【最新】人教版八年级数学上册15.2.3 整数指数幂学案

合集下载

八年级数学上册15.2.3整数指数幂教案(新版)新人教版

八年级数学上册15.2.3整数指数幂教案(新版)新人教版

15.2.3 整数指数幂教学目标1.知道负整数指数幂n a -=na 1(a≠0,n 是正整数). 2.掌握整数指数幂的运算性质.3.会用科学记数法表示小于1的数.重点难点1.重点:掌握整数指数幂的运算性质.2.难点:会用科学记数法表示小于1的数.3.认知难点与突破方法复习已学过的正整数指数幂的运算性质:(1)同底数的幂的乘法:n m n m aa a +=⋅(m ,n 是正整数); (2)幂的乘方:mn n m aa =)((m ,n 是正整数); (3)积的乘方:n n nb a ab =)((n 是正整数);(4)同底数的幂的除法:n m n m a a a -=÷( a ≠0,m ,n 是正整数,m >n);(5)商的乘方:n nn ba b a =)((n 是正整数); 0指数幂,即当a≠0时,10=a . 在学习有理数时,曾经介绍过1纳米=10-9米,即1纳米=9101米.此处出现了负指数幂,也出现了它的另外一种形式是正指数的倒数形式,但是这只是一种简单的介绍知识,而没有讲负指数幂的运算法则.学生在已经回忆起以上知识的基础上,一方面由分式的除法约分可知,当a≠0时,53a a ÷=53a a =233a a a ⋅=21a ;另一方面,若把正整数指数幂的运算性质n m n m a a a -=÷(a≠0,m ,n 是正整数,m >n)中的m >n 这个条件去掉,那么53a a ÷=53-a =2-a .于是得到2-a =21a(a≠0),就规定负整数指数幂的运算性质:当n 是正整数时,n a -=n a1(a≠0),也就是把n m n m a a a -=÷的适用范围扩大了,这个运算性质适用于m 、n 可以是全体整数.教学过程一、例、习题的意图分析1.[思考]提出问题,引出本节课的主要内容负整数指数幂的运算性质.2.[思考]是为了引出同底数的幂的乘法:n m n m aa a +=⋅,这条性质适用于m ,n 是任意整数的结论,说明正整数指数幂的运算性质具有延续性.其它的正整数指数幂的运算性质,在整数范围里也都适用.3.教科书例9计算是应用推广后的整数指数幂的运算性质,教师不要因为这部分知识已经讲过,就认为学生已经掌握,要注意学生计算时的问题,及时矫正,以达到学生掌握整数指数幂的运算的教学目的.4.教科书中间一段是介绍会用科学记数法表示小于1的数. 用科学记数法表示小于1的数,运用了负整数指数幂的知识. 用科学记数法不仅可以表示小于1的正数,也可以表示一个负数.5.[思考]提出问题,让学生思考用负整数指数幂来表示小于1的数,从而归纳出:对于一个小于1的数,如果小数点后至第一个非0数字前有几个0,用科学记数法表示这个数时,10的指数就是负几.6.教科书例10是一个介绍纳米的应用题,使学生做过这道题后对纳米有一个新的认识.更主要的是应用科学记数法表示小于1的数.二、课堂引入1.回忆正整数指数幂的运算性质:(1)同底数的幂的乘法:n m n m aa a +=⋅(m ,n 是正整数); (2)幂的乘方:mn n m aa =)((m ,n 是正整数); (3)积的乘方:n n nb a ab =)((n 是正整数);(4)同底数的幂的除法:n m n m a a a -=÷( a≠0,m ,n 是正整数,m >n);(5)商的乘方:n nn ba b a =)((n 是正整数); 2.回忆0指数幂的规定,即当a≠0时,10=a .3.你还记得1纳米=10-9米,即1纳米=9101米吗? 4.计算当a≠0时,53a a ÷=53a a =233a a a ⋅=21a,再假设正整数指数幂的运算性质n m n m a a a -=÷(a≠0,m ,n 是正整数,m >n)中的m >n 这个条件去掉,那么53a a ÷=53-a =2-a .于是得到2-a =21a(a≠0),就规定负整数指数幂的运算性质:当n 是正整数时,n a -=n a1(a≠0). 三、例题讲解(教科书)例9 计算[分析] 是应用推广后的整数指数幂的运算性质进行计算,与用正整数指数幂的运算性质进行计算一样,但计算结果有负指数幂时,要写成分式形式.(教科书)例10[分析] 是一个介绍纳米的应用题,是应用科学记数法表示小于1的数.四、随堂练习1. 填空(1)-22=(2)(-2)2= (3)(-2) 0= (4)20= ( 5)2 -3= ( 6)(-2) -3=2. 计算:(1)(x 3y -2)2 (2)x 2y -2 ·(x -2y)3 (3)(3x 2y -2) 2 ÷(x -2y)3五、课后练习1. 用科学记数法表示下列各数:0.000 04, -0.034, 0.000 000 45, 0.003 0092. 计算:(1)(3×10-8)×(4×103) (2) (2×10-3)2÷(10-3)3六、答案:四、1.(1)-4 (2)4 (3)1 (4)1(5) 81 (6)81 2.(1)46y x (2)4x y (3)7109yx 五、1. (1)4×10-5 (2)3.4×10-2 (3)4.5×10-7 (4)3.009×10-32.(1) 1.2×10-5 (2)4×103。

人教版八年级数学上册15.2.3整数指数幂2教学设计

人教版八年级数学上册15.2.3整数指数幂2教学设计
-练习题2:判断以下各式是否正确,若错误,请改正:a^2 × a^3 = a^5;a^3 ÷ a^2 = a。
-练习题3:求解以下方程:2^(x+1) = 8,3^(2x) = 9。
2.提高练习题:完成课本第15.2.3节后的提高题1、2,以加深对整数指数幂性质和运算法则的理解。
-提高题1:已知a^2 = 9,求a^4的值。
三、教学重难点和教学设想
(一)教学重难点
1.教学重点:
-整数指数幂的定义及其性质;
-整数指数幂的运算法则;
-应用整数指数幂解决实际问题。
2.教学难点:
-理解并运用整数指数幂的性质和运算法则;
-将整数指数幂应用于解决生活中的实际问题;
-掌握整数指数幂与其他数学知识的联系与区别。
(二)教学设想
1.创设情境,导入新课
4.总结方法,拓展思维
-引导学生总结整数指数幂的学习方法和技巧;
-设计拓展性问题,培养学生的发散思维和创新能力。
5.课堂评价,反馈提高
-对学生的学习过程和结果进行评价,关注学生的个体差异;
-根据评价结果,调整教学策略,提高教学效果。
6.课后作业,延伸学习
-设计具有挑战性的课后作业,让学生在课后巩固所学知识;
-提高题2:计算以下各式的值:3^(2×2),2^(3+4) ÷ 2^3,(3^2)^3。
3.生活应用题:结合实际生活,设计一道应用整数指数幂的问题,并解答。
-例如:一个细菌分裂成两个,经过n次分裂后,细菌数量为多少?
4.拓展思考题:完成以下思考题,培养学生的发散思维和创新能力。
-思考题1:探索指数函数的增长规律,如2^n,3^n等。
-通过生活实例或趣味数学问题,引导学生感受整数指数幂在现实生活中的应用,激发学生的兴趣。

人教版八年级数学上册15.2.3整数指数幂学案

人教版八年级数学上册15.2.3整数指数幂学案

精品基础教育教学资料,请参考使用,祝你取得好成绩!15.2.3 整数指数幂一、学习目标:二、学习过程: (一)课前预习:创设情境独立思考(课前20分钟)1、阅读课本,思考下列问题:(1)正整数指数幂的运算性质有哪些?(2)负整数指数幂的含义是什么?2、独立思考后我还有以下疑惑:(二)合作学习探索新知(约15分钟)1、回顾正整数幂的运算性质: ⑴同底数幂相乘:=•n m a a⑵幂的乘方:()=n m a .⑶同底数幂相除:=÷n ma a ⑷积的乘方:()=n ab . ⑸=⎪⎭⎫ ⎝⎛n b a .⑹ 当a 时,10=a. 2、根据你的预习和理解填空:3、一般地,当n 是正整数时4、归纳:.(三)精讲例题: 1. 掌握整数指数幂的运算性质,尤其是负整数指数幂的概念; 2. 认识负整数指数幂的产生过程及幂运算法则的扩展过程.)(5353---==÷a a a a ===÷--)(335353a a a a a )(1-- )0(1≠=-a a a n n 即n -(a ≠0)是n 的倒数1、计算:()321b a - ()32222---•b a b a2、计算:()3132y x y x -- ()()322322ba c ab ---÷3、用科学计数法表示下列各数:0.0000000108= 5640000000= (四)、习题精练:1、填空:⑴____30=;____32=-. ⑵()____30=-;()___32=--. ⑶____310=⎪⎭⎫ ⎝⎛;____312=⎪⎭⎫ ⎝⎛-.⑷____0=b ;____2=-b (b ≠0). 2、纳米是非常小的长度单位,1纳米=910-米,把1纳米的物体放到乒乓球上,如同将乒乓球放到地球上,1立方毫米的空间可以放 个1立方纳米的物体,(物体间的间隙忽略不计).3、用科学计数法表示下列各数:①0.000000001= ;②0.0012= ;③0.000000345= ;④-0.0003= ;四.小结与收获:五、自我测试:1、计算:2223--•ab b a ()313--ab()3322232n m n m --• ()()36102.3102⨯⨯⨯-()()342610102--÷⨯ 0.000321=六、教学反思与板书设计:。

人教版-数学-八年级上册-册 15.2.3 整数指数幂学案

人教版-数学-八年级上册-册 15.2.3 整数指数幂学案

15.2.3 整数指数幂一、知识点梳理1、回忆正整数指数幂的运算性质:(1)同底数的幂的乘法:n m n m a a a +=⋅(m,n 是正整数);(2)幂的乘方:mn n m a a =)((m,n 是正整数);(3)积的乘方:n n n b a ab =)((n 是正整数); (4)同底数的幂的除法:n m n m a a a -=÷( a≠0,m,n 是正整数,m >n);(5)分式的乘方:n nnb a b =)a ( (n 是正整数); 2、回忆0指数幂的规定,即当a≠0时,10=a 。

3、负整数指数幂的运算性质:当n 是正整数时,1n n a a-=(a≠0)。

4、对于一个小于1的数,如果小数点后至第一个非0数字前有几个0,用科学计数法表示这个数时,10的指数就是负几。

即写成:10n a -⨯的形式。

(其中a 表示整数部分只有一位的小数,n 表示第一个非零数字前所有零的个数)二、典例讲解例1、计算:(课本144例9)(1)52a a÷- (2)223)(-a b (3)321)(b a - (4)32222)(---•b a b a 例2、计算下列各式,并把结果化为只含有正整数指数幂的形势:(1)()()232223x yx y --÷ (2)()22323a b a b ----÷(3)()()42322221a b a b a b -----÷例3、若1232x =,1813y⎛⎫= ⎪⎝⎭,求y x 的值。

例4、用科学计数法表示下列各数。

(1)0.000042;(2)-0.00000304;(3)125000000;(4)-2004.13;(5)4万3千;(6)0.000237(精确到百分位)。

三、巩固练习1、填空(1)-22= (2)(-2)2= (3)(-2) 0=(4)20= ( 5)2 -3= ( 6)(-2) -3=2、计算(1) (x 3y -2)2 (2)x 2y -2 ·(x -2y)3 (3)(3x 2y -2) 2 ÷(x -2y)33、用科学计数法表示下列各数:(1) 0.000 04=(2) -0. 034=(3) 0.000 000 45=(4) 0. 003 009=4、计算(5) (3×10-8)×(4×103)=(6) (2×10-3)2÷(10-3)3=5、填空:⑴____30=;____32=-。

八年级数学上册 15.2 分式的运算 15.2.3 整数指数幂说课稿 (新版)新人教版

八年级数学上册 15.2 分式的运算 15.2.3 整数指数幂说课稿 (新版)新人教版

八年级数学上册 15.2 分式的运算 15.2.3 整数指数幂说课稿(新版)新人教版一. 教材分析新人教版八年级数学上册第15章“分式的运算”中的第15.2.3节“整数指数幂”是本节课的主要内容。

这部分内容是在学习了分式的概念、分式的乘除法、分式的加减法等基础知识后进行的,是分式运算的一个重要组成部分。

本节课主要让学生掌握整数指数幂的运算方法,理解整数指数幂与分数指数幂之间的关系,以及能够运用整数指数幂解决实际问题。

二. 学情分析八年级的学生已经具备了一定的数学基础,对分式的概念和运算规则有一定的了解。

但是,学生在学习过程中,可能会对整数指数幂的运算规则理解不深,难以将整数指数幂与分数指数幂之间的关系运用到实际问题中。

因此,在教学过程中,需要注重引导学生理解整数指数幂的运算规则,并通过实际例子让学生体会整数指数幂的应用价值。

三. 说教学目标1.知识与技能目标:使学生掌握整数指数幂的运算方法,理解整数指数幂与分数指数幂之间的关系,能够运用整数指数幂解决实际问题。

2.过程与方法目标:通过自主学习、合作交流等方法,培养学生的数学思维能力和问题解决能力。

3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的自信心和克服困难的意志。

四. 说教学重难点1.教学重点:整数指数幂的运算方法,整数指数幂与分数指数幂之间的关系。

2.教学难点:如何引导学生理解整数指数幂的运算规则,并将整数指数幂应用于实际问题中。

五. 说教学方法与手段本节课采用自主学习、合作交流、讲解演示等教学方法。

利用多媒体课件辅助教学,通过生动的动画和实例,帮助学生理解整数指数幂的运算规则,提高学生的学习兴趣和参与度。

六. 说教学过程1.导入新课:通过一个实际问题,引导学生思考如何运用整数指数幂解决问题,激发学生的学习兴趣。

2.自主学习:让学生自主探究整数指数幂的运算方法,总结运算规则。

3.合作交流:学生分组讨论,分享各自的学习心得,互相解答疑惑。

初中数学人教版八年级上册:15.2.3《整数指数幂》学案

初中数学人教版八年级上册:15.2.3《整数指数幂》学案

初中数学人教版八年级上册实用资料15.2.3 整数指数幂 *学习目标*:1、能够理解负指数幂的性质,并能熟练的运用负指数幂公式进行计算;2、会用科学记数法表示绝对值较小的数;*学习重点*:能理解和运用负整数指数幂的性质,用科学记数法表示绝对值较小的数。

*学习难点*:幂的运算公式中字母的取值范围的扩充与科学记数法中10的指数与小数点的关系。

学习过程学法指导 一、*知识回顾*1、我们以前学的幂的运算性质有哪些?2、我们学过0指数幂吗?10=a ,a 。

同底数幂除法公式n m n m a a a -=÷中,m、n有什么限制吗?二、*能力生成*活动一 运用所学的知识完成下面运算:注意双色笔的使用试一试:把下列各数用科学记数法表示:(1)100000= (2)0.0000000012= (3)-11200000= (4)-0.00000034=三.*巩固提升*1、计算:(1)33-(2)3)21(-(3)2)2(--(4)5)2(--(5)4)(--a(6)5)(--a(7)23312)()(baba--(8))()()(24bababa+÷++-2、用科学记数法表示下列各数:(1)0.001 (2) -0.000001 (3)0.001357 (4)-0。

000000034四.*检测反馈*1、计算(结果用科学记数法表示)(1))105()103(35--⨯⨯⨯(2))105()103(415--⨯÷⨯即学即练要对自己有信心,你是最棒的!2、计算: 232221)()3(---n m n m一分耕耘一分收获,你的收获有多大!动动脑筋,你能做好的。

2024年人教版八年级数学上册教案及教学反思全册第15章 分式(教案) 整数指数幂(第1课时)教案.

2024年人教版八年级数学上册教案及教学反思全册第15章 分式(教案) 整数指数幂(第1课时)教案.

第十五章分式15.2分式的运算15.2.3整数指数幂第1课时一、教学目标【知识与技能】1.经历探索负整数指数幂和0指数幂的运算性质的过程,进一步体会幂的意义,发展代数推理能力和有条理的表达能力.2.理解负整数指数幂的意义,熟练运用整数指数幂运算性质进行运算.【过程与方法】1.知道负整数指数幂a-n=1a n(a≠0,n是正整数),了解幂运算的法则可以推广到整数指数幂,掌握整数指数幂的运算性质,会进行简单的整数范围内的幂运算.2.通过观察、推理、总结得出负整数指数幂的意义,体验利用负整数指数幂进行乘除法的转化.【情感、态度与价值观】1.通过独立思考、同伴交流、自主发现问题解决问题,提高学生的学习兴趣和学习主动性.2.在数学公式中渗透公式的简洁美、和谐美,随着学习的知识范围的扩展,产生对新知识的渴望与追求的积极情感,形成辩证统一的哲学观和世界观.二、课型新授课三、课时第1课时,共2课时。

四、教学重难点【教学重点】掌握整数指数幂的运算性质,尤其是负整数指数幂的概念.【教学难点】认识负整数指数幂的产生过程及幂运算法则的扩展过程.五、课前准备教师:课件、直尺、幂结构图等。

学生:直尺、练习本、铅笔、圆珠笔或钢笔。

六、教学过程(一)导入新课正整数指数幂有以下运算性质:(1)(m,n是正整数)(2)(m,n是正整数)(3)(n是正整数)(4)(a≠0,m,n是正整数,m>n)(5)(n是正整数)此外,还学过0指数幂,即a0=1(a≠0)如果指数是负整数该如何计算呢?(出示课件2)(二)探索新知1.创设情境,探究整数指数幂教师问1:你会计算它们吗?53÷55=________;103÷107=________.师生共同解答如下:思路一:53÷55=5355=152,103÷107=103107=1104.思路二:53÷55=53-5=5-2,103÷107=103-7=10-4.教师问2:由以上计算,你能发现什么?学生回答:发现:5-2=152,10-4=1104.教师问3:将正整数指数幂的运算性质中指数的取值范围由“正整数”扩大到“整数”,正整数指数幂的那些运算性质还适用吗?(出示课件4)学生讨论后猜想:这些性质还适用.教师问4:a m中指数m可以是负整数吗?如果可以,那么负整数指数幂a m 表示什么?学生讨论后回答:m个a相乘的积.教师问5:那么我们看下面的问题:根据分式的约分,当a≠0时,如何计算a3÷a5=?(出示课件5)学生回答:a3÷a5=33∙2=12(1)教师问6:如果把正整数指数幂的运算性质(a≠0,m,n是正整数,m>n)中的条件m>n去掉,即假设这个性质对于像a3÷a5的情形也能使用,如何计算?学生回答:a3÷a5=a3-5=a-2(2)教师问7:有上边的问题的计算结果,我们可以得到什么?学生回答:a-2=12教师问8:在a-2=12中,有什么限制条件吗?为什么呢?学生讨论后回答:a≠0,因为分母不能为0.总结点拨:(出示课件6)由(1)(2)想到,若规定a-2=12(a≠0),就能使a m÷a n=a m-n这条性质也适用于像a3÷a5的情形,因此:数学中规定:当n是正整数时,这就是说,a-n(a≠0)是a n的倒数.教师问9:想一想:在引入负整数指数和0指数后,a m·a n=a m+n(m,n是正整数)这条性质能否扩大到m,n是整数的情形?(出示课件8)学生猜想回答:应该可以.教师问10:请完成下面的题目:填一填:(1)a3×a-5=a3·1()=1()=a()=a()+(),即a3×a-5=a()+();(2)a-3×a-5=1()·1()=1()=()=a()+(),即a-3×a-5=a()+();(3)a0×a-5=()·1()=1()=()=a()+(),即a0×a-5=a()+().学生回答:(1)a5;a2;-2;3+(-5);3+(-5)(2)a3;a5;a8;a-8;(-3)+(-5);(-3)+(-5)(3)1;a5;a5;a-5;0+(-5);0+(-5)完成填空后,思考下列问题:教师问11:从以上填空中你想到了什么?学生回答:a m·a n=a m+n这条性质对m,n是任意整数的情形都适用.教师问12:再换其他整数指数验证这个规律.类似地,你可以用负整数指数幂或0指数幂对于其他正整数指数幂的运算性质进行试验,看看这些性质在整数范围内是否还适用?(出示课件9)学生回答:a-3·a-7=a-3+(-7)=a-10,a-2÷a-5=a-2-(-5)=a3,a0÷a-4=a0-(-4)=a4.教师讲解:形成定论:a m·a n=a m+n这条性质对m,n是任意整数的情形都适用.总结点拨:(出示课件10)(1)(m,n是整数);(2)(m,n是整数);(3)(n是整数);(4)(m,n是整数);(5)(n是整数).教师问11:试说说当m分别是正整数、0、负整数时,a m各表示什么意义?(出示课件11)师生共同解答如下:当m是正整数时,a m表示m个a相乘.当m是0时,a0表示一个数的n次方除以这个数的n次方,所以特别规定,任何除0以外的实数的0次方都是1.当m是负整数时,a m表示|m|个相乘.例:计算:(出示课件12-13)师生共同解答如下:解:2.创设情境,探究整数指数幂的性质教师问19:继续举例探究:(a m)n=a mn,(ab)n=a n b n,nab⎛⎫⎪⎝⎭=a nb n在整数指数幂范围内是否适用?(出示课件15)师生共同解答如下:根据整数指数幂的运算性质,当m,n为整数时,,,因此,,即同底数幂的除法可以转化为同底数幂的乘法特别地,所以,即商的乘方可以转化为积的乘方总结点拨:(出示课件16)这样,整数指数幂的运算性质可以归结为:(1)(m,n是整数);(2)(m,n是整数);(3)(n是整数).例:下列等式是否正确?为什么?(出示课件17)(1)a m÷a n=a m·a-n;(2)师生共同解答如下:解:(1)∵a m÷a n=a m-n=a m+(-n)=a m·a-n,∴a m÷a n=a m·a-n.故等式正确.(2)故等式正确.(三)课堂练习(出示课件20-23)1.下列计算正确的是()A.30=0B.-|-3|=-3C.3-1=-3D.9=±32.下列计算不正确的是()A. B.C. D.3.若0<x<1,则x-1,x,x2的大小关系是()A.x-1<x<x2B.x<x2<x-1C.x2<x<x-1D.x2<x-1<x4.计算:5.若,试求的值.参考答案:1.B2.B3.C4.5.解:∵a+a-1=3(四)课堂小结今天我们学了哪些内容:1.幂的两个规定:a0=1(a≠0);数学中规定:当n是正整数时,这就是说,a-n(a≠0)是a n的倒数.2.幂的三类运算性质:这样,整数指数幂的运算性质可以归结为:(1)(m,n是整数);(2)(m,n是整数);(3)(n是整数).(五)课前预习预习下节课(15.2.3)145页的相关内容。

人教版数学八年级上册15.2.3整数指数幂教案

人教版数学八年级上册15.2.3整数指数幂教案
人教版数学八年级上册15.2.3整数指数幂教案
一、教学内容
人教版数学八年级上册15.2.3整数指数幂教案:
1.教材章节:八年级上册第15章第2节第3部分,主题为“整数指数幂”。
a.定义:a的n次幂(a为正整数,n为正整数)。
b.性质:同底数幂相乘、相除、幂的乘方、积的乘方。
c.运算:同底数幂的乘法、除法、幂的乘方、积的乘方。
-重点3:掌握幂的乘方、积的乘方的性质,即指数相乘或分别乘以各自的指数。
b.学会整数指数幂的运算方法。
-重点4:熟练进行同底数幂的乘法、除法运算。
-重点5:掌握幂的乘方、积的乘方的运算方法。
2.教学难点
a.对整数指数幂定义的理解。
-难点1:学生可能难以理解指数表示的是连乘的概念,需要通过具体实例解释。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《整数指数幂》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过快速计算乘方的情况?”(如:计算2的10次幂)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索整数指数幂的奥秘。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与整数指数幂相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如使用指数幂计算细胞的分裂次数。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“整数指数幂在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
-难点6:在应用指数幂解决生活问题时,学生可能难以确定底数和指数,需要培养观察能力和问题分析能力。

15.2.3整数指数幂(教案)-2020-2021学年人教版八年级数学上册

15.2.3整数指数幂(教案)-2020-2021学年人教版八年级数学上册
2.教学难点
-指数理解:学生对指数的概念可能理解不够深入,特别是负指数和零指数的理解。
-运算技巧:在进行幂的乘方、积的乘方运算时,学生可能会混淆运算顺序和法则。
-实际问题转化:将实际问题转化为数学模型时,学生可能会感到困难,不知如何运用整数指数幂。
举例解释:
-对于零指数和负指数,可以通过图形或具体例子来解释,例如:a^0 = 1和a^(-n) = 1 / a^n,帮助学生形象理解。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了整数指数幂的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对整数指数幂的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《整数指数幂》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要表示非常大或非常小的数字的情况?”(如:宇宙中恒星的数量、原子的体积等)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索整数指数幂的奥秘。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,通过实际测量和计算,演示整数指数幂在表示长度、面积等方面的应用。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“整数指数幂在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。

最新人教版八年级数学上册第15章教案之15.2.3 整数指数幂

最新人教版八年级数学上册第15章教案之15.2.3 整数指数幂

最新人教版八年级数学上册第15章教案15.2.3 整数指数幂一、教学目标1.理解负整数指数幂。

2.掌握整数指数幂的运算性质。

3.会用科学记数法表示小于1的正数。

二、教学过程(一)情境导入同底数幂的除法公式为a m÷a n=a m-n,有一个附加条件:m>n,即被除数的指数大于除数的指数.当被除数的指数不大于除数的指数,即m=n或m<n时,情况怎样呢?(二)合作探究探究点一:负整数指数幂的计算例1 下列式子中正确的是()A.3-2=-6 B.3-2=0.03 C.3-2=-19D.3-2=19解析:根据负整数指数幂的运算法则可知3-2=132=19.故选D.方法总结:负整数指数幂等于对应的正整数指数幂的倒数.探究点二:整数指数幂的运算【类型一】整数指数幂的化简例2 计算:(1)(x3y-2)2;(2)x2y-2·(x-2y)3;(3)(3x2y-2)2÷(x-2y)3;(4)(3×10-5)3÷(3×10-6)2.解析:先进行幂的乘方,再进行幂的乘除,最后将整数指数幂化成正整数指数幂.解:(1)原式=x6y-4=x6 y4;(2)原式=x2y-2·x-6y3=x-4y=yx4;(3)原式=9x4y-4÷x-6y3=9x4y-4·x6y-3=9x10y-7=9x10 y7;(4)原式=(27×10-15)÷(9×10-12)=3×10-3=31000.方法总结:正整数指数幂的运算性质推广到整数范围后,计算的最后结果常化为正整数指数幂.【类型二】比较数的大小例3 若a=(-23)-2,b=(-1)-1,c=(-32)0,则a、b、c的大小关系是()A.a>b=c B.a>c>b C.c>a>b D.b>c>a解析:∵a=(-23)-2=(-32)2=94,b=(-1)-1=-1,c=(-32)0=1,∴a>c>b,故选B.方法总结:关键是熟悉运算法则,利用计算结果比较大小.当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数.【类型三】0指数幂与负整指数幂中底数的取值范围例4 若(x-3)0-2(3x-6)-2有意义,则x的取值范围是()A.x>3 B.x≠3且x≠2C.x≠3或x≠2 D.x<2解析:根据题意,若(x-3)0有意义,则x-3≠0,即x≠3.(3x-6)-2有意义,则3x-6≠0,即x≠2,所以x≠3且x≠2.故选B.方法总结:任意非0数的0指数幂为1,底数不能为0.【类型四】含整数指数幂、0指数幂与绝对值的混合运算例5 计算:-22+(-12)-2+(2016-π)0-|2-3|.解析:分别根据有理数的乘方、0指数幂、负整数指数幂及绝对值的性质计算出各数,再根据实数的运算法则进行计算.解:-22+(-12)-2+(2016-π)0-|2-3|=-4+4+1-2+3=3-1.方法总结:熟练掌握有理数的乘方、0指数幂、负整数指数幂及绝对值的性质是解答此题的关键.探究点三:科学记数法【类型一】用负整数指数幂表示科学记数法例6 某一种重量为0.000106千克,机身由碳纤维制成,且只有昆虫大小的机器人是全球最小的机器人,0.000106用科学记数法可表示为()A.1.06×10-4 B.1.06×10-5 C.10.6×10-5 D.106×10-6解析:0.000106=1.06×10-4,故选A.方法总结:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负整指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【类型二】将用科学记数法表示的数还原为原数例7 用小数表示下列各数:(1)2×10-7;(2)3.14×10-5;(3)7.08×10-3;(4)2.17×10-1.解析:小数点向左移动相应的位数即可.解:(1)2×10-7=0.0000002;(2)3.14×10-5=0.0000314;(3)7.08×10-3=0.00708;(4)2.17×10-1=0.217.方法总结:将科学记数法表示的数a×10-n“还原”成通常表示的数,就是把a的小数点向左移动n位所得到的数.(三)板书设计整数指数幂1.负整数指数幂的意义.2.整数指数幂的运算性质.3.会用科学记数法表示小于1的数.。

人教版数学八年级上册教学设计15.2.3《整数指数幂》

人教版数学八年级上册教学设计15.2.3《整数指数幂》

人教版数学八年级上册教学设计15.2.3《整数指数幂》一. 教材分析《整数指数幂》是人教版数学八年级上册第15章“指数与指数幂”的一部分,本节内容是在学生已经掌握了有理数的乘方、分数指数幂的基础上进行学习的。

本节课主要让学生了解整数指数幂的概念,掌握整数指数幂的运算性质,并能运用整数指数幂解决实际问题。

二. 学情分析学生在学习本节课之前,已经掌握了有理数的乘方和分数指数幂的知识,具备了一定的数学基础。

但整数指数幂的概念和运算性质较为抽象,学生可能难以理解和掌握。

因此,在教学过程中,需要教师通过生动的实例和生活中的实际问题,引导学生理解和掌握整数指数幂的概念和运算性质。

三. 教学目标1.了解整数指数幂的概念,掌握整数指数幂的运算性质。

2.能够运用整数指数幂解决实际问题。

3.培养学生的逻辑思维能力和数学素养。

四. 教学重难点1.整数指数幂的概念。

2.整数指数幂的运算性质。

3.运用整数指数幂解决实际问题。

五. 教学方法1.采用问题驱动法,引导学生通过思考和讨论,自主探索整数指数幂的概念和运算性质。

2.用生活中的实际问题,激发学生的学习兴趣,提高学生运用数学知识解决实际问题的能力。

3.利用多媒体课件,生动形象地展示整数指数幂的概念和运算性质,帮助学生理解和记忆。

六. 教学准备1.多媒体课件。

2.教学素材(生活中的实际问题)。

3.练习题。

七. 教学过程1.导入(5分钟)利用多媒体课件,展示一些生活中的实际问题,如:“电线塔的高度”、“楼层的高度”等,引导学生思考如何用数学知识来解决这些问题。

2.呈现(10分钟)介绍整数指数幂的概念,通过实例和讲解,让学生理解整数指数幂的意义。

3.操练(10分钟)让学生进行一些整数指数幂的运算,巩固学生对整数指数幂的理解。

4.巩固(10分钟)通过一些练习题,让学生进一步理解和掌握整数指数幂的运算性质。

5.拓展(10分钟)引导学生思考如何运用整数指数幂解决实际问题,让学生运用所学知识解决实际问题。

人教版八年级数学上册15.2.3.1《整数指数幂》教学设计

人教版八年级数学上册15.2.3.1《整数指数幂》教学设计

人教版八年级数学上册15.2.3.1《整数指数幂》教学设计一. 教材分析人教版八年级数学上册15.2.3.1《整数指数幂》是指数幂的基础内容,主要让学生理解整数指数幂的概念,掌握有理数指数幂的运算性质。

本节课内容在学生的知识体系中起到了承上启下的作用,为后续学习分数指数幂和实数指数幂打下基础。

二. 学情分析八年级的学生已经学习了有理数的乘方,对乘方的概念和运算规则有一定的了解。

但在理解和运用方面还存在一定的困难,特别是对负整数指数幂和零指数幂的理解。

因此,在教学过程中,需要引导学生深入理解整数指数幂的概念,并通过大量的练习让学生熟练掌握有理数指数幂的运算性质。

三. 教学目标1.了解整数指数幂的概念,掌握有理数指数幂的运算性质。

2.培养学生运用数学知识解决实际问题的能力。

3.培养学生合作学习、积极探究的精神。

四. 教学重难点1.整数指数幂的概念。

2.有理数指数幂的运算性质。

3.运用整数指数幂解决实际问题。

五. 教学方法采用问题驱动法、案例分析法、合作学习法等多种教学方法,引导学生主动探究,提高学生运用数学知识解决实际问题的能力。

六. 教学准备1.教学课件:制作课件,展示整数指数幂的概念和有理数指数幂的运算性质。

2.练习题:准备适量的练习题,巩固所学知识。

3.教学素材:收集一些实际问题,作为课堂拓展的内容。

七. 教学过程1.导入(5分钟)利用PPT展示一些生活中的实际问题,如温度计、海拔等,引导学生思考这些实际问题与整数指数幂之间的关系。

2.呈现(10分钟)讲解整数指数幂的概念,通过PPT展示相关例题,让学生理解并掌握整数指数幂的定义。

3.操练(10分钟)让学生独立完成PPT上的练习题,巩固对整数指数幂的理解。

教师巡回指导,解答学生的疑问。

4.巩固(10分钟)讲解有理数指数幂的运算性质,通过PPT展示相关例题,让学生理解并掌握有理数指数幂的运算规则。

5.拓展(10分钟)让学生运用所学知识解决PPT上的实际问题,培养学生的实际应用能力。

八年级数学上册《15.2.3整数指数幂》教案(新版)新人教版

八年级数学上册《15.2.3整数指数幂》教案(新版)新人教版

15.2.3整数指数幂一、教学目标:1.知道负整数指数幂n a -=na 1(a ≠0,n 是正整数). 2.掌握整数指数幂的运算性质.3.会用科学计数法表示小于1的数.二、重点、难点1.重点:掌握整数指数幂的运算性质.2.难点:会用科学计数法表示小于1的数.三、教学过程:(一)板书标题,呈现教学目标:1.知道负整数指数幂n n aa 1=-(a ≠0,n 是正整数). 2.掌握整数指数幂的运算性质.3.会用科学计数法表示小于1的数.(二)引导学生自学:阅读P18-22练习,并思考下列问题:1. 正整数指数幂有哪些运算性质?负整数指数幂又有哪些运算性质?2. 绝对值大于1的数用科学记数法如何表示?绝对值小于1的数呢?3. 规定负整数指数幂的运算性质:当n 是正整数时,n a-=n a 1(a ≠0),为什么规定 a ≠0?8分钟后,检查自学效果(三)学生自学,教师巡视:学生认真自学,并完成P21,P22练习(四)检查自学效果:1.学生回答老师所提出的问题2.学生回答P21,P22练习(五)引导学生更正,归纳:1.更正学生错误;2.回忆正整数指数幂的运算性质:(1)同底数的幂的乘法:n m n m a a a +=⋅(m,n 是正整数);(2)幂的乘方:mn n m a a =)((m,n 是正整数);(3)积的乘方:n n n b a ab =)((n 是正整数);(4)同底数的幂的除法: n m n m a a a -=÷( a ≠0,m,n 是正整数,m >n);(5)商的乘方:n nn ba b a =)((n 是正整数); 3.回忆0指数幂的规定,即当a ≠0时,10=a .4.计算当a ≠0时,53a a ÷=53a a =233aa a ⋅=21a ,再假设正整数指数幂的运算性质n m n m a a a -=÷(a ≠0,m,n 是正整数,m >n)中的m >n 这个条件去掉,那么53a a ÷=53-a =2-a .于是得到2-a =21a(a ≠0),就规定负整数指数幂的运算性质:当n 是正整数时,n a =na 1(a ≠0). 5.P20例9. 是应用推广后的整数指数幂的运算性质进行计算,与用正整数指数幂的运算性质进行计算一样,但计算结果有负指数幂时,要写成分式形式.6.P2o 例10. 类比负数的引入后使减法转化为加法,而得到负指数幂的引入可以使除法转化为乘法这个结论,从而使分式的运算与整式的运算统一起来,然后再判断下列等式是否正确.(六)课堂练习1.填空(1)-22= (2)(-2)2= (3)(-2) 0=(4)20= ( 5)2 -3= ( 6)(-2) -3=2.计算(1) (x 3y -2)2 (2)x 2y -2 ·(x -2y)3 (3)(3x 2y -2) 2 ÷(x -2y)33. 用科学计数法表示下列各数:0.000 04, -0. 034, 0.000 000 45, 0. 003 0094.计算(1) (3×10-8)×(4×103) (2) (2×10-3)2÷(10-3)3作业:1.习题15.2第7,8,9题(A 本)2.《感悟》P13-14整数指数幂3.预习P26-29练习中国书法艺术说课教案今天我要说课的题目是中国书法艺术,下面我将从教材分析、教学方法、教学过程、课堂评价四个方面对这堂课进行设计。

人教版数学八年级上册15.2.3整数指数幂(第2课时)教学设计

人教版数学八年级上册15.2.3整数指数幂(第2课时)教学设计
五、作业布置
为了巩固学生对整数指数幂的理解和应用,以及提升他们的数学素养,特布置以下作业:
1.基础巩固题:
-完成课本第15.2.3节后的练习题1、2、3,重点在于理解和运用整数指数幂的定义和基本运算规则。
-设计一些生活情境题目,让学生运用整数指数幂解决实际问题,如计算一个电脑病毒在几小时内可以感染多少台电脑。
(五)总结归纳
1.学生总结:让学生回顾本节课所学的内容,分享自己对本节知识的理解和感悟。
2.教师点评:对学生的总结进行点评,强调整数指数幂的定义、性质和运算规则,以及其在实际生活中的应用。
3.归纳总结:通过本节课的学习,学生掌握了整数指数幂的基本概念,能够运用指数法则进行基本运算,并能够将整数指数幂应用于解决实际问题。同时,培养了学生的观察能力、抽象思维能力和团队合作能力。
2.培养学生通过具体实例抽象出数学规律的能力,让学生能够解决实际问题时运用整数指数幂。
Hale Waihona Puke -学生可以通过实际问题,如面积、体积计算,引入并运用整数指数幂的概念。
-学生能够将整数指数幂应用于解决科学计数法表示较大或较小数值的问题。
3.使学生能够理解并应用负整数指数幂的概念,并掌握其与正整数指数幂的关系。
-学生能够理解a^0=1(a为非零整数)的定义,并掌握a^(-n) = 1/(a^n)的性质。
(二)过程与方法
1.引导学生通过数学探究活动,观察、发现并总结指数幂的规律,培养他们的观察力和归纳能力。
-通过小组合作,让学生经历探索指数幂规律的过程,通过实际操作促进对概念的理解。
-安排学生通过数形结合的方式,如使用数轴或图形的面积和体积变化,直观感受指数增长和减少的规律。
2.使用问题驱动的教学方法,激励学生提出问题,思考问题,解决问题,培养他们的逻辑思维和问题解决能力。

15.2.3整数指数幂学案人教版八年级上册数学

15.2.3整数指数幂学案人教版八年级上册数学
临河区第二中学数学教研组一体化导学案复备教师复备时间年级八年级班级1234
学习内容
整数指数幂
主备人
贺来虎
编号
师生活动设计
思考:引入负整数指数和0指数后,am·an=am+n(m,n是正整数)这条性质能否推广到m,n任意整数的情形?
【归纳】整数指数幂有以下运算性质:
①②③④⑤
2.科学记数法的负指数形式
学习重点
理解负整数指数幕的意义,掌握运算性质.
学习难点
理解负整数指数幕的产生过程和意义.
学习方法
自主学习-合作交流-应用提高
教具与学具
多媒体
具体内容与学习过程
一、学一学阅读教材,完成预习内容.
1.算一算,并分别说出每一小题所用的运算性质.
(1) =;依据:_______________________________________
7.计算下列各式,并把结果化成只含有正整数指数幂的形式:
(1)(a2b-3)-2(a-2b3)2(2)(x-5y-2z-3)2(3)(5m-2n3)-3(-mn-2)-2
8.用科学记数法表示:
(1)0.00016(2)-0.0000312(3)1600000(4)0.00003万 (5)3.5
9.用小数表示下列各数:
(1)8.5×10-3(2)2.25×10-8(3)9.03×10-5
10先化简,再求值: ,其中
师生活动设计
四、做一做
1、 ______,-1+(3.14)0+2-1=______. ______.
2.计算(a-3)2(ab2)-2并把结果化成只含有正整数指数幂形式为______.
3.“神威一号”计算机运算速度为每秒384000000000次,其运算速度用科学记数法表示,为______次/秒.

八年级数学上册15.2.3整数指数幂导学案(新版)新人教版

八年级数学上册15.2.3整数指数幂导学案(新版)新人教版

15.2.3 整数指数幂1.理解整数指数幂的运算性质,并能解决一些实际问题.2.理解零指数幂和负整数指数幂的意义.3.负整数指数幂在科学记数法中的应用.自学指导:阅读教材P142-144,完成下列问题:1.正整数指数幂的运算有:(a≠0,m,n为正整数)(1)a m·a n=a m+n; (2)(a m)n=a mn;(3)(ab)n=a n b n; (4)a m÷a n=a m-n;(5)n=; (6)a0=1.2.负整数指数幂有:a-n=(n是正整数,a≠0).自学反馈1.(1)32=9,30=1,3-2=;(2)(-3)2=9,(-3)0=1,(-3)-2=;(3)b2=b2,b0=1,b-2=(b≠0).2.(1)a3·a-5=a-2=;(2)a-3·a-5=a-8=;(3)a0·a-5=a-5=;(4)a m·a n=a m+n(m,n为任意整数).a m·a n=a m+n这条性质对于m,n是任意整数的情形仍然适用.同样正整数指数幂的运算可以推广到整数指数幂的运算.自学指导:阅读教材P145,完成下列问题.1.填空:(1)绝对值大于10的数记成a×10n的形式,其中1≤︱a︱<10,n是正整数.n等于原数的整数数位减去1.(2)用科学记数法表示:100=102;2 000=2.0×103;33 000=3.3×104;864 000=8.64×105.2.类似地,我们可以利用10的负整数次幂,用科学记数法表示一些绝对值小于1的数,即将它们表示成a×10-n 的形式.(其中n是正整数,1≤|a|<10)3.用科学记数法表示:0.01=1×10-2;0.001=1×10-3;0.003 3= 3.3×10-3.自学反馈1.(1)0.1=1×10-1;(2)0.01=1×10-2;(3)0.000 01=1×10-5;(4)0.000 000 01=1×10-8;(5)0.000 611= 6.11×10-4;(6)-0.001 05=-1.05×10-3;(7)=1×10-n.当绝对值较小的数用科学记数法表示为a×10-n时,a的取值一样为1≤︱a︱<10;n是正整数,n等于原数中左边第一个不为0的数字前面所有的0的个数.(包括小数点前面的0)2.用科学记数法表示:(1)0.000 607 5= 6.075×10-4;(2)-0.309 90=-3.099×10-1;(3)-0.006 07=-6.07×10-3;(4)-1 009 874=-1.009 874×106;(5)10.60万=1.06×105.活动1 小组讨论例1 计算:(1)(a-1b2)3; (2)a-2b2·(a2b-2)-3.解:(1)原式=a-3b6=.(2)原式=a-2b2·a-6b6=a-8b8=.例2 下列等式是否正确?为什么?(1)a m÷a n=a m·a-n;(2)()n=a n b-n.解:(1)正确.理由:a m÷a n=a m-n=a m+(-n)=a m·a-n.(2)正确.理由:()n==a n·=a n b-n.活动2 跟踪训练1.计算:(1)(a+b)m+1·(a+b)n-1;(2)(-a2b)2·(-a2b3)3÷(-ab4)5;(3)(x3)2÷(x2)4·x0;(4)(-1.8x4y2z3)÷(-0.2x2y4z)÷(-xyz).解:(1)原式=(a+b)m+1+n-1=(a+b)m+n.(2)原式=a4b2·(-a6b9)÷(-a5b20)=a5b-9=.(3)原式=x6÷x8·x0=x-2=.(4)原式=-(1.8÷0.2×3)·x4-2-1·y2-4-1·z3-1-1=-27xy-3z=.2.已知|b-2|+(a+b-1)2=0.求a51÷a8的值.解:∵|b-2|+(a+b-1)2=0,∴b-2=0,a+b-1=0,∴b=2,a=-1.∴a51÷a8=(-1)51÷(-1)8=-1.3.计算:x n+2·x n-2÷(x2)3n-3.解:原式=x n+2+n-2÷x6n-6=x2n-6n+6=x6-4n4.已知:10m=5,10n=4.求102m-3n的值.解:102m-3n=102m·10-3n===.5.用科学记数法表示下列各数:(1)0.000 326 7; (2)-0.001 1.解:(1)0.000 326 7=3.267×10-4.(2)-0.001 1=-1.10×10-3.6.计算:(结果用科学记数法表示)(1)(3×10-5)×(5×10-3);(2)(-1.8×10-10)÷(9×10-5);(3)(2×10-3)-2×(-1.6×10-6);解:(1)原式=3×5×10-5×10-3=1.5×10-7.(2)原式=(-1.8÷9)×10-10÷10-5=-2×10-6.(3)原式=×106×(-1.6)×10-6=-4×10-1.课堂小结1.n是正整数时,a-n属于分式.并且a-n=(a≠0).2.小于1的正数可以用科学记数法表示为a×10-n的形式.其中1≤a<10,n是正整数. 教学至此,敬请使用学案当堂训练部分.。

人教版八年级上册数学 15.2.3 整数指数幂 优秀教案

人教版八年级上册数学 15.2.3 整数指数幂 优秀教案

15.2.3整数指数幂1.理解负整数指数幂.(重点)2.掌握整数指数幂的运算性质.(难点)3.会用科学记数法表示小于1的正数.(重点)一、情境导入同底数幂的除法公式为a m÷a n=a m-n,有一个附加条件:m>n,即被除数的指数大于除数的指数.当被除数的指数不大于除数的指数,即m=n或m<n时,情况怎样呢?二、合作探究探究点一:负整数指数幂的计算下列式子中正确的是( )A.3-2=-6 B.3-2=0.03C.3-2=-19D.3-2=19解析:根据负整数指数幂的运算法则可知3-2=132=19.故选D.方法总结:负整数指数幂等于对应的正整数指数幂的倒数.探究点二:整数指数幂的运算【类型一】整数指数幂的化简计算:(1)(x3y-2)2;(2)x2y-2·(x-2y)3;(3)(3x2y-2)2÷(x-2y)3;(4)(3×10-5)3÷(3×10-6)2.解析:先进行幂的乘方,再进行幂的乘除,最后将整数指数幂化成正整数指数幂.解:(1)原式=x6y-4=x6y4;(2)原式=x2y-2·x-6y3=x-4y=yx4;(3)原式=9x4y-4÷x-6y3=9x4y-4·x6y-3=9x10y-7=9x10y7;(4)原式=(27×10-15)÷(9×10-12)=3×10-3=31000.方法总结:正整数指数幂的运算性质推广到整数范围后,计算的最后结果常化为正整数指数幂.【类型二】比较数的大小若a=(-23)-2,b=(-1)-1,c=(-32)0,则a、b、c的大小关系是( )A.a>b=c B.a>c>bC.c>a>b D.b>c>a解析:∵a=(-23)-2=(-32)2=94,b=(-1)-1=-1,c=(-32)0=1,∴a>c>b,故选B.方法总结:关键是熟悉运算法则,利用计算结果比较大小.当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数.【类型三】 0指数幂与负整指数幂中底数的取值范围若(x-3)0-2(3x-6)-2有意义,则x的取值范围是( )A.x>3 B.x≠3且x≠2C.x≠3或x≠2 D.x<2解析:根据题意,若(x-3)0有意义,则x-3≠0,即x≠3.(3x-6)-2有意义,则3x-6≠0,即x≠2,所以x≠3且x≠2.故选B.方法总结:任意非0数的0指数幂为1,底数不能为0.【类型四】含整数指数幂、0指数幂与绝对值的混合运算计算:-22+(-12)-2+(2016-π)0-|2-3|.解析:分别根据有理数的乘方、0指数幂、负整数指数幂及绝对值的性质计算出各数,再根据实数的运算法则进行计算.解:-22+(-12)-2+(2016-π)0-|2-3|=-4+4+1-2+3=3-1.方法总结:熟练掌握有理数的乘方、0指数幂、负整数指数幂及绝对值的性质是解答此题的关键.探究点三:科学记数法【类型一】用负整数指数幂表示科学记数法某一种重量为0.000106千克,机身由碳纤维制成,且只有昆虫大小的机器人是全球最小的机器人,0.000106用科学记数法可表示为( )A.1.06×10-4 B.1.06×10-5C.10.6×10-5 D.106×10-6解析:0.000106=1.06×10-4,故选A.方法总结:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负整指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【类型二】将用科学记数法表示的数还原为原数用小数表示下列各数:(1)2×10-7;(2)3.14×10-5;(3)7.08×10-3;(4)2.17×10-1.解析:小数点向左移动相应的位数即可.解:(1)2×10-7=0.0000002;(2)3.14×10-5=0.0000314;(3)7.08×10-3=0.00708;(4)2.17×10-1=0.217.方法总结:将科学记数法表示的数a×10-n“还原”成通常表示的数,就是把a的小数点向左移动n位所得到的数.三、板书设计整数指数幂1.负整数指数幂的意义.2.整数指数幂的运算性质.3.会用科学记数法表示小于1的数.整数指数幂是在学生学习了分式的基本性质及乘除法之后的教学,在复习幂的有关运算性质后提出问题“幂的这些运算性质中指数都要求是正整数,如果是负整数又表示什么意义呢?”通过提问让学生寻找规律,猜想出零指数幂和负整数幂的意义,不但调动了学生学习的积极性,而且印象更深,当然也达到了课堂的预期效果.。

八年级数学上册 15.2.3 整数指数的幂导学案(新版)新人教版

八年级数学上册 15.2.3 整数指数的幂导学案(新版)新人教版
3、已知 , 求 的值.
4、已知 有意义,求 、 的取值范围。
六、自主研学:完成新课堂113-114页
(5)商的乘方: (n是正整数);
0指数幂 ,即当a≠0时, .
问题梳理区


导Hale Waihona Puke 航学习导

二、探索新知:
在 中,当 = 时,产生0次幂,即当a≠0时, 。那么当 < 时,会出现怎样的情况呢?
24÷27= = 24÷27=24-7=2-3=2-3=
当a≠0时, = =,再假设正整数指数幂的运算性质 (a≠0,m,n是正整数,m>n)中 的m>n这个条件去掉,那么 = =。于是得到 = (a≠0)
计算: = =
三、运用新知:
1、填空:(1) (x3y-2)2=(2)x2y-2·(x-2y)3=
2、计算(1)(3x2y-2)2÷(x-2y)3(2)
( 3) (4)
四、能力提升:
1、若 =12,则 =
2、若 , , , 比较a、b、c、d的大小




五、课堂小结:
六、达标测评
1、 =
2、计算:(1) (2)
当n是正整数时, =(a≠0).(注意:适用于m、n可以是全体整数.
如1纳米=10-9米,即1纳米= 米
填空: = =, =,(- 2)-3=
把下列运算结果写成只含有正整数 指数幂的形式:
= = =
= = =
(分析:应用推广后的整数指数幂的运算性质进行计算,与用正整数指数幂的运算性质进行计算一样,但计算结果有负指数幂时,要写成分式形式)
整数指数的幂
学习目标
1.知道负整数指数幂 = (a≠0,n是正整数).
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新人教版八年级数学上册15.2.3 整数指数幂学案
1.理解整数指数幂的运算性质,并能解决一些实际问题.
2.理解零指数幂和负整数指数幂的意义.
3.负整数指数幂在科学记数法中的应用.
自学指导:阅读教材P142-144,完成下列问题:
1.正整数指数幂的运算有:(a ≠0,m ,n 为正整数)
(1)a m ·a n =a m+n ; (2)(a m )n =a mn ;
(3)(ab)n =a n b n ; (4)a m ÷a n =a m-n ; (5)⎪⎭⎫ ⎝⎛b a n =n n b a ; (6)a 0=1. 2.负整数指数幂有:a -n =
n a 1(n 是正整数,a ≠0). 自学反馈
1.(1)32=9,30=1,3-2=91; (2)(-3)2=9,(-3)0=1,(-3)-2=
91; (3)b 2=b 2,b 0=1,b -2=2
1b (b ≠0). 2.(1)a 3·a -5=a -2=21a
; (2)a -3·a -5=a -8=8
1a ; (3)a 0·a -5=a -5=
51a ; (4)a m ·a n =a m+n (m ,n 为任意整数).
a m ·a n =a m+n 这条性质对于m ,n 是任意整数的情形仍然适用.
同样正整数指数幂的运算可以推广到整数指数幂的运算.
自学指导:阅读教材P145,完成下列问题.
1.填空:
(1)绝对值大于10的数记成a ×10n 的形式,其中1≤︱a ︱<10,n 是正整数.n 等于原数的整数数位减去1.
(2)用科学记数法表示:100=102;2 000=2.0×103;33 000=3.3×104;864 000=8.64×105.
2.类似地,我们可以利用10的负整数次幂,用科学记数法表示一些绝对值小于1的数,即将它们表示成a ×10-n 的形式.(其中n 是正整数,1≤|a|<10)
3.用科学记数法表示:0.01=1×10-2;0.001=1×10-3;0.003 3=3.3×10-3.
自学反馈
1.(1)0.1=1×10-1;(2)0.01=1×10-2;
(3)0.000 01=1×10-5;(4)0.000 000 01=1×10-8;
(5)0.000 611=6.11×10-4;
(6)-0.001 05=-1.05×10-3;
(7)100.00
个n ⋯⋯=1×10-n .
当绝对值较小的数用科学记数法表示为a ×10-n 时,a 的取值一样为1≤︱a ︱<10;n 是正整数,n 等于原数中左边第一个不为0的数字前面所有的0的个数.(包括小数点前面的0)
2.用科学记数法表示:
(1)0.000 607 5=6.075×10-4;
(2)-0.309 90=-3.099×10-1;
(3)-0.006 07=-6.07×10-3;
(4)-1 009 874=-1.009 874×106;
(5)10.60万=1.06×105.
活动1 小组讨论
例1 计算:(1)(a -1b 2)3; (2)a -2b 2·(a 2b -2)-3.
解:(1)原式=a -3b 6=36
a b . (2)原式=a -2b 2·a -6b 6=a -8b 8=88
a b . 例2 下列等式是否正确?为什么?
(1)a m ÷a n =a m ·a -n ;(2)(b
a )n =a n
b -n . 解:(1)正确.理由:a m ÷a n =a m-n =a m+(-n)=a m ·a -n .
(2)正确.理由:(b a )n =n n
b
a =a n ·n
b 1=a n b -n . 活动2 跟踪训练
1.计算:
(1)(a+b)m+1·(a+b)n-1;
(2)(-a 2b)2·(-a 2b 3)3÷(-ab 4)5;
(3)(x 3)2÷(x 2)4·x 0;
(4)(-1.8x 4y 2z 3)÷(-0.2x 2y 4z)÷(-3
1xyz). 解:(1)原式=(a+b)m+1+n-1=(a+b)m+n .
(2)原式=a 4b 2·(-a 6b 9)÷(-a 5b 20)=a 5b -9=95
b a . (3)原式=x 6÷x 8·x 0=x -2=2
x 1. (4)原式=-(1.8÷0.2×3)·x 4-2-1·y 2-4-1·z 3-1-1=-27xy -3z=3y
27xz -. 2.已知|b-2|+(a+b-1)2=0.求a 51÷a 8的值.
解:∵|b-2|+(a+b-1)2=0,∴b-2=0,a+b-1=0,∴b=2,a=-1.
∴a 51÷a 8=(-1)51÷(-1)8=-1.
3.计算:x n+2·x n-2÷(x 2)3n-3.
解:原式=x n+2+n-2÷x 6n-6=x 2n-6n+6=x 6-4n
4.已知:10m =5,10n =4.求102m-3n 的值.
解:102m-3n =102m ·10-3n =3n 2m )(10)(10=3245=6425. 5.用科学记数法表示下列各数:
(1)0.000 326 7; (2)-0.001 1.
解:(1)0.000 326 7=3.267×10-4.
(2)-0.001 1=-1.10×10-3.
6.计算:(结果用科学记数法表示)
(1)(3×10-5)×(5×10-3);
(2)(-1.8×10-10)÷(9×10-5);
(3)(2×10-3)-2×(-1.6×10-6);
解:(1)原式=3×5×10-5×10-3=1.5×10-7.
(2)原式=(-1.8÷9)×10-10÷10-5=-2×10-6.
(3)原式=4
1×106×(-1.6)×10-6=-4×10-1. 课堂小结 1.n 是正整数时,a -n 属于分式.并且a -n =
n a 1(a ≠0). 2.小于1的正数可以用科学记数法表示为a ×10-n 的形式.其中1≤a<10,n 是正整数.
教学至此,敬请使用学案当堂训练部分.。

相关文档
最新文档