热稳定与动稳定[1]

合集下载

动热稳定母排选择

动热稳定母排选择

电气基础知识:热稳定与动稳定论坛发言时,发现有的人对动热稳定的运用不是很熟。

现整理如下,希望得到大家的支持和认可,毕竟花费了我许多时间。

不当之处请指正。

1.定义:热稳定电流是老的称呼,现称:额定短时耐受电流(I K)在规定的使用和性能条件下,在规定的短时间内,开关设备和控制设备在合闸位置能够承载的电流的有效值。

额定短时耐受电流的标准值应当从GB762中规定的R10系列中选取,并应该等于开关设备和控制设备的短路额定值。

注:R10系列包括数字1,1.25,1.6,2,2.5,3.15,4,5,6.3,8及其与10n的乘积动稳定电流是老的称呼,现称:额定峰值耐受电流(I P)在规定的使用和性能条件下,开关设备和控制设备在合闸位置能够承载的额定短时耐受电流第一个大半波的电流峰值。

额定峰值耐受电流应该等于2.5倍额定短时耐受电流。

注:按照系统的特性,可能需要高于2.5倍额定短时耐受电流的数值。

额定短路持续时间(t k)开关设备和控制设备在合闸位置能承载额定短时耐受电流的时间间隔。

额定短路持续时间的标准值为2s。

如果需要,可以选取小于或大于2s的值。

推荐值为0.5s,1s,3s和4s。

2.根据额定短时耐受电流来确定导体截面:GB3906[附录D]中公式:S=I/a√(t△θ)式中:I--额定短时耐受电流;a—材质系数,铜为13,铝为8.5;t--额定短路持续时间;△θ—温升(K),对于裸导体一般取180K,对于4S持续时间取215K。

则:25KA/4S系统铜母线最小截面积S=(25/13)*√4/215=260 mm231.5KA/4S系统铜母线最小截面积S=(31.5/13)*√4/215=330 mm240KA/4S系统铜母线最小截面积S=(40/13)*√4/215=420 mm263KA/4S系统铜母线最小截面积S=(63/13)*√4/215=660 mm280KA/4S系统铜母线最小截面积S=(80/13)*√4/215=840 mm2接地母线按系统额定短时耐受电流的86.7%考虑:25KA/4S系统接地铜母线最小截面积S=260*86.7% =225mm231.5KA/4S系统接地铜母线最小截面积S=330*86.7% =287mm240KA/4S系统接地铜母线最小截面积S=420*86.7% =370mm263KA/4S系统接地铜母线最小截面积S=660*86.7% =580mm280KA/4S系统接地铜母线最小截面积S=840*86.7% =730mm2根据以上计算,总结所用TMY的最小规格如下:有人采用:S=I∝√t k jf 103/165;k jf:集肤效应系数-TMY取1.15计算结果偏大,建议采用以上计算.3. 根据额定峰值耐受电流来确定铜母线最大跨距(两个支撑间的最大距离)原则:作用在母线上的作用应力kg/cm≤母线允许应力;公式:△js=1.76L2i ch2*10-3/aW≤△y;△y=1400(Cu).700(Al)式中:L—母线支撑间距(cm);a—相间距离(cm);W——矩形母线截面系数;i ch——根据上式导出:L MAX=√1400aw 103/1.76 i ch2=√0.795*106aw/ i ch矩形母线截面系数:1/母线宽度相对时:W=0.167b2h;100*10=1.67;80*8=0.8552/母线厚度相对时:W=0.167bh2;100*10=16.7;80*8=8.55其中:b(cm): 母线宽度,h(cm): 母线厚度所以:对于31.5KA系统,TMY100*10母线厚度相对时,假定a=28cm(中置柜),则:L MIN==√0.795*106aw/ i ch=240(cm)=2400mm;对于31.5KA系统,TMY80*8母线厚度相对时,假定a=28cm,则:L MIN==√0.795*106aw/ i ch=1700mm;对于40KA系统,TMY100*10母线厚度相对时,假定a=28cm,则:L MIN==√0.795*106aw/ i ch=1900mm;TMY80*8母线厚度相对时,假定a=28cm,则:L MIN==√0.795*106aw/ i ch=1370mm;各种母线排列的最小跨距(mm)[280mm相距为例]就是说:1。

动稳定和热稳定的计算.

动稳定和热稳定的计算.

电气的热稳定与动稳定1.定义:热稳定电流是老的称呼,现称:额定短时耐受电流(I K)电流通过导体时,导体要产生热量,并且该热量与电流的平方成正比,当有短路电流通过导体时,将产生巨大的热量,由于短路时间很短,热量来不及向周围介质散发,衡量电路及元件在这很短的时间里,能否承受短路时巨大热量的能力为热稳定(在规定的使用和性能条件下,在规定的短时间内,开关设备和控制设备在合闸位置能够承载的短路电流的有效值)。

额定短时耐受电流的标准值应当从GB762中规定的R10系列中选取,并应该等于开关设备和控制设备的短路额定值。

注:R10系列包括数字1,1.25,1.6,2,2.5,3.15,4,5,6.3,8及其与10n的乘积动稳定电流是老的称呼,现称:额定峰值耐受电流(I P)短路电流、短路冲击电流通过导体时,相邻载流导体间将产生巨大的电动力,衡量电路及元件能否承受短路时最大电动力的这种能力,称作动稳定(在规定的使用和性能条件下,开关设备和控制设备在合闸位置能够承载的额定短时耐受电流第一个大半波的电流峰值)。

额定峰值耐受电流应该等于2.5倍额定短时耐受电流。

注:按照系统的特性,可能需要高于2.5倍额定短时耐受电流的数值。

额定短路持续时间(t k)开关设备和控制设备在合闸位置能承载额定短时耐受电流的时间间隔。

额定短路持续时间的标准值为2s。

如果需要,可以选取小于或大于2s的值。

推荐值为0.5s,1s,3s和4s。

2.根据额定短时耐受电流来确定导体截面:GB3906[附录D]中公式:S=I/a√(t/△θ)式中:I--额定短时耐受电流(A);a—材质系数,铜为13,铝为8.5;t--额定短路持续时间(S);△θ—温升(K),对于裸导体一般取180K,对于4S持续时间取215K。

则:25KA/4S系统铜母线最小截面积S=(25/13)*√4/215=260 mm231.5KA/4S系统铜母线最小截面积S=(31.5/13)*√4/215=330 mm240KA/4S系统铜母线最小截面积S=(40/13)*√4/215=420 mm263KA/4S系统铜母线最小截面积S=(63/13)*√4/215=660 mm280KA/4S系统铜母线最小截面积S=(80/13)*√4/215=840 mm2接地母线按系统额定短时耐受电流的86.7%考虑:25KA/4S系统接地铜母线最小截面积S=260*86.7% =225mm231.5KA/4S系统接地铜母线最小截面积S=330*86.7% =287mm240KA/4S系统接地铜母线最小截面积S=420*86.7%=370mm263KA/4S系统接地铜母线最小截面积S=660*86.7% =580mm280KA/4S系统接地铜母线最小截面积S=840*86.7% =730mm2根据以上计算,总结所用TMY的最小规格如下:有人采用:S=I∝√t k jf 10/165;k jf:集肤效应系数-TMY取1.15计算结果偏大,建议采用以上计算。

动稳定和热稳定

动稳定和热稳定

电气的热稳定与动稳定1.定义:热稳定电流是老的称呼,现称:额定短时耐受电流(I K)电流通过导体时,导体要产生热量,并且该热量与电流的平方成正比,当有短路电流通过导体时,将产生巨大的热量,由于短路时间很短,热量来不及向周围介质散发,衡量电路及元件在这很短的时间里,能否承受短路时巨大热量的能力为热稳定(在规定的使用和性能条件下,在规定的短时间内,开关设备和控制设备在合闸位置能够承载的短路电流的有效值)。

额定短时耐受电流的标准值应当从GB762中规定的R10系列中选取,并应该等于开关设备和控制设备的短路额定值。

注:R10系列包括数字1,1.25,1.6,2,2.5,3.15,4,5,6.3,8及其与10n的乘积动稳定电流是老的称呼,现称:额定峰值耐受电流(I P)短路电流、短路冲击电流通过导体时,相邻载流导体间将产生巨大的电动力,衡量电路及元件能否承受短路时最大电动力的这种能力,称作动稳定(在规定的使用和性能条件下,开关设备和控制设备在合闸位置能够承载的额定短时耐受电流第一个大半波的电流峰值)。

额定峰值耐受电流应该等于2.5倍额定短时耐受电流。

注:按照系统的特性,可能需要高于2.5倍额定短时耐受电流的数值。

额定短路持续时间(t k)开关设备和控制设备在合闸位置能承载额定短时耐受电流的时间间隔。

额定短路持续时间的标准值为2s。

如果需要,可以选取小于或大于2s的值。

推荐值为0.5s,1s,3s和4s。

式中:I--额定短时耐受电流(A);a—材质系数,铜为13,铝为8.5;t--额定短路持续时间(S);△θ—温升(K),对于裸导体一般取180K,对于4S持续时间取215K。

则:25KA/4S系统铜母线最小截面积S=(25/13)*√4/215=260 mm231.5KA/4S系统铜母线最小截面积S=(31.5/13)*√4/215=330 mm240KA/4S系统铜母线最小截面积S=(40/13)*√4/215=420 mm263KA/4S系统铜母线最小截面积S=(63/13)*√4/215=660 mm280KA/4S系统铜母线最小截面积S=(80/13)*√4/215=840 mm2接地母线按系统额定短时耐受电流的86.7%考虑:25KA/4S系统接地铜母线最小截面积S=260*86.7% =225mm231.5KA/4S系统接地铜母线最小截面积S=330*86.7% =287mm240KA/4S系统接地铜母线最小截面积S=420*86.7% =370mm263KA/4S系统接地铜母线最小截面积S=660*86.7% =580mm280KA/4S系统接地铜母线最小截面积S=840*86.7% =730mm2根据以上计算,总结所用TMY的最小规格如下:有人采用:S=I∝√t k jf 103/165;k jf:集肤效应系数-TMY取1.15计算结果偏大,建议采用以上计算。

高中化学竞赛:7 热力学稳定性和动力学稳定性

高中化学竞赛:7 热力学稳定性和动力学稳定性

由表中数据可见:位于前方的多为强正电性的金属,它们的
氧化物具有较大的生成焓负值,最为稳定;位于后面的元素的氧 化物的生成焓负值不断减少,其稳定性减小,Cl2O、NO等氧化物 的生成焓已为正值,更不稳定。实际上,后面的几个元素已成为 负电性较大的非金属了。
Al、Si常被用来作为还原剂将金属从其氧化物中还原出来, 这时Al、Si自身便成为氧化物。还原出金属的能力的大小,反应 了生成氧化物的倾向的实质,或换句话说,是这些氧化物的稳定 性的体现。
动力学稳定性是指在热力学上它是不稳定的,只是反应速 率很慢,慢到不能觉察,根据阿伦尼乌斯公式,慢的反应速率 意味着大的活化能:
k=Ae-Ea/RT 因此我们可以用下面的反应坐标来表示热力学和稳定性和 动力学稳定性。
衡量体系是否是热力学稳定体 系,需从反应物和生成物之间的能 量差去考虑,若产物的能量低于反应 物的能量,则反应物在热力学上为 不稳定(图中A到C,△G2<0,然而, 由于活化能△G2’很大,反应速率很 慢, 可以预料此时A在动力学上 可能是稳定体系)。反之若产物的能量高于反应物的能量,则反应 物在热力学上是稳定的(图中A到B ,△G1>0)。
△rGmθ=-318.3 kJ·mol-1 根据 △rGmθ=-RTlnKθ,K=[1/{p(O2) /Pθ}]1/2 , 解出 p(O2) =2.82×10-107 Pa。 即要使此反应不能正向进行, 则应使Q>K, 即要使p(O2)如此 地低,这是难以办到的,在通常情况下,p(O2) 总是大于这个值。
热力学稳定性和反应的自发性
一 热力学稳定性和动力学稳定性
无机化学中讨论元素及化合物的性质时,其中一个中心问题 就是化学体系的稳定性。
如,某元素能否形成某种化合物,这要看该化合物能否在一 定条件下稳定存在。在研究一个合成反应是否可行时,也可把问 题归结为有关反应物体系是否稳定。因而可以说,无机化学里的 一个重要问题是试图去说明不同化学体系的稳定性。

动稳定和热稳定校验

动稳定和热稳定校验

动稳定和热稳定校验
电流互感器的热稳定效验只对本身带有一次回路导体的电流互感器进行。

电流互感器热稳定能力常以1秒钟通过的一次额定电流t I 或一次额定电流1N I 的倍数K t 表示,热稳定按下式校验:
2I t Q t K ≥ 或 2()1K I Q t N K ≥ (t=1)
电流互感器内部动稳定能力,常以允许通过的动稳定电流e s i 或一次额定电流最大值(
1N )的倍数e s K 动稳定电流倍数表示,故内部动稳定可用下式校验
i i e s s h ≥ 或
1K i N e s s h
≥ 由于临相之间电流相互作用,使电流互感器绝缘瓷帽上受到外力的作用,因此,对于瓷绝缘型电流互感器应校验瓷套管的机械强度。

瓷套上的作用力可由一般电动力公式计算,故外面动稳定应满足
721.7310/()F
i l a N a l s h -≥⨯
式中 F a l ─作用于电流互感器瓷帽端部的允许力;
l ─电流互感器出线端至最近一个母线支柱绝缘子之间的跨距。

系数0.5表示互感器瓷套端部承受该跨上电动力的一半。

对于瓷绝缘的母线型电流互感器(如LMC 型),其端部作用力可用下式校验
71.7310/()F
i L a N a l s h c -≥⨯
表5—9 所选60KV 电流互感器的主要参数
安装
地点
型 号 额定电压 (KV) 额定 变流比 (A) 动稳定电流 倍数 1S 热稳定电流 倍数 60KV 侧 LCWB5-63 60 750~1500 62.5~125 62.5~62.5 注:LCWB5-63型电流互感器为瓷箱式、油纸绝缘,用于额定频率为50HZ ,额定电压为63KV 的电力系统作电流,电能测量和继电保护作用。

母线动热稳定校验

母线动热稳定校验

动稳定与热稳定1.定义:热稳定电流是老的称呼,现称:额定短时耐受电流(I K )在规定的使用和性能条件下,在规定的短时间内,开关设备和控制设备在合闸位置能够承载的电流的有效值。

额定短时耐受电流的标准值应当从GB 762中规定的R10系列中选取,并应该等于开关设备和控制设备的短路额定值。

注:R10系列包括数字1,1.25,1.6,2,2.5,3.15,4,5,6.3,8及其与10n 的乘积动稳定电流是老的称呼,现称:额定峰值耐受电流(I P )在规定的使用和性能条件下,开关设备和控制设备在合闸位置能够承载的额定短时耐受电流第一个大半波的电流峰值。

额定峰值耐受电流应该等于2.5倍额定短时耐受电流。

注:按照系统的特性,可能需要高于2.5倍额定短时耐受电流的数值。

额定短路持续时间(t k )8]开关设备和控制设备在合闸位置能承载额定短时耐受电流的时间间隔。

额定短路持续时间的标准值为2s 。

如果需要,可以选取小于或大于2s 的值。

推荐值为0.5s,1s,3s 和4s 。

2.根据额定短时耐受电流来确定导体截面:公式:△θt a I S k *= 式中:I k --额定短时耐受电流;a —材质系数,铜为13,铝为8.5;t--额定短路持续时间;△θ—温升(K ),对于裸导体一般取180K ,对于4S 持续时间取215K 。

则:25KA/4S 系统铜母线最小截面积S=(25/13)*√4/215=260 mm 231.5KA/4S 系统铜母线最小截面积S=(31.5/13)*√4/215=330 mm 240KA/4S 系统铜母线最小截面积S=(40/13)*√4/215=420 mm 263KA/4S 系统铜母线最小截面积S=(63/13)*√4/215=660 mm 2接地母线按系统额定短时耐受电流的86.7%考虑:25KA/4S 系统接地铜母线最小截面积S=260*86.7% =225mm 231.5KA/4S 系统接地铜母线最小截面积S=330*86.7% =287mm 240KA/4S 系统接地铜母线最小截面积S=420*86.7% =370mm 263KA/4S 系统接地铜母线最小截面积S=660*86.7% =580mm 2根据以上计算,总结所用TMY 的最小规格如下:∝ jf 10jf 采用以上计算.3.根据额定峰值耐受电流来确定铜母线最大跨距(两个支撑间的最大距离)原则:作用在母线上的作用应力kg/cm≤母线允许应力;公式:△js=1.76L2i ch2*10-3/aW≤△y;△y=1400(Cu).700(Al)式中:L—母线支撑间距(cm);a—相间距离(cm);W——矩形母线截面系数;i ch——根据上式导出:L MAX=√1400aw 103/1.76 i ch2=√0.795*106aw/ i ch矩形母线截面系数:1/母线宽度相对时:W=0.167b2h;100*10=1.67;80*8=0.8552/母线厚度相对时:W=0.167bh2;100*10=16.7;80*8=8.55其中:b(cm): 母线宽度,h(cm): 母线厚度所以:对于31.5KA系统,TMY100*10母线厚度相对时,假定a=28cm(中置柜),则:L MIN==√0.795*106aw/ i ch=240(cm)=2400mm;对于31.5KA系统,TMY80*8母线厚度相对时,假定a=28cm,则:L MIN==√0.795*106aw/ i ch=1700mm;对于40KA系统,TMY100*10母线厚度相对时,假定a=28cm,则:L MIN==√0.795*106aw/ i ch=1900mm;TMY80*8母线厚度相对时,假定a=28cm,则:L MIN==√0.795*106aw/ i ch=1370mm;各种母线排列的最小跨距(mm)[280mm相距为例]母线厚度相对时母线宽度相对时母线三角排列时(估算)TMY100*1 0 TMY80*8 TMY100*1TMY80*8TMY100*1TMY80*8理论值推荐值理论值推荐值理论值推荐值理论值推荐值理论值推荐值理论值推荐值31. 5 2400 1800 170140750 700 550 500 1300 1200 950 80040 1900 1400 1370 120610 600 430 400 1050 1000 750 700就是说:1。

线路的热稳定动稳定计算

线路的热稳定动稳定计算

线路的热稳定动稳定计算
线路的热稳定和动稳定计算是电力系统中非常重要的一部分,
它们涉及到线路的热平衡和动态稳定性分析。

首先,让我们来看看
线路的热稳定计算。

线路的热稳定计算主要是指对输电线路的电流
负载能力进行评估,以确保线路在长时间负载情况下不会过热而导
致故障。

这涉及到考虑线路的电阻、环境温度、风速等因素,通过
数学模型和计算方法来确定线路的额定负载能力,从而保证线路的
安全运行。

另外,动稳定计算则是指对电力系统在发生大幅度扰动(如短
路故障、大功率负荷突然变化等)后的稳定性进行分析和评估。


种计算通常涉及到对系统的动态响应、振荡特性等进行建模和仿真,以确定系统在扰动后是否能够快速恢复稳定状态。

动态稳定计算的
结果对于系统的保护装置和控制策略设计具有重要的指导意义。

从技术角度来看,线路的热稳定计算需要考虑线路的材料、截面、环境温度、风速等因素,可以通过有限元分析等方法进行模拟
和计算。

而动态稳定计算则需要考虑系统的动态特性、控制策略、
保护装置等因素,可以通过数学建模和仿真软件进行分析。

总的来说,线路的热稳定和动稳定计算是电力系统运行和规划中不可或缺的一部分,它们对于确保系统的安全稳定运行具有重要意义。

通过科学的计算和分析,可以有效地指导系统的设计、运行和维护,提高电力系统的可靠性和稳定性。

线路的热稳定动稳定计算

线路的热稳定动稳定计算

线路的热稳定动稳定计算
线路的热稳定动稳定计算是一项重要的工程技术,它在电力、通信、交通等领域都有广泛的应用。

本文将从人类视角出发,向读者生动地描述线路的热稳定动稳定计算过程。

让我们一起来了解一下什么是线路的热稳定动稳定计算。

当电流通过线路时,线路会因为电流的存在而发热。

而线路的热稳定性指的就是线路在长时间运行过程中,能否保持稳定的温度。

动稳定性则是指线路在电流变化时,能否保持稳定的温度。

这两个指标都是评估线路安全运行的重要因素。

在进行线路的热稳定动稳定计算时,我们需要考虑多种因素。

首先,我们需要了解线路的材料特性,包括导线的材质、绝缘材料的热导率等。

然后,我们需要考虑线路的环境条件,比如周围的温度、风速等。

接下来,我们需要测量线路的电流和电压,以及其他相关参数。

最后,我们可以使用计算软件进行热稳定动稳定计算,得到线路的温度变化情况。

通过热稳定动稳定计算,我们可以评估线路的热稳定性和动稳定性是否符合设计要求。

如果线路的温度超过了设计限制,就可能会导致线路的老化、绝缘破损甚至火灾等严重后果。

因此,热稳定动稳定计算对于确保线路的安全运行至关重要。

总结一下,线路的热稳定动稳定计算是一项重要的工程技术,它通
过分析线路材料特性、环境条件和电流参数等多种因素,评估线路的热稳定性和动稳定性。

这项计算对于确保线路的安全运行至关重要,它可以帮助我们及时发现线路存在的问题,并采取相应的措施进行修复。

希望通过本文的描述,读者能更好地理解线路的热稳定动稳定计算的重要性和应用价值。

电气的热稳定与动稳定

电气的热稳定与动稳定

电气的热稳定与动稳定1.定义:热稳定电流是老的称呼,现称:额定短时耐受电流(I K)电流通过导体时,导体要产生热量,并且该热量与电流的平方成正比,当有短路电流通过导体时,将产生巨大的热量,由于短路时间很短,热量来不及向周围介质散发,衡量电路及元件在这很短的时间里,能否承受短路时巨大热量的能力为热稳定(在规定的使用和性能条件下,在规定的短时间内,开关设备和控制设备在合闸位置能够承载的短路电流的有效值)。

额定短时耐受电流的标准值应当从GB762中规定的R10系列中选取,并应该等于开关设备和控制设备的短路额定值。

注:R10系列包括数字1,1.25,1.6,2,2.5,3.15,4,5,6.3,8及其与10n的乘积动稳定电流是老的称呼,现称:额定峰值耐受电流(I P)短路电流、短路冲击电流通过导体时,相邻载流导体间将产生巨大的电动力,衡量电路及元件能否承受短路时最大电动力的这种能力,称作动稳定(在规定的使用和性能条件下,开关设备和控制设备在合闸位置能够承载的额定短时耐受电流第一个大半波的电流峰值)。

额定峰值耐受电流应该等于2.5倍额定短时耐受电流。

注:按照系统的特性,可能需要高于2.5倍额定短时耐受电流的数值。

额定短路持续时间(t k)开关设备和控制设备在合闸位置能承载额定短时耐受电流的时间间隔。

额定短路持续时间的标准值为2s。

如果需要,可以选取小于或大于2s的值。

推荐值为0.5s,1s,3s和4s。

2.根据额定短时耐受电流来确定导体截面:GB3906[附录D]中公式:S=I/a√(t/△θ)式中:I--额定短时耐受电流(A);a—材质系数,铜为13,铝为8.5;t--额定短路持续时间(S);△θ—温升(K),对于裸导体一般取180K,对于4S持续时间取215K。

则:25KA/4S系统铜母线最小截面积S=(25/13)*√4/215=260 mm231.5KA/4S系统铜母线最小截面积S=(31.5/13)*√4/215=330 mm240KA/4S系统铜母线最小截面积S=(40/13)*√4/215=420 mm263KA/4S系统铜母线最小截面积S=(63/13)*√4/215=660 mm280KA/4S系统铜母线最小截面积S=(80/13)*√4/215=840 mm2接地母线按系统额定短时耐受电流的86.7%考虑:25KA/4S系统接地铜母线最小截面积S=260*86.7% =225mm231.5KA/4S系统接地铜母线最小截面积S=330*86.7% =287mm240KA/4S系统接地铜母线最小截面积S=420*86.7% =370mm263KA/4S系统接地铜母线最小截面积S=660*86.7% =580mm280KA/4S系统接地铜母线最小截面积S=840*86.7% =730mm2根据以上计算,总结所用TMY的最小规格如下:有人采用:S=I∝√t k jf 103/165;k jf:集肤效应系数-TMY取1.15计算结果偏大,建议采用以上计算。

水电站电气设备(断路器、隔离开关、导体)的选择方法及稳定校验(动稳定、热稳定)

水电站电气设备(断路器、隔离开关、导体)的选择方法及稳定校验(动稳定、热稳定)

Inbr ≥ I pt 有短路计算可知,d2 点短路时通过断路器的电流最大,I pt 24.99KA ,查断路器参 数数 I nbr =40KA, I nbr ≥ I pt ,故满足要求。
4)短路热稳定校验
在短路电流过断路器时,产生大量热量,由于来不及向外散发,全部用来加热断路器,
使其温度迅速上升,严重时会使断路器触头焊住,损坏断路器。因此产品标准规定了断路
水电站电气设备(断路器、隔离开关、导体)的选择方法及稳定校 验(动稳定、热稳定)
尽管电力系统中各种设备的工作和工作条件并不一样,具体选择方法也不完全相 同,但对它们的基本要求却是一致的。电气设备要能可靠地工作,必须按正常工作条件 进行选择,并按短路状态来校验热稳定和动稳定。
1.按正常工作条件选择电气设备
1)电器选择的一般原则
a) 应满足正常运行、检修、短路和过电压情况下的要求,并考虑远景发展。
b) 应按当地环境条件校核。
c) 应力求技术先进和经济合理。
d) 与整个工程的建设标准应协调一致。
e) 同类设备应尽量减少品种。
f) 选用的新产品均应具有可靠的实验数据,并经正式鉴定合格。
2)额定电压
电气设备所在电网的运行电压因调压或负荷的变化,有时会高于电网的额定电压 ,
故所选电气设备允许的最高工作电压不得低于所接电网的最高运行电压。因此,在电气 设备时,一般可按照电气设备的额定电压 U N 不低于装置地点电网额定电压U NS 的条件
选择。即
U N ≥U NS
3)额定电流 电气设备的额定电流 I N 是在额定环境温度下,电气设备的长期允许电流。I N 应不 小于该贿赂在各种合理运行方式下的最大持续工作电流 I max ,即:
短路电流通过电器时,电气设备各部件温度(或发热效应)应不超过允许值。满足

动稳定和热稳定的计算

动稳定和热稳定的计算

电气的热稳定与动稳定1.定义:热稳定电流是老的称呼,现称:额定短时耐受电流(I K)电流通过导体时,导体要产生热量,并且该热量与电流的平方成正比,当有短路电流通过导体时,将产生巨大的热量,由于短路时间很短,热量来不及向周围介质散发,衡量电路及元件在这很短的时间里,能否承受短路时巨大热量的能力为热稳定(在规定的使用和性能条件下,在规定的短时间内,开关设备和控制设备在合闸位置能够承载的短路电流的有效值)。

额定短时耐受电流的标准值应当从GB762中规定的R10系列中选取,并应该等于开关设备和控制设备的短路额定值。

注:R10系列包括数字1,1.25,1.6,2,2.5,3.15,4,5,6.3,8及其与10n的乘积动稳定电流是老的称呼,现称:额定峰值耐受电流(I P)短路电流、短路冲击电流通过导体时,相邻载流导体间将产生巨大的电动力,衡量电路及元件能否承受短路时最大电动力的这种能力,称作动稳定(在规定的使用和性能条件下,开关设备和控制设备在合闸位置能够承载的额定短时耐受电流第一个大半波的电流峰值)。

额定峰值耐受电流应该等于2.5倍额定短时耐受电流。

注:按照系统的特性,可能需要高于2.5倍额定短时耐受电流的数值。

额定短路持续时间(t k)开关设备和控制设备在合闸位置能承载额定短时耐受电流的时间间隔。

额定短路持续时间的标准值为2s。

如果需要,可以选取小于或大于2s的值。

推荐值为0.5s,1s,3s和4s。

2.根据额定短时耐受电流来确定导体截面:GB3906[附录D]中公式:S=I/a√(t/△θ)式中:I--额定短时耐受电流(A);a—材质系数,铜为13,铝为8.5;t--额定短路持续时间(S);△θ—温升(K),对于裸导体一般取180K,对于4S持续时间取215K。

则:25KA/4S系统铜母线最小截面积S=(25/13)*√4/215=260 mm231.5KA/4S系统铜母线最小截面积S=(31.5/13)*√4/215=330 mm240KA/4S系统铜母线最小截面积S=(40/13)*√4/215=420 mm263KA/4S系统铜母线最小截面积S=(63/13)*√4/215=660 mm280KA/4S系统铜母线最小截面积S=(80/13)*√4/215=840 mm2接地母线按系统额定短时耐受电流的86.7%考虑:25KA/4S系统接地铜母线最小截面积S=260*86.7% =225mm231.5KA/4S系统接地铜母线最小截面积S=330*86.7% =287mm240KA/4S系统接地铜母线最小截面积S=420*86.7% =370mm263KA/4S系统接地铜母线最小截面积S=660*86.7% =580mm280KA/4S系统接地铜母线最小截面积S=840*86.7% =730mm2根据以上计算,总结所用TMY的最小规格如下:有人采用:S=I∝√t k jf 103/165;k jf:集肤效应系数-TMY取1.15计算结果偏大,建议采用以上计算。

10KV母排动稳定计算

10KV母排动稳定计算

电气基础知识:热稳定与动稳定双击自动滚屏发布者:mm 发布时间:2006-4-7 阅读:387次1.定义:热稳定电流是老的称呼,现称:额定短时耐受电流(I K)在规定的使用和性能条件下,在规定的短时间内,开关设备和控制设备在合闸位置能够承载的电流的有效值。

额定短时耐受电流的标准值应当从GB762中规定的R10系列中选取,并应该等于开关设备和控制设备的短路额定值。

注:R10系列包括数字1,1.25,1.6,2,2.5,3.15,4,5,6.3,8及其与10n的乘积动稳定电流是老的称呼,现称:额定峰值耐受电流(I P)在规定的使用和性能条件下,开关设备和控制设备在合闸位置能够承载的额定短时耐受电流第一个大半波的电流峰值。

额定峰值耐受电流应该等于2.5倍额定短时耐受电流。

注:按照系统的特性,可能需要高于2.5倍额定短时耐受电流的数值。

额定短路持续时间(t k)8]开关设备和控制设备在合闸位置能承载额定短时耐受电流的时间间隔。

额定短路持续时间的标准值为2s。

如果需要,可以选取小于或大于2s的值。

推荐值为0.5s,1s,3s和4s。

2.根据额定短时耐受电流来确定导体截面:GB3906[附录D]中公式:S=I/a√(t△θ)式中:I--额定短时耐受电流;a—材质系数,铜为13,铝为8.5;t--额定短路持续时间;△θ—温升(K),对于裸导体一般取180K,对于4S持续时间取215K。

则:25KA/4S系统铜母线最小截面积S=(25/13)*√4/215=260 mm231.5KA/4S系统铜母线最小截面积S=(31.5/13)*√4/215=330 mm240KA/4S系统铜母线最小截面积S=(40/13)*√4/215=420 mm263KA/4S系统铜母线最小截面积S=(63/13)*√4/215=660 mm280KA/4S系统铜母线最小截面积S=(80/13)*√4/215=840 mm2接地母线按系统额定短时耐受电流的86.7%考虑:25KA/4S系统接地铜母线最小截面积S=260*86.7% =225mm231.5KA/4S系统接地铜母线最小截面积S=330*86.7% =287mm240KA/4S系统接地铜母线最小截面积S=420*86.7% =370mm263KA/4S系统接地铜母线最小截面积S=660*86.7% =580mm280KA/4S系统接地铜母线最小截面积S=840*86.7% =730mm2根据以上计算,总结所用TMY的最小规格如下:有人采用:S=I√t k jf 103/165;k jf:集肤效应系数-TMY取1.15计算结果偏大,建∝议采用以上计算.3.根据额定峰值耐受电流来确定铜母线最大跨距(两个支撑间的最大距离) 原则:作用在母线上的作用应力kg/cm≤母线允许应力;公式:△js=1.76L2i ch2*10-3/aW≤△y;△y=1400(Cu).700(Al)式中:L—母线支撑间距(cm);a—相间距离(cm);W——矩形母线截面系数;i ch——根据上式导出:L MAX=√1400aw 103/1.76 i ch2=√0.795*106aw/ i ch矩形母线截面系数:1/母线宽度相对时:W=0.167b2h;100*10=1.67;80*8=0.8552/母线厚度相对时:W=0.167bh2;100*10=16.7;80*8=8.55其中:b(cm): 母线宽度,h(cm): 母线厚度所以:对于31.5KA系统,TMY100*10母线厚度相对时,假定a=28cm(中置柜),则:L MIN==√0.795*106aw/ i ch=240(cm)=2400mm;对于31.5KA系统,TMY80*8母线厚度相对时,假定a=28cm,则:L MIN==√0.795*106aw/ i ch=1700mm;对于40KA系统,TMY100*10母线厚度相对时,假定a=28cm,则:L MIN==√0.795*106aw/ i ch=1900mm;TMY80*8母线厚度相对时,假定a=28cm,则:L MIN==√0.795*106aw/ i ch=1370mm;各种母线排列的最小跨距(mm)[280mm相距为例]就是说:1。

动热稳定母排选择知识分享

动热稳定母排选择知识分享

动热稳定母排选择电气基础知识:热稳定与动稳定论坛发言时,发现有的人对动热稳定的运用不是很熟。

现整理如下,希望得到大家的支持和认可,毕竟花费了我许多时间。

不当之处请指正。

1.定义:热稳定电流是老的称呼,现称:额定短时耐受电流(I K)在规定的使用和性能条件下,在规定的短时间内,开关设备和控制设备在合闸位置能够承载的电流的有效值。

额定短时耐受电流的标准值应当从GB762中规定的R10系列中选取,并应该等于开关设备和控制设备的短路额定值。

注:R10系列包括数字1,1.25,1.6,2,2.5,3.15,4,5,6.3,8及其与10n的乘积动稳定电流是老的称呼,现称:额定峰值耐受电流(I P)在规定的使用和性能条件下,开关设备和控制设备在合闸位置能够承载的额定短时耐受电流第一个大半波的电流峰值。

额定峰值耐受电流应该等于2.5倍额定短时耐受电流。

注:按照系统的特性,可能需要高于2.5倍额定短时耐受电流的数值。

额定短路持续时间(t k)开关设备和控制设备在合闸位置能承载额定短时耐受电流的时间间隔。

额定短路持续时间的标准值为2s。

如果需要,可以选取小于或大于2s的值。

推荐值为0.5s,1s,3s和4s。

2.根据额定短时耐受电流来确定导体截面:GB3906[附录D]中公式:S=I/a√(t△θ)式中:I--额定短时耐受电流;a—材质系数,铜为13,铝为8.5;t--额定短路持续时间;△θ—温升(K),对于裸导体一般取180K,对于4S持续时间取215K。

则:25KA/4S系统铜母线最小截面积S=(25/13)*√4/215=260 mm231.5KA/4S系统铜母线最小截面积S=(31.5/13)*√4/215=330 mm240KA/4S系统铜母线最小截面积S=(40/13)*√4/215=420 mm263KA/4S系统铜母线最小截面积S=(63/13)*√4/215=660 mm280KA/4S系统铜母线最小截面积S=(80/13)*√4/215=840 mm2接地母线按系统额定短时耐受电流的86.7%考虑:25KA/4S系统接地铜母线最小截面积S=260*86.7% =225mm231.5KA/4S系统接地铜母线最小截面积S=330*86.7% =287mm240KA/4S系统接地铜母线最小截面积S=420*86.7% =370mm263KA/4S系统接地铜母线最小截面积S=660*86.7% =580mm280KA/4S系统接地铜母线最小截面积S=840*86.7% =730mm2根据以上计算,总结所用TMY的最小规格如下:有人采用:S=I∝√t k jf 103/165; k jf:集肤效应系数-TMY取1.15计算结果偏大,建议采用以上计算.3.根据额定峰值耐受电流来确定铜母线最大跨距(两个支撑间的最大距离)原则:作用在母线上的作用应力kg/cm≤母线允许应力;公式:△js=1.76L2i ch2*10-3/aW≤△y;△y=1400(Cu).700(Al)式中:L—母线支撑间距(cm);a—相间距离(cm);W——矩形母线截面系数;i ch——根据上式导出:L MAX=√1400aw 103/1.76 i ch2=√0.795*106aw/ i ch矩形母线截面系数:1/母线宽度相对时:W=0.167b2h;100*10=1.67;80*8=0.8552/母线厚度相对时:W=0.167bh2;100*10=16.7;80*8=8.55其中:b(cm): 母线宽度,h(cm): 母线厚度所以:对于31.5KA系统,TMY100*10母线厚度相对时,假定a=28cm(中置柜),则:L MIN==√0.795*106aw/ i ch=240(cm)=2400mm;对于31.5KA系统,TMY80*8母线厚度相对时,假定a=28cm,则:L MIN==√0.795*106aw/ i ch=1700mm;对于40KA系统,TMY100*10母线厚度相对时,假定a=28cm,则:L MIN==√0.795*106aw/ i ch=1900mm;TMY80*8母线厚度相对时,假定a=28cm,则:L MIN==√0.795*106aw/ i ch=1370mm;各种母线排列的最小跨距(mm)[280mm相距为例]就是说:1。

[工程类试卷]注册电气工程师发输变电基础考试(电气工程基础)历年真题试卷汇编5及答案与解析

[工程类试卷]注册电气工程师发输变电基础考试(电气工程基础)历年真题试卷汇编5及答案与解析

注册电气工程师发输变电基础考试(电气工程基础)历年真题试卷汇编5及答案与解析一、单项选择题1(2005)中性点不接地系统中,三相电压互感器作绝缘监视用的附加二次绕组的额定电压应选择为()。

(A)(B)100V(C)(D)2(2007)在3~20kV电网中,为了测量相对地电压,通常采用()。

(A)三相五柱式电压互感器(B)三相三柱式电压互感器(C)两台单相电压互感器接成不完全星形接线(D)三台单相电压互感器接成Y/Y接线3(2009)电压互感器二次侧开口三角形的作用是()。

(A)测量三次谐波(B)测量零序电压(C)测量线电压1)(D )测量相电压4 (2010)在 3~20kV 电网中,为了测量相对地电压,通常采用()。

(A )两台单相电压互感器接成不完全星形联结(B )三相三柱式电压互感器(C )三相五柱式电压互感器(D )三台单相电压互感器接成丫/ △联结5 (2011)对于电压互感器以下叙述不正确的是( )。

(A )接地线必须装熔断器(B )接地线不准装熔断器(C )二次绕组应装熔断器(D )电压互感器不需要校验热稳定6 (2011)中性点接地系统中,三相电压互感器二次侧开口三角形绕组的额定电压应 等于( )。

(A )100V(B )(C )(D )3U 0(U 0 零序电压)7 (2005)电流互感器的误差(电流误差 f 1 和相位误差 δ 与二次负荷阻抗(z 2f )的关系是( )。

(A)(B)(C)(D)8(2006)选择10kV馈线上的电流互感器时,电流互感器的联结方式为不完全星形联结,若电流互感器与测量仪表相距40m,其连接线长度计算L j8应为()。

(A)40m(B)69.3m(C)80m(D)23.1m9(2008)电流互感器的额定容量是()。

(A)正常发热允许的容量(B)短路发热允许的容量(C)额定二次负荷下的容量(D )由额定二次电流确定的容量10 (2010)电流互感器二次绕组在运行时,( )。

怎么填写动稳定热稳定

怎么填写动稳定热稳定

一、什么是动稳定?
动稳定是指电气设备抗短路电流的冲击能力。

如果短路电流越大,其所产生的电动力就越大,通常电动力与短路电流的平方成正比。

铭牌中为额定峰值耐受电流
二、什么是热稳定?
热稳定是指电气设备耐受短路电流产生的热效应的能力。

在选择电气设备时,要进行热稳定校验,如果其能够经受得起短路电流的热作用,则称其是热稳定的。

铭牌中为:额定短时耐受电流、开断电流、短路开断电流。

额定短路持续时间的标准值为2S,通常为4S
三、动稳定与热稳定
动稳定电流=2.5倍的热稳定电流。

热稳定与动稳定

热稳定与动稳定
-- 作者:铁匠_索拉伦斯 -- 发布时间:2006-7-11 8:42:27 --
接地母线按系统额定短时耐受电流的 86.7%考虑: 25KA/4S 系统接地铜母线最小截面积 S=260*86.7% =225mm2 31.5KA/4S 系统接地铜母线最小截面积 S=330*86.7% =287mm2 40KA/4S 系统接地铜母线最小截面积 S=420*86.7% =370mm2
63KA/4S 系统接地铜母线最小截面积 S=660*86.7% =580mm2 80KA/4S 系统接地铜母线最小截面积 S=840*86.7% =730mm2
根据以上计算,总结所用 TMY 的最小规格如下:
TMY
KA 25
系统母线 50*6
接地母线 50*5
31.5 60*6
50*6
40 80*6 60*8 50*8
公式:△js=1.76L2ich2*10-3/aW≤△y; △ y=1400(Cu).700(Al) 式中:L—母线支撑间距(cm);a—相间距离(cm);W——矩形母线截面 系数;
ich—— 根据上式导出:
LMAX=√1400aw 103/1.76 ich2=√0.795*106aw/ ich
矩形母线截面系数: 1/母线宽度相对时:W=0.167b2h;100*10=1.67;80*8=0.855 2/母线厚度相对时:W=0.167bh2;100*10=16.7;80*8=8.55 其中:b(cm): 母线宽度,h(cm): 母线厚度 所以:对于 31.5KA 系统,TMY100*10 母线厚度相对时,假定 a=28cm(中置柜), 则: LMIN==√0.795*106aw/ ich=240(cm)=2400mm; 对于 31.5KA 系统,TMY80*8 母线厚度相对时,假定 a=28cm,则: LMIN==√0.795*106aw/ ich=1700mm; 对于 40KA 系统,TMY100*10 母线厚度相对时,假定 a=28cm,则: LMIN==√0.795*106aw/ ich=1900mm; TMY80*8 母线厚度相对时,假定 a=28cm,则: LMIN==√0.795*106aw/ ich=1370mm;

如热稳定校验和动稳定校验

如热稳定校验和动稳定校验
一般按照电器的额定电压UN,不低于装置地点电网额 定电压USN的条件选择即可。
2. 按照正常工作电流选择设备的额定电流
电气设备的额定电流IN是指在额定环境条件(额定环
境温度:裸导体和电缆为25℃ ,断路器、隔离开关、穿 墙套管、电流互感器、电抗器等电器为40℃ ;无日照;
海拔高度不超过1000m)下,电气设备的长期允许电流。 此时可满足电气设备的长期发热温升不超过允许温度。
1)对两侧均有电源的电气设备,应比较电气设备前、 后短路时的短路电流,选通过电气设备短路电流较 大的地点作为短路计算点。例如,校验图6.1中的发 电机出口断路器QF1时,应比较kl和k2短路时流过QF1 的电流,选较大的点作为短路计算点。
当k2短路时,流过QF1的电流为G2供给的短路电流; 当K1短路时,流过QF1的电流为G1供给的短路电流 及系统经T1、T2供给的短路电流之和,故应选K1 为QF1的短路计算点。
(2)短路种类:电气设备的热稳定和动稳定以及电器 的开断电流,一般按三相短路验算。若发电机出 口的两相短路,或中性点直接接地系统、自耦变 压器等回路中的单相、两相接地短路较三相短路 严重时,则应按严重情况验算。
(3)短路计算点:
在正常接线方式时,
电气设备的短路电流为
最大时的短路点,
称为短路计算点。
为了满足长期发热条件,应按额定电流IN (或载流量 Ial)不得小于所在回路最大持续工作电流Imax的条件进行 选择
回路最大持续工作电流Imax的计算
按使用环境选择设备
当实际环境温度θ 不同于导体的额定环境温度θ o时, 其长期允许流应该用下式进行修正,
(1)不计日照,裸导体和电缆的综合修正系数K为 θ al--导体的长期发热允许最高温度,裸导体一般为70℃: θ o--导体的额定环境温度,裸导体一般为25℃。 (2)我国生产的电气设备的额定环境温度θ o= 40℃。

动稳定和热稳定

动稳定和热稳定

电气的热稳定与动稳定1.定义:热稳定电流是老的称呼,现称:额定短时耐受电流(I K)电流通过导体时,导体要产生热量,并且该热量与电流的平方成正比,当有短路电流通过导体时,将产生巨大的热量,由于短路时间很短,热量来不及向周围介质散发,衡量电路及元件在这很短的时间里,能否承受短路时巨大热量的能力为热稳定(在规定的使用和性能条件下,在规定的短时间内,开关设备和控制设备在合闸位置能够承载的短路电流的有效值)。

额定短时耐受电流的标准值应当从GB762中规定的R10系列中选取,并应该等于开关设备和控制设备的短路额定值。

注:R10系列包括数字1,1.25,1.6,2,2.5,3.15,4,5,6.3,8及其与10n的乘积动稳定电流是老的称呼,现称:额定峰值耐受电流(I P)短路电流、短路冲击电流通过导体时,相邻载流导体间将产生巨大的电动力,衡量电路及元件能否承受短路时最大电动力的这种能力,称作动稳定(在规定的使用和性能条件下,开关设备和控制设备在合闸位置能够承载的额定短时耐受电流第一个大半波的电流峰值)。

额定峰值耐受电流应该等于2.5倍额定短时耐受电流。

注:按照系统的特性,可能需要高于2.5倍额定短时耐受电流的数值。

额定短路持续时间(t k)开关设备和控制设备在合闸位置能承载额定短时耐受电流的时间间隔。

额定短路持续时间的标准值为2s。

如果需要,可以选取小于或大于2s的值。

推荐值为0.5s,1s,3s和4s。

式中:I--额定短时耐受电流(A);a—材质系数,铜为13,铝为8.5;t--额定短路持续时间(S);△θ—温升(K),对于裸导体一般取180K,对于4S持续时间取215K。

则:25KA/4S系统铜母线最小截面积S=(25/13)*√4/215=260 mm231.5KA/4S系统铜母线最小截面积S=(31.5/13)*√4/215=330 mm240KA/4S系统铜母线最小截面积S=(40/13)*√4/215=420 mm263KA/4S系统铜母线最小截面积S=(63/13)*√4/215=660 mm280KA/4S系统铜母线最小截面积S=(80/13)*√4/215=840 mm2接地母线按系统额定短时耐受电流的86.7%考虑:25KA/4S系统接地铜母线最小截面积S=260*86.7% =225mm231.5KA/4S系统接地铜母线最小截面积S=330*86.7% =287mm240KA/4S系统接地铜母线最小截面积S=420*86.7% =370mm263KA/4S系统接地铜母线最小截面积S=660*86.7% =580mm280KA/4S系统接地铜母线最小截面积S=840*86.7% =730mm2根据以上计算,总结所用TMY的最小规格如下:计算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电气基础知识:热稳定与动稳定
1.定义:
热稳定电流是老的称呼,现称:额定短时耐受电流(I K)
在规定的使用和性能条件下,在规定的短时间内,开关设备和控制设备在合闸位置能够承载的电流的有效值。

额定短时耐受电流的标准值应当从GB762中规定的R10系列中选取,并应该等于开关设备和控制设备的短路额定值。

注:R10系列包括数字1,1.25,1.6,2,2.5,3.15,4,5,6.3,8及其与10n的乘积动稳定电流是老的称呼,现称:额定峰值耐受电流(I P)
在规定的使用和性能条件下,开关设备和控制设备在合闸位置能够承载的额定短时耐受电流第一个大半波的电流峰值。

额定峰值耐受电流应该等于2.5倍额定短时耐受电流。

注:按照系统的特性,可能需要高于2.5倍额定短时耐受电流的数值。

额定短路持续时间(t k)
开关设备和控制设备在合闸位置能承载额定短时耐受电流的时间间隔。

额定短路持续时间的标准值为2s。

如果需要,可以选取小于或大于2s的值。

推荐值为0.5s,1s,3s和4s。

2.根据额定短时耐受电流来确定导体截面:
GB3906[附录D]中公式:S=I/a√(t/△θ)
式中:I--额定短时耐受电流(A);a—材质系数,铜为13,铝为8.5;t--额定短路持续时间(S);△θ—温升(K),对于裸导体一般取180K,对于4S持续时间取215K。

则:25KA/4S系统铜母线最小截面积S=(25/13)*√4/215=260 mm2
31.5KA/4S系统铜母线最小截面积S=(31.5/13)*√4/215=330 mm2
40KA/4S系统铜母线最小截面积S=(40/13)*√4/215=420 mm2
63KA/4S系统铜母线最小截面积S=(63/13)*√4/215=660 mm2
80KA/4S系统铜母线最小截面积S=(80/13)*√4/215=840 mm2
接地母线按系统额定短时耐受电流的86.7%考虑:
25KA/4S系统接地铜母线最小截面积S=260*86.7% =225mm2
31.5KA/4S系统接地铜母线最小截面积S=330*86.7% =287mm2
40KA/4S系统接地铜母线最小截面积S=420*86.7% =370mm2
63KA/4S系统接地铜母线最小截面积S=660*86.7% =580mm2
80KA/4S系统接地铜母线最小截面积S=840*86.7% =730mm2
根据以上计算,总结所用TMY的最小规格如下:
√t k j f 103/165;k jf:集肤效应系数-TMY取1.15计算结果偏大,建议采用以上计有人采用:S=I

算.
3. 根据额定峰值耐受电流来确定铜母线最大跨距(两个支撑间的最大距离)
原则:作用在母线上的作用应力kg/cm≤母线允许应力;
公式:△js=1.76L2i ch2*10-3/aW≤△y;
△y=1400(Cu).700(Al)
式中:L—母线支撑间距(cm);a—相间距离(cm);W——矩形母线截面系数;i ch——
根据上式导出:
L MAX=√1400aw 103/1.76 i ch2=√0.795*106aw/ i ch
矩形母线截面系数:
1/母线宽度相对时:W=0.167b2h;100*10=1.67;80*8=0.855
2/母线厚度相对时:W=0.167bh2;100*10=16.7;80*8=8.55
其中:b(cm): 母线宽度,h(cm): 母线厚度
所以:对于31.5KA系统,TMY100*10母线厚度相对时,假定a=28cm(中置柜),则: L MIN==√0.795*106aw/ i ch=240(cm)=2400mm;
对于31.5KA系统,TMY80*8母线厚度相对时,假定a=28cm,则:
L MIN==√0.795*106aw/ i ch=1700mm;
对于40KA系统,TMY100*10母线厚度相对时,假定a=28cm,则:
L MIN==√0.795*106aw/ i ch=1900mm;
TMY80*8母线厚度相对时,假定a=28cm,则:
L MIN==√0.795*106aw/ i ch=1370mm;
各种母线排列的最小跨距(mm)[280mm相距为例]
就是说:
1.母线厚度相对时:
当KYN28-12型产品选用TMY100*10距离1400以内可不加支撑,超过1400必须加支撑;当KYN28-12型产品选用TMY80*8距离1200以内可不加支撑,超过1200必须加支撑;2.母线宽度相对时:
当KYN28-12型产品选用TMY100*10距离700以内可不加支撑,超过700必须加支撑;当KYN28-12型产品选用TMY8*8距离500以内可不加支撑,超过500必须加支撑;。

相关文档
最新文档