Jilai, "A reactive powercontrol strategy for wind farm based on hierarchical layered principle,"Automation of Electric Power Systems, vol. 33, no. 13, pp. 83-88, July2009.[2]Shen Hong, Wang Weisheng, Dai Huizhu, "Reactive power limit ofvariable-speed constant-frequency wind tubine," Power System Technology, vol. 27, no. 11, pp. 60-63, November 2003.[3]Chen Shuyong, Shen Hong, Zhang Yang, et al. "Researches on thecompensation and control of reactive power for wind farms based ongenetic algorithm," Proceedings of the CSEE, vol. 25, no. 8, pp. 1-6,January 2005.[4]Lang Yongqiang, Zhang Xueguang, Xu Dianguo, et al. "Reactive poweranalysis and control of doubly-fed induction generator wind farm,"Proceedings of the CSEE, vol. 27, no. 9, pp. 77-82, March 2007.[5]Lu Yijun,Gao Houlei, Hou Meiyi, "A reactive power compensationmethod suitable for large-scale wind farm," Electrical Automation,vol.32, no. 1, pp. 44-50, January 2010.[6]Zhang Lizi, Shu Jun, Lin Xianshu, Xu Yinghui, "Reactive powerplanning based on genetic algorithm," Proceedings of the CSEE, vol. 20,no. 6, pp. 5-8, June 2000.[7]Sun Lei,Yu Yang,Yuan Meilin, "Active and reactive power regulationcapacity study of DFIG wind turbine," Electric Power Science andEngineering, vol. 25, no. 9, pp. 1-6, September 2009.[8]Liu Keyan, Sheng Wanxing, Li Yunhua, "Researches on reactive poweroptimization based on improved genetic simulated annealing algorithm,"Power System Technology, vol. 31, no. 3, pp. 13-18, February 2007.。

相关文档
最新文档