Enhancing Computational power DALI child agents generation
AI智能算力云计算数据中心供配电系统探究
TECHNOLOGY AND INFORMATION科学与信息化2023年12月下 65AI智能算力云计算数据中心供配电系统探究龙熹1,21. 腾讯科技(深圳)有限公司 广东 深圳 518063;2. 腾讯云计算(北京)有限责任公司 北京 100000摘 要 当前云计算数据中心进入了AI算力发展的新阶段,传统供配电方式难以匹配AI高算力下数据中心稳定性、安全性及成本诉求,在机柜功率、系统成本、供电冗余、运维等方面还有一定优化空间。
基于此,本文重点提出了应用于AI智能算力…云计算数据中心的供配电系统设计要点,并对满足数据中心容错要求的2N、DR、RR供配电架构以及分布式、集中式服务器供电方案进行了全方位对比分析,以期为类似项目建设提供参考借鉴。
关键词 云计算;AI算力;数据中心;供配电系统AI intelligent computing power cloud computing data center power supply and distribution system research Long Xi 1,21. Tencent Technology (Shenzhen) Co., LTD., Shenzhen 518063, Guangdong Province, China;2. Tencent Cloud Computing (Beijing) Co., LTD., Beijing 100000, ChinaAbstract At present, cloud computing data centers have entered a new stage of AI computing power development. Traditional power supply and distribution methods are difficult to match the stability, security and cost demands of data centers under AI high computing power. There is still some room for optimization in cabinet power, system cost, power supply redundancy, operation and maintenance. Based on this condition, this paper puts forward the key points of power supply and distribution system design applied to AI intelligent computing cloud computing data center, and makes a comprehensive comparative analysis of 2N, DR, RR power supply and distribution architectures and distributed and centralized server power supply schemes that meet the fault tolerance requirements of data centers, so as to provide reference for the construction of similar projects.Key words cloud computing; AI computing power; data centers; power supply and distribution system引言近年来,5G+、大数据、物联网等技术的发展显著加快,基于数据和算力的AI 产品在很多领域都有成功应用,带动了云计算数据中心行业的总体发展,特别是近期ChatGPT 产品发布带来的大模型训练浪潮,让数据中心服务器从计算加存储的通用服务器时代进入了追求极致算力的AI 服务器时代,加速了数据中心供配电技术变革。
超级计算技术对于人工智能的意义与应用
超级计算技术对于人工智能的意义与应用人工智能(Artificial Intelligence, AI)已经成为现代科技领域中的热门话题。
随着技术的不断进步,AI在各个领域的应用也日益广泛。
然而,要实现更复杂、更高效的人工智能系统,需要强大的计算能力支持。
超级计算技术的出现为人工智能的发展提供了巨大的助力,为我们带来了无限的可能性。
本文将探讨超级计算技术对人工智能的意义和应用。
首先,超级计算技术为人工智能的研究和开发提供了强大的计算能力。
人工智能的大部分应用都需要处理海量的数据和复杂的算法。
传统的计算设备对于这些任务来说已经无法满足需求。
而超级计算机能够以非常高的速度进行运算和处理,能够更快地完成复杂的计算任务。
这为人工智能的研究人员提供了更多的资源和工具,使他们能够更深入地探索和研究AI的各个方面。
其次,超级计算技术可以提高人工智能系统的性能和效能。
在人工智能的应用中,算法的优化和训练模型的准确性是非常重要的。
超级计算机的强大计算能力可以加速这些过程,提高系统的性能和准确性。
通过超级计算技术,人工智能系统可以更快速地学习和适应输入数据,并作出更准确的决策。
这为各种应用场景,如语音识别、图像处理和自然语言处理等,提供了更高质量、更高效率的解决方案。
另外,超级计算技术还可以扩展人工智能的应用范围和能力。
人工智能系统需要具备处理复杂任务的能力,而这可能需要运行大量的并行计算任务。
超级计算机的并行计算能力可以使人工智能系统同时处理多个任务,加快系统的响应速度。
这使得人工智能系统可以更好地应对大规模数据处理、智能控制和决策等复杂任务,进一步拓展了人工智能的应用领域。
除了对人工智能的意义,超级计算技术也广泛应用于人工智能之中。
目前,人工智能在医疗、交通、金融和能源等许多领域都有广泛的应用。
超级计算技术可以为这些领域提供更强大的计算实力,加速人工智能的应用。
例如,医疗领域中的图像识别和疾病预测,通过超级计算机的高速计算能力可以更准确地进行诊断和预测。
超级计算机——运算能力的极致追求
超级计算机——运算能力的极致追求一、超级计算机:历史沿革与技术飞跃1.1 早期起源与奠基超级计算机的历史始于20世纪50年代,那时的计算机主要用于解决复杂的科学和工程挑战。
ENIAC和UNIVAC I等先驱设备,尽管在当今看来显得原始,却奠定了高性能计算的基础,开启了探索未知世界的新篇章。
1.2 并行处理的崛起随着技术的进步,并行处理成为提升计算性能的关键。
从共享内存系统到分布式内存架构,超级计算机设计的进步在于利用众多处理器协同工作,处理海量数据和计算任务。
IBM的SP系统和CRAY系列在此阶段扮演了重要角色。
1.3 集群计算的普及集群计算的出现进一步推动了超级计算机的商业化进程。
通过集成大量经济型商用服务器,高性能计算变得更为普及且成本效益显著。
这种变革使得各行业,包括企业、研究机构和学术界,都能拥有并运用超级计算资源,极大地推动了科学研究、气象预测、金融建模等多个领域的发展。
2. 现代超级计算机:技术转型与创新2.1 硬件优化与效能提升现代超级计算机在硬件层面的变革,如使用GPU和其他加速器,显著提升了计算效率。
例如,美国的Summit和中国的神威·太湖之光,它们在能效和运算速度上实现了新的里程碑。
2.2 软件进步与并行计算在软件层面,改进的编程模型和并行算法使开发人员能够更好地利用硬件资源,释放超级计算机的潜力。
3. 新技术与未来应用3.1 探索新边界新兴技术如量子计算、神经网络加速和边缘计算,正在不断重塑超级计算机的形态和应用领域。
从物理模拟、气候研究,到人工智能、大数据分析和药物研发,超级计算机已成为推动科技进步不可或缺的利器,持续拓宽知识的边界。
请注意,以上内容已根据要求进行了润色和完善,保持了原有的标题结构,并遵循了指定的标题标号格式。
二、关键技术和组件在构建高性能计算与数据中心的复杂工程中,关键技术和组件扮演着决定性的角色,它们直接影响到系统的运算效能、稳定性和能源效率。
eth计算机岗位制博士要求
eth计算机岗位制博士要求
博士学位要求:以太坊计算
研究领域:
分布式系统
密码学
验证和共识
智能合约
去中心化金融 (DeFi)
资格要求:
计算机科学、电气工程或相关领域的博士学位,或即将获得博士学位。
在以太坊计算领域拥有深入的研究经验。
精通以太坊虚拟机 (EVM) 和 Solidity 编程语言。
对密码学、共识算法和智能合约有扎实的理解。
具有出版高影响力期刊论文的记录。
能够独立开展研究并与他人合作。
职责:
开展原创研究,推动以太坊计算领域的进展。
在顶尖学术会议和期刊上发表研究成果。
指导和指导研究生和博士后研究人员。
与业界密切合作,将研究成果转化为实际应用。
积极参与学术和专业社区。
所需的技能:
扎实的计算机科学基础。
丰富的编程经验。
优秀的沟通和人际交往能力。
独立工作和团队合作的能力。
解决复杂问题的创造力和主动性。
工作环境:
世界一流的研究型大学或研究机构。
活跃的以太坊研究社区。
丰富的研究资源和设施。
协作和包容的工作环境。
福利待遇:
具有竞争力的薪酬待遇。
全面的福利计划,包括健康保险、牙科保险和视力保险。
带薪休假和病假。
育儿假和其他家庭友好政策。
专业发展机会,包括参加会议和研讨会。
有意者请将简历、求职信和至少三封推荐信提交至 [电子邮件保护]。
截止日期:申请将在职位空缺后持续受理,直到找到合适的人选。
让高性能科学计算为人人所用——科学计算语言Julia发明团队专访
成富有活力的软件系统。发明者J e f f B e z a n s o n 、
S t e f a n K a r p i n s k i 、Vi r a l B S h a h 、Al a n Ed e l ma n四
展的方法来实现这类功能。 V i r a l : 我一 直对 科学 计算 感兴趣 ,这 也是 我的
Co v er St or y 封 面 报 道 『编 程 语 言
人, 你可 阅 读 ( ( P r o g r a mmi n g L a n g u a g e 我 介绍给了J e f f 。 我 们便开始讨论 用于数据分析 P r a g ma t i c s ) )( 中译本 《 程 序设计语言——实践之 的理 想编 程系统应该是怎样 的。后来我们决定着 路》), 并 因此被表弟温言揶揄的情形。 不过我后 手 做点什么— —以三个月为限, 届时我们将决定 来没有去做编译器 , 而是无意 中走入了之后称为 是 否继续 。我完成了第一次g i t 提 交, 搭好 了 ’ 服务 “ 数据科学”的领域。那时我正好有一堆数据 , 想
S t e f a n: 读研时我真正想做 的是程序语言设 计, 在I S C, P a r r y 、 V i r a l  ̄ 1 ] 我认识到, 通 过 一 种慢 速 的 结 果却 进 了 网络 研 究 实 验 室 。到离 开 U C S B 之前, 动 态 专有 语 言 来实 现 快速 的 并行 化 是荒 唐 的 。 J e f 我 在 用 线性 代 数 、机 器 学 习和 数 据 统 计 做 网络 流 也是I S C 的 员工 , 在这个问题上也有自己的独到见 量的分析与建模。这需要一 种弗兰肯斯坦式的编 解。 我 真心 希 望 看到 这个 问题 的解 决 方案 。 程 语 言 组合 : 用于 网络 跟 踪 处 理 的C, 准 备数 据 的
课文参考译文 (1)-信息科学与电子工程专业英语(第2版)-吴雅婷-清华大学出版社
Unit 16 大数据和云计算Unit 16-1第一部分:大数据当前,全世界迎来数据大爆炸的时代。
行业分析师和企业把大数据视为下一件大事,将其作为提供机会、见解、解决方案和增加业务利润的一种新途径。
从社交网站到医院的记录,大数据在改进企业和创新方面发挥了重要的作用。
大数据一词指庞大或复杂的数据集,由于信息来自关系复杂且不断变化的多个异构的独立源,并且不断增长,传统的数据处理应用软件都不足以处理它们。
大数据挑战包括捕获数据、数据存储、搜索、数据分析、共享、传输、可视化、查询、更新和隐私保护。
数据集的快速增长,部分原因是因为数据越来越多地通过众多价格低廉的物联网信息感知设备被收集起来,这些设备包括移动设备、软件日志、摄像机、麦克风、射频识别(RFID)阅读器和无线传感网等。
自20世纪80年代,世界人均技术信息存储量大约每40个月翻一番;截至2012,每天产生2.5艾字节(2.5×1018)的数据。
数据量不断增加,数据分析变得更具竞争力。
毫无疑问,现在可用的数据量确实很大,但这并不是这个新数据生态系统最重要的特征。
我们面临的挑战不仅是要收集和管理大量不同类型的数据,还要从中获取有效价值,这其中包括了预测分析、用户行为分析和其他高级数据分析方法。
大数据的价值正在被许多行业和政府的认可。
对数据集的分析可以找到新的关联性来发现商业趋势、预防疾病、打击犯罪等。
大数据类型大数据来自各种来源,可分为三大类:结构化、半结构化和非结构化。
-结构化数据:易于分类和分析的数据,例如数字和文字。
这种数据主要由嵌入在智能手机、全球定位系统(GPS)设备等电子设备中的网络传感器所产生。
结构化数据还包括交易数据、销售数据、帐户余额等。
其数据结构和一致性使得它能够基于机构的参数和操作需求来响应简单的查询,从而获取可用信息。
-半结构化数据:它是一种不符合显式和固定模式的结构化数据形式。
数据本身可自我描述,并且包含用于执行数据内记录和字段层次结构的标签或其他标记。
算能和算力芯片
算能和算力芯片下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor.I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!算能,通常指的是计算能力或者处理信息的能力,是衡量一个系统或设备执行计算任务效率的指标。
智能计算1
图灵试验
上述两种对话的区别在于,第一种可明显地感到 回答者是从知识库里提取简单的答案,第二种则具有 分析综合的能力,回答者知道观察者在反复提出同样 的问题。“图灵试验”没有规定问题的范围和提问的 标准,如果想要制造出能通过试验的机器,以我们现 在的技术水平,必须在电脑中储存人类所有可以想到 的问题,储存对这些问题的所有合乎常理的回答,并 且还需要理智地作出选择。
3
计算与电子计算机
二、第一台电子计算机(ENIAC:Electronic Numerical Integrator and Computer)
① 1946年,在美国宾夕法尼亚大学莫尔学院产生; ② 重量30吨,占地170平方米,功率140千瓦; ③ 电子管18000多个,继电器1500多个; ④ 采用10进制,机器字长10位,运算最快速度5000次/秒; ⑤ 工作方式:通过插件式“外接”线路实现的,尚未采用“程序存储”
11
冯·诺依曼
1928年,美国数学泰斗、普林斯顿高级研究院 维伯伦教授(O.Veblen)广罗天下之英才,一封烫 金的大红聘书,寄给了柏林大学这位无薪讲师,请他 去美国讲授“量子力学理论课”。冯·诺依曼预料到 未来科学的发展中心即将西移,欣然同意赴美国任教。 1930年,27岁的冯·诺依曼被提升为教授;1933年, 他又与爱因斯坦一起,被聘为普林斯顿高等研究院第 一批终身教授,而且是6名大师中最年轻的一名。
20
Turing图灵
1937年,伦敦权威的数学杂志又收到图灵一篇论文 《论可计算数及其在判定问题中的应用》,作为阐明 现代计算机原理的开山之作,被永远载入了计算机的 发展史册。
这篇论文原本是为了解决一个基础性的数学问题:是 否只要给人以足够的时间演算,数学函数都能够通过 有限次运算求得解答?传统数学家当然只会想到用公 式推导证明它是否成立,可是图灵独辟蹊径地想出了 一台冥冥之中的机器。
算力结算 英语
算力结算英语The rapid advancements in technology have revolutionized the way we approach various aspects of our lives. One such area that has seen significant transformation is the field of computational power settlement. As our reliance on digital technologies continues to grow, the need for efficient and equitable distribution of computational resources has become increasingly crucial. In this essay, we will delve into the concept of computational power settlement, its importance, and the challenges associated with it.Computational power, often referred to as "compute," is the backbone of modern digital infrastructure. It is the engine that powers our smartphones, computers, and the vast array of interconnected devices that make up the Internet of Things (IoT). The demand for computational power has been steadily increasing, driven by the exponential growth of data generation, the rise of artificial intelligence and machine learning, and the proliferation of resource-intensive applications.At the heart of computational power settlement lies the concept offair and efficient allocation of these valuable resources. In a world where computational power is a scarce and valuable commodity, the way in which it is distributed can have significant implications for individuals, businesses, and even entire economies.One of the primary challenges in computational power settlement is the need to balance the competing interests of various stakeholders. On one hand, individuals and organizations may seek to maximize their access to computational resources to meet their specific needs, whether it's for personal use, research and development, or commercial applications. On the other hand, service providers and infrastructure operators must ensure that the distribution of computational power is fair, transparent, and aligned with the overall system's capacity and efficiency.To address these challenges, various models and approaches have been developed. One such model is the concept of "computational power markets," where computational resources are traded like any other commodity. In these markets, computational power is bought and sold, with prices fluctuating based on supply and demand. This approach aims to incentivize the efficient use of computational resources, as users are motivated to optimize their usage and service providers are encouraged to expand their infrastructure to meet the growing demand.Another approach to computational power settlement is the use of blockchain technology. Blockchain-based solutions offer the potential for decentralized and transparent record-keeping of computational power transactions, ensuring fairness and traceability. By leveraging the immutable nature of blockchain, these systems can enable the creation of smart contracts that automatically execute the settlement of computational power usage, reducing the need for intermediaries and streamlining the overall process.In addition to market-based approaches, there are also efforts to develop more collaborative and community-driven models of computational power settlement. These models may involve the creation of distributed computing networks, where individuals or organizations contribute their idle computational resources to a shared pool, which can then be accessed and utilized by others in need. This approach can foster a sense of collective responsibility and promote the efficient utilization of computational power, while also providing opportunities for individuals and small-scale players to participate in the computational ecosystem.As the demand for computational power continues to grow, the need for robust and equitable settlement mechanisms becomes increasingly crucial. Policymakers, industry leaders, and technologists must work together to develop and implement effective solutions that address the challenges posed by computational powersettlement.One key aspect of this effort is the need for increased transparency and accountability in the allocation of computational resources. This may involve the development of standardized metrics and reporting frameworks that allow stakeholders to understand the usage patterns, pricing structures, and overall efficiency of the computational power ecosystem.Moreover, the integration of emerging technologies, such as edge computing and distributed ledger systems, can play a pivotal role in enhancing the scalability, security, and resilience of computational power settlement. By leveraging these technologies, we can create more decentralized and resilient systems that can better adapt to the rapidly changing demands of the digital age.In conclusion, the settlement of computational power is a complex and multifaceted challenge that requires a comprehensive and collaborative approach. As we continue to navigate the ever-evolving landscape of digital technologies, the development of efficient and equitable computational power settlement mechanisms will be crucial in ensuring that the benefits of technological progress are distributed fairly and sustainably. By addressing these challenges, we can unlock new opportunities for innovation, economic growth, andsocietal progress, ultimately shaping a future where computational power is a truly democratized and empowering resource for all.。
人工智能不会取代人类英语作文200
篇2
AI Will Not Replace Humans
As a student in the 21st century, I've grown up surrounded by rapidly advancing technology, particularly in the realm of artificial intelligence (AI). While the capabilities of AI systems continue to expand at an astonishing rate, there is a growing concern that these intelligent machines might one day replace humans in various roles and jobs. However, I firmly believe that AI will not and cannot entirely replace human intelligence and creativity.
Moreover, emotional intelligence, the capacity to understand and navigate the complex landscape of human emotions, is a vital aspect of interpersonal relationships and decision-making. AI systems, despite their impressive computational power, lack the innate ability to empathize, to read subtle social cues, and to navigate the nuances of human interactions. Professions that rely heavily on emotional intelligence, such as counseling, teaching, and leadership roles, will continue to be dominated by humans.
重塑计算力!引领PC创新的Intel
重塑计算力!引领PC创新的Intel年一度的CES不仅是科技圈的盛会,更是新兴技术大力展现未来市场潜力的舞台,具有极其重要的战略价值和前瞻性,而每届CES上,Intel发布会及其产品都是不容错过的存在,雄厚的技术积淀和远见令Intel常常扮演科技发展引领者的角色,而在CES 2019上,Intel众多黑科技技术及产品,让人们看到了重塑计算力的机会。
一开启多元计算时代CES 2019不仅给与新兴科技企业崭露头角的机会,更是芯片巨头“露肌肉”的秀场,在NVIDIA 宣布以游戏为核心布局未来、AMD强调自己CPU 产品性能提升时,Intel却在CES 2019上揭开了其多元化计算时代的幕布。
迈向更加多元化的计算时代,英特尔在不久之前的架构日活动上已经发出了自己的“宣言书”。
英特尔公司处理器核心与视觉计算高级副总裁Raja Koduri介绍了英特尔在设计与工程模式方面的战略性转变,这种转变整合了一系列基础构建模块,包含英特尔公司领先的技术和IP(知识产权)组合,旨在让英特尔加快创新步伐,并扎根于六大战略支柱:制程、架构、内存、超微互联、安全、软件。
Intel公司高级副总裁兼客户端计算事业部总经理Gregory Bryant在CES上展示Lakefield技术产品。
庞大的知识产权数量积淀令Intel有足够的底气拓展六大领域,也是其有信心在各个领域取得关键技术进步的基础。
具体在CES 2019上,Intel公布了多项最新进展,范围涵盖PC、新设备以及包括人工智能、5G和自动驾驶等在内的多个增长领域。
Intel高管还探讨了覆盖数据中心、云、网络和边缘计算的关键创新,确保创造面向未来的全新用户体验和外形设计。
广泛的产业布局和让人眼花缭乱的技术,让Intel再一次成为科技创新领域的明星。
推动移动PC产业升级5G 、AI 、智能驾驶等技术应用领域对于大众而言多少有些距离,但以笔记本为代表的移动PC 领域,却令大众尤为关注。
算力:理解、应用与未来展望
算力发展趋势
Trends in computing power development
算力发展趋势
帮我写个主题为《算力的PPT》的PPT,标题为《算力:理解、应用与未来展望》,内容部分为《算力发展趋势》。 幻灯片1:封面 标题:《算力:理解、应用与未来展望》 副标题:理解、应用与未来发展趋势 幻灯片2:目录 1. 算力的定义与分类 2. 算力在现实生活中的应用 幻灯片3:算力的定义与分类 介绍算力的定义和分类,包括: 1. 计算力:包括CPU、GPU等计算设备的能力。 2. 存储容量:存储设备的容量大小。 3. 网络带宽:网络连接的速度和带宽。 4. 人工智能算力:包括深度学习、机器学习等计算能力。 5. 其他分类:如量子计算、区块链等。 幻灯片4:算力在现实生活中的应用 介绍算力在现实生活中的应用,包括: 1. 智能手机、电脑等设备中的计算力。 2. 人工智能在医疗、交通、金融等领域的应用。 3. 云计算、大数据等技术的运用。 4. 量子计算、区块链等新兴技术的运用。 幻灯片5:算力发展趋势 介绍算力的发展趋势,包括: 1. 硬件升级:CPU、GPU等计算设备将继续升级,性能更高、功耗更低。 2. 技术创新:量子计算、生物计算等新兴技术将不断涌现,带来新的算力解决方案。 3. 应用拓展:算力将进一步深入到各个领域,如医疗、金融、能源等。 4. 产业融合:算力与其他产业的融合将更加紧密,推动产业升级。
THAN:算力:理解、应用与未来展望 幻灯片1:标题页 标题:算力:理解、应用与未来展望 副标题:探索算力的角色与影响 幻灯片2:目录 幻灯片3:算力概念 定义:算力是计算处理数据的能力,包括但不限于处理、分析、存储和传输数据。 类型:物理算力(由硬件提供)和虚拟算力(由软件提供)。 发展:随着硬件技术的进步,算力将持续增长。 幻灯片4:算力应用 人工智能(AI):提供AI模型的训练和推理能力。 区块链技术:提供加密和解密数据的能力,保证交易的安全和透明。 云计算:提供远程计算服务,如大数据分析和处理。 科学研究:支持各种复杂的科学计算和模拟。 幻灯片5:未来展望 预计在未来几年,随着AI和区块链等新兴技术的快速发展,对算力的需求将进一步增长。 硬件性能将继续提升,推动算力的增长。 此外,算力的提高也将促进AI和其他技术的进步,从而产生更多的应用场景。 幻灯片6:总结 算力是理解世界的重要工具,其应用范围广泛,包括AI、区块链、云计算和科学研究等。 随着硬件性能的提升和新兴技术的快速发展,我们可以预见到算力的未来将更加光明。
ENIAC
ENIAC长30.48米,宽6米,高2.4米,占地面积约170平方米,30个操作台,重达30英吨,耗电量150千瓦, 造价48万美元。它包含了17,468根真空管(电子管)7,200根水晶二极管,1,500 个中转,70,000个电阻器, 10,000个电容器,1500个继电器,6000多个开关,计算速度是每秒5000次加法或400次乘法,是使用继电器运 转的机电式计算机的1000倍、手工计算的20万倍。
而在国内的朋友们竟很少有人知道此事真相, 不少国内的作者在他们的专著、教材中,甚至科普活动中, 仍然宣传ENIAC是世界上第一台计算机。因此,做为一名IT工作者有必要本着科学的精神,替前人查清事实,希 望通过此文有助于纠正这个在国内知识界长期存在的重大学术误会,以正视听。
这里有计算机、电子计算机、通用电子计算机等概念,计算机的出现甚至可以追述到17世纪的加法机。(也 称帕斯卡机,这是一台机械计算机)。ABC计算机是第一台电子化的计算机,非图灵完备、不可编程是其最大限 制。而现代计算机的概念应等同于通用电子计算机,即图灵完备,可编程等。
谢谢观看
美国军方要求该实验室每天为陆军炮弹部队提供6张射表以便对导弹的研制进行技术鉴定。事实上每张射表 都要计算几百条弹道,而每条弹道的数学模型是一组非常复杂的非线性方程组。这些方程组是没有办法求出准确 解的,因此只能用数值方法近似地进行计算。
时间就是胜利
不过即使用数值方法近似求解也不是一件容易的事!按当时的计算工具,实验室即使雇用200多名计算员加 班加点工作也大约需要二个多月的时间才能算完一张射表。在“时间就是胜利”的战争年代,这么慢的速度怎么 能行呢?恐怕还没等先进的武器研制出来,败局已定。
超级计算机的人工智能算法
超级计算机的人工智能算法人工智能(Artificial Intelligence,简称AI)是近年来备受瞩目的科学领域,其研究范围涵盖了机器学习、深度学习、自然语言处理以及图像识别等多个领域。
而超级计算机的出现为人工智能带来了更大的发展空间,使得人工智能算法的应用更加广泛而强大。
本文将探讨超级计算机在人工智能算法中的重要性及其应用。
一、超级计算机在人工智能中的重要性超级计算机作为计算速度极高的计算机,为人工智能算法提供了强有力的计算能力。
人工智能算法通常需要大量的计算操作才能实现准确的结果,而常规的计算机往往无法满足这种需求。
在这样的背景下,超级计算机应运而生。
超级计算机拥有超强的并行计算能力,能够同时处理大规模的数据和复杂的计算任务。
这使得人工智能算法可以更加高效地进行训练和推理,从而提升算法的准确性和速度。
此外,超级计算机还能够承载更复杂的模型和算法,为研究者提供更强大的工具来解决现实世界中的复杂问题。
二、超级计算机在人工智能算法中的应用1. 机器学习算法超级计算机在训练机器学习算法方面发挥着重要作用。
机器学习算法需要依靠大规模的数据来进行模型训练,然后通过模型来进行预测和决策。
而超级计算机能够更快速地完成数据的处理和模型的训练,提高了机器学习算法的效率和准确性。
2. 深度学习算法深度学习算法是一种机器学习技术,其通过构建多层神经网络来模拟人脑的工作原理。
深度学习算法通常需要大量的样本数据和复杂的计算操作,才能够进行准确的识别和分类。
超级计算机的出现为深度学习算法提供了更大规模的计算和存储能力,使得深度学习算法可以应用于更广泛的领域,如图像识别、语音识别等。
3. 自然语言处理算法自然语言处理算法是指对文本和语音进行分析和处理的一类算法。
这类算法需要处理大量的文本和语音数据,并进行语义理解和情感分析等任务。
超级计算机能够高效地处理文本和语音数据,并提供更准确的自然语言处理结果,促进了语言技术的发展和应用。
高性能计算的基础知识
高性能计算的基础知识高性能计算(High Performance Computing,HPC)是指利用各种高速计算技术和设备来进行大规模、高速、复杂计算的一种计算和处理技术。
在科学研究、工程设计、生产制造、商业应用等领域中,HPC 已成为推动科学技术发展和促进社会经济发展的重要技术手段之一。
本文将从HPC的基础知识入手,介绍其相关概念、应用领域、发展历史、关键技术等方面的内容。
一、HPC的概念和定义HPC是指利用多台计算机通过高速网络连接并行工作,提供的计算能力远高于个人电脑或工作站的一种计算方式。
HPC主要用于解决需要大量计算、大量数据处理等方面的科学计算问题。
HPC的定义也蕴含在其英文名High Performance Computing中,HPC主要特点表现在两个方面:高速性和扩展性。
高速性指的是HPC系统在完成复杂计算任务时能以非常高的速度进行计算,这是通过利用多处理器、多核心、分布式计算等技术实现的;扩展性则指HPC系统在处理大规模数据和计算问题时,具备良好的水平扩展性和垂直扩展性,系统能够有效地适应计算任务的规模和复杂程度。
二、HPC的应用领域HPC技术在诸多领域都有广泛的应用,主要包括科学研究、工程设计、生产制造、商业应用等。
在科学研究领域,HPC主要用于天文学、气象学、地震学、生物学、医学等领域的大规模模拟和数据处理。
在工程设计领域,HPC主要应用于航空航天、汽车制造、船舶设计、建筑结构等领域的计算仿真和优化设计。
在生产制造领域,HPC主要用于工艺仿真、流体力学计算、材料模拟等方面的计算和优化。
在商业应用领域,HPC主要用于金融风险管理、大数据分析、人工智能等方面的计算和处理。
三、HPC的发展历史HPC的发展历史可以追溯到上世纪60年代末期,那时的Cray等公司开始开发并生产超级计算机。
在70年代末,在美国国家科学基金会(NSF)的支持下,成立了高性能计算和通信中心(NCSA),这被看做是HPC的发展里程碑。
超级计算技术的硬件配置要求
超级计算技术的硬件配置要求在当今数字化时代的高性能计算环境中,超级计算技术已成为各个领域的重要工具。
超级计算机以其出色的计算能力和运算速度,支持着诸如天气预报、气候模拟、基因组测序、自然灾害模拟等复杂任务的高性能需求。
为了满足这些任务的要求,超级计算技术的硬件配置起着至关重要的作用。
本文将重点探讨超级计算技术的硬件配置要求。
超级计算技术的硬件配置需要考虑多个方面,包括处理器、内存、存储、网络等。
首先,处理器是超级计算机的核心组成部分,它决定了计算机的运算速度和能力。
超级计算机通常采用高性能计算处理器,如英特尔的Xeon Phi和AMD的EPYC处理器。
这些处理器具有多个处理核心、高速缓存以及更高的时钟频率,以支持复杂的并行计算任务。
其次,超级计算机的内存需求要大于普通计算机,因为它需要同时处理大量的数据和任务。
超级计算机通常配置大容量的高速内存,如DRAM(动态随机存取内存)。
此外,为了支持更高的内存带宽和更低的延迟,超级计算机还会采用先进的内存访问技术,如快速内存互连和高带宽内存。
超级计算机的存储系统也是硬件配置中需要考虑的重要因素之一。
超级计算机通常需要存储大量的数据和计算结果。
传统的存储系统如硬盘驱动器(HDD)已经无法满足超级计算的需求,因为它们的读写速度较慢且容量有限。
因此,超级计算机往往会使用高速磁盘阵列(RAID)和快速闪存硬盘(SSD)等高性能存储设备,以提供更高的数据传输速度和更大的存储容量。
此外,超级计算机还需要强大的网络系统来支持高速数据传输和分布式计算。
超级计算机通过高性能网络连接多个节点,以实现分布式计算和数据共享。
为了满足数据传输的高带宽和低延迟要求,超级计算机通常会采用光纤通信网络和以太网等先进网络技术。
除了上述硬件配置要求,超级计算机的散热和供电系统也是不可忽视的因素。
由于超级计算机的高性能和密集计算特性,其硬件部件容易产生大量热量。
因此,超级计算机需要设计高效的散热系统,如风冷或水冷技术,以确保硬件运行稳定。
世界上第一台电子计算机
摩尔定律的印证:ENIAC的诞生和发展验证了摩 尔定律的预测。随着时间的推移,计算机的处理 能力不断提高,而价格和体积不断降低,这成为 计算机行业持续发展的动力。
03
ENIAC的影响和贡献
对计算机科学的影响
奠定了计算机科学基础
ENIAC作为第一台电子计算机,它的设计和开发过程为计算机科学的发展奠定 了基础,开创了计算机科学的新纪元。
促进计算机体系结构研究
ENIAC的设计思想和使用经验,对后续计算机体系结构的研究和发展产生了重 要影响,为现代计算机的设计提供了重要的参考。
世界上第一台电子计算机
汇报人: 日期:
目录
• 电子计算机简介 • 世界上第一台电子计算机-ENIAC • ENIAC的影响和贡献 • 与ENIAC相关的趣事 • 总结与展望
01
电子计算机简介
电子计算机的定义
01
电子计算机是一种基于电子技术 、通过执行预先编写的程序来实 现数据处理和计算的机器。
工作原理
ENIAC采用十进制计数制,基于电子管进行二进制运算。它 使用了一种称为“条件分支”的逻辑结构,以及一种延迟线 的内存储器。程序和数据通过插接板输入,运算结果通过灯 泡和电机驱动的机械式寄存器输出。
ENIAC的特点和性能
运算速度
ENIAC能进行每秒5000次的加法运算,360次的乘法运 算,以及更复杂的运算,如平方根和三角函数等,相比之 前的计算工具,运算速度有了质的飞跃。
诞生时间
ENIAC于1945年开始研制,1946年完 工,由美国宾夕法尼亚大学莫尔电气 工程学院(Moore School of Electrical Engineering)研制成功。
超级计算机解析世界上最强大的电脑
超级计算机解析世界上最强大的电脑超级计算机是当今科技领域最先进的计算机系统之一。
它们具有强大的计算能力和处理速度,可以解析和处理大规模的数据和复杂的计算任务。
在过去几十年中,超级计算机的发展取得了巨大的突破,带来了许多在科学研究、天气预报、工程设计和医学领域等方面的重大成果。
超级计算机的计算能力通常使用FLOPS(每秒浮点运算次数)来衡量。
世界上最强大的电脑通常被称为TOP500电脑,该排行榜每年发布一次,列出了世界上性能最强大的500台计算机。
这些计算机被广泛应用于各种重要领域,包括科学研究、国家安全、气象预报和能源探索等。
截至目前,世界上最强大的电脑是位于美国国家能源技术实验室的“Summit”超级计算机。
它于2018年6月问世,并在TOP500排行榜上占据了头把交椅。
Summit采用了IBM的POWER9 CPU和NVIDIA的V100 GPU来提供强大的计算能力和图形处理能力。
它的峰值计算能力超过了每秒200亿亿次浮点运算,是之前最强大的超级计算机的10倍以上。
Summit的强大计算能力使其成为了许多科学和工程领域的重要工具。
例如,在生物科学中,它可以帮助科学家研究人类基因组,预测蛋白质结构和寻找治疗癌症的新方法。
在气象学中,Summit可以模拟全球气候变化,并提供准确的天气预报。
此外,Summit还被用于国家安全领域,帮助情报机构解析复杂的数据和模拟可能的恐怖袭击。
尽管Summit目前是世界上最强大的电脑,但科技的发展永远不会停止。
许多国家和科技企业都在不断研发新的超级计算机,并争夺这一排行榜的榜首位置。
未来的超级计算机可能会更加高效、节能和智能,推动科学和技术的发展。
总结起来,超级计算机是当今世界上最强大的电脑系统之一,具有强大的计算能力和处理速度。
世界上最强大的电脑通常被列入TOP500排行榜,而目前排名第一的是美国国家能源技术实验室的Summit超级计算机。
它拥有强大的计算能力和图形处理能力,被广泛应用于科学研究、天气预报、国家安全等领域。
“超级计算机”英语怎么说
“超级计算机”英语怎么说名词解释:超级计算机能够执行一般个人电脑无法处理的大资料量与高速运算的电脑。
其基本组成组件与个人电脑的概念无太大差异,但规格与性能则强大许多,是一种超大型电子计算机。
具有很强的计算和处理数据的能力,主要特点表现为高速度和大容量,配有多种外部和外围设备及丰富的、高功能的软件系统。
现有的超级计算机运算速度大都可以达到每秒一太(Trillion,万亿)次以上。
你知道怎么用英语表达吗?A computer model capable of more accurately forecasting and analyzing the cause of smoggy days is expected to be put into operation in the following three to five years.The simulation model will be developed using the technology of Tianhe-1A, which ranked as the world's fastest supercomputer from November 2010 to June 2011, and the model's data will be revised in light of actual observation data from other monitors.The model is also expected to forecast weather conditions further in advance compared with current air quality monitors in operation.一台能够更准确地预测和分析雾霾天气形成原因的计算机模型预计将在未来三到五年内投入运行。
天河一号曾在2010年11月至2011年6月期间“荣膺”世界上最快的超级计算机称号,而这套模拟模型的开发正是运用了它的技术。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Enhancing computational power:DALI child agents generation⋆Stefania Costantini Arianna TocchioUniversit`a degli Studi di L’AquilaDipartimento di InformaticaVia Vetoio,Loc.Coppito,I-67010L’Aquila-Italy{stefcost,tocchio}@di.univaq.itAbstract.In this paper we introduce a novel feature of the DALI language:aDALI agent is now able to activate child agents and to feed them either with agoal to be reached or a result to be obtained.Each child agent is independentand can communicate with its father or with other agents.When the childfinallyreaches the given goal,it notifies the father.At any point,the latter may possiblydecide to stop it.Then:(i)each child is aware of the identity of its father;(ii)eachchild will notify the father about its achievements;(iii)a child can be stopped bythe father;(iv)the father may set a limited amount of time for children’s activ-ities completion.We introduce the mechanisms for children generation and thecorresponding operational semantics,and then present an example.1IntroductionIntelligent agents by using their potentialities are able at least to some extent to over-come problems such as limited computational resources,non-deterministic environ-ment,and insufficient knowledge.When a problem is not naturally multi-agent based, a sole agent is capable of solving it by taking enough computational resources and in-formation about its environment.In a lot of problem domains however,the context naturally requires several agents to take a role in problem-solving or,more generally,requires the adoption of a multi-agent strategy.A multi-agent system is composed of multiple interacting agents which are typically capable of cooperating to solve problems that are beyond the capabilities of any individual agent.Building a cooperation strategy is not easy:an agent,contrary to an object,can renounce to cooperate or,as emphasized in[5],can reveal itself an unreliable collaborator.So,when an agent accepts the aid of another one,it implicitly assumes a certain risk degree on its future activity.Can an agent minimize this risk?In some cases the response to this query is’yes’.Some kind of problems requiring a certain degree of computational power that a single agent cannot provide can be faced not by invoking the collaboration of external agents,but by generating child agents.⋆We acknowledge support by the Information Society Technologies programme of the European Commission,Future and Emerging Technologies under the IST-2001-37004W ASP project.The difference is relevant:a child agent is reliable and cannot refuse to give as-sistance.In fact,the basic premise of coordination is that if an agent cannot solve an assigned problem using local resources/expertise,it will decompose the problem into sub-problems and try tofind other willing agents with the necessary resources/expertise to solve these sub-problems.By using child agents,the sub-problems assignment is solved by a simple message exchange between father and children without adopting a contracting mechanism.Moreover,the possibility to assign complex tasks to one or more child agents allows the father to keep its energies for more strategic activities.In particular a father agent,by delegating a time-expensive jobs to a child,can maintain a high reactivity degree and respond timely to the changes in the environment.This is a not negligible detail.A limit of this approach is that a child agent cannot resolve tasks that require a knowledge degree that the father agent does not posses,unless the child acquires knowledge autonomously from other external sources.According to the above considerations,we have introduced in the DALI frame-work the ability to generate children.An important motivation for this improvement has been the need for our agents to face not-trivial planning problems by means of the invocation of a performant planner,such as for instance an Answer Set solver[7].The idea of Answer Set Programming[20]is to represent a given computational problem by means of a logic program whose answer sets correspond to solutions and then use an answer set solver,e.g.,SMODELS or DLV,tofind an answer set for this program. Answer Set Programming has proved to be a strong formalism for planning[12],and thus appears suitable for an integration with DALI.As a planning process can require a significant amount of time tofind a solution,the possibility for an agent to assign this time-expensive activity to its children can constitute a real advantage.Another motivation for generating children is,more generally,that of splitting an agent goal into subgoals to be delegated to children.This possibly with the aim of ob-taining different results by means of different strategies,and then comparing the various alternatives and choosing the best ones.The father provides the child with all the infor-mation useful tofind the solution and,optionally,with an amount of time within which to resolve the assigned problem.In this paper,we present the details on the child generation capability of DALI agents while the current work to integrate DALI and Answer Set Programming will be presented in forthcoming papers.This paper is organized as follows:in Section2we introduce the main functionalities of the DALI language;in Section3we explain briefly the DALI communication architecture;in Section4we present the Operational Seman-tics of our language;Section5is reserved to outline the child generation mechanism of DALI agents,Section6presents the related operational semantics laws,Section7 shows an example of application.Finally,we conclude this paper with some remarks and discussion of related work.2The DALI languageDALI[3]is an Active Logic Programming language designed in the line of[10]for executable specification of logical agents.The reactive and proactive behavior of the2DALI agent is triggered by several kinds of events:external events,internal,present and past events.All the events and actions are timestamped,so as to record when they occurred.An external event is a particular stimulus perceived by the agent from the environ-ment.In fact,if we define S={s1:t0,...,s n:t k}as the set of external stimuli s k that the agent received from the world during the interval(t0,t k),where the set of “external events”E is a subset of S.In particular,we can define the set of external events as follows:Definition1(Set of External Events).We define the set of external events perceived by the agent from time t1to time t n as a set E={e1:t1,...,e n:t n}where E⊆S.A single external event e i is an atom indicated with a particular postfix in order to be distinguished from other DALI language events.More precisely:Definition2(External Event).An external event is syntactically indicated by postfix E and it is defined as:ExtEvent::=<<Atom E>>|seq<<Atom E>>where an Atom is a predicate symbol applied to a sequence of terms and a term is either a constant or a variable or a function symbol applied in turn to a sequence of terms.External events allow an agent to react through a particular kind of rules,reactive rules, aimed at interacting with the external environment.When an event comes into the agent from its“external world”,the agent can perceive it and decide to react.The reaction is defined by a reactive rule which has in its head that external event.The special token :>,used instead of:−,indicates that reactive rules performs forward reasoning.Definition3(Reactive rule).A reactive rule has the form:ExtEvent E:>Body or ExtEvent1E,...,ExtEvent nE:>Bodywhere Body::=seq<<Obj>>andObj::=<<Action A>>|<<Goals G>>|<<Atom>>|...The agent remembers to have reacted by converting the external event into a past event (time-stamped).Operationally,if an incoming external event is recognized,i.e.,corre-sponds to the head of a reactive rule,it is added into a list called EV and consumed according to the arrival order,unless priorities are specified.The internal events define a kind of“individuality”of a DALI agent,making it proactive independently of the environment,of the user and of the other agents,and allowing it to manipulate and revise its knowledge.More precisely:Definition4(Internal Event).An internal event is syntactically indicated by postfix I:InternalEvent::=<<Atom I>>The structure of an internal event is composed by two rules.Thefirst one contains the conditions(knowledge,past events,procedures,etc.)that must be true so that the reaction(in the second rule)may happen:IntEvent:−ConditionsIntEvent I:>Body3where Conditions::=seq<<Obj cond>>andObj cond::=<<P astEvent P>>|<<Atom>>|<<Belief>>|... Moreover,Body::=seq<<Obj body>>andObj body::=<<Action A>>|<<Goals G>>|<<Atom>>|...Internal events are automatically attempted with a default frequency customizable by means of directives in the initializationfile.The user’s directives can tune several para-meters:at which frequency the agent must attempt the internal events;how many times an agent must react to the internal event(forever,once,twice,...)and when(forever, when triggering conditions occur,...);how long the event must be attempted(until some time,until some terminating conditions,forever).When an agent perceives an event from the“external world”,it does not necessarily react to it immediately:it has the possibility of reasoning about the event,before(or instead of)triggering a reaction.Reasoning also allows a proactive behavior.In this situation,the event is called present event and is formalized as follows:Definition5(Present Event).A present event is syntactically indicated by postfix N: P resentEvent::=<<Atom N>>|seq<<Atom N>>The syntax of a present event usage is:InternalEvent:−P resentEvent NInternalEvent I:>Bodywhere Body::=seq<<Object>>andObject::=<<Action A>>|<<Goals G>>|<<Atom>>|...Actions are the agent’s way of affecting the environment,possibly in reaction to either an external or internal event.An action in DALI can be also a message sent by an agent to another one.Definition6(Action).An action is syntactically indicated by postfix A:Action::=<<Atom A>>|message A<<Atom,Atom>>Actions take place in the body of rules:Head:−Bodywhere Body::=seq<<Object>>andObject::=<<Action A>>|<<Goals G>>|<<Atom>>|...In DALI,actions may have or not preconditions:in the former case,the actions are defined by actions rules,in the latter case they are just action atoms.An action rule is just a plain rule,but in order to emphasize that it is related to an action,we have introduced the new token:<,thus adopting the following syntax:Definition7(Action rule).An action rule has the form:Action:<P reconditionswhere P reconditions::=seq<<Object>>andObject::=<<P astEvent P>>|<<Atom>>|<<Belief>>|...Similarly to external and internal events,actions are recorded as past actions.4A DALI agent is able to build a plan in order to reach an objective,by using internal events of a particular kind,called planning goals.A goal has postfix G,and like an internal event is defined by two rules.Thefirst one is attempted when the goal is invoked and activates its subgoals,if any.The second one contains a reaction related to the reached subgoal.The relevant difference between an internal event and a planning goal is that while the former starts being attempted when the agent is born,the latter is attempted when invoked by a rule.A DALI agent is also able to verify if a goal was reached by using a special kind of atom with a postfix T.When the interpreter meets the construct goal T,it checks if a past event goal P or a fact corresponding to this predicate exists.Past events represent the agent’s“memory”,that makes it capable to perform future activities while having experience of previous events,and of its own previous conclu-sions.Past events are kept for a certain default amount of time,that can be modified by the user through a suitable directive in the initializationfile.A past event is formalized as follows:Definition8(Past Event).A past event is syntactically indicated by the postfix P:P astEvent::=<<Atom P>>3DALI Communication ArchitectureThe DALI communication architecture consists of four levels.Thefirst and last levels implement the DALI/FIPA communication protocol and afilter on communication,i.e.a set of rules that decide whether or not receive(told check level)or send a message (tell check level).The DALI communicationfilter is specified by means of meta-level rules defining the distinguished predicates tell and told.Whenever a message is re-ceived,with content part primitive(Content,Sender)the DALI interpreter automatically looks for a corresponding told rule.If such a rule is found,the interpreter attempts to prove told(Sender,primitive(Content)).If this goal succeeds,then the message is accepted,and primitive(Content))is added to the set of the external events incoming into the receiver agent.Otherwise,the message is discarded.Symmetrically,the mes-sages that an agent sends are subjected to a check via tell rules.The second level in-cludes a meta-reasoning layer,that tries to understand message contents,possibly based on ontologies and/or on forms of commonsense reasoning.The third level consists of the DALI interpreter.4Operational SemanticsThe operational semantics of DALI system[4]is defined by adopting an approach which is a novelty in the agent world.The novelty in particular is that we use a formal dialogue game in order to define the full operational semantics of the DALI interpreter.5Fig.1.DALI communication architectureRecently,formal dialogue games,which have been studied in philosophy since the time of Aristotle,have found application as the basis for interaction protocols between au-tonomous agents[13][14].Dialogue games are formal interactions between two or more participants,in which participants“move“by uttering statements according to pre-defined rules.Dialogue game protocols have been proposed for agent team formation,persuasion, negotiation over scarce resources,consumer purchase interactions and joint delibera-tion over a course of action is some situation([11],[17],[18],[19])but,to the best of our knowledge,they have not been used up to now to give a formal description of an agent language.In our formalization we assume that the DALI interpreter plays a game and thus makes“moves”not only towards other agents,but also towards itself.By adopt-ing this approach we explain the behavior of each layer of the architecture and their interactions.We define a formal dialogue game framework that focuses on the rules of dialogue,regardless the meaning the agent may place on the locutions uttered.Dialogue games has been applied successfully in negotiation contexts because in these cases is possible to individuate easily players and moves.Thefirst question that we faced in order to formalize the operational semantics of DALI architecture has been in fact:which are the players and which moves can they make?We considered that the DALI architecture is composed by layers and each layer adopts a specific behavior.A layer can be viewed as a dark box whose behavior is determined only by moves of other correlated layers and by its policy.By adopting this view point,our players are the layers and moves are defined through laws and transitions rules.A strategy for a player is a set of rules that describe exactly how that player should choose,depending on how the other player has chosen at earlier moves.The rules of the operational semantic show how the states of an agent change according to the applica-6tion of the transition rules.We define a rule as a combination of states and laws.Each law links the rule to the interpreter behavior and is based on the DALI architecture.Our work demonstrates how solutions from game theory together with computing theories can be used to publicly specify rules and prove desirable properties for agent systems. In order to make it clear what we intend for state,law and transition rule,we adopt the following definitions.Definition9(State of a DALI agent).Let Ag x be the name of a DALI agent.Wedefine the internal state IS Agx of a DALI agent as the tuple<E,N,I,A,G,T,P>composed by its sets of events,actions and goals.Definition10(Law).We define a law L x as a framework composed by the following elements:–name:the name of law;–locution:the arguments that the law takes;–preconditions:the preconditions to apply the law;–meaning:the meaning of the law;–response:the effects of the applied law;Definition11(Transition rule).A transition rule is described by two pairs and some laws.If the transition is internal to the same agent,a transition rule corresponds to: <Ag x,<P,IS,Mode>>L i,...,L j−→<Ag x,<NewP,NewIS,NewMode>> Starting from thefirst pair and by applying the current laws,we obtain the secondpair where some parameters have changed.Each pair is defined as<Ag x,S Agx >,where Ag x is the name of the agent and the operational state S Agx is the triple<P Agx ,IS Agx,Mode Agx>.Thefirst argument is the logic program(written in DALI)of the agent,the second one is the internal state,the third one is a particular attribute describing what the interpreter is doing.NewP,NewIS and NewMode indicate, respectively,P,IS and Mode updated after applying L i,...,L j laws.A transition rule can also describe how an agent can influence an other one.In this case,we will have:<Ag x,<P Agx ,IS Agx,Mode Agx>>L i,...,L j−→<Ag y,<P Agy,IS Agy,Mode Agy>>wherex=yThe operational semantics viewed with the eyes of game theory transforms TOLD filter into TOLD player,META level into META player,and so on until TELLfilter that becomes TELL player.Also the DALI internal interpreter becomes a player that plays with the other structural player and with itself.What will we expect from these players? Their behavior is surely cooperative because only if all levels work together,a DALI agent will satisfy the user expectations.The players are not malicious because our game is innocent and does not involve any competition strategy.So,we expect each player to follow deterministically the laws and rules and produces a set of moves admissible. These moves will influence the other players and will determine the global game.When does a player win?The game that an agent plays with itself and with the other agents is innocent,so we do not intend define rigorously the concept of winner.7Our winner is the player which play with success a specific game.More precisely,we intend,after defining the general operational semantics,to prove some relevant proper-ties of DALI language.For us,each property that must be demonstrated is a particular game that a player must face through defined the laws and rules.A player wins if plays successfully a game/property proposed.Next sections will describe the ability of DALI agents to generate children.5Child generation capabilityA DALI agent is able to activate child agents and to feed them either with a goal to be reached or a result to be obtained.Each child agent is independent and can communicate with its father or with other agents.When the childfinally reaches the given goal,it notifies the father.At any point,the latter may possibly decide to stop it.This will mostly happen either after obtaining results,or when the time amount that the father means to allocate to the child’s task has expired.Then:(i)each child is aware of the identity of its father;(ii)each child will notify the father about its achievements;(iii)a child can be stopped by the father;(iv)the father may set a limited amount of time for children’s activities completion.Apart from that,a child agent is a DALI one,equipped with its own knowledge base,directives and communicationfilter,and can in turn create children.This feature is relevant for DALI multi-agent system scalability.From a cognitive point of view,it allows the father for instance to:compute and then compare various alternative plans (or intentions in the BDI view);perform hypothetical reasoning;create its own local social setting in the form of a society of agents,each one with its role and commitment. The resulting architecture,useful to DALI agents to generate children,is divisible in three modules,each of which offers specific functionalities.Thefirst module allows a father agent to create children,the second one establishes a connection between father and child,the third one determines the child life time.5.1Create childrenThisfirst module allows each DALI agent to activate,through a specific action,one or more children.The new generated agent can include,according to the fatherly will, either the knowledge base of the father or a different knowledge base KB specified at the generation moment.If the child incorporates the father logic program and knowledge, the action able to create it will be:–create A(Num Children),where Num Children specifies how many agents the father intends to generate.The KB specification implies that the child agent will have the knowledge and logic program contained in the specifiedfile:–create A(NumF igli,KB),where Num Children has the same meaning speci-fied above and KB specifies thefile name containing the knowledge base.8For instance,an agent party who plays the role of a party organizer,can generate the following children:create A(1,c:/kb/cake.txt,ontology1).create A(1,c:/kb/fizz.txt,ontology2).Children will be named by default party child1and party child2(child1and child2for the father).Thefiles cake.txt and fizz.txt contain all the activation data (including knowledge bases and,optionally,ontologies)for the two agents.After this generation process,a child agent will have all potentialities to be able itself to generate further children.In other words,each child agent can become a father one.A particular mechanism avoids child agents to be given the same name.The last step of this module is to check if the activation succeeds:to this aim,the father agentchild.sends a specific message to each5.2Connect moduleThis module provides two functionalities:thefirst one establishes the connection be-tween father and child agents;the second one allows the father to assign a sub-goal to its child that,when it reaches its task,advises the father on its success. As soon as the child agent becomes active,it receives by the father the message: born(F ather name).Its child keeps in its memory the father name and sends to it the message:hello dad(Child name)Starting from the moment in which this hap-pens,two agents can communicate between them.When the father reaches the internal conclusion that it is necessary to assign a goal to a child,it sends one of the following messages:9–solve goal(Goal,Ev,T ime):the child has a time limit to resolve its task.The Ev parameter is necessary because the father must trigger specific reactive rules(in the child program)to activate the resolution process;–solve goal(Goal,Ev):the child agent does not have afixed amount of time to return the solution to the father;The child,as soon as its goal is reached,tells the father through a confirm message. 5.3Lifetime moduleThis third module kills the child agent when its allocated time has expired.DALI child agents have a specific internal event that checks from time to time if the current agent elapsed time has exceeded the value specified at the generation act.In this case,not only the agent is killed but also its data are erased.6Operational semantics of children generationIn this Section we show the operational semantics rules that cope with children genera-tion.In particular,the laws are L19-L24in the context of the119overall transition rules [21].–L19:initialize child(.)law:Locution:initialize child(Logic program/KB,Ontology)Preconditions:The agent reaches the conclusion(by an internal event)that it needs a child.Meaning:This law allows an agent to generate a child agent.If either Logic program or Ontology are empty,the generated child will inherit the parameters of the father,else it takes the specified value.Response:The agent has a child agent.–L20:The active child law:Locution:active childPreconditions:The child agent has been initialized.Meaning:This law activates a child agent.After the activation,the child agent enters the“wait”mode and is ready to receive communication acts from the father.Father and child can communicate by using the usual DALI primitives.Response:The child agent is active.–L21:The expired time child law:Locution:expired time childPreconditions:The time assigned from the father to child is expired.Meaning:This law checks the time assigned to the child agent.Response:The father informs the child that the time isfinished and asks for the results.10–L22:The obtain result law:Locution:obtain resultPreconditions:The time assigned to the child has expired.Meaning:The child agent has reached the requested result and it sends it to the father.Response:The father obtains the result.–L23:The not obtain result law:Locution:not obtain resultPreconditions:The time assigned to child has expired.Meaning:The child agent has not achieved the requested result.Response:The father does not obtain the result.–L24:The kill child law:Locution:kill childPreconditions:The child agent terminates its job.Meaning:The father resets the internal state of the agent and removes it from the environment.Response:The child is dead.7An example:organizing a partyIn this section we show an example in which an agent,having had a promotion,or-ganizes a party in order to offer a cake and afizz bottle to its friends.To this aim, it identifies two subgoals:to prepare the cake and to buy the bottle.Then,it creates two children in order to assign them the two tasks.We suppose that the internal event triggering the party organization is organize party:organize party:−promotion P.organize party I:>child name(F1,1),child name(F2,2),message A(F1,confirm(solve goal(cake ready,cake),user)),message A(F2,confirm(solve goal(fizz ready,fizz,120000),user)).where the child name/2predicate is useful to obtain the child agents names.Via the messages solve goal,the children receive the goals assignment.When the father agent receives the communications from the children that their tasks have been accomplished, it starts the party.start party:−cake ready P,fizz ready P.start party I:>write(′T he party is starting...′),invite everyone A.After the generation,the child agents tell the user about their birth by printing:11Hello World.....My name is party child1My father is partywhile the father party,verified the success of the generation process,writes:My son is party child1My son is party child2Once started,children will react to an event of the form solve goal(G)coming from their father.In this case,for instance,the father will be able to ask children to prepare a cake and drinks respectively,by means of the messages:message A(child1,confirm(solve goal(cake ready)).message A(child1,confirm(solve goal(buy drinks)).The father will be notified by the children when the goal will have been reached,and made aware of results.Notice that the second child has a time limit to give a solution. Below we show the logic programs of two children.The agent party child1The knowledge base of this agent consists in the cake.txtfile and contains the following rules:cake E:>preparing cake G.preparing cake:−haveF lour P.preparing cake I:>cake ready A.The agent triggers the goal preparing cake G while the connect module starts to verify if the assigned time is expired.In order to reach its goal,the agent is in need of flour.If the agent receives theflour,it prepares the cake and informs its father:make(cake ready)send message to(party child1,send message(cake,party child1))send message to(party child1,agree(cake ready,party child1))send message to(party child1,inform(agree(cake ready),values(yes),party child1))Reached Goal:cake readysend message to(party,confirm(cake ready,party child1)).The agent party child2This agent has the following logic program:fizz E:>buy fizz G.buy fizz:−haveMoney P.buy fizz I:>fizz ready A.In order to reach its goal,this child must have sufficient money.In this case,it buys the bottle and advices its father.The last exchanged messages are:Reached Goal:fizz readysend message to(party,confirm(fizz ready,party child2))12。